TALM1003-A Matematikk 1 Grunnlagsfag - 10 studiepoeng
|
|
- Per Holter
- 6 år siden
- Visninger:
Transkript
1 HØGSKOLEN I SØR-RØNDELAG Avdeling for teknologi Progra for elektro- og datateknikk 7004 RONDHEIM ALM1003-A Mateatikk 1 Grunnlagfag - 10 tudiepoeng Cae: Regulering av vækenivået i en tank Høt 013 Le dette ført Caen er en "hjeeoppgave" o du kal arbeide ed før ekaen Reultatet av arbeidet kal ikke innlevere 50 % av ekaen vil betå av oppgaver i tilknytning til caen Under denne delen av ekaen er caetekten og din bevarele nødvendige hjelpeidler Huk derfor å ta ed både caetekten og bevarelen på ekaendagen Det er viktig at du før ekaen etter deg go inn i caen probletillinger, og at du beherker løningetodene og er i tand til å tolke de reultatene du koer fra til Hvi du i en flervalgoppgave blir purt o ting du ikke har regnet direkte på, bør du være klar over at varalternativene ofte er utforet lik at du likevel kan avgjøre hvilket alternativ o er riktig, ut fra den generelle innikt du har fått gjenno arbeidet ed caen Under arbeidet ed caen kan du bruke de hjelpeidler du finner henikteig (kalkulator /progravare) Vær iidlertid opperko på at noen av pørålene på ekaen kan forutette at du vet hvordan et proble fra caen kan løe for hånd Du kan arbeide alene ed caen, eller aen ed andre Det avgjørende er at du elv tilegner deg innikt i probleene Lykke til ed arbeidet! Caetekten på de nete idene inneholder begrepene volutrø, tajonær verdi, tidkontant og periode Hvi du leer notatet "Hjelp til caen", o du finner bakert, får du en kort forklaring på hva die begrepene tår for
2 ALM1003-A Mateatikk 1, Cae høt apping av væke fra en tank x0 x(t) q(t) Figuren vier en åpen tank ed kontant tverrnitt A [ ] og vækenivå x 0 [] Kranen åpne ved t = 0 og tapping av væke begynner Volutrøen q [ 3 /] gjenno kranen er proporjonal ed kvadratroten av vækenivået x[], dv. q k x, k = proporjonalitetkontant a) Sett opp differeniallikningen for vækenivået x(t) i tanken b) Lø differeniallikningen c) Bete tiden det tar å tøe tanken, uttrykt ved A, k og x 0 5 1, 0, d) Skier for hånd forløpet til x(t) når A k og x e) egn eleentært blokkkjea og legg yteet inn i Siulink, og iuler nivået x(t) for ulike verdier på A (halver og doble A en k er kontant) og k (halver og doble k en A er kontant). Proporjonalregulering av vækenivået i tanken Se figuren nedenfor anken forbinde ed et tort vækereervoar appekranen fjerne og en pupe kople til utløprøret Mello reervoaret og tanken ontere en elektrik reguleringventil o tyre av en dataakin Dataakinen får løpende inforajon, via en nivååler, o vækenivået i tanken Etter at operatøren har krevet inn et ønket vækenivå r [] for tanken, ørger dataakinen for å åpne reguleringventilen lik at det går en tilpaet volutrø z(t) [ 3 /] gjenno reguleringventilen Vi antar at reguleringen av ventilen kjer kontinuerlig og oentant, uten tidforbruk i dataakinen
3 ALM1003-A Mateatikk 1, Cae høt Den enklete foren for autoatik regulering av ventilåpningen er en åkalt P-regulator (proporjonalregulator) Volutrøen ut av reguleringventilen ved tiden t er da gitt ved z(t) = K p [r x(t)], der K p = proporjonalitetkontant [ /] r = ønket vækenivå i tanken [] x(t) = virkelig vækenivå i tanken ved tiden t [].1 Fylling av to tank ed P-regulering Anta at tanken er to, og at pupa er lått av Ved t = 0 tarte P-reguleringen av vækenivået i tanken a) Sett opp differeniallikningen for vækenivået x(t) i tanken b) Lø differeniallikningen Hva blir tajonærverdien til nivået? Bete tidkontanten for yteet c) Skier for hånd forløpet til x(t) for A 1, r 1 og KP 0, 0. d) egn eleentært blokkkjea og legg yteet inn i Siulink, og iuler nivået x(t) for ulike verdier av K. p. Stabiliering av vækenivået ed P-regulering Anta at tanken er fylt opp til det ønkede vækenivået r Ved t = 0 tarte pupa, og det går en kontant volutrø v ut av tanken a) Sett opp differeniallikningen for vækenivået x(t) i tanken b) Lø differeniallikningen Hva blir tajonærverdien til nivået? Bete tidkontanten for yteet 3 c) Skier for hånd forløpet til x(t) for A 1, r 1, KP 0, 0 og v 0, 005. d) egn eleentært blokkkjea og legg yteet inn i Siulink, og iuler nivået x(t) for ulike verdier av K. p Har vi fått en tilfreillende regulering av vækenivået i tanken? 3 PI-regulering av vækenivået i tanken En av ulepene ed P-regulering er at tajonærverdien av tanken vækenivå avhenger av volutrøen v i pupa I praki kan pupa lå eg av og på, og kontanten v kan variere over tid Stajonærverdien vil da ogå variere og kan av og til avvike ye fra ønket nivå, r En åkalt PI-regulator fjerner denne ulepen Benytte en PI-regulator, vil volutrøen ut av reguleringventilen være gitt ved
4 ALM1003-A Mateatikk 1, Cae høt t 1 z( t) K p ( r x( t)) [ r x( t)] i 0 r = ønket vækenivå i tanken [] x(t) = virkelig vækenivå i tanken ved tiden t [] K p = proporjonalitetkontant [ /] i = kontant, kalt integrajontiden []. Navnet PI-regulator kylde foren på z(t) Det førte leddet i z(t) er det ae o ved P- regulering, en det andre leddet er proporjonalt ed en integralfunkjon (I-regulering). Siden begge ledd forekoer, er regulatoren en (Proporjonal + Integral)-regulator 3.1 Utledning av differeniallikning ed tartbetingeler Anta at tanken er fylt opp til det ønkede vækenivået r Ved t = 0 tarte pupa og det går en kontant volutrø v ut av tanken a) Sett opp differeniallikningen for vækenivået x(t) i tanken For å få en differeniallikning å du derivere ht t lik at integralfunkjonen forvinner Du får da en differeniallikning av orden b) Bete tartbetingelene x(0) og x (0) o du trenger for å løe differeniallikningen c) Bete tajonærverdien til vækenivået uten å løe differeniallikningen Koenter varet 3. Beregning av vækenivået x(t) Bruk A = 1, r = 1, v = 0,005 og K p = 0,0 i dette punktet a) Lø differeniallikningen og kier for hånd x(t) for følgende verdier av integrajontiden i : 1) i = 360 ) i = 00 3) i = 40 b) egn eleentært blokkkjea og legg yteet inn i Siulink, og iuler nivået x(t) for ulike verdier på i ( i = 360, i = 00 og i = 40). 4 PID-regulering av vækenivået i tanken Dero en ønker at regulatoren kal kopenere hurtig for vækenivåfallet en får når pupa tarter kan en benytte en derivajonvirkning i regulatoren i tillegg til proporjonal- og integralvirkningen. Vi har da en åkalt PID-regulator. Benytte en PID-regulator, vil volutrøen ut av reguleringventilen være gitt ved
5 ALM1003-A Mateatikk 1, Cae høt t 1 d z( t) K p( r x( t)) [ r x( t)] d ( r x( t)) i 0 r = ønket vækenivå i tanken [] x(t) = virkelig vækenivå i tanken ved tiden t [] K p = proporjonalitetkontant [ /] i = kontant, kalt integrajontiden []. d = kontant, kalt derivajontiden []. Navnet PID-regulator kylde foren på z(t) De to førte leddene i z(t) er det ae o ved PI-regulering, en det tredje leddet er proporjonalt ed en derivatfunkjon (Dregulering) Siden alle tre ledd forekoer, er regulatoren en (Proporjonal + Integral+ Derivat)-regulator 4.1 Utledning av differeniallikning ed tartbetingeler Anta at tanken er fylt opp til det ønkede vækenivået r Ved t = 0 tarte pupa og det går en kontant volutrø v ut av tanken a) Sett opp differeniallikningen for vækenivået x(t) i tanken For å få en differeniallikning å du derivere ht t lik at integralfunkjonen forvinner Du får da en differeniallikning av orden b) Bete tartbetingelene x(0) og x (0) o du trenger for å løe differeniallikningen c) Bete tajonærverdien til vækenivået uten å løe differeniallikningen Koenter varet 4. Dienjonering av PID-regulatoren og løning av differeniallikningen. Bruk A = 1, r = 1, v = 0,005 og K p = 1 i punktene a), b) og c). a) Karakteritik likning til differeniallikningen er av andre orden. Bete integrajontiden og derivajontiden til regulatoren lik at karakteritik likning får to like verdier på -0,05 (det tilvarer to like tidkontanter på 0 ekunder for det regulerte yteet). b) Lø differeniallikningen for dette tilfelle og kier for hånd forløpet til x(t). c) egn eleentært blokkkjea og legg yteet inn i Siulink (ip: d dx derivatdelen i regulatoren er lik: KP d ( r x) KPd, og i blokkkjeaet henter du ignalet fra den deriverte til x itedenfor å benytte en derivatorblokk for å realiere regulatoren), og iuler nivået x(t) for ulike verdier på i og d. d) Hva kjer ed det akiale avviket dero en øker Kp?
6 ALM1003-A Mateatikk 1, Cae høt Hjelp til caen Volutrø Ordet volutrø bruke o væker eller gaer o trøer i rør eller kanaler En kontant volutrø på fek / væke gjenno et rør, betyr at det gjenno et vilkårlig tverrnitt av røret paerer (= 5 liter) væke pr ekund En volutrø behøver ikke være kontant; den kan variere fra tidpunkt til tidpunkt og dered være en funkjon av tiden I caen betegne volutrøene ed ybolene q, z og v Dero en tank får tilført væke, atidig o væke forlater tanken, vil endringen pr tidenhet av vækevoluet, V(t), i tanken være gitt av volutrøene q inn (t) og q ut (t) dv Vi har: qinn(t) qut(t) V(t) q inn (t) q ut (t) Stajonær verdi og tidkontant Anta at en tidavhengig tørrele, x(t), nærer eg ayptotik ot en betet verdi, x, etter lang tid Da kalle x den tajonære verdien til x(t) Vi har: x li x(t) t Hvi x(t) er løning av en 1 orden differeniallikning, kan vi betee x direkte av differeniallikningen ved dx å ette 0 (hvorfor?) Dero x(t) hadde hatt et lineært forløp, ed ae vekthatighet o i tarten, ville x(t) ha nådd den tajonære verdien ved tidpunktet (e figur), o kalle tidkontanten, er en karakteritik paraeter for det yteet o x(t) bekriver Periodetid En tidavhengig tørrele, x(t), er gitt ved x(t) = a be t in(t), der a, b, og er poitive kontanter Funkjonen bekriver et depet vingeforløp okring x = a, lik figuren antyder Med perioden ene tidforkjellen ello de lokale toppunktene på grafen er kontant og betet av =, dv. = kalle vinkelfrekvenen a 0 x x(t) t
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Program for elektro- og datateknikk 7004 TRONDHEIM
HØGSKOLEN I SØR-RØNDELAG Avdeling for teknologi Program for elektro- og datateknikk 7004 RONDHEIM ALM005M-A Matematikk 1 Grunnlagfag - 10 tudiepoeng Cae Høt 011 Le dette ført Caen er en "hjemmeoppgave"
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Ekaendato: Varighet/ekaentid: Enekode: Enenavn: Klae(r): Studiepoeng: Faglærer(e): Tordag 1.6. 014 5 klokketier TALM100-A Mateatikk 1 EL FEN
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Ekaendato: Varighet/ekaentid: Enekode: Enenavn: Klae(r): Studiepoeng: Faglærer(e): Tordag 1.1. 01 5 klokketier TALM100-A Mateatikk 1 EL FEN
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Ekamendato: Varighet/ekamentid: Emnekode: Emnenavn: Klae(r): Studiepoeng: Faglærer(e): Tordag 11.1. 014 5 klokketimer TALM1003-A Matematikk
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi. Torsdag Kalkulator: Type C Alt skriftlig materiale
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Ekamendato: Varighet/ekamentid: Emnekode: Emnenavn: Klae(r): Studiepoeng: Faglærer(e): Løning Tordag.. 04 5 klokketimer TALM003-A Matematikk
DetaljerOppgave 1 Forenklet modell av hjulopphenget Hjulopphenget er dimensjonert slik at polene til modellen blir 5±
LM6M- Mateatikk : Utatt ekaen 9 Oppgave Forenklet odell av hjulopphenget Hjulopphenget er dienjonert lik at polene til odellen blir 5± j 5. Fjærtivheten til fjæra er da lik: 3 5 75 48 Oppgave Forenklet
DetaljerOppgave 1 Forenklet modell av hjulopphenget Hjulopphenget er dimensjonert slik at polene til modellen blir 4± fjæra er da lik:
LM6M- Mateatikk : Ekaen andag.ai, 9 Oppgave Forenklet odell av hjulopphenget Hjulopphenget er dienjonert lik at polene til odellen blir 4± j 3 fjæra er da lik:. Fjærtivheten til 3 75 48 7 N N N N Oppgave
DetaljerAnalyse av passive elektriske filtrer
HØGSKOEN I SØ-TØNDEAG Avdeling for teknologi Program for elektro- og datateknikk 7004 TONDHEIM TAM004-A Matematikk 2 (Grunnlagfag, 0 tudiepoeng) ærebok: Anthony roft, obert Davion, Martin Hargreave: Engineering
DetaljerFAG: FYS105 Fysikk LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG
UNVETETET AGDE Gritad E A E N O G A V E : FAG: FY05 Fyikk ÆE: er Henrik Hogtad lae(r: Dato: 8.05.0 Ekaentid, ra-til: 09.00.00 Ekaenoppgaven betår av ølgende Antall ider: 5 (inkl. oride Antall oppgaver:
DetaljerFAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann
UNIVERSITETET I AGDER Gritad E K S A M E N S O G A V E : FAG: FYS6 Fyikk/Kjei LÆRER: Fyikk : er Henrik Hogtad Kjei : Grethe Lehrann Klae(r): Dato: 5.5. Ekaentid, fra-til: 9. 4. Ekaenoppgaven betår av følgende
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
ALM6M-A Matematikk : Kontinuajonekamen augut HØGSKOLEN I SØR-TRØNELAG Avdeling for teknologi Kandidatnr: Ekamendato: Varighet/ekamentid: Emnekode: Augut 9-4 ALM6M Emnenavn: Matematikk Klae(r): EL Studiepoeng:
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNELG vdeling for teknologi Kandidatnr: Ekamendato: Varighet/ekamentid: Emnekode: Emnenavn: LØSNING Mandag 4.. klokketimer TLM4- Matematikk Klae(r): Studiepoeng: EL FEN Faglærer(e): Hjelpemidler:
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELG vdeling for teknologi Ekamendato: Varighet/ekamentid: Emnekode: Emnenavn: Mandag 5.mai 04 5 timer TLM004 Matematikk Klae(r): EL FEN Studiepoeng: 0 Faglærer(e): (navn og telefonnr
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNELG vdeling for teknologi Målform: Bokmål Ekamendato: ugut 0 Varighet/ekamentid: Emnekode: 5 timer LM006M Emnenavn: Matematikk Klae(r): E Studiepoeng: 0 Faglærer(e): (navn og telefonnr
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNELG vdeling for teknologi Kandidatnr: Eksaensdato: Tirsdag 1.deseber 009 Varighet/eksaenstid: 0900-1400 Enekode: LM005M- Enenavn: Mateatikk 1 Klasse(r): 1E Studiepoeng: 10 Faglærer(e):
DetaljerFAG: FYS114 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann
UNIVERSITETET I AGDER Gritad E K S A M E N S O G A V E : FAG: FYS4 Fyikk/Kjei LÆRER: Fyikk : er Henrik Hogtad Kjei : Grethe Lehrann Klae(r): Dato: 5.5. Ekaentid, fra-til: 9. 4. Ekaenoppgaven betår av følgende
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNELG vdeling for teknologi Målform: Ekamendato: Varighet/ekamentid: Emnekode: Emnenavn: Klae(r): Studiepoeng: okmål Mandag 7.mai 0 5 timer LM006M Matematikk E 0 Faglærer(e): (navn og
DetaljerBEDRIFTSØKONOMISK ANALYSE MAN 8898 / 8998
BEDRIFTSØKONOMISK ANALYSE MAN 8898 / 8998 Lineær programmering og bedriftøkonomike problemer Tor Tangene BI - Sandvika V-00 Dipoijon Bruk av LP i økonomike problemer Et LP-problem Begreper og noen grunnleggende
DetaljerLØSNING. Eksamensoppgave i TALM1004 Matematikk 2. Institutt for allmennfag. Faglig kontakt under eksamen: Kåre Bjørvik Tlf.
Intitutt for allmennfag Ekamenoppgave i ALM4 Matematikk LØSNING Faglig kontakt under ekamen: Kåre Bjørvik lf.: 9 77 898 Ekamendato: 5.5.7 Ekamentid (fra-til): 9. 4. Hjelpemiddelkode/illatte hjelpemidler:
DetaljerEksamensoppgave i FY0001 Brukerkurs i fysikk (V2017)
ntitutt for fyikk Ekaenoppgave i FY000 Brukerkur i fyikk (V07) Faglig kontakt under ekaen: Mikael Lindgren Tlf.: 4 46 65 0 Ekaendato: 4. ai 07 Ekaentid (fra-til): 0900-300 Hjelpeiddelkode/Tillatte hjelpeidler:
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
LM6M- Matematikk -Ekamen 9.mai HØGSKOLEN I SØR-TRØNELG veling for teknologi Kaniatnr: Ekamenato: Varighet/ekamenti: Emnekoe: Manag 9.mai 9-4 LM6M Emnenavn: Matematikk Klae(r): EL Stuiepoeng: Faglærer(e):
DetaljerFAG: FYS113 Fysikk/Kjemi ÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann
UNIVERSITETET I GDER Gritad E K S M E N S O G V E : FG: FYS Fyikk/Kjei ÆRER: Fyikk : er Henrik Hogtad Kjei : Grethe Lehrann Klae(r): Dato: 5.5. Ekaentid, ra-til: 9. 4. Ekaenoppgaven betår av ølgende ntall
Detaljer1 Lavpassfilter Lavpassfilteret påtrykkes en inngangsspenning på 1 V ved t = 0. Spenningen over spolen er vist i figuren under.
ALM5M-A Matematikk Utatt Ekamen, 9 Lavpafilter Lavpafilteret påtrykke en inngangpenning på V ved t =. Spenningen over polen er vit i figuren under. Spenning [V].9.8.7.6.5.4.3.. Tidkontanten til lavpafilteret
DetaljerHøst 96 Ordinær eksamen
Høt 96 Ordinær ekaen. a) Vi tenker o at en partikkel eveger eg lang en rett linje (lang x-aken). Partikkelen poijon o unkjon av tiden t er gitt ved: ( t) t Bt hvor. B 8. Beregn partikkelen hatighet etter.
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELG vdeling for teknologi Ekamendato: 0 Varighet/ekamentid: Emnekode: Emnenavn: 5 timer TLM00 Matematikk Klae(r): EL FEN Studiepoeng: 0 Faglærer(e): (navn og telefonnr på ekamendagen)
DetaljerDifferensiallikninger
Differeniallikninger I er enn 300 år har ateatik analye vært et vært viktig kapittel i faget. Teaet differeniallikninger blir av ange ateatikere betraktet o diaanten i ateatik analye eller kalkulu. Det
DetaljerOppgaver til Dynamiske systemer 1
Oppgaver til Dynamike ytemer Oppgave 0. Lineariering av ulineær modell Likning (2.28) i læreboka er en dynamik modell av en tank med gjennomtrømning og oppvarming. Modellen gjengi her: cρv T (t) P (t)+cw(t)[t
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNELG vdeling for teknologi Kandidatnr: Eksaensdato: Torsdag 15.deseber 011 Varighet/eksaenstid: 0900-1400 Enekode: LM005M- Enenavn: Mateatikk 1 Klasse(r): 1E Studiepoeng: 10 Faglærer(e):
DetaljerTALM 1004 Matematikk 2-Eksamen mandag 4.mai 2015 LØSNING. 5 klokketimer TALM1004-A. Matematikk 2. Kåre Bjørvik. Kalkulator: Type C
HØGSKOLEN I SØR-TRØNELG vdeling for teknologi Kandidatnr: Ekamendato: Varighet/ekamentid: Emnekode: Emnenavn: LØSNING 5 5 klokketimer TLM- Matematikk Klae(r): Studiepoeng: EL FEN Faglærer(e): Hjelpemidler:
DetaljerNorsk Fysikklærerforening Norsk Fysisk Selskaps faggruppe for undervisning
Nork Fikklærerforenin Nork Fik Selkap faruppe for underinin FYSIKK-OLYMPIADEN 4 5 Andre runde: 3/ 5 Skri øert: Nan, fødeldato, hjeeadree o eentuell e-potadree, kolen nan o adree. Varihet: 3 klokketier
DetaljerEKSAMEN I FAG SIO 1043 STRØMNINGSLÆRE 2 Dato 24. mai 2003 Tid: kl. 09:00 14:00
Side av 5 Norge teknik naturvitenkapelige univeritet NTN Fakultet for Ingeniørvitenkap og teknologi Intitutt for Energi og Proeteknikk Faglig kontakt under ekaen: Per-Åge Krogtad tlf.: 9370 Torbjørn Nielen
DetaljerFAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Turid Knutsen
UNIVERSITETET I AGDER Griad E K S A M E N S O P P G A V E : FAG: FYS6 Fikk/Kjei LÆRER: Fikk : Per Henrik Hogad Kjei : Turid Knuen Klaer: Dao:.. Ekaenid, fra-il: 9. 4. Ekaenoppgaen beår a følgende Anall
DetaljerHydraulisk system. Tanken har rette vegger. Vannspeilarealet A[m 2 ] er da konstant og uavhengig nivået x[m]. Generell balanseligning:
Hyraulik yte. / / Tanken har rette eer. Vanneilarealet er a kontant o uaheni niået. Generell balanelinin: kkuulert olu r tienhet i tank Inntrønin Uttrønin t V V t t V t Syte 0: t t t 0 0 Niåenrin: Tranferfunkjon:
DetaljerSLUTTPRØVE. Løsningsforslag. Antall oppgaver: 4 KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG
Høgkolen i elemark Avdeling for teknologike fag SLUPRØVE Løningforlag EMNE: EE49 Modellbaert regulering LÆRERE jell-erik Wolden og Han-Petter Halvoren LASSE(R): IA DAO: 9.5. PRØVEID, fra-til (kl.): 9..
DetaljerEksamen S2 høst 2009 Løsning Del 1
S Ekamen, høten 009 Løning Ekamen S høt 009 Løning Del Oppgave a) Deriver funkjonene: ) ln f f ln ln f ln ln f f ) g e e u, u g e e g e e e g 6e b) Vi har en aritmetik rekke der a 8 og a8. Betem a, d og
DetaljerFAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Grethe Lehrmann
UNIVERSITETET I AGDER Griad E K S A M E N S O P P G A V E : FAG: FYS6 Fyikk/Kjei LÆRER: Fyikk : Per Henrik Hogad Grehe Lehrann Klaer: Dao:.. Ekaenid, fra-il: 9. 4. Ekaenoppgaen beår a følgende Anall ider:
DetaljerPD-regulator med faseforbedrende egenskaper. Denne ma dessuten klare
Norge teknik naturvitenkapelige univeritet Intitutt for teknik kybernetikk Oktober 99/PJN, September 9 /MPF Utlevert:..9 0 SERVOTENI Lningforlag ving 0 a) Oppgave Vi kriver h() pa formen ( +0:)( ; 0:)
DetaljerFAG: FYS117 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Turid Knutsen
UNIVERSITETET I AGDER Griad E K S A M E N S O P P G A V E : FAG: FYS7 Fikk/Kjei LÆRER: Fikk : Per Henrik Hogad Kjei : Turid Knuen Klaer: Dao:..3 Ekaenid, fra-il: 9.. Ekaenoppgaen beår a følgende Anall
DetaljerSignalfiltrering. Finn Haugen TechTeach. 21. september 2003. Sammendrag
Signalfiltrering Finn Haugen TechTeach. eptember 3 Sammendrag Dette dokumentet gir en kort bekrivele av ignalfiltrering med tidkontinuerlige, ogå kalt analoge, filtere og med tiddikrete, ogå kalt digitale,
DetaljerFAG: FYS105 Fysikk LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG
UNIVERITETET I AGDER Gritad E K A M E N O G A V E : FAG: FY5 Fyikk ÆRER: er Henrik Hogtad Klaer: Dato: 9.5.9 Ekaentid, ra-til: 9. 4. Ekaenoppgaen betår a ølgende Antall ider: 5 inkl. oride Antall oppgaer:
Detaljers Den hydrauliske diameter er gitt ved d h = 4 hvor A er rørets tverrsnitt og O er den delen ) 2 d 2
Strøninglære. Reynol tall. I 88 oaget Reynol at et finne to tyer trøning, nelig lainær trøning og turbulent trøning. Oergangen ello ie to tyene kjee e en i kritik atiget. Reynol utiklet et ienjonløt tall,
Detaljer(jω) [db] PID. 1/T i PI - 90
138 Oppgaver til Praktik reguleringteknikk H r (jω) [db] PID T d /T f PI 0 db arg H r (jω) [grader] 90 1/T i 1/T d 1/T f PID ω (logaritmik) 0 PI - 90 Figur 69: Løning 9.4: Aymptotike og (omtrentlige) ekakte
DetaljerHøst 97 Utsatt eksamen
Høt 97 Utatt ekaen. Vi tenker o at en partikkel beveger eg lang en rett linje (lang x-aken). Partikkelen tarter i ro i origo ve tien t =. ekuner. Partikkelen hatighet v o funkjon av tien t er gitt ve:
DetaljerEksamensoppgave i TALM1004 Matematikk 2 LØSNING
Fakultet for teknologi Ekamenoppgave i TLM Matematikk LØSNING Faglig kontakt under ekamen: Kåre jørvik Tlf.: 9 77 898 Ekamendato: ugut 6 Ekamentid (fra-til): 9.-. Hjelpemiddelkode/Tillatte hjelpemidler:
DetaljerSamfunnsøkonomi andre avdeling, mikroøkonomi, Diderik Lund, 13. mars 2002
Samfunnøkonomi andre avdeling, mikroøkonomi, Diderik Lund, 3. mar 00 Måling av graden av riikoaverjon Blant konkave nyttefunkjoner: Mer konkav betyr terkere riikoaverjon Vanlig å måle grad av konkavitet
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematik-naturvitenkapelige fakultet Ekamen i: Oppgaveettet er på: Vedlegg: Tilatte hjelpemidler Fy60 4 ider ingen Elektronik kalkulator, godkjent for videregående kole Rottman:
DetaljerLøsningsforslag til hjemmeøving nr.6 Fag SO122E Kraftelektronikk
Avd. for teknologi Program for elektro- og datateknikk Løningforlag til hjemmeøving nr.6 Fag SOE Kraftelektronikk (D:\ARFI\D\OVIG\KRELIKK\Ov6\Kraftelektronikk øv6 løning.doc) Oppgave a) Skiér blokkkjemaene
DetaljerOppgave 1. (x i x)(y i Y ) (Y i A Bx i ) 2 er estimator for σ 2 (A er minstek-
MOT310 Statitike metoder 1 Løningforlag til ekamen vår 010,. 1 Oppgave 1 a) Modell: Y i α + βx i + ε i der ε 1,..., ε n u.i.f. N 0, σ ). b) Vil tete: Tettørrele H 0 : β 0 mot H 1 : β 0 B β T t n under
DetaljerKap 10 Dynamikk av rotasjons-bevegelse
Kap Dynaikk av rotajon-bevegele. Bete kraftoentet (tørrele og retning) o en ake noralt på papirplanet gjenno O o kraften F i hver av ituajonene er årak til. Objektet o F virker på har i hvert av tilfellene
DetaljerEksamensoppgave i TALM1004 Matematikk 2
Fakultet for teknologi Ekamenoppgave i TLM Matematikk Faglig kontakt under ekamen: Kåre jørvik Tlf.: 9 77 898 Ekamendato: 7. ugut 6 Ekamentid (fra-til): 9.-. Hjelpemiddelkode/Tillatte hjelpemidler: lt
DetaljerKurs: FYS3220 Lineær kretselektronikk. Oppgave: LABORATORIEØVELSE B
Kur: FYS30 Lineær kretelektronikk Gruppe: Utført dato: Oppgave: LABOATOIEØVELSE B Omhandler: LAPLACE TANSFOMASJON... AC-ESPONS OG BODEPLOT... 7 3 WIENBOFILTE... 5 H.Balk rev 9 04.0.00 Utført av i Sett
Detaljer(s + 1) 4 + 2(s + 1)
NTNU Intitutt for matematike fag TMA4135 Matematikk 4D, øving 6, høt 215 Løningforlag Notajon og merknader Vi dropper enheter i oppgavene om benytter dette. Læreboken er uanett inkonekvent når det gjelder
DetaljerLØSNINGSFORSLAG Eksamen i emne SIE4006, Digitalteknikk med kretsteknikk, fredag 16. mai 2003
Side av 6 LØSNINGSFORSLAG Ekamen i emne SIE4006, Digitalteknikk med kretteknikk, fredag 6. mai 2003 Oppgave a) Kirchoff trømlov: Den algebraike um av alle grentrømmer i et knutepunkt i en kret er lik null
DetaljerTidspunkt for eksamen: 10. desember ,5 timer
EKSAMENSOPPGAVE Ititutt: IKBM Ekame i: STAT 00 Statitikk Tidpukt for ekame: 0. deember 05 09.00-.30. 3,5 timer Kuravarlig: Trygve Almøy Tillatte hjelpemidler: C3. Alle typer kalkulatorer, alle adre hjelpemidler
DetaljerFAG: FYS115 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Turid Knutsen
UNIVRSITTT I AGDR Griad K S A M N S O P P G A V : FAG: FYS5 Fikk/Kjei LÆRR: Fikk : Per Henrik Hogad Kjei : Turid Knuen Klaer: Dao:..3 kaenid, fra-il: 9. 4. kaenoppgaen beår a følgende Anall ider: 6 inkl.
DetaljerFYS 105 Fysikk Ordinær eksamen vår 2005
FYS 5 Fyikk Ordinær ekaen år 5. En bil kjører lang en re linje (-aken og paerer origo ed haigheen 7. k/h ( =. / i poii -rening ed iden =. Haigheen o unkjon a iden er gi ed: hor (.6. a ee bilen akelerajon
DetaljerH Laplacetransformasjon, transientanalyse og Z- transformasjon
FYS30 H013-1 Laplacetranformajon, tranientanalye og Z- tranformajon... 1 801 Paivt Chebyhevfilter (H00-4)... 80 Aktivt Butterworth & Beel filter (H03-1)... 3 807 Fra 1-orden prototype Beel filter til båndpa...
DetaljerFAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Grethe Lehrmann
UNIVERSITETET I AGDER Griad E K S A M E N S O G A V E : FAG: FYS6 Fikk/Kjei LÆRER: Fikk : er Henrik Hogad Grehe Lehrann Klaer: Dao:.5.4 Ekaenid, fra-il: 9. 4. Ekaenoppgaen beår a følgende Anall ider: 6
DetaljerLøsningsforslag oppgaver FYS3220 uke43 H2009 HBalk
Løningforlag oppgaver FYS3 uke43 H9 HBalk Oppgave Nyquit diagrammer... Oppgave Tilbakekobling... Oppgave 3 Polplaering, Bodeplot, Nyquit... 4 Oppgave Nyquit diagrammer a) Forklar hva et Nyquit diagram
DetaljerFAG: FYS113 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Turid Knutsen
UNVERTETET AGDER Giad E K A M E N O P P G A V E : FAG: FY3 Fikk/Kjei ÆRER: Fikk : Pe Henik Hogad Kjei : Tuid Knuen Klae: Dao:..3 Ekaenid, a-il: 9. 4. Ekaenoppgaen beå a ølgende Anall ide: 5 inkl. oide
DetaljerEKSAMEN I FAG SIF 4014 FYSIKK 3 Onsdag 2. desember 1998 kl
Side av 7 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under ekamen: Førteamanueni Knut Arne Strand Telefon: 73 59 34 6 EKSAMEN I FAG SIF 44 FYSIKK 3 Ondag. deember
DetaljerLøsningsforslag til Eksamen i TELE2003 Signalbehandling 6. mai 2015
Løningorlag til Ekamen i TELE23 Signalbehandling 6. mai 215 Oppgave 1 (2 %) a) x( t) = Aco(2 π t + ϕ) Amplituden A er merket på iguren. Frekvenen 1 = T Faen ϕ kan inne av orholdet mellom T ϕ og T om begge
DetaljerEksamen i TMA4130 Matematikk 4N
Norge teknik naturvitenkapelige univeritet Intitutt for matematike fag Side av 5 Faglig kontakt under ekamen: Yura Lyubarkii: mobil 9647362 Anne Kværnø: mobil 92663824 Ekamen i TMA430 Matematikk 4N Bokmål
DetaljerLøsningsforslag for øvningsoppgaver: Kapittel 1
Løningforlag for øvningoppgaver: Kapittel 1 Jon Walter Lundberg 07.01.2015 1.02 Symbol Navn Verdi v yokto 10 24 z zepto 10 21 a atto 10 18 f femto 10 15 p piko 10 12 n nano 10 9 µ mikro 10 6 m mili 10
DetaljerKap 01 Enheter, fysiske størrelser og vektorer
Kap Enheter, fyike tørreler og vektorer.7 Concorde er det rakete paajerflyet. Det har en hatighet på 45 mi/h (ca ganger lyden hatighet, dv Mach). mi = 69 m. a) Hva er Concorde-flyet hatighet i km/h? b)
DetaljerFAG: FYS113 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Grethe Lehrmann
UNVERSTETET AGDER Griad E K S A M E N S O P P G A V E : FAG: FYS Fyikk/Kjei LÆRER: Fyikk : Per Henrik Hogad Grehe Lehrann Klaer: Dao:.. Ekaenid, fra-il: 9. 4. Ekaenogaen beår a følgende Anall ider: 6 inkl.
DetaljerKap 02 Posisjon / Hastighet / Akselerasjon 2D - Bevegelse langs en rett linje
Kp Poijon / Highe / kelerjon D - Beegele lng en re linje Løning Lufpuebenk Highe: oocellene kn flye Siden ognen hr konn highe ed beegele på lufpuebenken, il beregningen highe ære uhengig foocellene poijon
DetaljerFAG: Fysikk fellesdel LÆRER: Fysikk : Per Henrik Hogstad
UNIVERSITETET I AGDER Giad E K S A M E N S O P P G A V E : FAG: Fikk felledel LÆRER: Fikk : Pe Henik Hogad Klae: Dao:.5.8 Ekaenid, fa-il: 9. 4. Ekaenoppgaen beå a følgende Anall ide: Anall oppgae: Anall
DetaljerFAG: FYS113 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Grethe Lehrmann
UNIVERITETET I AGDER Griad E K A M E N O G A V E : FAG: FY3 Fikk/Kjei ÆRER: Fikk : er Henrik Hogad Grehe ehrann Klaer: Dao:.5.4 Ekaenid, ra-il: 9. 4. Ekaenoppgaen beår a ølgende Anall ider: 6 inkl. oride
DetaljerFormelsamling i Regtek. Andreas Klausen. (Kontrollør Sondre S. Tørdal) 4. september 2012
Formelamling i Regtek Andrea Klauen (Kontrollør Sondre S. Tørdal) 4. eptember 0 Bruk på eget anvar. Innhold Ziegler Nochlie PID tuning 3. Open Loop.............................. 3. Cloed loop..............................
DetaljerEksamensoppgave i TALM1004 Matematikk 2
Fakultet for teknologi Ekamenoppgave i TLM4 Matematikk Faglig kontakt under ekamen: Kåre jørvik Tlf.: 9 77 898 Ekamendato:.5.6 Ekamentid (fra-til): 9.-4. Hjelpemiddelkode/Tillatte hjelpemidler: lt kriftlig
DetaljerESERO AKTIVITET BYGGING AV TRYKKLUFTRAKETT. Elevaktivitet. 6 år og oppover. Utviklet av
ESERO AKTIVITET 6 år og oppover Utviklet av Elevaktivitet Overikt Tid Læremål Nødvendige materialer timer Gi deltagerne mulighet til å bruke teori fra et foredrag i raketteknikk og ette det i praki. Teip
Detaljer1 t f Bestem de partielle deriverte. når 2 2. og f y. Oppgave 2
FOA50 eamen høt 004 ide av 5 Oppgave a) Regn ut f ( ) når (i) f( ) = e in (ii) f( ) = ln(+ ) (iii) = + t b) f Betem de partielle deriverte og f y når f(, y) = + y + y. c) Regn ut: f( ) t dt (i) 4 ln d
DetaljerTMA4125 Matematikk 4N
Norge teknik-naturvitenkapelige univeritet Intitutt for matematike fag TMA4125 Matematikk 4N Løningforlag - Øving 4 Fra Kreyzig, avnitt 5.6 3 Vi øker f(t) L 1 {F ()} for F () ( 2 + 9 9)/( 3 9) og delbrøkopppalter
DetaljerEKSAMEN I TMA4130 MATEMATIKK 4N Bokmål Fredag 17. desember 2004 kl. 9 13
Norge teknik naturvitenkapelige univeritet Intitutt for matematike fag Side av 5 Inkluive formelark og Laplacetabell Faglig kontakt under ekamen: Finn Faye Knuden tlf. 73 59 35 23 Sigmund Selberg tlf.
DetaljerKap. 10: Inferens om to populasjoner. Inferens om forskjell i forventning ved å bruke to avhengige utvalg (10.3) ST0202 Statistikk for samfunnsvitere
Kap. 0: Inferen om to populajoner Situajon: Det er to populajoner om vi ønker å ammenligne. Vi trekker da et utvalg fra hver populajon. Vi kan ha avhengige eller uavhengige utvalg. ST00 Statitikk for amfunnvitere
Detaljern_angle_min.htm
Kp 9 Rotjon 9.1 En ptikkel beege eg i en ikelbne ed kontnt inkelhtighet lik 1. -1. Siule, ål og beegn ho to inkel diuekto h beeget eg i løpet.. Mek: Mek i checkboken D lik t du ende iuleingen f 3D til
DetaljerSvar: Vi bruker Ampères lov for å finne magnetfeltet en avstand r fra lynet.
I FYS1120-undervininga legg vi meir vekt på matematikk og numerike metoder enn det oppgåvene i læreboka gjer. Det gjeld òg oppgåvene om vert gitt til ekamen. Difor er det viktig at du gjer vekeoppgåvene
DetaljerE K S A M E N. Emnekode: MAS220. Emnenavn: Servoteknikk. Dato: 15. desember Varighet: Antall sider inkl.
E K S A M E N Enekode: MAS0 Enenavn: Servoteknikk Dato: 5. deeber 06 Varighet: 09.00-4.00 Antall ider inkl. foride: 4 Tillatte hjelpeidler: To kalkulator Merknader: KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET
DetaljerLøsningsforslag Fysikk 1 (FO300A)
øningforlag Fi (FO00A) vår 00 utatt eaen 9. augut, tier Oppgave (%) Ei ule av etall ed te horiontalt (vannrett) ut fra en atapult. (Kula beveveger eg altå horiontalt i uttningøebliet.) Uttningpuntet O
DetaljerKlikk (ctrl + klikk for nytt vindu) for å starte simuleringen i SimReal.
Kp 9 Rotjon 9. En ptikkel beege eg i en ikelbne ed kontnt inkelhtighet lik. -. Siule, ål og beegn ho to inkel diuekto h beeget eg i løpet.. Mek: Mek i checkboken D lik t du ende iuleingen f 3D til D. Fjen
DetaljerFAG: FYS118 Fysikk LÆRER: Fysikk : Per Henrik Hogstad
UNIVERSITETET I AGDER Giad E K S A M E N S O P P G A V E : FAG: FYS8 Fikk LÆRER: Fikk : Pe Henik Hogad Klae: Dao:.5.4 Ekaenid, fa-il: 9. 4. Ekaenoppgaen beå a følgende Anall ide: 6 inkl. foide Anall oppgae:
DetaljerFAG: FYS118 Fysikk LÆRER: Fysikk : Per Henrik Hogstad Thomas Gjesteland
UNIVESITETET I GDE Giad E K S M E N S O P P G V E : FG: FYS8 Fikk LÆE: Fikk : Pe Henik Hogad Thoa Gjeeland Klae: Dao:.5.6 Ekaenid, fa-il: 9. 4. Ekaenoppgaen beå a følgende nall ide: 6 inkl. foide nall
DetaljerEksamensoppgave i TFY4190 Instrumentering
Intitutt for fyikk Ekamenoppgave i FY49 Intrumentering Faglig kontakt under ekamen: Steinar Raaen lf.: 48 96 758 Ekamendato: 3. mai 4 Ekamentid (fra-til): 9: 3: Hjelpemiddelkode/illatte hjelpemidler: Alternativ
DetaljerEksamen i TMA4135 Matematikk 4D
Norge teknik naturvitenkapelige univeritet Intitutt for matematike fag Side av 5 Faglig kontakt under ekamen: Harald Krogtad telefon 46 5 87 / 73 59 35 2 Ekamen i TMA435 Matematikk 4D Bokmål Mandag 8.
DetaljerVil du si at en nybegynner i felespill baserer sitt spill hovedsakelig på foroverkopling eller på tilbakekopling? Hva med en profesjonell utøver?
Kapittel 10 Foroverkopling 10.1 Innledning Oppgave 10.1 Felepiller Vil du i at en nybegynner i felepill baerer itt pill hovedakelig på foroverkopling eller på tilbakekopling? Hva med en profejonell utøver?
DetaljerFasit GF-GG141 Eksamen 2003
Fait GF-GG141 Ekamen 3 Oppgave 1 a) Vannføringkurven gir o ammenhengen mellom vanntand og vannføring. I den daglig drift er det vanntand om måle og vannføring om etimere. For å etablere kurven må det gjøre
DetaljerStatens vegvesen. 14.637 Kapillær sugehastighet og porøsitet, PF. Omfang. Referanser. Utstyr. Fremgangsmåte. Full prosedyre
Staten vegveen 14.6 Betong og materialer til betong 14.63 Underøkele av herdet betong 14.637 - ide 1 av 5 14.637 Kapillær ugehatighet og porøitet, PF Gjeldende proe (nov. 1996): NY Omfang Metodebekrivelen
DetaljerLøsningsforslag til eksamen i jernbaneteknikk HiOA
Løningforlag til ekamen i jernbaneteknikk HiOA 9.1.011 Oppgave 1 Gitt kurvekombinajonen rettlinje - overgangkurve - irkelkurve - overgangkurve - rettlinje, der irkelkurven har en radiu på 600 meter og
DetaljerForord. Lykke til! Ta lærevilligheten og selvtilliten på alvor, det er nå den er høyest. Terje Krogsrud Fjeld
Forord Du har ikkert merket det allerede. Iveren, lærevilligheten og nygjerrigheten til barnet ditt. «Se på meg a!» De vil ykle. De vil tegne. De vil lære boktavene. De vil regne. Og de vil gjøre det nå.
DetaljerLøsningsforslag. Midtveiseksamen i Fys-Mek1110 våren 2008
Side av Løsningsforslag idtveiseksaen i Fys-ek våren 8 Oppgave a) En roer sitter i en båt på vannet og ror ed konstant fart. Tegn et frilegeediagra for roeren, og navngi alle kreftene. Suen av kreftene
DetaljerFor bedre visualisering tegner vi
MSK MSKIKOSTRUKSJO ØSIGSORSG TI ØVIGSOPPGVR Oppgave 8. 8.5 ØVIG 9: DIMSJORIG V SKRUORBIDSR Oppgave 8- a) Totalraften i ruen er gitt ved: b der er forpenningraften og er andelen av ytre raften o ta av en
DetaljerFAG: FYS120 Fysikk LÆRER: Fysikk : Per Henrik Hogstad
UNIVERITETET I AGDER Giad E K A M E N O P P G A V E : FAG: FY Fikk LÆRER: Fikk : Pe Henik Hogad Klae: Dao:.5.4 Ekaenid, fa-il: 9. 4. Ekaenoppgaen beå a følgende Anall ide: 5 inkl. foide Anall oppgae: 4
DetaljerEksamen i TMA4135 Matematikk 4D
Norge teknik naturvitenkapelige univeritet Intitutt for matematike fag Side av 5 Faglig kontakt under ekamen: Harald Krogtad telefon 46 5 87 / 73 59 35 2 Ekamen i TMA435 Matematikk 4D Bokmål Mandag 8.
DetaljerDette gir følgende likning for nedbør som funksjon av høyde over havet: p = z/2
Fait ekamen HYD200 2005-05-8 Oppgave Svar oppgave nedbør a) i. Punktnedbør: Den nedbørmengden om faller i et punkt på landoverflaten. De flete metoder av nedbørmåling gir punktverdier. Man ønker likevel
DetaljerNorges teknisk- naturvitenskapelige universitet. Institutt for teknisk kybernetikk. Lsningsforslag ving 4. a) Vi far. K q. K p. D m. dvs.
Norge teknik- naturvitenkapelige univeritet Intitutt for teknik kybernetikk. eptember 99/PJN,. eptember 996 /MPF Utlevert:..96 4334 SERVOTEKNIKK Lningforlag ving 4 Oppgave a) Vi far og dv. () = D m + +
DetaljerFAG: FYS122 Fysikk LÆRER: Fysikk : Per Henrik Hogstad Tore Vehus
UNIVESITETET I AGDE Giad E K S A M E N S O P P G A V E : FAG: FYS Fyikk LÆE: Fyikk : Pe Henik Hogad Toe Vehu Klae: Dao:.5.6 Ekaenid, fa-il: 9. 4. Ekaenoppgaen beå a følgende Anall ide: 6 inkl. foide Anall
Detaljer8 Vektorer og kurver. Løsning til KONTROLLOPPGAVER OPPGAVE 1. t t ) Vi finner skjæringspunktet med y-aksen ved å sette x = 0.
Løning il KONTROLLOPPGAVER 8 Vekorer og kurver OPPGAVE 1 a) 1) Vi lager abell, velger o enkle -verdier og regner u verdiene for x og y. x 6 y ) Vi finner kjæringpunke med y-aken ved å ee x =. 1 y 1 Linja
DetaljerØVING 4. @V @x i. @V @x
FY006/TFY425 - Øving 4 Frit for innlevering: tirdag 8. februar, kl 7.00 Oppgåve ØVING 4 Vibrerande to-partikkel-ytem Som dikutert på ide 0 i boka til Hemmer, er det eit viktig poeng både i klaik mekanikk
DetaljerFAG: FYS105 Fysikk LÆRER: Fysikk : Per Henrik Hogstad
UNVERSTETET AGDER Griad E K S A M E N S O P P G A V E : FAG: FYS5 Fyikk LÆRER: Fyikk : Per Henrik Hogad Klaer: Dao:.. Ekaenid, fra-il: 9. 4. Ekaenogaen beår a følgende Anall ider: 4 inkl. foride Anall
Detaljer