Differensiallikninger
|
|
- Markus Fredriksen
- 8 år siden
- Visninger:
Transkript
1 Differeniallikninger I er enn 300 år har ateatik analye vært et vært viktig kapittel i faget. Teaet differeniallikninger blir av ange ateatikere betraktet o diaanten i ateatik analye eller kalkulu. Det er allent akeptert blant ateatikere at differeniallikninger piller en viktig rolle både i teoretik og anvendt ateatikk. Differeniallikninger er deuten av uvurderlig nytte og et abolutt nødvendig redkap for fyikere og ingeniører. Differeniallikninger har ange anvendeleoråder teperaturen til en gjentand o avkjøle, ekponeniell vekt, elektrik utladning, radioaktiv tråling, akelerert bevegele, ogå videre. En differeniallikning inneholder deriverte eller differenialer. Det er viktig å være i tand til å identifiere hvilken type differeniallikning vi har ed å gjøre, før vi forøker å løe likningen på ClaPad 300. En differeniallikning o inneholder ledd der den førtederiverte er den høyete orden av den deriverte, kaller vi en førteorden differeniallikning. En andreorden differeniallikning har ledd der den andrederiverte er høyete orden av den deriverte. Differeniallikninger av andre orden kan altå inneholde ledd ed førtederivert. Graden til en differeniallikning er betet av ekponenten til den høyete deriverte o finne i likningen. 4 5 Differeniallikningen ( y ) + 3( y ) 4y = 3 har orden iden den høyete deriverte o finne i denne likningen, er den andrederiverte. Siden ekponenten til den høyete deriverte i denne differeniallikningen er 4, har likningen graden 4. Generell og partikulær løning Vi huker at da vi løte integraler å fikk vi ført en åkalt generell løning o inneholdt en kontant C. En åkalt partikulær løning får vi ført etter at C tar en betet verdi. Verdien for kontanten finner vi ved hjelp av kjente verdier for x og y o følge av gitte betingeler. De kjente betingelene kaller vi grenebetingeler eller initialbetingeler. Det forholder eg på tilvarende vi når det gjelder differeniallikninger. La o ført finne den generelle løningen til den eleentære differeniallikningen hjelp av ClaPad 300. y = 5 ved 119
2 Funkjonen dsolve på ClaPad 300 løer differeniallikninger av førte, andre og tredje orden at likningett av førteorden differeniallikninger. For å finne den generelle løningen benytter vi følgende yntak [likning, uavhengig variabel, avhengig variabel]. Se kjerbildet. Vi fortetter å ed å finne den partikulære løningen til differeniallikningen initialbetingelen er x = 0 når y =. y = 5 der For å finne den partikulære løningen å vi benytte følgende yntak [likning, uavhengig variabel, avhengig variabel, initialbetingele]. Se kjerbildet. Ekepel Vi har gitt tredjeorden differeniallikningen y = 0 ed initialbetingelene y(0) = 3, y (1) = 4 og y () = 6. Finn den partikulære løningen til differeniallikningen på ClaPad
3 Syntaken er o vi er av kjerbildene ovenfor, [likning, uavhengig variabel, avhengig variabel, initialbetingele-1, initialbetingele-, initialbetingele-3]. Utforkning Vi ved hjelp av ClaPad 300 at den generelle løningen til differeniallikningen x x y 3y+ y =0 kan uttrykke o y = Ae + Be der A og B er kontanter. Velg elv ulike initialbetingeler og finn partikulære løninger. Ekepel: Hatighet og akelerajon. I nærheten av jordoverflaten er gravitajonakelerajonen otrent 9,8. Det betyr at hatigheten til en gjentand o faller fritt i vakuu, øker ed kan altå krive at akelerajonen (hatighetendring per ekund) er 9,8 for hvert ekund. Vi dv dt = 9,8. Vi lipper en gjentand ed utganghatighet null. Vi tenker o at gjentanden faller ot bakken uten å øte luftottand. Hvor tor hatighet har gjentanden t ekunder etter at den ble luppet? dv dt Vi løer differeniallikningen = 9,8 der initialbetingelen er at v = 0 når t = 0. Se nete kjerbilde. 11
4 dsolve(v'=9.8,t,v,t=0,v=0) ClaPad 300 gir at hatigheten til gjentanden o faller fritt, er vt () = 9,8 t t ekunder etter at den ble luppet. Separajon av variabler En betet type differeniallikninger kaller vi for eparable. Denne typen differeniallikninger kan vi løe ved hjelp av en etode o innebærer åkalt variabeleparajon. Metoden er ulig bare dero vi kan krive differeniallikningen på foren Axdx ( ) + By ( ) = 0 hvor A( x ) er en funkjon av kun x og der B( y ) er en funkjon av kun y. Etter at differeniallikningen o nødvendig er krevet på foren o vit ovenfor, kan vi ale ledd ed y på ventre ide og ledd ed x på høyre ide. Så integrerer vi alle ledd for å finne en generell løning. La o løe differeniallikningen 3 y+ xdx= 0. Denne likningen er heldigvi allerede på den ønkede for. Vi iolerer leddene o bekrevet ovenfor og foretar integrering på begge ider av likhettegnet. Da får vi 3 y= xdx 3 4 y x = + C 3 4 o altå er en generell løning av differeniallikningen. 1
5 Siden = y dx kan vi krive den opprinnelig differeniallikningen o 3 + = 0. y y x Så finner vi en generell løning på ClaPad 300 ved å følge den kjente yntaken. Utforkning y Vi at differeniallikningen ln x = 0 kan bli løt ved hjelp av variabeleparajon. Lø dx x å likningen for hånd. y Kontroller varet ditt ved å løe y ln x = 0 direkte på ClaPad 300. x Ekepel Finn, ved hjelp av variabeleparajon, den partikulære løningen til + y = 6 ed dx initialbetingelen y = 1 når x = 0. Separajon av variable gir 6 y = dx. Vi integrerer på begge ider av likhettegnet og får at dx 6 y = 1 o iplierer at ln 6 y = x+ C. 1 1 Siden y = 1 når x = 0 får vi at ln 6 1 = 0 + C o videre gir at C = ln 4. 1 Når vi etter C = ln 4 inn i den generelle løningen får vi likningen 1 1 ln 6 y = x ln 4. Vi velger å løe denne likningen på ClaPad 300 for til lutt å betee den partikulære løningen til differeniallikningen y 6 dx + =. Den ae differeniallikningen er ogå løt direkte på ClaPad 300. Se nete kjerbilde. 13
6 1 ln(4) olve(- ln(6-y)= x-,y) dsolve(y +y = 6,x,y,x =0,y =1) Vi erker o at de to varene på ClaPad 300 er like. Øving I en elektrik kret gir Kirchhoff lov følgende differeniallikning: der R = 10Ω, L = H, U = 60V og I = 0 når t = 0. di R I + L = U, dt Lø differeniallikningen både ved variabeleparajon og direkte på ClaPad
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Ekaendato: Varighet/ekaentid: Enekode: Enenavn: Klae(r): Studiepoeng: Faglærer(e): Tordag 1.6. 014 5 klokketier TALM100-A Mateatikk 1 EL FEN
DetaljerTALM1003-A Matematikk 1 Grunnlagsfag - 10 studiepoeng
HØGSKOLEN I SØR-RØNDELAG Avdeling for teknologi Progra for elektro- og datateknikk 7004 RONDHEIM ALM1003-A Mateatikk 1 Grunnlagfag - 10 tudiepoeng Cae: Regulering av vækenivået i en tank Høt 013 Le dette
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Ekaendato: Varighet/ekaentid: Enekode: Enenavn: Klae(r): Studiepoeng: Faglærer(e): Tordag 1.1. 01 5 klokketier TALM100-A Mateatikk 1 EL FEN
DetaljerOppgave 1 Forenklet modell av hjulopphenget Hjulopphenget er dimensjonert slik at polene til modellen blir 4± fjæra er da lik:
LM6M- Mateatikk : Ekaen andag.ai, 9 Oppgave Forenklet odell av hjulopphenget Hjulopphenget er dienjonert lik at polene til odellen blir 4± j 3 fjæra er da lik:. Fjærtivheten til 3 75 48 7 N N N N Oppgave
DetaljerOppgave 1 Forenklet modell av hjulopphenget Hjulopphenget er dimensjonert slik at polene til modellen blir 5±
LM6M- Mateatikk : Utatt ekaen 9 Oppgave Forenklet odell av hjulopphenget Hjulopphenget er dienjonert lik at polene til odellen blir 5± j 5. Fjærtivheten til fjæra er da lik: 3 5 75 48 Oppgave Forenklet
DetaljerForelesning 1: Integrasjon. Separable differensiallikninger.
Forelesning 1: Integrasjon. Separable differensiallikninger. Trond Stølen Gustavsen 12. januar, 2010 Innhold Anbefalt lesning 1 1.1. Kort repetisjon av integrasjon 1 1.2. Hva er en differensiallikning?
DetaljerEksamensoppgave i FY0001 Brukerkurs i fysikk (V2017)
ntitutt for fyikk Ekaenoppgave i FY000 Brukerkur i fyikk (V07) Faglig kontakt under ekaen: Mikael Lindgren Tlf.: 4 46 65 0 Ekaendato: 4. ai 07 Ekaentid (fra-til): 0900-300 Hjelpeiddelkode/Tillatte hjelpeidler:
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi. Torsdag Kalkulator: Type C Alt skriftlig materiale
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Ekamendato: Varighet/ekamentid: Emnekode: Emnenavn: Klae(r): Studiepoeng: Faglærer(e): Løning Tordag.. 04 5 klokketimer TALM003-A Matematikk
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Ekamendato: Varighet/ekamentid: Emnekode: Emnenavn: Klae(r): Studiepoeng: Faglærer(e): Tordag 11.1. 014 5 klokketimer TALM1003-A Matematikk
DetaljerFAG: FYS114 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann
UNIVERSITETET I AGDER Gritad E K S A M E N S O G A V E : FAG: FYS4 Fyikk/Kjei LÆRER: Fyikk : er Henrik Hogtad Kjei : Grethe Lehrann Klae(r): Dato: 5.5. Ekaentid, fra-til: 9. 4. Ekaenoppgaven betår av følgende
DetaljerLær å bruke CAS-verktøyet i GeoGebra 4.2
Lær å bruke CAS-verktøyet i GeoGebra 4. av Sigbjørn Hals Innhold: CAS-verktøyet... Primtallanalyse... Faktorisering og utvidelse av uttrykk... Likninger... 4 Likningssett med flere ukjente... 5 Differensiallikninger...
DetaljerLøsningsforslag til eksamen i MAT111 Vår 2013
BOKMÅL MAT - Vår Løsningsforslag til eksamen i MAT Vår Oppgave Finn polarrepresentasjonen til i. i Skriv på formen x + iy. i Løsning Finner først modulus og argument til i: i = ( ) + ( ) = 4 = arg( ( )
DetaljerMAT 1001, Høsten 2009 Oblig 2, Løsningsforslag
MAT 1001, Høsten 009 Oblig, sforslag a) En harmonisk svingning er gitt som en sum av tre delsvingninger H(x) = cos ( π x) + cos (π (x 1)) + cos (π (x )) Skriv H(x) på formen A cos (ω(x x 0 )). siden H(x)
DetaljerInstitutt for Samfunnsøkonomi. Utlevering: 29.04.2015 Kl. 09:00 Innlevering: 29.04.2015 Kl. 14:00
SENSORVEILEDNING MET 803 Matematikk Institutt for Samfunnsøkonomi Utlevering: 9.04.05 Kl. 09:00 Innlevering: 9.04.05 Kl. 4:00 For mer informasjon om formalia, se eksamensoppgaven. Oppgave Beregn følgende
DetaljerEKSAMEN Ny og utsatt Løsningsforslag
7. april EKSAMEN Ny og utatt øigforlag Emekode: ITD Dato: 6. jauar Hjelpemidler: Eme: Matematikk adre delekame Ekametid: 9.. Faglærer: - To A-ark med valgfritt ihold på begge ider. - Formelhefte. Chritia
DetaljerLøsningsforslag. 3 x + 1 + e. g(x) = 1 + x4 x 2
Prøve i FO929A - Matematikk Dato: 1. juni 2012 Målform: Bokmål Antall oppgaver: 5 (20 deloppgaver) Antall sider: 2 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Program for elektro- og datateknikk 7004 TRONDHEIM
HØGSKOLEN I SØR-RØNDELAG Avdeling for teknologi Program for elektro- og datateknikk 7004 RONDHEIM ALM005M-A Matematikk 1 Grunnlagfag - 10 tudiepoeng Cae Høt 011 Le dette ført Caen er en "hjemmeoppgave"
DetaljerKap 10 Dynamikk av rotasjons-bevegelse
Kap Dynaikk av rotajon-bevegele. Bete kraftoentet (tørrele og retning) o en ake noralt på papirplanet gjenno O o kraften F i hver av ituajonene er årak til. Objektet o F virker på har i hvert av tilfellene
Detaljerog variasjon av parameterene Oppsummering.
Inhomogene differensiallikninger av andre orden Ubestemte koeffisienters metode og variasjon av parameterene Oppsummering. MAT-INF1100 October 30, 2007 NYTT TEMA Innhomogene likninger: Oppdeling i partikulær
DetaljerEksamen i emnet MAT111/M100 - Grunnkurs i matematikk I Mandag 15. desember 2003, kl. 09-13(15) LØYSINGSFORSLAG OPPGÅVE 2:
Eksamen i emnet MAT/M00 - Grunnkurs i matematikk I Mandag 5. desember 2003, kl. 09-3(5) LØYSINGSFORSLAG Finn dei deriverte til i) f(x) = x 2 ln x OPPGÅVE : exp(u 2 )du, x, ii) f(x) = x cos(x). i) d x 2
Detaljer1 OPPGAVE 2 OPPGAVE. a) Hva blir kontobeløpet den 2. januar 2040? b) Hvor mye penger blir det i pengeskapet den 2. januar 2040?
OPPGAVE Den. januar 0 satte Ola Normann 00 tusen kroner på en bankkonto med faste renter 3% per år. Han planlegger å ta ut halvparten av rentebeløpet den. januar hvert år, og å legge kontantene til et
DetaljerFAG: FYS105 Fysikk LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG
UNVETETET AGDE Gritad E A E N O G A V E : FAG: FY05 Fyikk ÆE: er Henrik Hogtad lae(r: Dato: 8.05.0 Ekaentid, ra-til: 09.00.00 Ekaenoppgaven betår av ølgende Antall ider: 5 (inkl. oride Antall oppgaver:
DetaljerSvar: Vi bruker Ampères lov for å finne magnetfeltet en avstand r fra lynet.
I FYS1120-undervininga legg vi meir vekt på matematikk og numerike metoder enn det oppgåvene i læreboka gjer. Det gjeld òg oppgåvene om vert gitt til ekamen. Difor er det viktig at du gjer vekeoppgåvene
DetaljerEKSAMEN I EMNET Mat 111 - Grunnkurs i Matematikk I - LØSNING Mandag 15. desember 2014 Tid: 09:00 14:00
Universitetet i Bergen Det matematisk naturvitenskapelige fakultet Matematisk institutt Side 1 av 11 BOKMÅL EKSAMEN I EMNET Mat 111 - Grunnkurs i Matematikk I - LØSNING Mandag. desember 214 Tid: 9: 14:
DetaljerFAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann
UNIVERSITETET I AGDER Gritad E K S A M E N S O G A V E : FAG: FYS6 Fyikk/Kjei LÆRER: Fyikk : er Henrik Hogtad Kjei : Grethe Lehrann Klae(r): Dato: 5.5. Ekaentid, fra-til: 9. 4. Ekaenoppgaven betår av følgende
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNELG vdeling for teknologi Målform: Ekamendato: Varighet/ekamentid: Emnekode: Emnenavn: Klae(r): Studiepoeng: okmål Mandag 7.mai 0 5 timer LM006M Matematikk E 0 Faglærer(e): (navn og
DetaljerSigbjørn Hals. Nedenfor har vi tegnet noen grafer til likningen y = C, der C varierer fra -2 til 3, med en økning på 1.
Retningsdiagrammer og integralkurver Eksempel 1 Den enkleste av alle differensiallikninger er nok y' = 0. Denne har løsningen y = C fordi den deriverte av en konstant er 0. Løsningen vil altså bli flere
DetaljerECON2200: Oppgaver til plenumsregninger
University of Oslo / Department of Economics / Nils Framstad, denne versjonen: π-dagen ECON2200: Oppgaver til plenumsregninger 1. plenumsregning 1. feb.: derivasjon. Oppgave 1.1 der A er en konstant. Funksjonen
DetaljerHøst 96 Ordinær eksamen
Høt 96 Ordinær ekaen. a) Vi tenker o at en partikkel eveger eg lang en rett linje (lang x-aken). Partikkelen poijon o unkjon av tiden t er gitt ved: ( t) t Bt hvor. B 8. Beregn partikkelen hatighet etter.
DetaljerSamfunnsøkonomi andre avdeling, mikroøkonomi, Diderik Lund, 13. mars 2002
Samfunnøkonomi andre avdeling, mikroøkonomi, Diderik Lund, 3. mar 00 Måling av graden av riikoaverjon Blant konkave nyttefunkjoner: Mer konkav betyr terkere riikoaverjon Vanlig å måle grad av konkavitet
DetaljerUttrykket 2 kaller vi en potens. Eksponenten 3 forteller hvor mange ganger vi skal multiplisere grunntallet 2 med seg selv. Dermed er ) ( 2) 2 2 4
9.9 Potenslikninger Uttrykket kaller vi en potens. Eksponenten forteller hvor mange ganger vi skal multiplisere grunntallet med seg selv. Dermed er 8 Når vi skriver 5, betyr det at vi skal multiplisere
DetaljerOlweusprogrammet. Tema i klassemøtet. Klasseregel 4 Hvis vi vet at noen blir mobbet
Olweusprogrammet Tema i klassemøtet Klasseregel 4 Hvis vi vet at noen blir mobbet Hvis vi vet at noen blir mobbet (1) Det er mange grunner til at barn og unge ikke forteller om mobbing til læreren eller
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNELG vdeling for teknologi Kandidatnr: Ekamendato: Varighet/ekamentid: Emnekode: Emnenavn: LØSNING Mandag 4.. klokketimer TLM4- Matematikk Klae(r): Studiepoeng: EL FEN Faglærer(e): Hjelpemidler:
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELG vdeling for teknologi Ekamendato: 0 Varighet/ekamentid: Emnekode: Emnenavn: 5 timer TLM00 Matematikk Klae(r): EL FEN Studiepoeng: 0 Faglærer(e): (navn og telefonnr på ekamendagen)
DetaljerHydraulisk system. Tanken har rette vegger. Vannspeilarealet A[m 2 ] er da konstant og uavhengig nivået x[m]. Generell balanseligning:
Hyraulik yte. / / Tanken har rette eer. Vanneilarealet er a kontant o uaheni niået. Generell balanelinin: kkuulert olu r tienhet i tank Inntrønin Uttrønin t V V t t V t Syte 0: t t t 0 0 Niåenrin: Tranferfunkjon:
DetaljerEksamensoppgave i TALM1004 Matematikk 2
Fakultet for teknologi Ekamenoppgave i TLM Matematikk Faglig kontakt under ekamen: Kåre jørvik Tlf.: 9 77 898 Ekamendato: 7. ugut 6 Ekamentid (fra-til): 9.-. Hjelpemiddelkode/Tillatte hjelpemidler: lt
DetaljerNorsk Fysikklærerforening Norsk Fysisk Selskaps faggruppe for undervisning
Nork Fikklærerforenin Nork Fik Selkap faruppe for underinin FYSIKK-OLYMPIADEN 4 5 Andre runde: 3/ 5 Skri øert: Nan, fødeldato, hjeeadree o eentuell e-potadree, kolen nan o adree. Varihet: 3 klokketier
DetaljerMA0003-8. forelesning
Implisitt derivasjon og 31. august 2009 Outline Implisitt derivasjon 1 Implisitt derivasjon 2 Outline Implisitt derivasjon 1 Implisitt derivasjon 2 Outline Implisitt derivasjon 1 Implisitt derivasjon 2
DetaljerLøsningsforslag AA6524/AA6526 Matematikk 3MX Elever/Privatister 6. desember 2006. eksamensoppgaver.org
Løsningsforslag AA654/AA656 Matematikk 3MX Elever/Privatister 6. desember 6 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis, og det
DetaljerObligatorisk oppgave i MAT 1100, H-03 Løsningsforslag
Oppgave : Obligatorisk oppgave i MAT, H- Løsningsforslag a) Vi skal regne ut dx. Substituerer vi u = x, får vi du = x dx. De xex nye grensene er gitt ved u() = = og u() = = 9. Dermed får vi: 9 [ ] 9 xe
DetaljerPD-regulator med faseforbedrende egenskaper. Denne ma dessuten klare
Norge teknik naturvitenkapelige univeritet Intitutt for teknik kybernetikk Oktober 99/PJN, September 9 /MPF Utlevert:..9 0 SERVOTENI Lningforlag ving 0 a) Oppgave Vi kriver h() pa formen ( +0:)( ; 0:)
Detaljer9 + 4 (kan bli endringer)
Innlevering DAFE ELFE Matematikk HIOA Obligatorisk innlevering 4 Innleveringsfrist Onsdag 9. april 5 Antall oppgaver: 9 + 4 (kan bli endringer) Finn de ubestemte integralene a) x 3 4/x dx LF: x 3 4/x dx
DetaljerInnlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Tirsdag 1. april 2014 kl. 12:45 Antall oppgaver: 8+2
Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Tirsdag 1. april 2014 kl. 12:45 Antall oppgaver: 8+2 1 Bestem den naturlige denisjonsmengden til følgende funksjoner.
DetaljerLøsningsforslag til underveisvurdering i MAT111 vår 2005
Løsningsforslag til underveisvurdering i MAT111 vår 5 Beregn grenseverdien Oppgave 1 (x 1) ln x x x + 1 Svar: Merk at nevneren er lik (x 1), så vi kan forkorte (x 1) oppe og nede og får (x 1) ln x ln x
DetaljerUnder noen av oppgavene har jeg lagt inn et hint til hvordan dere kan går frem for å løse dem! Send meg en mail om dere finner noen feil!
Under noen av oppgavene har jeg lagt inn et hint til hvordan dere kan går frem for å løse dem! Send meg en mail om dere finner noen feil! 1. Husk at vi kan definere BNP på 3 ulike måter: Inntektsmetoden:
DetaljerHer vise hvor grensen på 17/35 skal gå (ifølge oppmåling fra Fonnakart) Målingene er gjort ut fra synlige grensemerker på Terje Eikevik sin parsell.
Opprusting og omlegging av traktor veg over 17/1 og 17/3 til sjøeiendom pa 17/1 SAK 12/812 Viser til søknad og godkjenning på omlegging og opprustning av traktorvegen fra 17/1 over 17/3 og frem til 17/1
Detaljerdx k dt н x 1,..., x n f 1,...,f n н- н f k (x 1,..., x n ), k =1,2,...,n, нн d X = f( X). X = (t),.. x 1 = 1 (t), x 2 = 2 (t),...
- ( ) - 3 579 : - - : - / : : 3 4 579-4 5 9 3 9 4 3 5 5 6 3 33 34 3 35 4 36 39 c - ( ) 3 c 3 - - ( ) - ( - ) - - - ( ) - - ( - ) ( t) - dx k = f k (x x n ) k = n () dt x x n f f n - d X = f( X) dt f k
Detaljerdx = 1 1 )dx = 3 y= x . Tangentplanet til hyperboloiden i (2, 1, 3) er derfor gitt ved x 2, y 1, z 3 = 0 x 2 + 2(y 1) 2 (z 3) = 0 x + 2y 2z 3 = 2
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA415 Matematikk vår 9 øsningsforslag til eksamen 15. august 9 1 Treghetsmoment med hensyn på x-aksen er gitt ved x [ ] y I
DetaljerFasit - Oppgaveseminar 1
Fasit - Oppgaveseminar Oppgave Betrakt konsumfunksjonen = z + (Y-T) - 2 r 0 < 0 Her er Y bruttonasjonalproduktet, privat konsum, T nettoskattebeløpet (dvs skatter og avgifter fra private til det
DetaljerObligatorisk innlevering 2 - MA 109
Obligatorisk innlevering 2 - MA 9 Skriv fullt navn og studentnummer øverst på besvarelsen. Du skal bruke sifrene fra studentnummeret i besvarelsen. Studentnummeret ditt er E. Er studentnummeret ditt da
DetaljerTALM 1004 Matematikk 2-Eksamen mandag 4.mai 2015 LØSNING. 5 klokketimer TALM1004-A. Matematikk 2. Kåre Bjørvik. Kalkulator: Type C
HØGSKOLEN I SØR-TRØNELG vdeling for teknologi Kandidatnr: Ekamendato: Varighet/ekamentid: Emnekode: Emnenavn: LØSNING 5 5 klokketimer TLM- Matematikk Klae(r): Studiepoeng: EL FEN Faglærer(e): Hjelpemidler:
Detaljerer et er et heltall. For eksempel er 2, 3, 5, 7 og 11 primtall, mens 4 = 2 2, 6 = 2 3 og 15 = 3 5 er det ikke.
. Primtall og primtallsfaktorisering Definisjon Et primtall p er et heltall, større enn, som ikke er delelig med andre tall enn og seg selv, altså bare delelig med og p (og egentlig også og p) At et tall
DetaljerPrøve i R2. Innhold. Differensiallikninger. 29. november Oppgave Løsning a) b) c)...
Prøve i R2 Differensiallikninger 29. november 2010 Innhold 1 Oppgave 3 1.1 Løsning..................................... 3 1.1.1 a).................................... 3 1.1.2 b)....................................
DetaljerEKSAMEN. TILLATTE HJELPEMIDLER: John Haugan: Formler og tabeller. Rottmanns formelsamling (tillatt som overgangsordning)
KANDIDATNUMMER: EKSAMEN FAGNAVN: Matematikk FAGNUMMER: REA4 EKSAMENSDATO: 6. desember 24 SENSURFRIST: 6. januar 25 KLASSE:. klassene, ingenørutdanning. TID: kl. 9. 3.. FAGLÆRER: Hans Petter Hornæs ANTALL
DetaljerIntegrasjon Forelesning i Matematikk 1 TMA4100
Integrasjon Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 21. oktober 2011 Kapittel 7.4. Delbrøksoppspalting og Integrasjon av rasjonale funksjoner 3 Integrasjon av
DetaljerOppgaver til Dynamiske systemer 1
Oppgaver til Dynamike ytemer Oppgave 0. Lineariering av ulineær modell Likning (2.28) i læreboka er en dynamik modell av en tank med gjennomtrømning og oppvarming. Modellen gjengi her: cρv T (t) P (t)+cw(t)[t
DetaljerDifferensiallikninger definisjoner, eksempler og litt om løsning
Differensiallikninger definisjoner, eksempler og litt om løsning MAT-INF1100 Differensiallikninger i MAT-INF1100 Definsjon, litt om generelle egenskaper Noen få anvendte eksempler Teknikker for løsning
DetaljerEksamensoppgave i TALM1004 Matematikk 2
Fakultet for teknologi Ekamenoppgave i TLM4 Matematikk Faglig kontakt under ekamen: Kåre jørvik Tlf.: 9 77 898 Ekamendato:.5.6 Ekamentid (fra-til): 9.-4. Hjelpemiddelkode/Tillatte hjelpemidler: lt kriftlig
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELG vdeling for teknologi Ekamendato: Varighet/ekamentid: Emnekode: Emnenavn: Mandag 5.mai 04 5 timer TLM004 Matematikk Klae(r): EL FEN Studiepoeng: 0 Faglærer(e): (navn og telefonnr
Detaljer. 2+cos(x) 0 og alle biter som inngår i uttrykket er kontinuerlige. Da blir g kontinuerlig i hele planet.
MA 1410: Analyse Uke 47, 001 http://home.hia.no/ aasvaldl/ma1410 H01 Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag Oppgave 11.1: 7. f(x, y) = 1 16 x y. a) Definisjonsområde D: f
DetaljerMatematikk for økonomer Del 2
Matematikk for økonomer Del 2 Oppgavedokument Antall oppgaver: 75 svar Antall kapitler: 10 kapitler Antall sider: 15 Sider Forfatter: Studiekvartalets kursholdere Kapittel 1 Derivasjon 1. f (x) = 2x 2
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNELG vdeling for teknologi Målform: Bokmål Ekamendato: ugut 0 Varighet/ekamentid: Emnekode: 5 timer LM006M Emnenavn: Matematikk Klae(r): E Studiepoeng: 0 Faglærer(e): (navn og telefonnr
DetaljerDerivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 30. august 2011
Derivasjon Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 30. august 2011 Kapittel 3.3. Enringsrate 3 Enrings rate hastighet og akselersjon Definisjon Hvis s(t) er
DetaljerEksamen S2 høst 2009 Løsning Del 1
S Ekamen, høten 009 Løning Ekamen S høt 009 Løning Del Oppgave a) Deriver funkjonene: ) ln f f ln ln f ln ln f f ) g e e u, u g e e g e e e g 6e b) Vi har en aritmetik rekke der a 8 og a8. Betem a, d og
Detaljer3x ( x. x 1 x a 3 = 1 2 x2. a) Bestem rekkens kvotient og rekkens første ledd.
Oppgave 1 Løs likningen x 2 + x 6 = 0. b) Løs likningen c) Løs ulikheten x 2 + 4x 5 < 0. 3x 2 + 7 x 2 1 ) = 8. d) Løs ulikheten Oppgave 2 x 1 x 2 4 0. Deriver g x) = 3x + ln x) 3. b) Deriver h x) = e x
DetaljerEvaluering av kollokviegrupper i matematikk og programmering høsten 2014 28 jenter har svart på evalueringen
Evaluering av kollokviegrupper i matematikk og programmering høsten 2014 28 jenter har svart på evalueringen 1. Hvorfor meldte du deg på dette tilbudet? Tenkte det ville være lurt med litt ekstra hjelp
DetaljerPreken 14. august 2016 13. s i treenighet Kapellan Elisabeth Lund. Tekst: Joh. 15, 13-17
Preken 14. august 2016 13. s i treenighet Kapellan Elisabeth Lund Tekst: Joh. 15, 13-17 I dag har vi fått høre en prekentekst som handler om kjærlighet, om å bli kalt venner og om å bære frukt. Den er
DetaljerGrenseverdier og asymptoter. Eksemplifisert med 403, 404, 408, 409, 410, 411, 412, 414, 416, 417, 418, 419
Grenseverdier og asymptoter Eksemplifisert med 403, 404, 408, 409, 40, 4, 42, 44, 46, 47, 48, 49 Grenseverdier Grenseverdien til en funksjon, lim x a f x g, er en verdi vi kan komme så nær vi vil, når
Detaljer5 TIPS - FÅ RÅD TIL DET DU ØNSKER DEG
5 TIPS - FÅ RÅD TIL DET DU ØNSKER DEG Du vil lære... Hvorfor du skal ta kontroll på økonomien De 5 stegene til hvordan du får råd til det du drømmer om Hvorfor det er så smart å begynne før sommeren, dette
DetaljerTerminprøve Sigma 1T Våren 2008 m a t e m a t i k k
Terminprøve Sigma 1T Våren 2008 Prøvetid 5 klokketimer for Del 1 og Del 2 til sammen. Vi anbefaler at du ikke bruker mer enn to klokketimer på Del 1. Du må levere inn Del 1 før du tar fram hjelpemidler.
DetaljerOpptak til masterprogram ved Det matematisk-naturvitenskapelige fakultet (MN)
Til Universitetets studiekomitè Fra Studiedirektøren Sakstype: Vedtakssak Møtesaksnr: Sak 3 Møtenr. 2/11 Møtedato: 17.03.2011 Notatdato: 28.02.2011 Arkivsaksnr.: Saksbehandler: Birgitte Eikeset Opptak
DetaljerHøst 97 Utsatt eksamen
Høt 97 Utatt ekaen. Vi tenker o at en partikkel beveger eg lang en rett linje (lang x-aken). Partikkelen tarter i ro i origo ve tien t =. ekuner. Partikkelen hatighet v o funkjon av tien t er gitt ve:
DetaljerLøsning, Stokes setning
Ukeoppgaver, uke 4 Matematikk, tokes setning 1 Løsning, tokes setning Oppgave 1 a) b) c) F x y z x y z F x x + y y + z z 1+1+1 iden F er feltet konservativt. ( z y y ) ( x i z z z ) ( y x x x ) k i +k
DetaljerLøsning IM3 15.06.2011.
Løsning IM 15611 1 Oppgave 1 Innsetting viser at både teller og nevner er i origo, så uttrykket er ubestemt Siden det ikke er noen umiddelbar omskriving som forenkler uttrykket satser vi på å vise at grensen
DetaljerUendelige rekker. Konvergens og konvergenskriterier
Uendelige rekker. Konvergens og konvergenskriterier : Et absolutt nødvendig, men ikke tilstrekkelig vilkår for konvergens er at: lim 0 Konvergens vha. delsummer :,.,,,. I motsatt fall divergerer rekka.
DetaljerOPPGAVE 1 LØSNINGSFORSLAG
LØSNINGSFORSLAG UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i MAT - Grunnkurs i matematikk I torsdag 5.desember 20 kl. 09:00-4:00 OPPGAVE a Modulus: w = 2 + 3 2 = 2. Argument
DetaljerMatriser og Kvadratiske Former
Eivind Eriksen Matriser og Kvadratiske Former 15 mars 2012 Handelshøyskolen BI Innhold 1 Matriser og vektorer 1 11 Matriser 1 12 Matriseaddisjon 2 13 Matrisesubtraksjon 3 14 Skalarmultiplikasjon 3 15
DetaljerResonnerende oppgaver
Resonnerende oppgaver Oppgavene på de påfølgende sidene inneholder flere påstander eller opplysninger. Opplysningene bygger på eller utfyller hverandre, og de stiller visse krav eller betingelser. Når
DetaljerLØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x
LØSNINGSFORSLAG EKSAMEN, MAT 00, HØSTEN 06 DEL.. Hvilken av funksjonene gir en anti-derivert for f(x) = (x + )? Løsning. Vi setter u = x +, som gir du = dx, (x + ) dx = u du = u = (x + ) = x + a) x+ b)
DetaljerGenerell trigonometri
7 Generell trigonometri 7.1 et utvidede vinkelbegrepet Oppgave 7.110 Tegn vinklene i grunnstilling. a) 30 b) 120 c) 210 d) 300 Oppgave 7.111 Tegn vinklene i grunnstilling. a) 45 b) 360 c) 540 d) 720 Oppgave
DetaljerNå kommer vi og bytter din el-måler!
Nå kommer vi og bytter din el-måler! 1 Hvorfor byttes el-måleren? 2 Hvordan skal det skje? 3 Hvem gjør det? 4 Vil 5 Hva du vite mer? vil skje videre? 1 Hvorfor byttes el-måleren? Vi bytter el-måleren for
DetaljerTMA4100 Matematikk 1, 4. august 2014 Side 1 av 12. x 2 3x +2. x 2
TMA4 Matematikk, 4. august 24 Side av 2 Oppgave Den rasjonale funksjonen p er definert som p(x) x2 3x +2 3x 2 5x +2. Finn de tre grenseverdiene lim xæ p(x), lim xæ p(x) og lim xæœ p(x). Løsning: x 2 3x
DetaljerMET Matematikk for siviløkonomer
SENSORVEILEDNING - Skriftlig eksamen MET 11803 Matematikk for siviløkonomer Institutt for Samfunnsøkonomi Utlevering: 29.05.2019 Kl. 09:00 Innlevering: 29.05.2019 Kl. 14:00 For mer informasjon om formalia,
DetaljerOppgave 1. (x i x)(y i Y ) (Y i A Bx i ) 2 er estimator for σ 2 (A er minstek-
MOT310 Statitike metoder 1 Løningforlag til ekamen vår 010,. 1 Oppgave 1 a) Modell: Y i α + βx i + ε i der ε 1,..., ε n u.i.f. N 0, σ ). b) Vil tete: Tettørrele H 0 : β 0 mot H 1 : β 0 B β T t n under
DetaljerEKSAMEN Løsningsforslag
7 desember EKSAMEN Løsningsorslag Emnekode: ITD5 Dato: 6 desember Hjelpemidler: Emne: Matematikk ørste deleksamen Eksamenstid: 9 Faglærer: To A-ark med valgritt innhold på begge sider Formelhete Kalkulator
DetaljerTMA4100 Matematikk1 Høst 2009
TMA400 Matematikk Høst 2009 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 2 8926 Vi serieutvikler eksponentialfunksjonen e u om u 0 og får e u + u +
DetaljerLØSNING. Eksamensoppgave i TALM1004 Matematikk 2. Institutt for allmennfag. Faglig kontakt under eksamen: Kåre Bjørvik Tlf.
Intitutt for allmennfag Ekamenoppgave i ALM4 Matematikk LØSNING Faglig kontakt under ekamen: Kåre Bjørvik lf.: 9 77 898 Ekamendato: 5.5.7 Ekamentid (fra-til): 9. 4. Hjelpemiddelkode/illatte hjelpemidler:
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
ALM6M-A Matematikk : Kontinuajonekamen augut HØGSKOLEN I SØR-TRØNELAG Avdeling for teknologi Kandidatnr: Ekamendato: Varighet/ekamentid: Emnekode: Augut 9-4 ALM6M Emnenavn: Matematikk Klae(r): EL Studiepoeng:
DetaljerTurnéplan: Det var en gang V16
Tir 29. mar. 2016 kl. 10:10 Buer skole trinn: 1a, antall: 18 Borgeveien 41, 3798 SKIEN 35503880 Veibeskrivelse: Fra Skien: Ta rv 32 mot Porsgrunn (østsiden). Ta av til venstre opp rv 31, rett før Borgestadsletta
DetaljerFAG: FYS113 Fysikk/Kjemi ÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann
UNIVERSITETET I GDER Gritad E K S M E N S O G V E : FG: FYS Fyikk/Kjei ÆRER: Fyikk : er Henrik Hogtad Kjei : Grethe Lehrann Klae(r): Dato: 5.5. Ekaentid, ra-til: 9. 4. Ekaenoppgaven betår av ølgende ntall
Detaljer1 Lavpassfilter Lavpassfilteret påtrykkes en inngangsspenning på 1 V ved t = 0. Spenningen over spolen er vist i figuren under.
ALM5M-A Matematikk Utatt Ekamen, 9 Lavpafilter Lavpafilteret påtrykke en inngangpenning på V ved t =. Spenningen over polen er vit i figuren under. Spenning [V].9.8.7.6.5.4.3.. Tidkontanten til lavpafilteret
Detaljerx(t) = sin(1000t)+cos(1000t). Amplituden til det stasjonære utgangssignalet er da lik:
LM006M- Maemaikk : Ekamen mandag 0.mai, 00 Oppgave Lavpafiler Lavpafilere kal dimenjonere lik a knekkfrekvenen blir 500 rad/ og relaiv dempningkoeffiien kal være lik 0,5. erom moanden er på 4 Ω må kapaianen
DetaljerFormelsamling i Regtek. Andreas Klausen. (Kontrollør Sondre S. Tørdal) 4. september 2012
Formelamling i Regtek Andrea Klauen (Kontrollør Sondre S. Tørdal) 4. eptember 0 Bruk på eget anvar. Innhold Ziegler Nochlie PID tuning 3. Open Loop.............................. 3. Cloed loop..............................
DetaljerArbeidstid. Medlemsundersøkelse. 7. 19. mai 2014. Oppdragsgiver: Utdanningsforbundet
Arbeidstid Medlemsundersøkelse 7. 19. mai 2014 Oppdragsgiver: Utdanningsforbundet Prosjektinformasjon Formål: Dato for gjennomføring: 7. 19. mai 2014 Datainnsamlingsmetode: Antall intervjuer: 1024 Utvalg:
DetaljerLøsning av utvalgte øvingsoppgaver til Sigma R2 kapittel 5
Løsning av utvalgte øvingsoppgaver til Sigma R kapittel 5 5.5 Ce kx y = kce kx Vi setter inn i y + ky og ser om vi får 0: 5.5 ax + a y = ax Vi setter inn i y 5.54 kce kx + k Ce kx = 0 x x + y: ax x(ax
DetaljerKap 01 Enheter, fysiske størrelser og vektorer
Kap Enheter, fyike tørreler og vektorer.7 Concorde er det rakete paajerflyet. Det har en hatighet på 45 mi/h (ca ganger lyden hatighet, dv Mach). mi = 69 m. a) Hva er Concorde-flyet hatighet i km/h? b)
DetaljerAnvendelser av integrasjon.
Ukeoppgaver, uke 44, i Matematikk, Anvendelser av integrasjon. Høgskolen i Gjøvik Avdeling for ingeniørfag Matematikk Ukeoppgaver uke 44 I løpet av uken blir løsningsforslag lagt ut på emnesiden http://www.hig.no/toel/allmennfag/emnesider/rea4
DetaljerInstitutt for Samfunnsøkonomi
Institutt for Samfunnsøkonomi Løsninger i: ELE 379 Matematikk valgfag Dato: 6.6., 9: 4: Tillatte hjelpemidler: Alle hjelpemidler + Eksamenskalkulator: TEXAS INSTRUMENTS BA II Plus TM Innføringsark: Ruter
Detaljer