Derivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 30. august 2011

Størrelse: px
Begynne med side:

Download "Derivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 30. august 2011"

Transkript

1 Derivasjon Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 30. august 2011

2 Kapittel 3.3. Enringsrate

3 3 Enrings rate hastighet og akselersjon Definisjon Hvis s(t) er posisjonene til et legeme langs f.eks. x-aksen er: Hastigheten: v(t) = s (t). Akselerasjonen: a(t) = v (t) = s (t). Rykket: j(t) = a (t) = s (t).

4 Kapittel 3.4. Derivasjon av trigonometriske funksjoner

5 5 Den eriverte av trigonometriske funksjoner (sin x) = cos x x (cos x) = sin x x x (tan x) = sec2 x (sec x) = sec x tan x x x (cot x) = csc2 x (csc x) = csc x cot x x

6 Kapittel 3.5. Kjerneregelen

7 7 Ieen bak kjerneregelen Den eriverte av g(f(x))? x g(f(x))

8 7 Ieen bak kjerneregelen Den eriverte av g(f(x))? g(f(z)) g(f(x)) g(f(x)) = lim = x z x z x

9 7 Ieen bak kjerneregelen Den eriverte av g(f(x))? g(f(z)) g(f(x)) g(f(x)) = lim = x z x z x ([ g(f(z)) g(f(x)) ][ f(z) f(x) ] lim z x [ f(z) f(x) ] (z x) ) =

10 7 Ieen bak kjerneregelen Den eriverte av g(f(x))? g(f(z)) g(f(x)) g(f(x)) = lim = x z x z x ([ g(f(z)) g(f(x)) ][ f(z) f(x) ] lim z x [ f(z) f(x) ] (z x) ) = g(f(z)) g(f(x)) f(z) f(x) lim lim z x f(z) f(x) z x z x

11 7 Ieen bak kjerneregelen Den eriverte av g(f(x))? g(f(z)) g(f(x)) g(f(x)) = lim = x z x z x ([ g(f(z)) g(f(x)) ][ f(z) f(x) ] lim z x [ f(z) f(x) ] (z x) ) = g(f(z)) g(f(x)) f(z) f(x) lim lim = g (f(x))f (x) z x f(z) f(x) z x z x

12 8 Derivasjon av sammensatte funksjoner Hva er en eriverte av g(f(x))? Kjerneregelen x g(f(x)) = g (f(x))f (x)

13 8 Derivasjon av sammensatte funksjoner Hva er en eriverte av g(f(x))? Kjerneregelen x g(f(x)) = g (f(x))f (x) Når u = g(y) og y = f(x): u x = u y y x

14 9 Repetert kjerneregel Problem Finn en eriverte til cos x 2.

15 9 Repetert kjerneregel Problem Finn en eriverte til cos x 2. Løsning vi må bruke kjerneregelen flere ganger

16 9 Repetert kjerneregel Problem Finn en eriverte til cos x 2. Løsning vi må bruke kjerneregelen flere ganger Teorem ( x h g ( f(x) )) = h ( g ( f(x) )) g ( f(x) ) f (x).

17 10 Deriverte av potenser av en funksjon Følgene er kun en anvenelse av kjerneregelen Setning x (f(x))n = n (f(x)) n 1 f (x)

18 10 Deriverte av potenser av en funksjon Følgene er kun en anvenelse av kjerneregelen Setning x (f(x))n = n (f(x)) n 1 f (x) Eksempel Finn en eriverte av sin 3 x.

19 10 Deriverte av potenser av en funksjon Følgene er kun en anvenelse av kjerneregelen Setning x (f(x))n = n (f(x)) n 1 f (x) Eksempel Finn en eriverte av sin 3 x. Løsning: 3 sin 2 x cos x.

20 11 Parametrisert kurve En parametrisert kurve er bestemt av likninger på formen x = f(t), y = g(t)

21 11 Parametrisert kurve En parametrisert kurve er bestemt av likninger på formen Eksempel x = f(t), y = g(t) x = cos 5t, y = sin 3t 1 x = cos t, y = sin t

22 12 Stigningstallet til en parametrisert kurve Setning Stigningstallet til en parametrisert kurve (x(t), y(t)) for t = t 0 er gitt ve m = y/t x/t

23 13 Eksempel Eksempel Finn for hvilke t at tangenten til x = cos 3 t, y = sin 3 t har stigningsgra

24 13 Eksempel Eksempel Finn for hvilke t at tangenten til x = cos 3 t, y = sin 3 t har stigningsgra 1. Løsning m = y/t x/t = 3 cos2 t sin t 3 sin 2 t cos t = 1 tan x

25 13 Eksempel Eksempel Finn for hvilke t at tangenten til x = cos 3 t, y = sin 3 t har stigningsgra 1. Løsning m = y/t x/t = 3 cos2 t sin t = 3 sin 2 t cos t 1 tan x. Dvs stigningsgraen er 1 når t = π 4 + kπ, k=0,

26 14 Om å finne 2 y/x 2 til parametrisert kurve Setning La y = y x a er 2 y x 2 = (y )/t. x/t

27 Kapittel 3.6. Implisitte funksjoner

28 16 Implisitt efinerte funksjoner Fra får vi to funksjoner en av e er x 2 + y 2 = 1 (1) y(x) = Vi sier (1) efinerer (2) implisitt. 1 x 2. (2)

29 17 Implisitt erivasjon Kunsten å finne en eriverte av en implisitt funksjon. 1 Deriver V.S. og H.S av en implisitte likningen m/hensyn på x, mens y betraktes som en funksjon av x. 2 Husk å bruke kjerneregelen. 3 Løs likningen for y/x. Eksempel

30 17 Implisitt erivasjon Kunsten å finne en eriverte av en implisitt funksjon. 1 Deriver V.S. og H.S av en implisitte likningen m/hensyn på x, mens y betraktes som en funksjon av x. 2 Husk å bruke kjerneregelen. 3 Løs likningen for y/x. Eksempel Finn tangenten til y 3 2x = 0 i punktet (1, 1).

31 17 Implisitt erivasjon Kunsten å finne en eriverte av en implisitt funksjon. 1 Deriver V.S. og H.S av en implisitte likningen m/hensyn på x, mens y betraktes som en funksjon av x. 2 Husk å bruke kjerneregelen. 3 Løs likningen for y/x. Eksempel Finn tangenten til y 3 2x = 0 i punktet (1, 1). Deriverer likningen 3y 2 y x 4x = 0.

32 17 Implisitt erivasjon Kunsten å finne en eriverte av en implisitt funksjon. 1 Deriver V.S. og H.S av en implisitte likningen m/hensyn på x, mens y betraktes som en funksjon av x. 2 Husk å bruke kjerneregelen. 3 Løs likningen for y/x. Eksempel Finn tangenten til y 3 2x = 0 i punktet (1, 1). Deriverer likningen 3y 2 y x 4x = 0. Løser for en eriverte: y x = 4x. 3y 2

33 17 Implisitt erivasjon Kunsten å finne en eriverte av en implisitt funksjon. 1 Deriver V.S. og H.S av en implisitte likningen m/hensyn på x, mens y betraktes som en funksjon av x. 2 Husk å bruke kjerneregelen. 3 Løs likningen for y/x. Eksempel Finn tangenten til y 3 2x = 0 i punktet (1, 1). Deriverer likningen 3y 2 y x 4x = 0. Løser for en eriverte: y x = 4x. (=4/3 når (x, y) = (1, 1)) 3y 2

34 17 Implisitt erivasjon Kunsten å finne en eriverte av en implisitt funksjon. 1 Deriver V.S. og H.S av en implisitte likningen m/hensyn på x, mens y betraktes som en funksjon av x. 2 Husk å bruke kjerneregelen. 3 Løs likningen for y/x. Eksempel Finn tangenten til y 3 2x = 0 i punktet (1, 1). Deriverer likningen 3y 2 y x 4x = 0. Løser for en eriverte: y x = 4x. (=4/3 når (x, y) = (1, 1)) 3y 2 Tangenten er erfor gitt ve y 1 = 4 3 (x 1)

35 18 Graf fra eksempelet

36 19 Implisitt erivasjon av høyere oren Finn 2 y/x 2 når x 3 + y 3 9xy = 0.

37 Kapittel 3.7. Derivasjon av inverse funksjoner

38 21 Derivasjon av inverse til eriverbare funksjoner Setning Den eriverte av f 1 er x f 1 (x) = 1 ) f (f 1 (x) Ieer bak formelen: Kjerneregel, efinisjon av invers og implisitt erivasjon. Hva skjer når vi eriverer f(f 1 (x)) = x?

39 22 Den eriverte av en naturlige logaritmen Anvenelse av erivert av invers. Husk at ln x og e x er hveranres inverser. Husk x ex = e x x ln x = 1 x

40 23 Derivasjon av a x og log a x Vi har følgene erivasjonsregler x ax = a x ln a x log a x = 1 x ln a

41 24 Logaritmisk erivasjon Setning Den eriverte av f(x) g(x) er f(x) g(x) x (g(x) ln f(x)) Ieen bak er ientiteten ln a b = b ln a og implisitt erivasjon.

42 25 e som en grense Vi har at grensen lim x 0 (1 + x)1/x = e Dette følger av at en eriverte av ln x når x = 1 er lik 1/1 = 1. lim (1 + x 0 x)1/x = e lim x 0 ln((1+x) 1/x ) fori = e lim x 0 ln(1+x) 0 x = e lim x 0 ln(1+x) ln 1 x = e 1 = e ln(1 + x) ln 1 lim = en eriverte til ln x i x = 1 x 0 x

Derivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 2. september 2011

Derivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 2. september 2011 Derivasjon Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 2. september 20 Kapittel 3.7. Derivasjon av inverse funksjoner 3 Derivasjon av inverse til deriverbare funksjoner

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Forelesning 11 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 11 Transcendentale funksjoner Vi begynner nå på temaet transcendentale funksjoner. I dagens forelesning

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Forelesning 8 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 8 Derivasjon I agens forelesning skal vi se på følgene: 1 Kjerneregelen 2 Deriverte til trigonometriske

Detaljer

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 18. august 2011

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 18. august 2011 Funksjoner Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 8. august 20 2 Definisjon av funksjon Definisjon En funksjon er en regel f som til et hvert tall i definisjonsmengden

Detaljer

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 19. august 2010

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 19. august 2010 Funksjoner Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 9. august 200 2 Funksjon som en maskin x Funksjon f f(x) 3 Definisjon- og verdimengde x f(x) 4 Funksjon som en

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag TMA4100 Matematikk 1 Høst 014 Løsningsforslag Øving 03.7. Økningen i uksen, F, kan approksimeres som se sie 131 i boka F F =

Detaljer

Integrasjon Forelesning i Matematikk 1 TMA4100

Integrasjon Forelesning i Matematikk 1 TMA4100 Integrasjon Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 21. oktober 2011 Kapittel 7.4. Delbrøksoppspalting og Integrasjon av rasjonale funksjoner 3 Integrasjon av

Detaljer

MA0003-8. forelesning

MA0003-8. forelesning Implisitt derivasjon og 31. august 2009 Outline Implisitt derivasjon 1 Implisitt derivasjon 2 Outline Implisitt derivasjon 1 Implisitt derivasjon 2 Outline Implisitt derivasjon 1 Implisitt derivasjon 2

Detaljer

1+2 x, dvs. løse ligningen mhp. x. y = x y(1 + 2 x ) = = 100 y y x ln 2 = ln 100 y y x = 1. 2 x = 1. f 1 (x) =

1+2 x, dvs. løse ligningen mhp. x. y = x y(1 + 2 x ) = = 100 y y x ln 2 = ln 100 y y x = 1. 2 x = 1. f 1 (x) = NTNU Institutt for matematiske fag TMA4 Matematikk høsten 2 Løsningsforslag - Øving Avsnitt.5 59 a) Vi skal invertere f() +2, dvs. løse ligningen mhp.. + 2 ( + 2 ) 2 ln 2 ln ln 2 ln Vi btter om på og :

Detaljer

Matematikk 1 (TMA4100)

Matematikk 1 (TMA4100) Matematikk 1 (TMA4100) Forelesning 7: Derivasjon (fortsettelse) Eirik Hoel Høiseth Stipendiat IMF NTNU 23. august, 2012 Den deriverte som momentan endringsrate Den deriverte som momentan endringsrate Repetisjon

Detaljer

Areal mellom kurver Volum Forelesning i Matematikk 1 TMA4100

Areal mellom kurver Volum Forelesning i Matematikk 1 TMA4100 Areal mellom kurver Volum Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 27. september 20 Kapittel 5.6. Substitusjon og arealet mellom kurver 3 Areal mellom kurver Problem

Detaljer

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 19. august 2011

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 19. august 2011 Funksjoner Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 9. august 20 2 Stigende og avtagende funksjoner Definisjon En funksjon f kalles stigende på intervallet I hvis

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA400 Matematikk Høst 04 Løsningsforslag Øving 04 30 For å vise at f er en injektiv one-to-one funksjon, ser vi på den deriverte,

Detaljer

Derivasjon ekstremverdier Forelesning i Matematikk 1 TMA4100

Derivasjon ekstremverdier Forelesning i Matematikk 1 TMA4100 Derivasjon ekstremverdier Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 6. september 20 Kapittel 3.. Hyperbolske funksjoner 3 Hyperbolske funksjoner Definisjon (Grunndefinisjoner)

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Forelesning 9 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 9 Derivasjon I dagens forelesning skal vi se på følgende: 1 Tilnærminger til små endringer. 2 Vekstfart.

Detaljer

Stigende og avtagende funksjoner Definisjon. Horisontal og vertikal forskyvning. Trigonometriske funksjoner

Stigende og avtagende funksjoner Definisjon. Horisontal og vertikal forskyvning. Trigonometriske funksjoner Funksjoner Forelesning i Matematikk TMA00 Hans Jako Rivertz Institutt for matematiske fag 9. august 0 Stigende og avtagende funksjoner En funksjon f kalles stigende på intervallet I vis f (x ) < f (x )

Detaljer

Kontinuitet og derivasjon Forelesning i Matematikk 1 TMA4100

Kontinuitet og derivasjon Forelesning i Matematikk 1 TMA4100 Kontinuitet og derivasjon Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 25. august 2010 2 Dagens pensum I dag vil vi se på følgende: Kontinuerlige funksjoner Den deriverte

Detaljer

Anbefalte oppgaver uke 36

Anbefalte oppgaver uke 36 Anbefalte oppgaver uke 36 Høsten 2017 Løsningsforslag 1 Vi begynner me å skrive om ligningen litt, først til x y x + y = x2 + y, (1) y og så eller Nå eriverer vi, og får slik at xy y 2 = x 3 + xy + x 2

Detaljer

1+2 x, dvs. løse ligningen mhp. x. y = 100. y(1+2 x ) = = 2 x = y. xln2 = ln 100 y. x = 1 ln2 ln. f 1 (x) = 1 ln2 ln x

1+2 x, dvs. løse ligningen mhp. x. y = 100. y(1+2 x ) = = 2 x = y. xln2 = ln 100 y. x = 1 ln2 ln. f 1 (x) = 1 ln2 ln x NTNU Institutt for matematiske fag TMA400 Matematikk Høsten 20 Løsningsforslag - Øving Avsnitt.5 59 a) Vi skal invertere y f(x) 00 +2 x, dvs. løse ligningen mhp. x. y 00 +2 x y(+2 x ) 00 2 x 00 00 y y

Detaljer

Institutt for Samfunnsøkonomi. Utlevering: 29.04.2015 Kl. 09:00 Innlevering: 29.04.2015 Kl. 14:00

Institutt for Samfunnsøkonomi. Utlevering: 29.04.2015 Kl. 09:00 Innlevering: 29.04.2015 Kl. 14:00 SENSORVEILEDNING MET 803 Matematikk Institutt for Samfunnsøkonomi Utlevering: 9.04.05 Kl. 09:00 Innlevering: 9.04.05 Kl. 4:00 For mer informasjon om formalia, se eksamensoppgaven. Oppgave Beregn følgende

Detaljer

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 1 Kalkulus

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 1 Kalkulus QED 5 10 Matematikk for grunnskolelærerutdanningen Bind 2 Fasit kapittel 1 Kalkulus Kapittel 1 Oppgave 1. a) en funksjon b) en funksjon c) ikke en funksjon d) ikke en funksjon Oppgave 2. a) 12,1 b) 4 c)

Detaljer

Vekstrater og eksponentiell vekst ECON 2915 Vekst og næringsstruktur

Vekstrater og eksponentiell vekst ECON 2915 Vekst og næringsstruktur Vekstrater og eksponentiell vekst ECON 2915 Vekst og næringsstruktur KÅRE BÆVRE Høsten 2005 1 Vekstrater og eksponensiell vekst 1.1 Vekstrater i iskret ti Vekstraten til en størrelse Y angir hvor stor

Detaljer

Fremdriftplan. I går. I dag. 2.5 Uendelige grenser og vertikale asymptoter 2.6 Kontinuitet

Fremdriftplan. I går. I dag. 2.5 Uendelige grenser og vertikale asymptoter 2.6 Kontinuitet 1 Fremdriftplan I går 2.5 Uendelige grenser og vertikale asymptoter 2.6 Kontinuitet I dag 2.7 Tangenter og derivasjon 3.1 Den deriverte til en funksjon 3.2 Derivasjonsregler 3.3 Den deriverte som endringsrate

Detaljer

Forkurs, Avdeling for Ingeniørutdanning

Forkurs, Avdeling for Ingeniørutdanning Eksamen i FO99A Matematikk Ordinær Eksamen Dato 8. mai 8 Tidspunkt 9. - 14. Antall oppgaver 4 Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 Deriver følgende

Detaljer

Løsningsforslag. 3 x + 1 + e. g(x) = 1 + x4 x 2

Løsningsforslag. 3 x + 1 + e. g(x) = 1 + x4 x 2 Prøve i FO929A - Matematikk Dato: 1. juni 2012 Målform: Bokmål Antall oppgaver: 5 (20 deloppgaver) Antall sider: 2 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4100 Matematikk 1 Høst 2014 2.8.2 Vi merker oss først at funksjonen f er båe kontinuerlig og eriverbar på intervallet [1,2],

Detaljer

Newtons metode - Integrasjon Forelesning i Matematikk 1 TMA4100

Newtons metode - Integrasjon Forelesning i Matematikk 1 TMA4100 Newtons metode - Integrasjon Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 20. september 2011 Kapittel 4.7. Newtons metode 3 Eksakt løsning Den eksakte løsningen av

Detaljer

EKSAMEN TMA4100 HØST 2014 LØSNINGSFORSLAG. du/dx = e x du = e x dx, Her har vi brukt analysens fundamentalteorem til å derivere telleren.

EKSAMEN TMA4100 HØST 2014 LØSNINGSFORSLAG. du/dx = e x du = e x dx, Her har vi brukt analysens fundamentalteorem til å derivere telleren. EKSAMEN TMA400 HØST 04 ØSNINGSFORSAG Oppgave. Uner rottegnet står et + e x, og en eriverte til ette uttrykket er e x, som står utenfor rottegnet. Sett erfor u +e x. Da får vi og vi kan løse intergralet:

Detaljer

Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon, språk og stil variere noe fra oppgave til oppgave.

Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon, språk og stil variere noe fra oppgave til oppgave. NTNU Institutt for matematiske fag TMA4105 Matematikk, øving 7, vår 011 Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon,

Detaljer

TMA4100: Repetisjon før midtsemesterprøven

TMA4100: Repetisjon før midtsemesterprøven TMA4100: Repetisjon før midtsemesterprøven 10.10.09 Lars Sydnes sydnes@math.ntnu.no Institutt for matematiske fag October 1, 2009 L.S. (NTNU) TMA4100: Oversikt October 1, 2009 1 / 20 Kapittel 1: Funksjoner.

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA400 Matematikk, høst 203 Forelesning 2 www.ntnu.no TMA400 Matematikk, høst 203, Forelesning 2 Transcendentale funksjoner I dagens forelesning skal vi se på følgende: Den naturlige logaritmen. 2 Eksponensialfunksjoner.

Detaljer

LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101)

LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA0/MA60) Fredag 2. desember 202 Tid: 09:00 3:00 Hjelpemidler: Kode

Detaljer

Potensrekker Forelesning i Matematikk 1 TMA4100

Potensrekker Forelesning i Matematikk 1 TMA4100 Potensrekker Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 11. november 2011 Kapittel 8.8. Taylorrekker og Maclaurinrekker 3 Taylor-polynomer Definisjon (Taylorpolynomet

Detaljer

Volum Lengde Areal Forelesning i Matematikk 1 TMA4100

Volum Lengde Areal Forelesning i Matematikk 1 TMA4100 Volum Lengde Areal Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 4. oktober 011 Kapittel 6.. Volum ved sylindriske skall 3 Skall-metoden z = g(x) 1 1 1 1 3 1 1 3 z

Detaljer

TMA4100 Matematikk 1 for MTDESIG, MTIØT-PP, MTMART og MTPROD høsten 2010

TMA4100 Matematikk 1 for MTDESIG, MTIØT-PP, MTMART og MTPROD høsten 2010 TMA4100 Matematikk 1 for MTDESIG, MTIØT-PP, MTMART og MTPROD høsten 2010 Toke Meier Carlsen Institutt for matematiske fag 2. september 2010 2 Fremdriftplan I går 3.6 Implisitt derivasjon 3.7 Derivasjon

Detaljer

Løsningsforslag eksamen MAT111 Grunnkurs i Matematikk I høsten 2009

Løsningsforslag eksamen MAT111 Grunnkurs i Matematikk I høsten 2009 Løsningsforslag eksamen MAT Grunnkurs i Matematikk I høsten 9 OPPGAVE (a) Vi har w = + ( ) =. I et komplekse plan ligger w i 4. kvarant og vinkelen θ mellom tallet og en relle aksen har tan θ =, vs. at

Detaljer

e x = 1 + x + x2 2 + R 2(x), = e 3! ( 1) n x n = n! n=0 y n+1 = y 0 + f(t, y n (t)) dt 1 dt = 1 + x (1 + t) dt = 1 + x x2

e x = 1 + x + x2 2 + R 2(x), = e 3! ( 1) n x n = n! n=0 y n+1 = y 0 + f(t, y n (t)) dt 1 dt = 1 + x (1 + t) dt = 1 + x x2 NTNU Institutt for matematiske fag TMA400 Matematikk høsten 20 Løsningsforslag - Øving 2 Avsnitt 8.9 23 Ved Taylors formel (med a = 0) har vi at der R 2 (x) = f (n+) (c) (n+)! e x = + x + x2 2 + R 2(x),

Detaljer

IR Matematikk 1. Utsatt Eksamen 8. juni 2012 Eksamenstid 4 timer

IR Matematikk 1. Utsatt Eksamen 8. juni 2012 Eksamenstid 4 timer Utsatt Eksamen 8. juni 212 Eksamenstid 4 timer IR1185 Matematikk 1 Bokmål Hvis du blir ferdig med oppgavene under del 1 før kl. 11., så kan og bør du starte på del 2 uten bruk av hjelpemidler. Du kan bare

Detaljer

Logaritmer og eksponentialfunksjoner

Logaritmer og eksponentialfunksjoner Logaritmer og eksponentialfunksjoner Dette er fra e to første forelesningene i MA02 våren 2008. Noe er skrevet mer ut, men mange etaljer er utelatt. De er utelatt me vilje, for at u skal fylle em ut selv!

Detaljer

Den deriverte og derivasjonsregler

Den deriverte og derivasjonsregler Den deriverte og derivasjonsregler Department of Mathematical Sciences, NTNU, Norway September 3, 2014 Tangenten til en funksjon i et punkt (kap. 2.1) Sekant til en funksjon gjennom to punkter 25 20 f(c+h)

Detaljer

Andre forelesning Forelesning i Matematikk 1 TMA4100

Andre forelesning Forelesning i Matematikk 1 TMA4100 Andre forelesning Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 20. august 2010 Induksjon Pensumlitteratur: Notat 3 Induksjon Brukes til å bevise formler og setninger.

Detaljer

Oppgaver i funksjonsdrøfting

Oppgaver i funksjonsdrøfting Oppgaver i funksjonsdrøfting To av oppgavene er merket med *. Det betyr at de er ekstra interessante. Oppgave 1 Gitt funksjonen f(x) = x + 4. a) Finn nullpunktene til funksjonen. b) Bruk definisjonen på

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: John Haugan: Formler og tabeller. Rottmanns formelsamling (tillatt som overgangsordning)

EKSAMEN. TILLATTE HJELPEMIDLER: John Haugan: Formler og tabeller. Rottmanns formelsamling (tillatt som overgangsordning) KANDIDATNUMMER: EKSAMEN FAGNAVN: Matematikk FAGNUMMER: REA4 EKSAMENSDATO: 6. desember 24 SENSURFRIST: 6. januar 25 KLASSE:. klassene, ingenørutdanning. TID: kl. 9. 3.. FAGLÆRER: Hans Petter Hornæs ANTALL

Detaljer

Matematikk 1 (TMA4100)

Matematikk 1 (TMA4100) Matematikk 1 (TMA4100) Forelesning 2: Funksjoner (fortsettelse) Eirik Hoel Høiseth Stipendiat IMF NTNU 16. august, 2012 Eksponentialfunksjoner Eksponentialfunksjoner Definisjon: Eksponentialfunksjon En

Detaljer

Oppgave 1. Oppgave 2

Oppgave 1. Oppgave 2 Midtveiseksamen i MET1180 1 - Matematikk for siviløkonomer 12. desember 2018 Oppgavesettet har 15 flervalgsoppgaver. Rett svar gir poeng, galt svar gir svaralternativ (E) gir 0 poeng. Bare ett svar er

Detaljer

Analyse og metodikk i Calculus 1

Analyse og metodikk i Calculus 1 Analyse og metodikk i Calculus 1 Fredrik Göthner og Raymi Eldby Norges teknisk-naturvitenskapelige universitet 3. desember 01 1 Innhold Forord 3 1 Vurdering av grafer og funksjoner 4 1.1 Hva er en funksjon?.........................

Detaljer

NTNU. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 12. Avsnitt Ved Taylors formel (med a = 0) har vi at. 24 For x < 0 har vi at

NTNU. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 12. Avsnitt Ved Taylors formel (med a = 0) har vi at. 24 For x < 0 har vi at NTNU Institutt for matematiske fag TMA400 Matematikk høsten 200 Løsningsforslag - Øving 2 Avsnitt 8.9 23 Ved Taylors formel (med a = 0) har vi at der R 2 (x) = f (n+) (c) (n+)! e x = + x + x2 2 + R 2(x),

Detaljer

. 2+cos(x) 0 og alle biter som inngår i uttrykket er kontinuerlige. Da blir g kontinuerlig i hele planet.

. 2+cos(x) 0 og alle biter som inngår i uttrykket er kontinuerlige. Da blir g kontinuerlig i hele planet. MA 1410: Analyse Uke 47, 001 http://home.hia.no/ aasvaldl/ma1410 H01 Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag Oppgave 11.1: 7. f(x, y) = 1 16 x y. a) Definisjonsområde D: f

Detaljer

Oppgaver om derivasjon

Oppgaver om derivasjon Oppgaver om derivasjon Oppgave 1 Gitt funksjonen g(x) = x 3 6x 48x + 13 a) Finn g (x). b) Bruk den deriverte til å finne x-koordinaten til topp/bunn-punktene til grafen. Finn også de tilhørende y-koordinatene,

Detaljer

TMA4100 Matematikk 1 for MTDESIG, MTIØT-PP, MTMART og MTPROD høsten 2010

TMA4100 Matematikk 1 for MTDESIG, MTIØT-PP, MTMART og MTPROD høsten 2010 TMA4100 Matematikk 1 for MTDESIG, MTIØT-PP, MTMART og MTPROD høsten 2010 Toke Meier Carlsen Institutt for matematiske fag 30. september 2010 2 Fremdriftplan I går 5.5 Ubestemte integraler og substitusjon

Detaljer

NTNU MA0003. Ole Jacob Broch. Norwegian University of Science and Technology. MA0003 p.1/29

NTNU MA0003. Ole Jacob Broch. Norwegian University of Science and Technology. MA0003 p.1/29 MA0003 Ole Jacob Broch Norwegian University of Science and Technology MA0003 p.1/29 Oversikt, torsdag 13/1 Avsnitt 1.3: intervaller og intervallnotasjon definisjons- og verdimengden til en funksjon Avsnitt

Detaljer

Løsningsforslag til eksamen i MAT111 Vår 2013

Løsningsforslag til eksamen i MAT111 Vår 2013 BOKMÅL MAT - Vår Løsningsforslag til eksamen i MAT Vår Oppgave Finn polarrepresentasjonen til i. i Skriv på formen x + iy. i Løsning Finner først modulus og argument til i: i = ( ) + ( ) = 4 = arg( ( )

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Forelesning 10 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 10 Derivasjon I dagens forelesning skal vi se på følgende: 1 Antideriverte. 2 Differensiallikninger

Detaljer

Potensrekker Forelesning i Matematikk 1 TMA4100

Potensrekker Forelesning i Matematikk 1 TMA4100 Potensrekker Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 1. november 2011 Kapittel 8.7. Potensrekker (fra konvergens av) 3 Konvergens av potensrekker Eksempel For

Detaljer

Høgskolen i Telemark Eksamen Matematikk 2 modul Mai Fakultet for estetiske fag, folkekultur og lærerutdanning BOKMÅL 24.

Høgskolen i Telemark Eksamen Matematikk 2 modul Mai Fakultet for estetiske fag, folkekultur og lærerutdanning BOKMÅL 24. Høgskolen i Telemark Eksamen Matematikk 2 modul 24. Mai 203 Høgskolen i Telemark Fakultet for estetiske fag, folkekultur og lærerutdanning BOKMÅL 24. mai 203 EKSAMEN I MATEMATIKK 2 Modul 5 studiepoeng

Detaljer

Potensrekker Forelesning i Matematikk 1 TMA4100

Potensrekker Forelesning i Matematikk 1 TMA4100 Potensrekker Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 15. november 2011 Kapittel 8.9. Konvergens av Taylorrekker 3 i 3 i Løs likningen x 2 + 1 = 0 3 i Løs likningen

Detaljer

IR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer

IR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer Eksamen 8. desember 16 Eksamenstid 4 timer IR151 Matematikk 1 Bokmål Hvis du blir ferdig med oppgavene under del 1 før kl. 11., så kan og bør du starte på del uten bruk av hjelpemidler. Du kan bare bruke

Detaljer

Grenser III - rasjonale funskjoner Forelesning i Matematikk 1 TMA4100

Grenser III - rasjonale funskjoner Forelesning i Matematikk 1 TMA4100 Grenser III - rasjonale funskjoner Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 24. august 2010 2 Grenselover for x ± L = lim f(x) M = lim g(x) 1. lim (f(x) ± g(x))

Detaljer

(coshu) = sinhudu. dx. Her har vi at u = w Hx, og du dx = w dy. dx = H w w. H sinh w H x = sinh w H x.

(coshu) = sinhudu. dx. Her har vi at u = w Hx, og du dx = w dy. dx = H w w. H sinh w H x = sinh w H x. NTNU Institutt for matematiske fag TMA400 Matematikk høsten 20 Løsningsforslag - Øving 3 Avsnitt 3. 49 a) Fra tabell 3.4 på sie 222 i boka: (coshu) = sinhuu. Her har vi at u = w H, og u = w y H. Det følger

Detaljer

Løsningsforslag til underveiseksamen i MAT 1100, 6/

Løsningsforslag til underveiseksamen i MAT 1100, 6/ Løsningsforslag til underveiseksamen i MAT 00, 6/0-008. ( poeng) Det komplekse tallet z har polarkoordinater r =, θ = 7π 6. Da er z lik: i + i i i + i Riktig svar: c) i. Begrunnelse: z = ( cos 7π 6 + i

Detaljer

Teknisk appendiks ECON 2915 Vekst og næringsstruktur

Teknisk appendiks ECON 2915 Vekst og næringsstruktur Teknisk appeniks ECON 2915 Vekst og næringsstruktur KÅRE BÆVRE Høsten 2005 Versjon 1 Dette notatet er ment som en støtte for stuenter som tar kurset ECON 2915 - Vekst og utvikling. Her behanles en el sentrale

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, øst 2013 Forelesning 7 www.ntnu.no TMA4100 Matematikk 1, øst 2013, Forelesning 7 Derivasjon Denne uken skal vi begynne på tema 2 om derivasjon. I dagens forelesning skal vi se på

Detaljer

Fremdriftplan. I går. I dag. 1.1 Funksjoner og deres grafer 1.2 Operasjoner av funksjoner

Fremdriftplan. I går. I dag. 1.1 Funksjoner og deres grafer 1.2 Operasjoner av funksjoner 1 Fremdriftplan I går 1.1 Funksjoner og deres grafer 1.2 Operasjoner av funksjoner I dag 1.3 Trigonometriske funksjoner 1.4 Eksponentialfunksjoner 1.5 Omvendte funksjoner, logaritmiske funksjoner, inverse

Detaljer

Forelesning Matematikk 4N

Forelesning Matematikk 4N Forelesning Matematikk 4N Hans Jakob Rivertz Institutt for matematiske fag 18. september 2006 2 Komplekse fourier rekker (10.5) Målet med denne leksjonen er vise hvordan man skrive fourier rekkene på kompleks

Detaljer

a) f(x) = 3 cos(2x 1) + 12 LF: Vi benytter (lineær) kjerneregel og får f (x) = (sin(7x + 1)) (sin( x) + x) sin(7x + 1)(sin( x) + x) ( sin(x) + x) 2 =

a) f(x) = 3 cos(2x 1) + 12 LF: Vi benytter (lineær) kjerneregel og får f (x) = (sin(7x + 1)) (sin( x) + x) sin(7x + 1)(sin( x) + x) ( sin(x) + x) 2 = Innlevering DAFE ELFE Matematikk 000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Mandag 2. mars 205 før forelesningen 0:30 Antall oppgaver: 7 Løsningsforslag Deriver de følgende funksjonene. a) f(x)

Detaljer

Høgskolen i Telemark Fakultet for estetiske fag, folkekultur og lærerutdanning BOKMÅL 23. mai 2014

Høgskolen i Telemark Fakultet for estetiske fag, folkekultur og lærerutdanning BOKMÅL 23. mai 2014 Høgskolen i Telemark Fakultet for estetiske fag, folkekultur og lærerutdanning BOKMÅL 23. mai 2014 ORDINÆR EKSAMEN I MATEMATIKK 2 Modul 1 15 studiepoeng Tid: 5 timer Oppgavesettet er på 7 sider (inkludert

Detaljer

Matematikk 1 Første deleksamen. Løsningsforslag

Matematikk 1 Første deleksamen. Løsningsforslag HØGSKOLEN I ØSTFOLD, AVDELING FOR INFORMASJONSTEKNOLOGI Matematikk Første deleksamen 4. juni 208 Løsningsforslag Christian F. Heide June 8, 208 OPPGAVE a Forklar kortfattet hva den deriverte av en funksjon

Detaljer

arbeid - massesenter - Delvis integrasjon Forelesning i Matematikk 1 TMA4100

arbeid - massesenter - Delvis integrasjon Forelesning i Matematikk 1 TMA4100 arbeid - massesenter - Delvis integrasjon Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 11. oktober 2011 Kapittel 6.6. Arbeid 3 Arbeid definisjon Definisjon (Arbeid

Detaljer

Eksamen 1T høsten 2015, løsningsforslag

Eksamen 1T høsten 2015, løsningsforslag Eksamen 1T høsten 015, løsningsforslag Del 1, ingen hjelpemidler Oppgave 1 1,8 10 1 0,0005 = 1,8 10 1 5 10 4 = 1,8 5 10 1+( 4) = 9 10 8 Oppgave Velger addisjonsmetoden Legger sammen ligningene: x + y =

Detaljer

NTNU Institutt for matematiske fag. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 8. Oppgave 1. Oppgave 2

NTNU Institutt for matematiske fag. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 8. Oppgave 1. Oppgave 2 NTNU Institutt for matematiske fag TMA4 Matematikk høsten Løsningsforslag - Øving 8 Oppgave b. Vi har at f() > og f(π/) π /6

Detaljer

Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Tirsdag 1. april 2014 kl. 12:45 Antall oppgaver: 8+2

Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Tirsdag 1. april 2014 kl. 12:45 Antall oppgaver: 8+2 Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Tirsdag 1. april 2014 kl. 12:45 Antall oppgaver: 8+2 1 Bestem den naturlige denisjonsmengden til følgende funksjoner.

Detaljer

Løsningsforslag til eksamen i MAT 1100, H06

Løsningsforslag til eksamen i MAT 1100, H06 Løsningsforslag til eksamen i MAT, H6 DEL. poeng Hva er den partiellderiverte f z xyz cosxyz x sinyz + xyz cosyz xy cosyz x sinyz + xz cosyz cosyz xyz sinyz når fx, y, z = xz sinyz? Riktig svar b: x sinyz

Detaljer

Løsningsforslag, midtsemesterprøve MA1103, 2.mars 2010

Løsningsforslag, midtsemesterprøve MA1103, 2.mars 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 5 Løsningsforslag, midtsemesterprøve MA03,.mars 00 Oppgave Tegn figur og finn en parametrisering for skjæringskurven

Detaljer

Løsningsforslag til underveiseksamen i MAT 1100

Løsningsforslag til underveiseksamen i MAT 1100 Løsningsforslag til underveiseksamen i MAT 00 Dato: Tirsdag /0, 00 Tid: Kl. 9.00-.00 Vedlegg: Formelsamling Tillatte hjelpemidler: Ingen Oppgavesettet er på sider Eksamen består av 0 spørsmål. De 0 første

Detaljer

Løsningsforslag AA6524/AA6526 Matematikk 3MX Elever/Privatister 6. desember 2006. eksamensoppgaver.org

Løsningsforslag AA6524/AA6526 Matematikk 3MX Elever/Privatister 6. desember 2006. eksamensoppgaver.org Løsningsforslag AA654/AA656 Matematikk 3MX Elever/Privatister 6. desember 6 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis, og det

Detaljer

(Noter at studenter som innser at problemet er symmetrisk for x og y og dermed

(Noter at studenter som innser at problemet er symmetrisk for x og y og dermed Oppgave a) f (x) = (3x 2)x og f (x) = 6x 2 b) g (y) = e 3y2 y og g (y) = e 3y2 (6y 2 + ) c) F x(x, y) = (x+y)y ln(x+y) xy (x+y)(ln(x+y)) 2 Det gir, etter en del regning: og F y(x, y) = (x+y)x ln(x+y) xy

Detaljer

MA1101 Grunnkurs Analyse I Høst 2017

MA1101 Grunnkurs Analyse I Høst 2017 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA Grunnkurs Analyse I Høst 7 9.5. a) Har at + x b arctan b = π + x [arctan x]b (arctan b arctan ) f) La oss først finne en

Detaljer

Eksamen i emnet MAT111/M100 - Grunnkurs i matematikk I Mandag 15. desember 2003, kl. 09-13(15) LØYSINGSFORSLAG OPPGÅVE 2:

Eksamen i emnet MAT111/M100 - Grunnkurs i matematikk I Mandag 15. desember 2003, kl. 09-13(15) LØYSINGSFORSLAG OPPGÅVE 2: Eksamen i emnet MAT/M00 - Grunnkurs i matematikk I Mandag 5. desember 2003, kl. 09-3(5) LØYSINGSFORSLAG Finn dei deriverte til i) f(x) = x 2 ln x OPPGÅVE : exp(u 2 )du, x, ii) f(x) = x cos(x). i) d x 2

Detaljer

Repetisjon i Matematikk 1: Derivasjon 2,

Repetisjon i Matematikk 1: Derivasjon 2, Repetisjon i Matematikk 1: Derivasjon 2, 201. 1 Høgskolen i Gjøvik Avdeling TØL Repetisjonsoppgaver MATEMATIKK 1 REA1141 og REA1141F Derivasjon 2, 201. Oppgave 1 Denne oppgaven har forholdsvis enkle derivasjoner,

Detaljer

Ekstremverdier Mellomverdisatsen Forelesning i Matematikk 1 TMA4100

Ekstremverdier Mellomverdisatsen Forelesning i Matematikk 1 TMA4100 Ekstremverdier Mellomverdisatsen Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 9. september 2011 Kapittel 4.1. Funksjoners ekseremverdier fra og med lokale ekstrema

Detaljer

Areal - difflikninger - arbeid Forelesning i Matematikk 1 TMA4100

Areal - difflikninger - arbeid Forelesning i Matematikk 1 TMA4100 Areal - difflikninger - arbeid Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 7. oktober 2011 Kapittel 6.4. Areal til omdreiningslegemer 3 Overflate-areal av en rotasjonsflate

Detaljer

Eksamen i FO929A Matematikk Underveiseksamen Dato 30. mars 2007 Tidspunkt Antall oppgaver 4 Sirkelskive i radianer.

Eksamen i FO929A Matematikk Underveiseksamen Dato 30. mars 2007 Tidspunkt Antall oppgaver 4 Sirkelskive i radianer. Eksamen i FO99A Matematikk Underveiseksamen Dato 30. mars 007 Tidspunkt 09.00-14.00 Antall oppgaver 4 Vedlegg Tillatte hjelpemidler Sirkelskive i radianer Godkjent kalkulator Godkjent formelsamling Oppgave

Detaljer

. Følgelig er csc 1 ( 2) = π 4. sin θ = 3

. Følgelig er csc 1 ( 2) = π 4. sin θ = 3 NTNU Institutt for matematiske fag TMA400 Matematikk høsten 00 Løsningsforslag - Øving Avsnitt 3.7 99 Vi deriverer to ganger: = A cos (ln ) B sin (ln ) = A cos (ln ) A sin (ln ) + B sin (ln ) B cos (ln

Detaljer

DEL 1 (Uten hjelpemidler, leveres etter 3 timer) 3(a + 1) 4(1 a) (6a 1) = 3a + 3 4 + 4a 6a + 1

DEL 1 (Uten hjelpemidler, leveres etter 3 timer) 3(a + 1) 4(1 a) (6a 1) = 3a + 3 4 + 4a 6a + 1 HELDAGSPRØVE I MATEMATIKK 1T HØST DEL 1 (Uten hjelpemidler, leveres etter 3 timer) Oppgave 1. Trekk sammen uttrykkene: a) 3(a + 1) 4(1 a) (6a 1) 3(a + 1) 4(1 a) (6a 1) = 3a + 3 4 + 4a 6a + 1 = a. b) 1

Detaljer

Løsning av utvalgte øvingsoppgaver til Sigma R2 kapittel 5

Løsning av utvalgte øvingsoppgaver til Sigma R2 kapittel 5 Løsning av utvalgte øvingsoppgaver til Sigma R kapittel 5 5.5 Ce kx y = kce kx Vi setter inn i y + ky og ser om vi får 0: 5.5 ax + a y = ax Vi setter inn i y 5.54 kce kx + k Ce kx = 0 x x + y: ax x(ax

Detaljer

Høgskolen i Telemark Fakultet for estetiske fag, folkekultur og lærerutdanning BOKMÅL 25. mai 2012

Høgskolen i Telemark Fakultet for estetiske fag, folkekultur og lærerutdanning BOKMÅL 25. mai 2012 Høgskolen i Telemark Fakultet for estetiske fag, folkekultur og lærerutdanning BOKMÅL 25. mai 2012 EKSAMEN I MATEMATIKK 2 Modul 1 15 studiepoeng Tid: 5 timer Oppgavesettet er på 8 sider (inkludert formelsamling).

Detaljer

Fasit til utvalgte oppgaver MAT1100, uka 29/11-3/12

Fasit til utvalgte oppgaver MAT1100, uka 29/11-3/12 Fasit til utvalgte oppgaver MAT1100, uka 9/11-3/1 Øyvind Ryan (oyvindry@ifiuiono December, 010 Oppgave 15 Oppgave 155 a 4A 3B 4 1 3 1 3 1 4 1 8 4 1 4 3 3 1 3 0 9 6 + 6 3 9 0 5 18 14 1 3 4 4 9 1 6 8 + 6

Detaljer

EKSAMEN I MA0002 Brukerkurs B i matematikk

EKSAMEN I MA0002 Brukerkurs B i matematikk Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 Faglig kontakt under eksamen: Achenef Tesfahun (9 84 97 5) EKSAMEN I MA2 Brukerkurs B i matematikk Lørdag 322 Tid:

Detaljer

Anbefalte oppgaver - Løsningsforslag

Anbefalte oppgaver - Løsningsforslag TMA415 Matematikk 2 Anbefalte oppgaver - Løsningsforslag Uke 7 15.1.3: Siden vektorfeltet er gitt ved F(x, y) = yi + xj må feltlinjene tilfredstille differensiallikningen eller y = x y, ( ) 1 2 y2 = x.

Detaljer

MAT 1001, Høsten 2009 Oblig 2, Løsningsforslag

MAT 1001, Høsten 2009 Oblig 2, Løsningsforslag MAT 1001, Høsten 009 Oblig, sforslag a) En harmonisk svingning er gitt som en sum av tre delsvingninger H(x) = cos ( π x) + cos (π (x 1)) + cos (π (x )) Skriv H(x) på formen A cos (ω(x x 0 )). siden H(x)

Detaljer

Obligatorisk oppgave i MAT 1100, H-03 Løsningsforslag

Obligatorisk oppgave i MAT 1100, H-03 Løsningsforslag Oppgave : Obligatorisk oppgave i MAT, H- Løsningsforslag a) Vi skal regne ut dx. Substituerer vi u = x, får vi du = x dx. De xex nye grensene er gitt ved u() = = og u() = = 9. Dermed får vi: 9 [ ] 9 xe

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 6. Løsningsforslag

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 6. Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag Oppgave 1 Funksjoner og tangenter 2.1: 15 a) Vi plotter grafen med et rutenett: > x=-3:.1:3; > y=x.^2; > plot(x,y) > grid on > axis([-2

Detaljer

TMA4100 Matematikk 1, 4. august 2014 Side 1 av 12. x 2 3x +2. x 2

TMA4100 Matematikk 1, 4. august 2014 Side 1 av 12. x 2 3x +2. x 2 TMA4 Matematikk, 4. august 24 Side av 2 Oppgave Den rasjonale funksjonen p er definert som p(x) x2 3x +2 3x 2 5x +2. Finn de tre grenseverdiene lim xæ p(x), lim xæ p(x) og lim xæœ p(x). Løsning: x 2 3x

Detaljer

Forelesning Matematikk 4N

Forelesning Matematikk 4N Forelesning Matematikk 4N Hans Jakob Rivertz Institutt for matematiske fag 11. september 2006 2 Den høyrederiverte og venstrederiverte Definisjon Den høyrederiverte til en funksjon f(x) i punktet x er

Detaljer

EKSAMEN BOKMÅL STEMMER. DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember :00-13: FAGKODE: IR Matematikk 1

EKSAMEN BOKMÅL STEMMER. DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember :00-13: FAGKODE: IR Matematikk 1 EKSAMEN BOKMÅL DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember 15 9:-13: FAGKODE: FAGNAVN: IR151 Matematikk 1 HJELPEMIDLER: Del 1: kl 9.-11. Ingen Del : kl 11.-13. Lommeregner Lærebok etter fritt valg Matematisk

Detaljer

Eksamen R2, Våren 2011 Løsning

Eksamen R2, Våren 2011 Løsning R Eksamen, Våren 0 Løsning Eksamen R, Våren 0 Løsning Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (8 poeng) a) Deriver funksjonene

Detaljer

Enkel matematikk for økonomer 1. Innhold. Parenteser, brøk og potenser. Ekstranotat, februar 2015

Enkel matematikk for økonomer 1. Innhold. Parenteser, brøk og potenser. Ekstranotat, februar 2015 Ekstranotat, februar 205 Enkel matematikk for økonomer Innhold Enkel matematikk for økonomer... Parenteser, brøk og potenser... Funksjoner...4 Tilvekstform (differensialregning)...5 Nyttige tilnærminger...8

Detaljer

Oppfriskningskurs i matematikk 2008

Oppfriskningskurs i matematikk 2008 Oppfriskningskurs i matematikk 2008 Marte Pernille Hatlo Institutt for matematiske fag, NTNU 4.-9. august 2008 Velkommen! 2 Temaer Algebra Trigonometri Funksjoner og derivasjon Integrasjon Eksponensial-

Detaljer

En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x).

En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x). Funksjoner En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x). Mengden D kalles definisjonsmengden (eng.: domain) til f. Merknad Dersom

Detaljer

Løsningsforslag til eksamen i TMA4105 matematikk 2,

Løsningsforslag til eksamen i TMA4105 matematikk 2, Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av Løsningsforslag til eksamen i TMA45 matematikk, 9.5.4 Oppgave La fx, y, z) xy + arctanxz). La P være punktet,, ). a)

Detaljer