Institutt for Samfunnsøkonomi

Størrelse: px
Begynne med side:

Download "Institutt for Samfunnsøkonomi"

Transkript

1 Institutt for Samfunnsøkonomi Løsninger i: ELE 379 Matematikk valgfag Dato: 6.6., 9: 4: Tillatte hjelpemidler: Alle hjelpemidler + Eksamenskalkulator: TEXAS INSTRUMENTS BA II Plus TM Innføringsark: Ruter Totalt antall sider: 5 Oppgave. (a) Vektorene {v, v, v 3 } er lineært uavhengige hvis og bare hvis det(t ). Vi regner ut 3 h det(t ) h h (h ) h (3h h) + (3 h) h + Dermed er vektorene lineært avhengige når h +, det vil si når h ±, og vektorene er lineært uavhengige når h ±. (b) Vi ser på matrisen med vektorene {T v, T v, T v 3 } som kolonner: ( T v T v T v 3 ) T ( v v v 3 ) T T T Når h har denne matrisen determinant det(t ) det(t ) ( h + ) 36 Dermed er vektorene {T v, T v, T v 3 } lineært uavhengige når h. Oppgave. (a) Den karakterstiske likningen til A er gitt ved 5 λ 3 λ 4 λ (3 λ)(λ 9λ + 8) Dermed er egenverdiene til A gitt ved λ 3, λ 6, og dette viser at λ 3 er en egenverdi. Alternativt kan man vise at λ 3 er en egenverdi ved å sjekke at det(a 3I). Vi regner ut egenvektorene til A med egenverdi λ 3 ved å løse likningssystemet (A 3I)x x y z Vi ser at at andre likning er irrelevant og kan tas bort, og at tredje likning er første likning multiplisert med, og dermed også irrelevant. Derfor kan vi velge y s og z t som frie parametre, og når vi løser første likning for x får vi x y + z x s + t

2 Vi får dermed at egenvektorene for λ 3 kan skrives som x y s + t s s + t z t (b) Vi har at B A T A Siden det(b) det(a T A) det(a T ) det(a) det(a) 96 så følger det at B er invertibel. Videre har vi B (A T A) A (A T ) A (A ) T Vi regner ut A ved hjelp av den adjungerte matrisen: A Dette gir B Alternativt kunne vi beregnet det(b) og B direkte, uten å gå veien om A. (c) Vi har at de stasjonære punktene for f er gitt ved f x Bx x B 46 6 siden B er invertibel. (d) Når vi setter y Ax, så har vi x T Bx x T A T Ax (Ax) T (Ax) y T y siden y T y y + y + y 3. Dermed er den kvadratiske formen positiv semidenit. Siden det(b), så er ingen av egenverdiene til B null, og dermed er den kvadratiske formen til B også positiv denit. Oppgave 3. (a) Dierensiallikningen y + 3y 8y 4 er lineær av andre orden, og har løsning y y h + y p. Vi nner først y h ved å løse den homogene likningen y + 3y 8y. Den karakteristiske likningen er r + 3r 8 r 4, 7 Dette gir y h C e 4t + C e 7t. Vi nner så en partikulær løsning på formen y p A med A konstant, som gir 8A 4 A Dermed er den generelle løsningen gitt ved y C e 4t + C e 7t. Vi setter inn initialbetingelsene y(), y (), og det gir C + C, 4C 7C C 3, C Dermed er løsningen y 3 e4t + e 7t.

3 (b) Dierensiallikningen y + e t y e t er lineær, og vi nner integrerende faktor u: e t dt e t + C u e et Vi multipliserer dierensiallikningen med integrerende faktor u og får ( y + e t y e t ye et) e t e et Integrasjon og divisjon med u gir generell løsning ye et e t e et dt eet + C y + Ce et Vi setter inn initialbetingelsen y(), og dette gir Dermed blir løsningen y ( + e et ). + Ce C e (c) Dierensiallikningen ty + t + y + ty ( + t)( + y) er separabel, og den separerte formen av likningen blir + y y + t ( ) t t + + y dy t + dt Integrasjon gir dermed ( ) + y dy t + dt ln + y ln t + t + C Vi løser for y og får + y ±e ln t +t+c Kte t y Kte t der K ±e C. Vi setter inn for initialbetingelsen y(), som gir Ke og dermed K /e. Løsningen er derfor y te t. (a) Variasjonsproblemet blir min Oppgave 4. Kẏ e rt dt, y(), y(4) 3 der r og K er positive konstanter, med F (t, y, ẏ) Kẏ e rt. Vi undersøker om F er konveks funksjon i (y, ẏ): Vi har F y og F ẏ Kẏe rt, og dermed får vi F yy F yẏ, F ẏẏ Ke rt > F yyf ẏẏ (F yẏ) Dette betyr at F er konveks som funksjon i (y, ẏ), og derfor er enhver løsning y (t) av Eulerlikningen og initialbetingelsene en løsning av variasjonsproblemet. (b) Vi nner Euler-likningen ved å regne ut F y, F ẏ Kẏe rt d dt F ẏ Kÿe rt + Kẏe rt ( r) Ke rt (ÿ rẏ) Dermed er Euler-likningen gitt ved Ke rt (ÿ rẏ) ÿ rẏ Vi får at y Ae rt + B siden Euler-likningen er en homogen andre ordens lineær dierensiallikning. Vi setter inn initialbetingelsene y(), y(4) 3, og dette gir A + B, Ae 4r + B 3 A 3 e 4r, B 3 e 4r Løsningen av Euler-likningen og initialbetingelsene er dermed y 3 ( e rt e 4r ) 3

4 Den totale neddiskonterte kostnaden når y y (t) blir ( ) 3re Kẏ e rt rt [ dt K e 4r e rt dt 9Kr e rt (e 4r ) r ] 4 9Kr e 4r Når r.8 og K., blir den totale neddiskonterte kostnaden 9Kr e 4r Oppgave 5. (a) Vi har at P (X x, Y y) P (X x) P (Y y) siden X og Y er uavhengige, så x y P (X x, Y y) e e x! y! e 3 x x!y! Innsetting gir P ( ) e 3.498, P ( ) e 3.996, P ( ) e (b) Vi har at P (X Y, X 4) P ( ) + + P (4 4), så P (X Y, X 4) e 3 ( /9 + /36) 4.5e 3.6 Dette er sannsynligheten for et uavgjort resultat med maksimalt re mål til hjemmelaget. (c) Vi har P (X Y X 4) P (X Y, X 4)/P (X 4). Siden P (X 4) P (X ) + + P (X 4) e ( /3 + /3) 7e så får vi P (X Y X 4) 4.5e 3 7e.34 (d) Vi har P (X + Y ) P (X + Y < ) og P (X + Y < ) P ( ) + P ( ) + P ( ) 4e 3 så P (X + Y ) 4e La Z være netto utbetaling i veddemålet. Da har vi { di I X + Y Z I X + Y < der I er innsatsen. Setter vi p P (X +Y ).89, nner vi at forventet netto utbetaling blir E[Z] (di I)p + ( I)( p) dip I I(dp ) Veddemålet gir forventet netto innbetaling om E[Z] <, dvs dp < eller d < /p.487. Altså lønner det seg å tilby veddemålet om d <.487. Oppgave 6. (a) Vi regner ut f X (x) når x ved integrasjon: f X (x) 4xy(x + y ) dy [ x(x + y ) ] x(x + ) x 5 x 3 + x Vi har f(x, y) for alle x, y, og regner ut f X (x) dx (x 3 + x) dx [ 4 x4 + ] x Dermed følger det at f(x, y) er en sannsynlighetstetthet. (b) Vi regner ut E[X]: [ E[X] x(x 3 + x) dx 5 x5 + ] 3 x For å nne Var[X] regner vi først ut E[X ]: [ E[X ] x (x 3 + x) dx 6 x6 + ] 4 x

5 Dermed er Var[X] E[X ] E[X] 7 ( ) (c) Siden f(a, b) f(b, a) for alle reelle tall a, b (symmetri om linjen y x), så kan vi bytte om rollene til x og y uten at integralet endrer verdi: E[X n ] x n f(x, y) dydx y n f(y, x) dxdy y n f(x, y) dxdy E[Y n ] Dermed er E[X n ] E[Y n ] for alle n. Da har vi E[Y ] E[X] 5, Var[Y ] E[Y ] E[Y ] E[X ] E[X] Var[X] 4 9 (d) Vi regner ut E[XY ] ved integrasjon: E[XY ] xy 4xy(x + y ) dydx [ ] [ ] 4x 4 3 y3 + 4x 5 y5 dx [ 4 5 x x3 ] 8 5 (4x 4 y + 4x y 4 ) dydx ( 4 3 x4 + 4 ) 5 x dx Dette gir Cov(X, Y ) E[XY ] E[X]E[Y ] 8 5 ( ) 5 5. (e) Vi har at P (X, Y ) [ y] 4x 3 [ 3 8 x4 + 5 ] 3 x 4xy(x + y ) dydx [ ] + 4x 4 y4 dx (4x 3 y + 4xy 3 ) dydx ( 3 x3 + 5 ) 6 x dx 5

Løsning Eksamensrelevante oppgaver i ELE 3719 Matematikk Vektorer, matriser og lineær algebra Dato Februar Oppgave 1. (A) Vi leser av at

Løsning Eksamensrelevante oppgaver i ELE 3719 Matematikk Vektorer, matriser og lineær algebra Dato Februar Oppgave 1. (A) Vi leser av at Løsning Eksamensrelevante oppgaver i ELE 379 Matematikk Vektorer, matriser og lineær algebra Dato Februar 05 Oppgave. (A) Vi leser av at A = 3 5, B = ( 0 5 ), C = 0 5 9 og har dermed at π x = Ax + BT =

Detaljer

Eksamen i ELE Matematikk valgfag Torsdag 18. mai Oppgave 1

Eksamen i ELE Matematikk valgfag Torsdag 18. mai Oppgave 1 Eksamen i ELE79 - Matematikk valgfag Torsdag 8. mai 07 LØSNINGFORSLAG Oppgave (a) Den utvidede matrisen til likningssystemet er 6 Gausseliminasjon: ganger rad I legges til rad II: 0 0 Rad I trekkes fra

Detaljer

ELE Matematikk valgfag

ELE Matematikk valgfag EKSAMENSOPPGAVE - Skriftlig eksamen ELE 79 Matematikk valgfag Institutt for Samfunnsøkonomi Utlevering:.06.08 Kl. 09.00 Innlevering:.06.08 Kl. 4.00 Vekt: 00% av ELE 79 Antall sider i oppgaven: Innføringsark:

Detaljer

ELE Matematikk valgfag

ELE Matematikk valgfag SENSORVEILEDNING - Skriftlig eksamen ELE 3711 Matematikk valgfag Institutt for Samfunnsøkonomi Utlevering: 11.06.018 Kl. 0:00 Innlevering: 11.06.018 Kl. 14:00 For mer informasjon om formalia, se eksamensoppgaven.

Detaljer

Oppgave 1. (a) Vi utvikler determinanten langs første kolonne og dette gir. (b) Med utgangspunkt i de tre datapunktene denerer vi X og y ved

Oppgave 1. (a) Vi utvikler determinanten langs første kolonne og dette gir. (b) Med utgangspunkt i de tre datapunktene denerer vi X og y ved Sensorveiledning: ELE 37191 Maemaikk valgfag Eksamensdao: 13.06.2012 09:00 1:00 Toal anall sider: 5 Anall vedlegg: 0 Tillae hjelpemidler: BI-dener eksamenskalkulaor TEXAS INSTRUMENTS BA II Plus Innføringsark:

Detaljer

Oppgave 1. = 2(1 4) = 6. Vi regner også ut de andre indreproduktene:

Oppgave 1. = 2(1 4) = 6. Vi regner også ut de andre indreproduktene: Løsning Eksamen i ELE 379 Maemaikk Valgfag Dao 7. juni 26 kl 9-4 Dee e e foreløpig løsningsforslag som ikke er komple. De skal ikke publiseres i denne form. Oppgave. (a) Vi ve a kolonnevekorene il A er

Detaljer

Oppgave 1. e rt = 120e. = 240 e

Oppgave 1. e rt = 120e. = 240 e Løsning MET 803 Matematikk Dato 5. desember 05 kl 0900-00 Oppgave. (a) Dersom vi selger eiendommen etter t år, med t > 0, så er nåverdien av salgssummen med r = 0,0. Da får vi N(t) = V (t)e rt = 0 e e

Detaljer

y(x) = C 1 e 3x + C 2 xe 3x.

y(x) = C 1 e 3x + C 2 xe 3x. NTNU Institutt for matematiske fag TMA4115 Matematikk eksamen 4 juni 9 Løsningsforslag 1 Innsatt for z = x + iy kan ligningen skrives x + 1 + i(y ) = x 1 + i(y + ) Ved å benytte at z = a + b for et kompleks

Detaljer

Forelesning 14 Systemer av dierensiallikninger

Forelesning 14 Systemer av dierensiallikninger Forelesning 14 Systemer av dierensiallikninger Eivind Eriksen 9. april 010 Dierensiallikninger En dierensiallikning inneholder en avhengig variabel (typisk y ) og en uavhengig variabel (typisk x), som

Detaljer

Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3

Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3 Prøve i Matematikk BYFE DAFE Dato: 27. mai 26 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Løsningsforslag Oppgave Gitt matrisene [ 2 A 4 B [ 2 og C [ 2

Detaljer

Løsningsforslag. Prøve i Matematikk 1000 BYFE DAFE 1000 Dato: 29. mai 2017 Hjelpemiddel: Kalkulator og formelark. Oppgave 1 Gitt matrisene.

Løsningsforslag. Prøve i Matematikk 1000 BYFE DAFE 1000 Dato: 29. mai 2017 Hjelpemiddel: Kalkulator og formelark. Oppgave 1 Gitt matrisene. Prøve i Matematikk BYFE DAFE Dato: 29. mai 27 Hjelpemiddel: Kalkulator og formelark Løsningsforslag Oppgave Gitt matrisene A = 2 2 B = [ 2 3 4 ] og C = Regn ut, om mulig, summene A + B, A + B T og A +

Detaljer

Difflikninger med løsningsforslag.

Difflikninger med løsningsforslag. Repetisjon i Matematikk : Difflikninger med løsningsforslag. Høgskolen i Gjøvik Avdeling TØL Eksamensrepetisjon REA4 Matematikk Difflikninger med løsningsforslag. Difflikninger med løsningsforslag. Dette

Detaljer

TMA4110 Matematikk 3 Høst 2010

TMA4110 Matematikk 3 Høst 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4110 Matematikk 3 Høst 010 Løsningsforslag Øving 4 Fra Kreyszig (9. utgave) avsnitt.7 3 Vi skal løse ligningen (1) y 16y

Detaljer

EKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Fredag 4. desember 2009 løsningsforslag

EKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Fredag 4. desember 2009 løsningsforslag Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 EKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Fredag 4. desember 2009 løsningsforslag Hjelpemidler (kode C): Enkel kalkulator

Detaljer

Høgskolen i Oslo og Akershus. e 2x + x 2 ( e 2x) = 2xe 2x + x 2 e 2x (2x) = 2xe 2x + 2x 2 e 2x = 2xe 2x (1 + x) 1 sin x (sin x) + 2x = cos x

Høgskolen i Oslo og Akershus. e 2x + x 2 ( e 2x) = 2xe 2x + x 2 e 2x (2x) = 2xe 2x + 2x 2 e 2x = 2xe 2x (1 + x) 1 sin x (sin x) + 2x = cos x Oppgåve a) i) f(x) x e x f (x) ( x ) e x + x ( e x) xe x + x e x (x) xe x + x e x xe x ( + x) ii) g(x) ln(sin x) + x g (x) sin x (sin x) + x cos x sin x + x tan x + x b) i) Sidan både teljar og nemnar

Detaljer

MAT Prøveeksamen 29. mai - Løsningsforslag

MAT Prøveeksamen 29. mai - Løsningsforslag MAT0 - Prøveeksamen 9 mai - Løsningsforslag Oppgave Sett A = 4 4 0 x 0, x = x, b =, x 0 og la v, v, v betegne kolonnevektorene til A a) Skriv A x = y som en vektorlikning x Svar : Siden A x = [v v v ]

Detaljer

Høgskolen i Oslo og Akershus. 1 (x 2 + 1) 1/2 + x 1 2 (x2 + 1) 1/2 (x 2 + 1) = x 2x 2 x = = 3 ln x sin x

Høgskolen i Oslo og Akershus. 1 (x 2 + 1) 1/2 + x 1 2 (x2 + 1) 1/2 (x 2 + 1) = x 2x 2 x = = 3 ln x sin x Løysingsforslag til eksamen i matematikk, mai 4 Oppgåve a) i) ii) f(x) x x + x(x + ) / ( f (x) x (x + ) / + x (x + ) /) g(x) ln x sin x x (x + ) / + x (x + ) / (x + ) x + + x x x + x + + x x + x + x +

Detaljer

=cos. =cos 6 + i sin 5π 6 = =cos 2 + i sin 3π 2 = i.

=cos. =cos 6 + i sin 5π 6 = =cos 2 + i sin 3π 2 = i. Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 9 L SNINGSFORSLAG TIL EKSAMEN I SIF59 MATEMATIKK Bokmål Fredag. desember Oppgave a) Vi har z = i r e iθ = e i π r =,

Detaljer

EKSAMEN I MA0002 Brukerkurs B i matematikk

EKSAMEN I MA0002 Brukerkurs B i matematikk Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 Faglig kontakt under eksamen: Achenef Tesfahun (9 84 97 5) EKSAMEN I MA2 Brukerkurs B i matematikk Lørdag 322 Tid:

Detaljer

MET Matematikk for siviløkonomer

MET Matematikk for siviløkonomer SENSORVEILEDNING - Skriftlig eksamen MET 11803 Matematikk for siviløkonomer Institutt for Samfunnsøkonomi Utlevering: 29.05.2019 Kl. 09:00 Innlevering: 29.05.2019 Kl. 14:00 For mer informasjon om formalia,

Detaljer

2 3 2 t der parameteren t kan være et vilkårlig reelt tall. i) Finn determinanten til M. M =

2 3 2 t der parameteren t kan være et vilkårlig reelt tall. i) Finn determinanten til M. M = Oppgave a) Løs likningssystemet x + 3x + x 3 = x + x 3 = 0 3x + x + 3x 3 = 8 Svar: Rekkereduksjon av totalmatrisen gir 0 0 0 0 7 0 0 0 0 Det betyr at løsningen er gitt ved x +x 3 = 0, x = 7 og x 3 en fri

Detaljer

IR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer

IR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer Eksamen 8. desember 16 Eksamenstid 4 timer IR151 Matematikk 1 Bokmål Hvis du blir ferdig med oppgavene under del 1 før kl. 11., så kan og bør du starte på del uten bruk av hjelpemidler. Du kan bare bruke

Detaljer

Løsningsskisser til oppgaver i Kapittel Integrerende faktor

Løsningsskisser til oppgaver i Kapittel Integrerende faktor Løsningsskisser til oppgaver i Kapittel 6.4 - Integrerende faktor Teori: Differensialligninger på formen y fx y gx (lineære i y av første orden) er ikke separable hvis ikke fx og gx er tallkonstanter.

Detaljer

n=0 n=1 n + 1 Vi får derfor at summen er lik 1/2. c)

n=0 n=1 n + 1 Vi får derfor at summen er lik 1/2. c) Eksamen i BYPE2000 - Matematikk 2000 Dato: 204 Målform: Bokmål Antall oppgaver: 7 (20 deloppgaver) Antall sider: 4 Vedlegg: Noen formler Hjelpemiddel: Ingen Alle svarene skal grunngis. Alle deloppgavene

Detaljer

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8 Innlevering BYFE DAFE Matematikk HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 5. april 6 kl Antall oppgaver: 8 Funksjonen ft) er vist i guren over. Funksjonen F x) er denert som for x. F x)

Detaljer

Løsningsforslag for eksamen i Matematikk 3 - TMA4115

Løsningsforslag for eksamen i Matematikk 3 - TMA4115 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag for eksamen i Matematikk 3 - TMA4115 Vår 1 1 a) La z = x iy. Da er Re z = x og z = x y. Siden y er et reelt

Detaljer

Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter!

Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Oppgave.. a x y = x + y = r r r +r r x y = y fri x y = y fri Vi får én fri variabel, og løsningens har følgelig dimensjon.

Detaljer

Prøve i Matte 1000 BYFE DAFE 1000 Dato: 03. mars 2016 Hjelpemiddel: Kalkulator og formelark. Alle svar skal grunngis. Alle deloppgaver har lik vekt.

Prøve i Matte 1000 BYFE DAFE 1000 Dato: 03. mars 2016 Hjelpemiddel: Kalkulator og formelark. Alle svar skal grunngis. Alle deloppgaver har lik vekt. Prøve i Matte 1 BYFE DAFE 1 Dato: 3. mars 216 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. LØSNINGSFORSLAG Oppgave 1 Gitt matrisene A = [ 8 3 6 2 ] [ og

Detaljer

To-dimensjonale kontinuerlige fordelinger

To-dimensjonale kontinuerlige fordelinger To-dimensjonale kontinuerlige fordelinger Noen resultater for diskrete fordelinger Vi har tidligere definert punktsannsynligheten p(x, y) for en todimensjonal variabel (X, Y ) som p(x, y) = P ({X = x}

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Ny/Utsatt eksamen i: MAT1001 Matematikk 1 Eksamensdag: Torsdag 15 januar 2015 Tid for eksamen: 14:30 18:30 Oppgavesettet er på 5 sider Vedlegg:

Detaljer

Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 L SNINGSFORSLAG TIL EKSAMEN I SIF5009 MATEMATIKK 3 Bokmål Man

Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 L SNINGSFORSLAG TIL EKSAMEN I SIF5009 MATEMATIKK 3 Bokmål Man Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 L SNINGSFORSLAG TIL EKSAMEN I SIF59 MATEMATIKK Bokmål Mandag. desember Oppgave a) Karakteristisk polynom er + = ;

Detaljer

MET Matematikk for siviløkonomer

MET Matematikk for siviløkonomer SENSORVEILEDNING - Fagoppgave MET 1186 Matematikk for siviløkonomer Institutt for Samfunnsøkonomi Utlevering: 18.1.19 Kl. 9: Innlevering: 5.1.19 Kl. 1: For mer informasjon om formalia, se eksamensoppgaven.

Detaljer

EKSAMENSOPPGAVER FOR TMA4110/TMA4115 MATEMATIKK 3

EKSAMENSOPPGAVER FOR TMA4110/TMA4115 MATEMATIKK 3 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 25 2. januar 25 EKSAMENSOPPGAVER FOR TMA4/TMA45 MATEMATIKK 3 Oppgave A- a) Finn kvadratrøttene til det komplekse tallet

Detaljer

EKSAMEN BOKMÅL STEMMER. DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember :00-13: FAGKODE: IR Matematikk 1

EKSAMEN BOKMÅL STEMMER. DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember :00-13: FAGKODE: IR Matematikk 1 EKSAMEN BOKMÅL DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember 15 9:-13: FAGKODE: FAGNAVN: IR151 Matematikk 1 HJELPEMIDLER: Del 1: kl 9.-11. Ingen Del : kl 11.-13. Lommeregner Lærebok etter fritt valg Matematisk

Detaljer

Løsningsforslag MAT 120B, høsten 2001

Løsningsforslag MAT 120B, høsten 2001 Løsningsforslag MAT B, høsten Sett A = ( ) (a) Finn egenverdiene og egenvektorene til A ( ) λ =, e = ( λ =, e = ) (b) Finn matrisen e ta og den generelle løsningen på initialverdiproblemet Ẋ = AX, X()

Detaljer

e x = 1 + x + x2 2 + R 2(x), = e 3! ( 1) n x n = n! n=0 y n+1 = y 0 + f(t, y n (t)) dt 1 dt = 1 + x (1 + t) dt = 1 + x x2

e x = 1 + x + x2 2 + R 2(x), = e 3! ( 1) n x n = n! n=0 y n+1 = y 0 + f(t, y n (t)) dt 1 dt = 1 + x (1 + t) dt = 1 + x x2 NTNU Institutt for matematiske fag TMA400 Matematikk høsten 20 Løsningsforslag - Øving 2 Avsnitt 8.9 23 Ved Taylors formel (med a = 0) har vi at der R 2 (x) = f (n+) (c) (n+)! e x = + x + x2 2 + R 2(x),

Detaljer

NTNU. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 12. Avsnitt Ved Taylors formel (med a = 0) har vi at. 24 For x < 0 har vi at

NTNU. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 12. Avsnitt Ved Taylors formel (med a = 0) har vi at. 24 For x < 0 har vi at NTNU Institutt for matematiske fag TMA400 Matematikk høsten 200 Løsningsforslag - Øving 2 Avsnitt 8.9 23 Ved Taylors formel (med a = 0) har vi at der R 2 (x) = f (n+) (c) (n+)! e x = + x + x2 2 + R 2(x),

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2014

MA0002 Brukerkurs i matematikk B Vår 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA000 Brukerkurs i matematikk B Vår 04 Løsningsforslag. Eksamen 6. mai Løsning: Oppgave a) dy dx y y y )y ) : gy), så likevektsløsningene

Detaljer

Løsning av utvalgte øvingsoppgaver til Sigma R2 kapittel 5

Løsning av utvalgte øvingsoppgaver til Sigma R2 kapittel 5 Løsning av utvalgte øvingsoppgaver til Sigma R kapittel 5 5.5 Ce kx y = kce kx Vi setter inn i y + ky og ser om vi får 0: 5.5 ax + a y = ax Vi setter inn i y 5.54 kce kx + k Ce kx = 0 x x + y: ax x(ax

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT111 Prøveeksamen Eksamensdag: 5. juni 21. Tid for eksamen: 1. 13.3. Oppgavesettet er på 9 sider. Vedlegg: Tillatte hjelpemidler:

Detaljer

MA1410: Analyse - Notat om differensiallikninger

MA1410: Analyse - Notat om differensiallikninger Høgskolen i Agder Avdeling for realfag MA40: Analyse - Notat om differensiallikninger Dato: Høsten 2000 Merknader: Dette notatet kommer i tillegg til 4.2 og 6. i læreboka. Ma 40: Analyse skal inneholde

Detaljer

Prøve i Matte 1000 ELFE KJFE MAFE 1000 Dato: 02. desember 2015 Hjelpemiddel: Kalkulator og formelark

Prøve i Matte 1000 ELFE KJFE MAFE 1000 Dato: 02. desember 2015 Hjelpemiddel: Kalkulator og formelark Prøve i Matte ELFE KJFE MAFE Dato: 2. desember 25 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Gitt matrisene A = 2 2 3 5 og B = [ 5 7 2 ] Regn

Detaljer

13 Oppsummering til Ch. 5.1, 5.2 og 8.5

13 Oppsummering til Ch. 5.1, 5.2 og 8.5 3 Oppsummering til Ch. 5. 5. og 8.5 3. Motivasjon Det er veldig viktig å kunne beregne funksjonsverdier f (A) for kvadratiske matriser A. I kalkulus (teori av differensiallikninger) er det viktig å beregne

Detaljer

Løsningsforslag til eksamen i MA0002, Brukerkurs i matematikk B

Løsningsforslag til eksamen i MA0002, Brukerkurs i matematikk B Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Løsningsforslag til eksamen i MA000, Brukerkurs i matematikk B 9. mai 01 Oppgave 1 a) Et plan i rommet har ligning

Detaljer

Forventning og varians.

Forventning og varians. Forventning og varians. Dekkes av kapittel 4 i læreboka. Forventning (4.1) Forventningsverdi = gjennomsnitt i det lange løp. Defininsjon: Forventningsverdien til en stokastisk variabel X er: x xf(x),x

Detaljer

MET Matematikk for siviløkonomer

MET Matematikk for siviløkonomer SENSORVEILEDNING - Skriftlig eksamen MET 11803 Matematikk for siviløkonomer Institutt for Samfunnsøkonomi Utlevering: 18.1.017 Kl. 14:00 Innlevering: 18.1.017 Kl. 19:00 For mer informasjon om formalia,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT Lineær algebra Eksamensdag: Mandag,. desember 7. Tid for eksamen: 4. 8.. Oppgavesettet er på 8 sider. Vedlegg: Tillatte hjelpemidler:

Detaljer

Optimal kontrollteori

Optimal kontrollteori Optimal kontrollteori 1. og 2. ordens differensialligninger Klassisk variasjonsregning Optimal kontrollteori er en utvidelse av klassisk variasjonsregning, som ble utviklet av Euler og Lagrange. Et vanlig

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT Kalkulus og lineær algebra Eksamensdag: Onsdag 9 mai 9 Tid for eksamen: 4:3 8:3 Oppgavesettet er på 7 sider Vedlegg: Tillatte

Detaljer

Differensialligninger

Differensialligninger Oslo, 30. januar, 2009 (http://folk.uio.no/lindstro/diffoslonyprint.pdf) Vanlige ligninger og differensialligninger En vanlig (algebraisk) ligning uttrykker en sammenheng mellom det ukjente tallet x og

Detaljer

Løsningsforslag Eksamen M001 Våren 2002

Løsningsforslag Eksamen M001 Våren 2002 Løsningsforslag Eksamen M Våren Oppgave f(x) = (x )e x Bruker produktregelen i derivasjonen f (x) = e x + (x ) (e x ) For å derivere e x velges kjernen u = x, og vi får (e x ) = e u. f (x) = e x + (x )

Detaljer

IR Matematikk 1. Utsatt Eksamen 8. juni 2012 Eksamenstid 4 timer

IR Matematikk 1. Utsatt Eksamen 8. juni 2012 Eksamenstid 4 timer Utsatt Eksamen 8. juni 212 Eksamenstid 4 timer IR1185 Matematikk 1 Bokmål Hvis du blir ferdig med oppgavene under del 1 før kl. 11., så kan og bør du starte på del 2 uten bruk av hjelpemidler. Du kan bare

Detaljer

LØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x

LØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x LØSNINGSFORSLAG EKSAMEN, MAT 00, HØSTEN 06 DEL.. Hvilken av funksjonene gir en anti-derivert for f(x) = (x + )? Løsning. Vi setter u = x +, som gir du = dx, (x + ) dx = u du = u = (x + ) = x + a) x+ b)

Detaljer

Fasit til utvalgte oppgaver MAT1110, uka 13/4-16/4

Fasit til utvalgte oppgaver MAT1110, uka 13/4-16/4 Fasit til utvalgte oppgaver MAT0, uka /4-6/4 Øyvind Ryan oyvindry@i.uio.no April, 00 Oppgave 4.8. a Bytt om første og andre rad. b Legg til ganger rad til rad. c Bytt om første og andre rad. d Legg til

Detaljer

Løsningsforslag. og B =

Løsningsforslag. og B = Prøve i Matte Dato: vår 5 ENDRE Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver ar lik vekt. Oppgave a Gitt matrisene A regn ut A + B, AB. Løsningsforslag 4 og B 7 5 Vi

Detaljer

Forkurs, Avdeling for Ingeniørutdanning

Forkurs, Avdeling for Ingeniørutdanning Eksamen i FO99A Matematikk Ordinær Eksamen Dato 8. mai 8 Tidspunkt 9. - 14. Antall oppgaver 4 Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 Deriver følgende

Detaljer

Løsningsforslag. e n. n=0. 3 n 2 2n 1. n=1

Løsningsforslag. e n. n=0. 3 n 2 2n 1. n=1 Eksamen i BYPE2000 - Matematikk 2000 Dato: 6. juni 2014 Målform: Bokmål Antall oppgaver: 7 (20 deloppgaver) Antall sider: 4 Vedlegg: Noen formler Hjelpemiddel: Ingen Alle svarene skal grunngis. Alle deloppgavene

Detaljer

Eksamensoppgave i TMA4110/TMA4115 Calculus 3

Eksamensoppgave i TMA4110/TMA4115 Calculus 3 Institutt for matematiske fag Eksamensoppgave i TMA4110/TMA4115 Calculus 3 Faglig kontakt under eksamen: Markus Szymik Tlf: 411 16 793 Eksamensdato: August 2018 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte

Detaljer

EKSAMENSOPPGAVE - Skoleeksamen. Institutt for Samfunnsøkonomi. Utlevering: 17.12.2014 Kl. 09.00 Innlevering: 17.12.2014 Kl. 14.00

EKSAMENSOPPGAVE - Skoleeksamen. Institutt for Samfunnsøkonomi. Utlevering: 17.12.2014 Kl. 09.00 Innlevering: 17.12.2014 Kl. 14.00 EKSAMENSOPPGAVE - Skoleeksamen MET 11803 Matematikk Institutt fo Samfunnsøkonomi Utleveing: 17122014 Kl 0900 Innleveing: 17122014 Kl 1400 Vekt: 70% av MET 1180 Antall side i oppgaven: Antall vedleggsfile:

Detaljer

MAT Vår Oblig 2. Innleveringsfrist: Fredag 23.april kl. 1430

MAT Vår Oblig 2. Innleveringsfrist: Fredag 23.april kl. 1430 MAT 00 Vår 00 Oblig Innleveringsfrist: Fredag 3.april kl. 430 Oppgaven leveres stiftet med forsideark på ekspedisjonskontoret til Matematisk institutt i 7. etg. i Niels Henrik Abels hus innen fristen.

Detaljer

EKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Mandag 6. juni 2011 løsningsforslag

EKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Mandag 6. juni 2011 løsningsforslag Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 EKSAMEN I TMA4 MATEMATIKK 3 Bokmål Mandag 6. juni løsningsforslag Hjelpemidler (kode C): Enkel kalkulator (HP3S eller

Detaljer

Eksamen R2 Høst Løsning

Eksamen R2 Høst Løsning Eksamen R Høst 017 - Løsning Dennis Christensen 7. november 017 Del 1 - Uten Hjelpemidler Oppgave 1 (a) (b) (c) g (x) = f (x) = cos x = 6 cos x, x cos x 1 sin x x = x cos x sin x x, h (x) = 1 cos x + x

Detaljer

MET Matematikk for siviløkonomer

MET Matematikk for siviløkonomer SENSORVEILEDNING - Skriftlig eksamen MET 11803 Matematikk for siviløkonomer Institutt for Samfunnsøkonomi Utlevering: 0.1.018 Kl. 09:00 Innlevering: 0.1.018 Kl. 14:00 For mer informasjon om formalia, se

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2016

MA0002 Brukerkurs i matematikk B Vår 2016 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA000 Brukerkurs i matematikk B Vår 016 Separable og førsteordens lineære differensialligninger En differensialligning er separabel

Detaljer

Løsningsforslag, eksamen i MA0002, Brukerkurs i matematikk B

Løsningsforslag, eksamen i MA0002, Brukerkurs i matematikk B Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Løsningsforslag, eksamen i MA0002, Brukerkurs i matematikk B Oppgave 1 En parametrisk linje L og et plan P (i rommet)

Detaljer

Institutt for Samfunnsøkonomi. Utlevering: Kl. 09:00 Innlevering: Kl. 14:00

Institutt for Samfunnsøkonomi. Utlevering: Kl. 09:00 Innlevering: Kl. 14:00 SENSORVEILEDNING MET 11803 Matematikk Institutt for Samfunnsøkonomi Utlevering: 17.12.2014 Kl. 09:00 Innlevering: 17.12.2014 Kl. 14:00 For mer informasjon om formalia, se eksamensoppgaven. Oppgave 1 Finn

Detaljer

Løsningsforslag til utvalgte oppgaver i kapittel 10

Løsningsforslag til utvalgte oppgaver i kapittel 10 Løsningsforslag til utvalgte oppgaver i kapittel 0 I kapittel 0 får du trening i å løse ulike typer differensialligninger, og her får du bruk for integrasjonsteknikkene du lærte i forrige kapittel. Men

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2013

MA0002 Brukerkurs i matematikk B Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2013 Løsningsforslag Øving 3 8.2.1 Anta at dy = y2 y) dx a) Finn likevektspunktene til

Detaljer

Oppgave 1. (a) Vi løser det lineære systemet for a = 1 ved Gauss-eliminasjon. Vi nner først den utvidede matrisen: x A =

Oppgave 1. (a) Vi løser det lineære systemet for a = 1 ved Gauss-eliminasjon. Vi nner først den utvidede matrisen: x A = Løsning MET 803 Matematikk for siviløkonomer Dato 8. desember 07 kl 400-900 Oppgave. (a) Vi løser det lineære systemet for a = ved Gauss-eliminasjon. Vi nner først den utvidede matrisen: 7 3 y = 9 6 7

Detaljer

Eksempelsett R2, 2008

Eksempelsett R2, 2008 Eksempelsett R, 008 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave a) Deriver funksjonen f x x cosx f x cosx x s x f x cosx 6x sinx

Detaljer

3.1 Første ordens lineære difflikninger. y + f(x)y = g(x) (3.1)

3.1 Første ordens lineære difflikninger. y + f(x)y = g(x) (3.1) Kapittel 3 Differensiallikninger 3.1 Første ordens lineære difflikninger Definisjon 3.1 En første ordens lineær difflikning er en likning på formen y + f(x)y = g(x) (3.1) der f og g er kjente funksjoner.

Detaljer

12 Diagonalisering av matriser og operatorer (Ch. 5.1, 5.2 og 8.5)

12 Diagonalisering av matriser og operatorer (Ch. 5.1, 5.2 og 8.5) Diagonalisering av matriser og operatorer (Ch 5, 5 og 85) Motivasjon Det er veldig viktig å kunne beregne funksjonsverdier f (A) for kvadratiske matriser A I kalkulus (teori av differensiallikninger) er

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger Eksamensdag: 12. desember 2003 Tid for eksamen: 9:00 12:00 Oppgavesettet er på 7 sider.

Detaljer

Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon, språk og stil variere noe fra oppgave til oppgave.

Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon, språk og stil variere noe fra oppgave til oppgave. NTNU Institutt for matematiske fag TMA4105 Matematikk, øving 7, vår 011 Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon,

Detaljer

d) Vi skal nne alle lsningene til dierensialligningen y 0 + y x = arctan x x pa intervallet (0; ). Den integrerende faktoren blir R x e dx = e ln x =

d) Vi skal nne alle lsningene til dierensialligningen y 0 + y x = arctan x x pa intervallet (0; ). Den integrerende faktoren blir R x e dx = e ln x = Lsningsforslag til utvalgte oppgaver i kapittel 0 I kapittel 0 far du trening i a lse ulike typer dierensialligninger, og her far du bruk for integrasjonsteknikkene du lrte i forrige kapittel. Men vel

Detaljer

Eksamen i TMA4180 Optimeringsteori Løsningsforslag.

Eksamen i TMA4180 Optimeringsteori Løsningsforslag. Eksamen i TMA48 Optimeringsteori Løsningsforslag. Oppgave :. ordens betingelse for minima gir oss f(x) = [ 2x 2x 2 + 2 2x 2 2x 2 ] [ = som er oppfylt for når x 2 = x +. I dette punktet er [ ] 2 2 2 f(x)

Detaljer

TMA4110 Matematikk 3 Eksamen høsten 2018 Løsning Side 1 av 9. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer:

TMA4110 Matematikk 3 Eksamen høsten 2018 Løsning Side 1 av 9. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer: TMA4 Matematikk 3 Eksamen høsten 8 Løsning Side av 9 Løsningsforslag Oppgave Vi setter opp totalmatrisen og gausseliminerer: 8 5 4 8 3 36 8 4 8 8 8 Den siste matrisen her er på redusert trappeform, og

Detaljer

TMA4110 Eksamen høsten 2018 EKSEMPEL 1 Løsning Side 1 av 8. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer: x 1 7x 4 = 0

TMA4110 Eksamen høsten 2018 EKSEMPEL 1 Løsning Side 1 av 8. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer: x 1 7x 4 = 0 TMA4 Eksamen høsten 28 EKSEMPEL Løsning Side av 8 Løsningsforslag Oppgave Vi setter opp totalmatrisen og gausseliminerer: 2 2 2 4 2 6 2 4 2 6 2 2 Dette gir likningene og 2 2 4 2 6 7 2. x 7x 4 = x 2 + 2x

Detaljer

LØSNINGSSKISSE TIL EKSAMEN I FAG SIF august 2001

LØSNINGSSKISSE TIL EKSAMEN I FAG SIF august 2001 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 LØSNINGSSKISSE TIL EKSAMEN I FAG SIF500 0. august 00 Oppgave 5 +6 ( 4 +6)0 dvs. at vi har en rot 0 og 4 røtter av

Detaljer

EKSAMEN I TMA4180 OPTIMERINGSTEORI

EKSAMEN I TMA4180 OPTIMERINGSTEORI Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Side av 4 Faglig kontakt under eksamen: Marte Pernille Hatlo 7359698 / 97537854 EKSAMEN I TMA48 OPTIMERINGSTEORI Fredag 2. juni

Detaljer

Alle svar skal grunngis. Alle deloppgaver har lik vekt.

Alle svar skal grunngis. Alle deloppgaver har lik vekt. Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Vi denerer matrisene A, B, og C som A = [ ] 3, B = 5 9, C = 3 3. a) Regn ut følgende matrisesummer og matriseprodukter, om mulig. Dersom

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger del 1 Eksamensdag: Tirsdag 7. desember 2004 Tid for eksamen: 14:30 17:30 Oppgavesettet

Detaljer

Test, 4 Differensiallikninger

Test, 4 Differensiallikninger Test, 4 Differensiallikninger Innhold 4.1 Førsteordens differensiallikninger... 1 4. Modellering... 7 4.3 Andreordens homogene differensiallikninger... 13 Oppgaver og løsninger Grete Larsen/NDLA 4.1 Førsteordens

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Ny/utsatt eksamen i Eksamensdag: 9. august 2. Tid for eksamen: 9 2. Oppgavesettet er på 8 sider. Vedlegg: Tillatte hjelpemidler: MAT Kalkulus

Detaljer

Eksamensoppgave i TMA4115 Matematikk 3

Eksamensoppgave i TMA4115 Matematikk 3 Institutt for matematiske fag Eksamensoppgave i TMA45 Matematikk 3 Faglig kontakt under eksamen: Aslak Bakke Buan a, Morten Andreas Nome b, Tjerand Silde c Tlf: a mobil Aslak, b mobil Morten, c mobil Tjerand

Detaljer

Høgskolen i Oslo og Akershus. = 2xe 2x + x 2 e 2x (2x) = 2xe 2x + 2x 2 e 2x = 2xe 2x (1 + x) e 2x + x 2 ( e 2x) 1 sin x (sin x) + 2x = cos x

Høgskolen i Oslo og Akershus. = 2xe 2x + x 2 e 2x (2x) = 2xe 2x + 2x 2 e 2x = 2xe 2x (1 + x) e 2x + x 2 ( e 2x) 1 sin x (sin x) + 2x = cos x Oppgåve a) i) ii) f(x) x e x f (x) ( x ) e x + x ( e x) xe x + x e x (x) xe x + x e x xe x ( + x) g(x) ln(sin x) + x g (x) sin x (sin x) + x cos x sin x + x tan x + x b) i) ( x + ) dx x x dx+ x dx x +

Detaljer

Løs likningssystemet ved å få totalmatrisen på redusert trappeform

Løs likningssystemet ved å få totalmatrisen på redusert trappeform Emne: IRF 10014 Matematikk 1. Lærer: Øystein Holje og Kent Ryne Grupper: Diverse. Dato: 04.1.015 Tid: 9.00 13.00. Antall oppgavesider:. Antall vedleggsider: 3, formelark. Sensurfrist: Hjelpemidler: Godkjent

Detaljer

Alle svar skal grunngis. Alle deloppgaver har lik vekt.

Alle svar skal grunngis. Alle deloppgaver har lik vekt. Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Vi denerer matrisene A, B, og C som A = [ ] 3, B = 5 9, C = 3 3. a) Regn ut følgende matrisesummer og matriseprodukter, om mulig. Dersom

Detaljer

EKSAMEN I MATEMATIKK 3 (TMA4110)

EKSAMEN I MATEMATIKK 3 (TMA4110) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 EKSAMEN I MATEMATIKK 3 (TMA) Tirsdag 3. november Tid: 9: 3: LØSNINGSFORSLAG MED KOMMENTARER Oppgave I denne oppgaven

Detaljer

MA1201/MA6201 Høsten 2016

MA1201/MA6201 Høsten 2016 MA/MA6 Høsten 6 Norges teknisk naturvitenskapelige universitet Institutt for matematikk Løsningsforslag Øving Med forebehold om feil. Hvis du finner en, ta kontakt med Karin. Kapittel 6. a) Stemmer. Anta

Detaljer

Høgskolen i Oslo og Akershus. a) Finn den deriverte av disse funksjonene: b) Finn disse ubestemte integralene: c) Finn disse bestemte integralene:

Høgskolen i Oslo og Akershus. a) Finn den deriverte av disse funksjonene: b) Finn disse ubestemte integralene: c) Finn disse bestemte integralene: Oppgave 1 a) Finn den deriverte av disse funksjonene: i) f(x) = x x 2 + 1 ii) g(x) = ln x sin x x 2 b) Finn disse ubestemte integralene: i) (2x + ) dx ii) 6 cos(x) sin 5 (x) dx c) Finn disse bestemte integralene:

Detaljer

LØSNINGSFORSLAG EKSAMEN MA0002, VÅR 09

LØSNINGSFORSLAG EKSAMEN MA0002, VÅR 09 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 LØSNINGSFORSLAG EKSAMEN MA000, VÅR 09 Oppgave a) (0%) Løs initialverdiproblemet gitt ved differensialligningen med

Detaljer

Løsningsforslag eksamen 18/ MA1102

Løsningsforslag eksamen 18/ MA1102 Løsningsforslag eksamen 8/5 009 MA0. Dette er en alternerende rekke, der leddene i størrelse går monotont mot null, så alternerenderekketesten gir oss konvergens. (Vi kan også vise konvergens ved å vise

Detaljer

FYS2140 Kvantefysikk, Løsningsforslag for Oblig 1

FYS2140 Kvantefysikk, Løsningsforslag for Oblig 1 FYS4 Kvantefysikk, Løsningsforslag for Oblig. januar 8 Her er løsningsforslag for Oblig som dreide seg om å friske opp en del grunnleggende matematikk. I tillegg finner dere til slutt et løsningsforslag

Detaljer

Høgskolen i Oslo og Akershus. ln x sin x 2 (ln x) (ln x) 2 = cos ( x2. (ln x) 2 = cos x 2 2x ln x x sin x 2 (ln x) 2 x + 2 = 1, P = (2, 2 4 y4 = 0

Høgskolen i Oslo og Akershus. ln x sin x 2 (ln x) (ln x) 2 = cos ( x2. (ln x) 2 = cos x 2 2x ln x x sin x 2 (ln x) 2 x + 2 = 1, P = (2, 2 4 y4 = 0 Løysingsforslag. Oppgåve a f cos f cos + cos cos + sin cos sin g g sin ln sin ln sin ln ln cos ln sin ln cos ln sin ln cos ln sin ln b 4 4 + y 4, P, 4 5 Implisitt derivasjon: d 4 y 4 + d d 4 d d d 4 4

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 11. juni 21. Tid for eksamen: 14.3 17.3. Oppgavesettet er på 7 sider. Vedlegg: Tillatte hjelpemidler: MAT111 Kalkulus

Detaljer

9 + 4 (kan bli endringer)

9 + 4 (kan bli endringer) Innlevering DAFE ELFE Matematikk HIOA Obligatorisk innlevering 4 Innleveringsfrist Onsdag 29. april 25 Antall oppgaver: 9 + 4 (kan bli endringer) Finn de ubestemte integralene a) 2x 3 4/x dx b) c) 2 5

Detaljer

Matriser og Kvadratiske Former

Matriser og Kvadratiske Former Eivind Eriksen Matriser og Kvadratiske Former 15 mars 2012 Handelshøyskolen BI Innhold 1 Matriser og vektorer 1 11 Matriser 1 12 Matriseaddisjon 2 13 Matrisesubtraksjon 3 14 Skalarmultiplikasjon 3 15

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 11 Modellering og beregninger. Eksamensdag: Fredag 7. desember 27. Tid for eksamen: 9: 12:. Oppgavesettet er på 8 sider.

Detaljer

Løsningsforslag. Innlevering i BYFE/EMFE 1000 Oppgavesett 5 Innleveringsfrist: 15. april klokka 14:00 Antall oppgaver: 3.

Løsningsforslag. Innlevering i BYFE/EMFE 1000 Oppgavesett 5 Innleveringsfrist: 15. april klokka 14:00 Antall oppgaver: 3. Innlevering i BYFE/EMFE 1000 Oppgavesett 5 Innleveringsfrist: 15. april klokka 14:00 Antall oppgaver: 3 Løsningsforslag Oppgave 1 a) I hver forgrening må summen av det som renner inn og det som renner

Detaljer