EKSAMEN Ny og utsatt Løsningsforslag

Størrelse: px
Begynne med side:

Download "EKSAMEN Ny og utsatt Løsningsforslag"

Transkript

1 7. april EKSAMEN Ny og utatt øigforlag Emekode: ITD Dato: 6. jauar Hjelpemidler: Eme: Matematikk adre delekame Ekametid: 9.. Faglærer: - To A-ark med valgfritt ihold på begge ider. - Formelhefte. Chritia F Heide Kalkulator er ikke tillatt. Ekameoppgave: Oppgaveettet betår av 6 ider ikluiv dee foride og to vedlegg. Kotroller at oppgaveettet er komplett før du begyer å bevare pørmålee. Oppgaveettet betår av 9 oppgaver med i alt deloppgaver. Ved eur vil alle deloppgaver telle like mye. Der det er mulig kal du: vie utregiger og hvorda du kommer fram til varee begrue die var, elv om dette ikke er ekpliitt agt i hvert pørmål Seurdato: 7. jauar Karakteree er tilgjegelige for tudeter på tudetweb eet virkedager etter oppgitt eurfrit. Følg itrukjoer gitt på: Matematikk, adre delekame, y og utatt, jauar Side av 6

2 Oppgave Figure vier fukjoee e (blå kurve) og e (rød kurve).,,,,,,,7 Fi arealet av området om ligger mellom die kurvee og er avgreet av de vertikale lijee = og = (altå det kraverte området på figure). Arealet fier vi av følgede itegral: e e d e d e d e e ( e e ) ( e e ) e e.9 e e Oppgave Fi verdie av følgede uegetlige itegral derom det kovergerer: e e lim e t t d lim e t t lim t e t e ( ) Matematikk, adre delekame, y og utatt, jauar Side av 6

3 Oppgave Fi de geerelle (allmee) løige av følgede differeialligig: y e y Vi forøker å eparere ligige: y e y e y e y dy d igige er å eparert og vi ka itegrere begge ider med hey på : dy e y d d d e y dy d e y C Vi løer å med hey på y ved å ta logaritme: y l C Oppgave Fi løige på følgede iitialverdiproblem: y y y, y( ) 6, y() Vi løer ført de tilhørede homogee ligige: y y y Dee gir opphav til følgede karakteritike ligig: om har følgede løiger: 8 i Matematikk, adre delekame, y og utatt, jauar Side av 6

4 i Dv: i og i øige av de tilhørede homogee ligige er følgelig y h e ( C co C i ) Vi må å fie e partikulær løig av de ihomogee ligige. Høyre ide er et aegradpolyom, å da må vi forøke med et geerelt aegradpolyom: y K K K om år vi deriverer, gir og y K y K K Setter vi å dette i i diff.ligige får vi K K K K K K Gager vi ut og løer opp pareteee, får vi: K K K K K K Vi ammeliger å faktoree fora ledd av amme grad. Faktoree fora aegradleddee gir: altå K K Faktoree fora førtegradleddee gir: Setter vi å i at K K K får vi altå K K 6 8 Matematikk, adre delekame, y og utatt, jauar Side av 6

5 K Kotatleddee gir: dv. K K K K K K ( ) Vi har da fuet følgede partikulærløig: y p De geerelle løige av differeialligige er følgelig y y h y p e ( C co C i ) Vi må til lutt betemme kotatee C og C baert på iitialbetigelee: y( ) 6 gir e Her må vi bruke at C dv. ( C co i ) C e, 6 C 6 øige å lagt blir y e co 7 og i 7 6 og får da: ( co C i ) For å bruke de adre iitialbetigele må vi derivere dette uttrykket: y 7 7 e co C i e i C co Setter vi å i y () i i dee, får vi om gir og følgelig 7 7 e C i e i C co 7 C C co 7 øige av iitialverdiproblemet blir følgelig y e ( 7 co i ) Oppgave Matematikk, adre delekame, y og utatt, jauar Side av 6

6 a) E lieærtraformajo T: er gitt ved T Fi bildet av vektore v uder T. Dette er gitt ved T v ( ) ( ) ( ) ( ) 8 9 b) Noe vektorer har de egekap at de ikke edrer retig ved e traformajo med lieærtraformajoe T. Fi die vektoree. Die vektoree om ikke edrer retig ved lieærtraformajoe, kalle egevektoree til traformajoe, og er det amme om egevektoree til matrie T. Vi fier die ved ført å fie matrie egeverdier. Egeverdiee er de om er løiger av ligige : det( T I) om gir det( T I) ( )( ) ( ) om år vi gager ut pareteee gir 8 og altå Egeverdiee er derfor følgede ( ) dv. Matematikk, adre delekame, y og utatt, jauar Side 6 av 6

7 og 6 Egevektoree om vi er ute etter å fie, er de -vektorer om er ikke-trivielle løiger av ligigytemee I = og I = T Egevektorettet tilhørede : T Koeffiietmatrie til det førte ligigytemet er T I T I øige av ligigytemet = fier vi å ved elemetære rekkeoperajoer på dee koeffiietmatrie: Her vil da kue være e fri variabel, og vi etter Førte rekke gir da følgede ligig: om gir Skrevet på vektorform blir dee løige: =, Egevektorettet tilhørede Koeffiietmatrie til det adre ligigytemet er ( ) : ( ) T I Matematikk, adre delekame, y og utatt, jauar Side 7 av 6

8 T I øige av ligigytemet = fier vi å ved elemetære rekkeoperajoer på dee koeffiietmatrie: Vi etter om fri variabel: t Førte rekke gir da følgede ligig: om gir t Skrevet på vektorform blir dee løige: = t t t, t De økte vektoree om ikke edrer retig uder traformajoe T er altå egevektoree og t for alle verdier av og t forkjellig fra. Oppgave 6 Gitt følgede matrie: A a) Vi ved elemetære rekkeoperajoer at de reduerte trappeforme til dee matrie er Matematikk, adre delekame, y og utatt, jauar Side 8 av 6

9 Matematikk, adre delekame, y og utatt, jauar Side 9 av 6 og fi å alle løiger av ligigytemet A =, hvor = og =. Vi gjør gauelimiajo på koeffiietmatrie ved hjelp av elemetære rekkeoperajoer: 8 9 7

10 Matematikk, adre delekame, y og utatt, jauar Side av 6 om er lik de i oppgave oppgitte matrie. Så til løige av ligigytemet A = :. rekke i matrie gir ige iformajo.. rekke i matrie repreeterer ligige. Av. rekke er vi at ka velge om fri variabel, og vi etter derfor. Videre har vi fra. rekke: om gir.. rekke gir: dv:. Oppummert:,,, øige krevet på vektorform: b) Fi e bai for rekkerommet og e bai for ullrommet til matrie. Dette ka e direkte av matrie på reduert trappeform om vi fat i pørmål a):

11 Her er vi at rekke om ikke er lik T vil være e baivektor for rekkerommet til A. Her er dette rekke, og, og e bai for rekkerommet vil følgelig være die:,, Bai for ullrommet til A får vi direkte fra løige av ligigytemet A =. Vi fat at løige er E bai for ullrommet er derfor c) For matrie A, fi i) rage age er lik dimejoe til rekkerommet, altå. ii) dimejoe til koloerommet Dimejoe til koloerommet er lik dimejoe til rekkerommet, altå. iii) ullitete Nullitete er dimejoe til ullrommet. Som vi å i pørmål b) er dette. Vi ka ogå fie ullitete ved hjelp av det åkalte ragteoremet om ier at rage plu ullitete til e matrie er lik atall koloer i matrie. Side atall koloer er og rage er, må ullitete da være. Oppgave 7 E ball lippe fra to meter høyde mot et gulv. Balle pretter opp til e høyde om er av høyde de lippe fra, før de igje faller mot gulvet og pretter på y opp til Matematikk, adre delekame, y og utatt, jauar Side av 6 av høyde de faller fra, ov. Fi de totale vertikale ditae balle tilbakelegger før de ligger i ro på gulvet. (Vi er bort fra fyike begreiger om for ekempel luftmottad og det litt problematike i at balle matematik ett pretter uedelig mage gager før de ligger i ro i forhold til gulvet.)

12 Balle faller ført m. Deretter pretter de opp m. m, og faller dee ditae ed til bakke igje, totalt Så pretter de opp m. m og faller ed de amme ditae, totalt De totale ditae blir derfor Derom er bort fra det førte leddet, er vi at dette er e geometrik rekke med a og k. Summe av e geometrik rekke er a S k Her blir umme av dee rekke S Total vertikal ditae blir følgelig + = m. Oppgave 8 Fi taylorpolyomet av grad om a = for fukjoe f ( ) Geerelt er taylorpolyomet av grad om puktet = a gitt ved Matematikk, adre delekame, y og utatt, jauar Side av 6

13 P f ( a)! ( a)! () ( ) f ( a) f ( a) ( a) ( a) ( a) f Omkrig a = blir dee foreklet til P f ()! ()! () ( ) f () f () Vi må fie die leddee. Vi fier: f ( ) f f ( ) ( ) ( ) ( ) f () ( ) f ( ) ( ) ( ) ( ) f () ( ) f () ( ) ( ) ( ) ( ) 8 f () ( ) ( ) 8 8 Det økte taylorpolyomet blir derfor 8 P ( )!! 8 6 Oppgave 9 Teg grafe og fi deretter fourierrekke til følgede periodike fukjo med periode : Matematikk, adre delekame, y og utatt, jauar Side av 6

14 f () π π π π Når periode er periode, være vil parametere om igår i fourieritegralee og om er lik halve. Vi må å rege ut fourierkoeffiietee: a f ( ) d d Her har jeg delt opp itegralet i to deler ide fukjoe har delt forkrift og er i de førte halvperiode (mellom og ) og i de adre halvperiode (mellom og ). d Itegralet av er alltid, uaett itegrajogreer. Vi får derfor: a d ( ) Videre har må vi rege ut faktoree fora coiu-leddee. Igje ka vi øye o med å itegrere mellom og ide fukjoe er mellom og : a f ( ) co( ) d co( ) d co( ) d ) i( ) (i( ) i i( ) De ite likhete får vi fordi ige coiu-ledd i fourierrekke. i( ) uaett hva er. Alle a er altå, og vi får derfor Vi må å rege ut faktoree fora iu-leddee: Matematikk, adre delekame, y og utatt, jauar Side av 6

15 b f ( ) i( ) d i( ) d co( ) co( ) co De et ite overgage ka vi gjøre fordi co co( ) oddetall (for ekempel er og, lik at det er uproblematik å ha i evere. Dette gir b b b b b ( ) ( ) ( ) ( ) co( ) co ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Fourierrekke til dee fukjoe blir følgelig f ( ) a b i( ) i i( ) i i er år er et partall og år er et ). Huk ogå at begyer på og ikke på ( ) i( i( ) ) ( ) i i( ) i Matematikk, adre delekame, y og utatt, jauar Side av 6

16 k i k (k ) Det er valgfritt om vi kriver varet om det et ite eller ite uttrykket. I det ite uttrykket bruker vi k itedefor for å få et eklere uttrykk. Matematikk, adre delekame, y og utatt, jauar Side 6 av 6

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag 8.5.5 EKSAMEN øigforlg Emekode: ITD5 ITD5 Dto: 8. mi 5 Hjelpemidler: Eme: Mtemtikk dre delekme Ekmetid: 9.. Fglærer: - To A-rk med vlgfritt ihold på begge ider. - Formelhefte. Chriti F Heide Klkultor er

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag ..4 EKSAMEN Løsigsforslag Emekode: ITF75 Dato: 6. desember Eme: Matematikk for IT Eksamestid: kl 9. til kl. Hjelpemidler: To A4-ark med valgfritt ihold på begge sider. Kalkulator er ikke tillatt. Faglærer:

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag 7. jauar 7 EKSAMEN Løsigsforslag Emekode: ITF75 Dato: 4. desember 6 Hjelpemidler: - To A4-ark med valgfritt ihold på begge sider. Emeav: Matematikk for IT Eksamestid: 9. 3. Faglærer: Christia F Heide Kalkulator

Detaljer

EKSAMEN Ny og utsatt

EKSAMEN Ny og utsatt EKSAMEN Ny og utsatt Emekode: ITF0705 Dato: 30. mai 04 Eme: Matematikk for IT Eksamestid: kl 09.00 til kl 3.00 Hjelpemidler: To A4-ark med valgfritt ihold på begge sider. Kalkulator er ikke tillatt. Faglærer:

Detaljer

Løsningsforslag Matematikk4N/4M, TMA4123/TMA4125, vår 2016

Løsningsforslag Matematikk4N/4M, TMA4123/TMA4125, vår 2016 Løigforlag MatematikkN/M, TMA/TMA5, vår 6 Oppgave Skriver om ligigytemet på valig måte Gau Seidel blir da Setter vi x, y, z får vi x y z y x z z x y 6 x y z y x z z x y 6 Dv,,,, x y z x y z 6 Oppgave Side

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-aturviteskapelige fakultet Eksame i MAT00 Matematikk I Eksamesdag: Fredag 4 jui 00 Tid for eksame: 0900 00 Oppgavesettet er på sider Vedlegg: Tillatte hjelpemidler:

Detaljer

FØLGER, REKKER OG GJENNOMSNITT

FØLGER, REKKER OG GJENNOMSNITT FØLGER, REKKER OG GJENNOMSNITT Espe B. Lagelad realfagshjoret.wordpress.com espebl@hotmail.com 9.mars 06 Iledig E tallfølge er e serie med tall som kommer etter hveradre i e bestemt rekkefølge. Kvadrattallee

Detaljer

EKSAMEN løsningsforslag

EKSAMEN løsningsforslag 05.0.08 EKSAMEN løsigsforslag Emekode: ITF0705 Dato: 5. desember 07 Hjelpemidler: - To A4-ark med valgfritt ihold på begge sider. Emeav: Matematikk for IT Eksamestid: 09.00 3.00 Faglærer: Christia F Heide

Detaljer

2. Bestem nullpunktene til g.

2. Bestem nullpunktene til g. Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL 0. desember 007 EKSAMEN I MATEMATIKK Modul 5 studiepoeg Tid: 5 timer Oppgavesettet er på 9 sider (ikludert formelsamlig).

Detaljer

Eksamen R2, Høsten 2010

Eksamen R2, Høsten 2010 Eksame R, Høste 00 Del Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave (6 poeg) a) Deriver fuksjoee ) f l f ( ) l l (l ) ) g( ) si cos f si

Detaljer

Kommentarer til oppgaver;

Kommentarer til oppgaver; Kapittel - Algebra Versjo: 11.09.1 - Rettet feil i 0, 1 og 70 og lagt i litt om GeoGebra-bruk Kommetarer til oppgaver; 0, 05, 10, 13, 15, 5, 9, 37, 5,, 5, 59, 1, 70, 7, 78, 80,81 0 a) Trykkfeil i D-koloe

Detaljer

Løsningsforslag. Oppgavesettet består av 16 oppgaver. Ved sensur vil alle oppgaver telle like mye med unntak av oppgave 6 som teller som to oppgaver.

Løsningsforslag. Oppgavesettet består av 16 oppgaver. Ved sensur vil alle oppgaver telle like mye med unntak av oppgave 6 som teller som to oppgaver. . mai 5 Løsigsforslag Emekode: ITF75 Dato: 5. desember 4 Eme: Matematikk for IT Eksamestid: kl 9. til kl 3. Hjelpemidler: To A4-ark med valgfritt ihold på begge sider. Kalkulator er ikke tillatt. Faglærer:

Detaljer

Løsningsforslag til eksamen

Løsningsforslag til eksamen 7. jauar 6 Løsigsforslag til eksame Emekode: ITF75 Dato: 5. desember 5 Eme: Matematikk for IT Eksamestid: kl 9. til kl. Hjelpemidler: To A4-ark med valgfritt ihold på begge sider. Kalkulator er ikke tillatt.

Detaljer

Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte.

Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte. Eksame 20.05.2009 REA3028 Matematikk S2 Nyorsk/Bokmål Bokmål Eksamesiformasjo Eksamestid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Bruk av kilder: Vedlegg: Framgagsmåte: Veiledig om vurderige: 5 timer:

Detaljer

Differensiallikninger

Differensiallikninger Differeniallikninger I er enn 300 år har ateatik analye vært et vært viktig kapittel i faget. Teaet differeniallikninger blir av ange ateatikere betraktet o diaanten i ateatik analye eller kalkulu. Det

Detaljer

E K S A M E N : FAG: Matematikk 1 MA-154 LÆRER: MORTEN BREKKE. Klasse(r): Alle Dato: 1. des 11 Eksamenstid, fra-til: 0900-1400

E K S A M E N : FAG: Matematikk 1 MA-154 LÆRER: MORTEN BREKKE. Klasse(r): Alle Dato: 1. des 11 Eksamenstid, fra-til: 0900-1400 UNIVERSITETET I AGDER Grimstad E K S A M E N : FAG: Matematikk MA-54 LÆRER: MORTEN BREKKE Klasse(r): Alle Dato:. des Eksamestid, fra-til: 0900-400 Eksamesoppgave består av følgede iklusive forside Atall

Detaljer

Løsning eksamen R1 våren 2010

Løsning eksamen R1 våren 2010 Løsig eksame R våre 00 Oppgave a) ) f ( ) l f ( ) ' l l l l f ( ) (l ) ) g( ) 4e g( ) 4 e ( ) 4 e ( ) g( ) 4( ) e b) ( ) 4 4 6 P ) P() 4 4 6 8 6 8 6 0 Divisjo med ( ) går opp. 4 4 6 : ( ) 8 4 4 8 6 8 6

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag TMA400 Matematikk Høst 04 Løsigsforslag Øvig 3 Review Exercises, side 454 Vi starter med å tege e figur av e skål med va: z A(z)

Detaljer

Eksamen REA3028 S2, Våren 2011

Eksamen REA3028 S2, Våren 2011 Eksame REA08 S, Våre 0 Del Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave (8 poeg) a) Deriver fuksjoee ) f 5 f 6 5 ) g g ) h l 9 9 6 4 h l

Detaljer

Løsningsforslag til prøveeksamen i MAT1110, våren 2012

Løsningsforslag til prøveeksamen i MAT1110, våren 2012 Løsigsforslag til prøveeksame i MAT, våre Oppgave : Vi har A = 3 III+I I+II 3 ( )II 3 3 Legg merke til at A er de utvidede matrise til ligigssystemet. Vi ser at søyle 3 og 4 i de reduserte trappeforme

Detaljer

Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål Eksame 6.05.010 REA304 Matematikk R Nyorsk/Bokmål Bokmål Eksamesiformasjo Eksamestid: Hjelpemidler på Del 1: Hjelpemidler på Del : Vedlegg: Framgagsmåte: Veiledig om vurderige: 5 timer: Del 1 skal leveres

Detaljer

Matematikk for IT. Oblig 7 løsningsforslag. 16. oktober

Matematikk for IT. Oblig 7 løsningsforslag. 16. oktober Matematikk for IT Oblig 7 løsigsforslag. oktober 7..8 a) Vi skal dae kodeord som består av sifree,,,, 7. odeordet er gldig dersom det ieholder et like atall (partall) -ere. Dee løses på samme måte som..:

Detaljer

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 16. mai 2008

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 16. mai 2008 Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL 6. mai 008 EKSAMEN I MATEMATIKK Modul 5 studiepoeg Tid: 5 timer Oppgavesettet er på 8 sider (ikludert formelsamlig). Hjelpemidler:

Detaljer

Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt.

Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Tid: 3 timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave (3 poeg) Deriver fuksjoee a) f( ) cos5 f 5 si5 0 si5 g e si Vi bruker produktregele for derivasjo,

Detaljer

Løsningsforslag. Oppgavesettet består av 9 oppgaver med i alt 21 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye.

Løsningsforslag. Oppgavesettet består av 9 oppgaver med i alt 21 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye. .. Løsigsforslag Emekode: ITF7 Dato:. desember Eme: Matematikk for IT Eksamestid: kl. til kl. Hjelpemidler: To A4-ark med valgfritt ihold på begge sider. Faglærer: Christia F Heide Eksamesoppgave: Oppgavesettet

Detaljer

Utvidet løsningsforslag Eksamen i TMA4100 Matematikk 1, 16/12 2008

Utvidet løsningsforslag Eksamen i TMA4100 Matematikk 1, 16/12 2008 Utvidet løsigsforslag Eksame i TMA4 Matematikk, 6/ 8 Oppgave i) Vi gjør substitusjoe u = si θ og får π/ [ u si θ cos θ dθ = u du = E ae løsigsmetode er π/ si θ cos θ dθ = π/ ] si θ dθ = 4 = 4 ( ( ) ( ))

Detaljer

Eksamen REA3028 S2, Våren 2010

Eksamen REA3028 S2, Våren 2010 Eksame REA308 S, Våre 010 Del 1 Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave 1 (6 poeg) a) Deriver fuksjoee: 1) f x x lx f x x lx x x f

Detaljer

Mer om utvalgsundersøkelser

Mer om utvalgsundersøkelser Mer om utvalgsudersøkelser I uderkapittel 3.6 i læreboka gir vi e kort iførig i takegage ved utvalgsudersøkelser. Vi gir her e grudigere framstillig av temaet. Populasjo og utvalg Ved e utvalgsudersøkelse

Detaljer

Øvinger uke 46 løsninger

Øvinger uke 46 løsninger Øviger uke 6 løsiger Oppgave Verdie av determiate er avgjørede for atall løsiger. ed e parameter i oppgave løer det seg å bestemme determiate først og fie ut for hvilke parameterverdier determiate er ull.

Detaljer

Terminprøve R2 Høsten 2014 Løsning

Terminprøve R2 Høsten 2014 Løsning Termiprøve R Høste 04 Løsig Del Tid: 3 timer Hjelpemidler: Skrivesaker Oppgave (6 poeg) E flate i rommet er gitt ved likige: x 4x y 6y z 8z 0 0 a) Vis at puktet P3, 5, ligger på flate Puktet P3, 5, ligger

Detaljer

Eksamen R2, Våren 2010

Eksamen R2, Våren 2010 Eksame R, Våre 010 Del 1 Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave 1 a) Deriver fuksjoe gitt ved f x x cos 3 x b) Bestem itegralee 1)

Detaljer

LØSNING: Eksamen 17. des. 2015

LØSNING: Eksamen 17. des. 2015 LØSNING: Eksame 17. des. 2015 MAT100 Matematikk, 2015 Oppgave 1: økoomi a I optimum av T Rx er dt Rx 0 1 som gir d Ix Kx 0 2 dix dix dkx dkx 0 3 4 dvs. greseitekt gresekostad, q.e.d. 5 b Gresekostad ekstrakostade

Detaljer

MA1102 Grunnkurs i analyse II Vår 2019

MA1102 Grunnkurs i analyse II Vår 2019 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag MA0 Grukurs i aalyse II Vår 09 9 Vi har rekke Dette er e geometrisk rekke som beskrevet på side 50 i læreboka, med x (side ) Spesielt

Detaljer

Terminprøve R2 Høsten 2014

Terminprøve R2 Høsten 2014 Termiprøve R Høste 04 Del Tid: 3 timer Hjelpemidler: Skrivesaker Oppgave (6 poeg) E flate i rommet er gitt ved likige: x 4x y 6y z 8z 0 0 a) Vis at puktet P3, 5, ligger på flate b) Vis at dette er e kuleflate

Detaljer

Matematikk for IT. Prøve 2. Onsdag 21. oktober 2015

Matematikk for IT. Prøve 2. Onsdag 21. oktober 2015 Matematikk for IT Prøve Osdag. oktober 5 Løsigsforslag 6. oktober 5 Oppgave Gitt følgede slutig: Hvis fakturae ble sedt forrige madag så fikk du pegee i går. Du fikk pegee i går. Derfor ble fakturae sedt

Detaljer

2.1 Polynomdivisjon. Oppgave 2.10

2.1 Polynomdivisjon. Oppgave 2.10 . Polyomdivisjo Oppgave. ( 5 + ) : = + + ( + ):( ) 6 + 6 8 8 = + + c) ( + 5 ) : = + 6 6 d) + + + = + + = + + + 8+ ( ):( ) + + + Oppgave. ( + 5+ ):( ) 5 + + = + ( 5 ): 9 + + + = + + + 5 + 6 9 c) ( 8 66

Detaljer

Eksamen REA3028 S2, Våren 2010

Eksamen REA3028 S2, Våren 2010 Eksame REA308 S, Våre 010 Del 1 Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave 1 (6 poeg) a) Deriver fuksjoee: 1) f xx lx ) gx 3 e x b) Gitt

Detaljer

Totalt Antall kandidater oppmeldt 1513 Antall møtt til eksamen 1421 Antall bestått 1128 Antall stryk 247 Antall avbrutt 46 % stryk og avbrutt 21%

Totalt Antall kandidater oppmeldt 1513 Antall møtt til eksamen 1421 Antall bestått 1128 Antall stryk 247 Antall avbrutt 46 % stryk og avbrutt 21% TMA4100 Høste 2007 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Kommetarer til eksame Dette dokumetet er e oppsummerig av erfarigee fra sesure av eksame i TMA4100 Matematikk

Detaljer

Løsning R2-eksamen høsten 2016

Løsning R2-eksamen høsten 2016 Løsig R-eksame høste 016 Tid: 3 timer Hjelpemidler: Valige skrivesaker, lijal med cetimetermål og vikelmåler er tillatt. Oppgave 1 (4 poeg) Deriver fuksjoee a) ( ) 3cos f( x) 3 six 6six f x x b) gx ( )

Detaljer

2 Algebra R2 Oppgaver

2 Algebra R2 Oppgaver 2 Algebra R2 Oppgaver 2 Tallfølger 2 22 Tallrekker 8 23 Uedelige geometriske rekker 5 24 Iduksjosbevis 20 25 Eksamesoppgaver 2 Øvigsoppgaver Stei Aaese og Olav Kristese/NDLA Eksamesoppgavee er hetet fra

Detaljer

Eksempeloppgave 2014. REA3028 Matematikk S2 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)

Eksempeloppgave 2014. REA3028 Matematikk S2 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler) Eksempeloppgave 2014 REA3028 Matematikk S2 Eksempel på eksame våre 2015 etter y ordig Ny eksamesordig Del 1: 3 timer (ute hjelpemidler) Del 2: 2 timer (med hjelpemidler) Mistekrav til digitale verktøy

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag 7 desember EKSAMEN Løsningsorslag Emnekode: ITD5 Dato: 6 desember Hjelpemidler: Emne: Matematikk ørste deleksamen Eksamenstid: 9 Faglærer: To A-ark med valgritt innhold på begge sider Formelhete Kalkulator

Detaljer

Kapittel 10 fra læreboka Grafer

Kapittel 10 fra læreboka Grafer Forelesigsotat i Diskret matematikk torsdag 6. oktober 017 Kapittel 10 fra læreboka Grafer (utdrag) E graf er e samlig pukter (oder) og kater mellom puktee (eg. odes, vertex, edge). E graf kalles rettet

Detaljer

Eksamen 20.05.2009. REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen 20.05.2009. REA3024 Matematikk R2. Nynorsk/Bokmål Eksame 20052009 REA3024 Matematikk R2 Nyorsk/Bokmål Nyorsk Eksamesiformasjo Eksamestid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Bruk av kjelder: Vedlegg: Framgagsmåte: Rettleiig om vurderiga: 5 timar:

Detaljer

Matematikk for IT. Løsningsforslag til prøve 2. Torsdag 24. oktober 2013

Matematikk for IT. Løsningsforslag til prøve 2. Torsdag 24. oktober 2013 .. Matematikk for IT Løsigsforslag til prøve Torsdag. oktober Oppgave Gitt følgede predikat: P(x : x > 5 ta at uiverset ( de mulige verdier av x som vi tar i betraktig er alle hele tall, Z. Skriv hvert

Detaljer

ARBEIDSHEFTE I MATEMATIKK

ARBEIDSHEFTE I MATEMATIKK ARBEIDSHEFTE I MATEMATIKK Temahefte r Hvorda du reger med poteser Detaljerte forklariger Av Matthias Loretze mattegriseforlag.com Opplsig: E potes er e forkortet skrivemåte for like faktorer. E potes består

Detaljer

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 22. mai EKSAMEN I MATEMATIKK 2 Modul 1 15 studiepoeng, fjernundervisning

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 22. mai EKSAMEN I MATEMATIKK 2 Modul 1 15 studiepoeng, fjernundervisning Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL mai 007 EKSAMEN I MATEMATIKK Modul 5 studiepoeg, fjerudervisig Tid: 5 timer Oppgavesettet er på 9 sider (ikludert formelsamlig)

Detaljer

Eksamen R2, Va ren 2013

Eksamen R2, Va ren 2013 Eksame R, Va re 013 Oppgave 1 (4 poeg) Deriver fuksjoee a) f x 3cos x f x 3 six 3si x b) gx x 6si 7 Bruker kjereregele på uttrykket si x der og Vi har da guu siu u cosu cos x gx 6cos x 6 cos x u x g u

Detaljer

S2 kapittel 1 Rekker Løsninger til innlæringsoppgavene

S2 kapittel 1 Rekker Løsninger til innlæringsoppgavene Løsiger til ilærigsoppgavee kapittel Rekker Løsiger til ilærigsoppgavee a Vi ser at differase mellom hvert ledd er 4, så vi får det este leddet ved å legge til 4 Det este leddet blir altså 6 + 4 = 0 b

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 0 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Oppgave Midtveiseksame a) X er e stokastisk variabel

Detaljer

Løsningsforslag Eksamen MAT112 vår 2011

Løsningsforslag Eksamen MAT112 vår 2011 Løsigsforslag Eksame MAT vår OPPGAVE Gitt følge {a } defiert rekursivt ved a = 5, a + = a + 6, =,,, 3,.... (a) Vis (for eksempel ved iduksjo) at {a } er stregt avtagede og edtil begreset. (b) Avgjør om

Detaljer

Differensligninger Forelesningsnotat i Diskret matematikk Differensligninger

Differensligninger Forelesningsnotat i Diskret matematikk Differensligninger Differesligiger Forelesigsotat i Diskret matematikk 017 Differesligiger I kapittel lærte vi om følger og rekker. Vi studerte både aritmetiske og geometriske følger og rekker. Noe følger og rekker er imidlertid

Detaljer

Avsnitt 8.1 i læreboka Differensligninger

Avsnitt 8.1 i læreboka Differensligninger Diskret Matematikk Fredag 6. ovember 015 Avsitt 8.1 i læreboka Differesligiger I kapittel lærte vi om følger og rekker. Vi studerte både aritmetiske og geometriske følger og rekker. Noe følger og rekker

Detaljer

Eksamensoppgave i TALM1004 Matematikk 2

Eksamensoppgave i TALM1004 Matematikk 2 Ititutt for llmefg Ekmeoppgve i ALM4 Mtemtikk Fglig kotkt uder ekme: Kåre Bjørvik lf.: 9 77 898 Ekmedto: 5.5.7 Ekmetid (fr-til): 9. 4. Hjelpemiddelkode/illtte hjelpemidler: D (etemt, ekel klkultor tilltt)

Detaljer

Oppgaver til Dynamiske systemer 1

Oppgaver til Dynamiske systemer 1 Oppgaver til Dynamike ytemer Oppgave 0. Lineariering av ulineær modell Likning (2.28) i læreboka er en dynamik modell av en tank med gjennomtrømning og oppvarming. Modellen gjengi her: cρv T (t) P (t)+cw(t)[t

Detaljer

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE Eme: Diskret matematikk Gruppe(r): Eksamesoppgave består av: Atall sider (ikl forside): 5 Emekode: FO 9A Dato: 57 Atall oppgaver: Fagasvarlig: Ulf Uttersrud

Detaljer

Forkunnskaper i matematikk for fysikkstudenter. Derivasjon.

Forkunnskaper i matematikk for fysikkstudenter. Derivasjon. Defiisjo av derivert Vi har stor ytte av å vite hvor raskt e fuksjo vokser eller avtar Mer presist: Vi øsker å bestemme stigigstallet til tagete til fuksjosgrafe P Q Figure til vestre viser hvorda vi ka

Detaljer

x n = 1 + x + x 2 + x 3 + x x n + = 1 1 x

x n = 1 + x + x 2 + x 3 + x x n + = 1 1 x Potesrekker Forelest: 29. Sept, 2004 Vi lærte fra de geometriske rekkee at x = 1 + x + x 2 + x 3 + x 4 + + x + = 1 1 x så lege x < 1. For uttrykket til høyre er ikke oe aet e sum-formele for geometriske

Detaljer

Dersom vi skriver denne reaksjonslikningen ved bruk av kjemiske tegn: side av likningen har vi ett hydrogen mens vi har to på høyre side.

Dersom vi skriver denne reaksjonslikningen ved bruk av kjemiske tegn: side av likningen har vi ett hydrogen mens vi har to på høyre side. Støkiometri (megdeforhold) Det er særs viktig i kjemie å vite om megdeforhold om stoffer. -E hodepie tablett er bra mot hodesmerter, ti passer dårlig. -E sukkerbit i kaffe fugerer, 100 er slitsomt. -100

Detaljer

Emnenavn: Metode 1, statistikk deleksamen. Eksamenstid: 4 timer. Faglærer: Bjørnar Karlsen Kivedal

Emnenavn: Metode 1, statistikk deleksamen. Eksamenstid: 4 timer. Faglærer: Bjørnar Karlsen Kivedal EKSAMEN Emekode: SFB10711 Emeav: Metode 1, statistikk deleksame Dato: 10. oktober 2018 Hjelpemidler: Godkjet kalkulator og vedlagt formelsamlig m/tabeller Eksamestid: 4 timer Faglærer: Bjørar Karlse Kivedal

Detaljer

Løsning eksamen S2 våren 2010

Løsning eksamen S2 våren 2010 Løsig eksame S våre 010 Oppgave 1 a) 1) f( ) l 1 f ( ) l l l l ( l 1) ) g ( ) 3e g( ) 3e 3e 6e b) Rekke er geometrisk med Rekke kovergerer. Summe er a1 1 1 s 1 k 1 1 1 1 1 k og oppfller dermed kravet 1

Detaljer

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE Eme: Diskret matematikk Gruppe(r): Emekode: FO 019A Dato: 12.12.200 Faglig veileder: Ulf Uttersrud Eksamestid: 9-14 Eksamesoppgave består av: Atall sider

Detaljer

Eksamen REA3028 S2, Våren 2012

Eksamen REA3028 S2, Våren 2012 Eksame REA08 S, Våre 0 Del Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave (4 poeg) a) Deriver fuksjoee ) f f ) g e 4 4 4 g e e 4 g e e g e

Detaljer

Algebra S2, Prøve 2 løsning

Algebra S2, Prøve 2 løsning Algebra S, Prøve løsig Del Tid: 90 mi Hjelpemidler: Skrivesaker Oppgave I rekkee edefor får du oppgitt a og e rekursiv formel for a. Du skal. skrive opp de fire første leddee og avgjøre om rekka er aritmetisk,

Detaljer

S2 kapittel 1 Rekker Utvalgte løsninger oppgavesamlingen

S2 kapittel 1 Rekker Utvalgte løsninger oppgavesamlingen Utvlgte løsiger oppgvesmlige S kpittel Rekker Utvlgte løsiger oppgvesmlige 0 Vi k prøve med differsemetode Differsee mellom leddee utover er 4,6,8, så det er rimelig t differse mellom femte og fjerde ledd

Detaljer

Fagdag 2-3mx 24.09.07

Fagdag 2-3mx 24.09.07 Fagdag 2-3mx 24.09.07 Jeg beklager at jeg ikke har fuet oe ye morsomme spill vi ka studere, til gjegjeld skal dere slippe prøve/test dee gage. Istruks: Vi arbeider som valig med 3 persoer på hver gruppe.

Detaljer

Eksamen 21.05.2013. REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen 21.05.2013. REA3024 Matematikk R2. Nynorsk/Bokmål Eksame 21.05.2013 REA3024 Matematikk R2 Nyorsk/Bokmål Nyorsk Eksamesiformasjo Eksamestid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: 5 timar: Del 1 skal leverast i etter 2 timar. Del 2 skal leverast

Detaljer

Ma Analyse II Øving 5

Ma Analyse II Øving 5 Ma0 - Aalyse II Øvig 5 Øistei Søvik.0.0 Oppgaver 9. Determie whether the give sequece is (a) bouded (above or below), (b) positive or egative (ultimately), (c) icreasig, decreasig, or alteratig, ad (d)

Detaljer

Bokmål OPPGAVE 1. a) Deriver funksjonene: b) Finn integralene ved regning: c) Løs likningen ved regning, og oppgi svaret som eksakte verdier: + =

Bokmål OPPGAVE 1. a) Deriver funksjonene: b) Finn integralene ved regning: c) Løs likningen ved regning, og oppgi svaret som eksakte verdier: + = OPPGAVE a) Deriver fuksjoee: ) f ( x) = 3six+ cosx ) gx ( ) = six cosx b) Fi itegralee ved regig: ) ) e 3e x d x l xd x Tips: l xdx= l xdx c) Løs likige ved regig, og oppgi svaret som eksakte verdier:

Detaljer

Algebra R2, Prøve 1 løsning

Algebra R2, Prøve 1 løsning Algebra R, Prøve løsig Del Tid: 70 mi Hjelpemidler: Skrivesaker Oppgave E rekke er gi ved a og a Du skal ) udersøke hva slags rekke de er Vi fier de førse leddee: a a a a, 6, 3 0, 4 4 3 4 De ser u som

Detaljer

Løsningsforslag R2 Eksamen 04.06.2012. Nebuchadnezzar Matematikk.net Øistein Søvik

Løsningsforslag R2 Eksamen 04.06.2012. Nebuchadnezzar Matematikk.net Øistein Søvik Løsigsforslag R2 Eksame 6 Vår 04.06.202 Nebuchadezzar Matematikk.et Øistei Søvik Sammedrag De fleste forlagee som gir ut lærebøker til de videregåede skole, gir ut løsigsforslag til tidligere gitte eksameer.

Detaljer

Integrasjon. October 14, 2014. Department of Mathematical Sciences, NTNU, Norway. Integrasjon

Integrasjon. October 14, 2014. Department of Mathematical Sciences, NTNU, Norway. Integrasjon Deprtmet of Mthemticl Scieces, NTNU, Norwy Octoer 14, 2014 Forelesig 01.10.2014, 5.1, 5.2 Summer Arel uder grfe til e fuksjo som greseverdi til e summe Sigm otsjo L m og være heltll og m og l f være e

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO ide UNIVRI I OO De maemai-aurvieapelige faule ame i: amedag: id for eame: Oppgaveee er på 4 ider Vedlegg: illae jelpemidler: MK454 Kompoimaerialer og -orujoer ordag 8-- 9 Formelar ( ide) Roma formelamlig

Detaljer

Løsningsforslag: Deloppgave om heuristiske søkemetoder

Løsningsforslag: Deloppgave om heuristiske søkemetoder Løsigsforslag: Deloppgave om heuristiske søkemetoder 6. mai 00 Iledig Vi skal betrakte det såkalte grafdeligsproblemet (graph partitioig problem). Problemet ka ekelt formuleres som følger: Gitt e graf

Detaljer

Fasit til utvalgte oppgaver MAT1110, uka 18/5-21/5

Fasit til utvalgte oppgaver MAT1110, uka 18/5-21/5 Fasit til utvalgte oppgaver MAT0, uka 8/5-2/5 Øyvid Rya (oyvidry@i.uio.o) May 28, 200 Oppgave 2.4. Rekke er betiget koverget, side + divergerer, mes de altererede rekke kovergerer etter teste for altererede

Detaljer

Lsningsforslag ved Klara Hveberg Lsningsforslag til utvalgte oppgaver i kapittel 4 I seksjon 4.1 gir de innledende oppgavene deg trening i a lse diere

Lsningsforslag ved Klara Hveberg Lsningsforslag til utvalgte oppgaver i kapittel 4 I seksjon 4.1 gir de innledende oppgavene deg trening i a lse diere Lsigsforslag til utvalgte ogaver i kaittel 4 I seksjo 4. gir de iledede ogavee deg treig i a lse dieresligiger, og jeg reger med at det ikke er behov for a utdye lrebokas eksemler og fasit her. Me like

Detaljer

Del1. b) 1) Gittrekka 2 4 6 8 Finnleddnummer20 ogsummenavde20førsteleddene.

Del1. b) 1) Gittrekka 2 4 6 8 Finnleddnummer20 ogsummenavde20førsteleddene. Del1 Oppgave 1 a) Deriver fuksjoee: 1) fx ( ) x 2 1 x 2 1 2) g x x 2 2 e x b) 1) Gittrekka 2 4 6 8 Fileddummer20 ogsummeavde20førsteleddee. 1 1 2) Gitt de uedelige rekka 2 1 2 4 Avgjør om rekka kovergerer.

Detaljer

Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte.

Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte. Eksame 20052009 REA3024 Matematikk R2 Nyorsk/Bokmål Bokmål Eksamesiformasjo Eksamestid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Bruk av kilder: Vedlegg: Framgagsmåte: Veiledig om vurderige: 5 timer:

Detaljer

Plan for fagdag 3. Plan: Litt om differanse- og summefølger. Sammenhengen a n a 1 n 1 i 1

Plan for fagdag 3. Plan: Litt om differanse- og summefølger. Sammenhengen a n a 1 n 1 i 1 Pla for fagdag 3 R2-18.11.10 Pla: Litt om differase- og summefølger. Sammehege a a 1 1 i 1 d i. Geometriske resoemet. Arbeidsoppgaver. Differase- og summefølger Regresjo med lommereger Differaser er ofte

Detaljer

Eksamen 26.05.2010. REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen 26.05.2010. REA3024 Matematikk R2. Nynorsk/Bokmål Eksame 6.05.010 REA304 Matematikk R Nyorsk/Bokmål Nyorsk Eksamesiformasjo Eksamestid: Hjelpemiddel på del 1: Hjelpemiddel på del : Vedlegg: Framgagsmåte: Rettleiig om vurderiga: 5 timar: Del 1 skal leverast

Detaljer

Obligatorisk oppgave nr. 3 i Diskret matematikk

Obligatorisk oppgave nr. 3 i Diskret matematikk 3. obligatoriske oppgave i Diskret matematikk høste 08. Obligatorisk oppgave r. 3 i Diskret matematikk Ileverigsfrist. ovember 08 Oppgave er frivillig og tregs ikke leveres, me hvis dere leverer de ie

Detaljer

Eksamen REA3028 S2, Våren 2012

Eksamen REA3028 S2, Våren 2012 Eksame REA3028 S2, Våre 2012 Del 1 Tid: 2 timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave 1 (24 poeg) a) Deriver fuksjoee 1) 3 f x x 2x 3 2) 2 2

Detaljer

MA1101 Grunnkurs Analyse I Høst 2017

MA1101 Grunnkurs Analyse I Høst 2017 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag MA0 Grukurs Aalyse I Høst 07 Løsigsforslag Øvig..b) Vi skriver om 7 = 4 4 7 Korollar.. gir at 7 4 er irrasjoal (side vi vet 7 4 er

Detaljer

IN3030 Uke 12, v2019. Eric Jul PSE, Inst. for informatikk

IN3030 Uke 12, v2019. Eric Jul PSE, Inst. for informatikk IN3030 Uke 12, v2019 Eric Jul PSE, Ist. for iformatikk 1 Hva skal vi se på i Uke 12 Review Radix sort Oblig 4 Text Program Parallellizig 2 Oblig 4 Radix sort Parallelliser Radix-sorterig med fra 1 5 sifre

Detaljer

Fakultet for teknologi, kunst og design Teknologiske fag Eksamen i: Diskret matematikk

Fakultet for teknologi, kunst og design Teknologiske fag Eksamen i: Diskret matematikk Fakultet for tekologi, kust og desig Tekologiske fag Eksame i: Diskret matematikk Målform: Bokmål Dato: 9. ovember 017 Tid: Atall sider (ikl. forside): 9 Atall oppgaver: 6 Tillatte hjelpemidler: Forhådsgodkjet

Detaljer

e n . Videre er det en alternerende følge, da annenhvert ledd er positivt og negativt. Vi ser også at n a n = lim n e n = 0. lim n n 1 n 3n 2 = lim

e n . Videre er det en alternerende følge, da annenhvert ledd er positivt og negativt. Vi ser også at n a n = lim n e n = 0. lim n n 1 n 3n 2 = lim TMA400 Høst 206 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsforslag Øvig 9 9..8 Vi er gitt følge { ( ) } {a }. e De første leddee i følge er a e, a 2 2 e 2, a e, a 4 4

Detaljer

Vi skal hovedsakelig ikke bestemme summen men om rekken konvergerer. det vil si om summen til rekken er et bestemt tall

Vi skal hovedsakelig ikke bestemme summen men om rekken konvergerer. det vil si om summen til rekken er et bestemt tall Kapittel 8 Oppsummerig-Rekker Rekker er summe til edelig eller uedelig mage ledd i e tallfølge. Potesrekker ka beyttes til å uttrykke vaskelige fuksjoer om et pukt. Ma ka skreddesy potesfuksjoer ved hjelp

Detaljer

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE Eme: Diskret matematikk Gruppe(r): Eksamesoppgave består av: Atall sider (ikl forside): 5 Emekode: FO 9A Dato: 69 Atall oppgaver: Fagasvarlig: Ulf Uttersrud

Detaljer

MA1102 Grunnkurs i analyse II Vår 2014

MA1102 Grunnkurs i analyse II Vår 2014 Norges tekiskaturviteskapelige uiversitet Istitutt for matematiske fag MA Grukurs i aalyse II Vår 4 Løsigsforslag Øvig..4 f ) Skriver om, og får Reger ut ved L'Hopitals regel at cos/) cos/)) = /. cos/)

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-aturviteskapelige fakultet Eksame i: STK11 Sasylighetsregig og statistisk modellerig. LØSNINGSFORSLAG Eksamesdag: Fredag 9. jui 217. Tid for eksame: 9. 13.. Oppgavesettet

Detaljer

Løsningsforslag for andre obligatoriske oppgave i STK1100 Våren 2007 Av Ingunn Fride Tvete og Ørnulf Borgan

Løsningsforslag for andre obligatoriske oppgave i STK1100 Våren 2007 Av Ingunn Fride Tvete og Ørnulf Borgan Løsigsforslag for adre obligatoriske oppgave i STK11 Våre 27 Av Igu Fride Tvete (ift@math..uio.o) og Ørulf Borga (borga@math.uio.o). NB! Feil ka forekomme. NB! Sed gjere e mail hvis du fier e feil! Oppgave

Detaljer

Eksempeloppgave 2014. REA3026 Matematikk S1 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)

Eksempeloppgave 2014. REA3026 Matematikk S1 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler) Eksempeloppgave 04 REA306 Matematikk S Eksempel på eksame våre 05 etter y ordig Ny eksamesordig Del : 3 timer (ute hjelpemidler) Del : timer (med hjelpemidler) Mistekrav til digitale verktøy på datamaski:

Detaljer

TMA4245 Statistikk Eksamen mai 2017

TMA4245 Statistikk Eksamen mai 2017 TMA445 Statistikk Eksame mai 07 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsskisse Oppgave a Når vi reger ut disse tre sasylighetee må ma huske på at de mulige verdiee

Detaljer

Detaljert løsningsveiledning til ECON1310 seminaroppgave 9, høsten der 0 < t < 1

Detaljert løsningsveiledning til ECON1310 seminaroppgave 9, høsten der 0 < t < 1 Detaljert løsigsveiledig til ECON30 semiaroppgave 9, høste 206 Dee løsigsveiledige er mer detaljert e det et fullgodt svar på oppgave vil være, og mer utfyllede e e valig fasit. De er met som e guide til

Detaljer

Kapittel 1: Beskrivende statistikk

Kapittel 1: Beskrivende statistikk Kapittel : Bekrivede tatitikk Defiijoer: Populajo og utvalg Populajo: Alle mulige obervajoer vi ka gjøre (x,x,,x N ). Utvalg: Delmegde av populajoe (x,x,,x der

Detaljer

MA 1410: Analyse Uke 48, aasvaldl/ma1410 H01. Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag

MA 1410: Analyse Uke 48, aasvaldl/ma1410 H01. Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag MA 40: Aalyse Uke 48, 00 http://home.hia.o/ aasvaldl/ma40 H0 Høgskole i Agder Avdelig for realfag Istitutt for matematiske fag Oppgave 8.7:. Vi har f(x) = cosh(x) = ex +e x. f(0) =. Derivasjo gir f (x)

Detaljer

TMA4120 Matte 4k Høst 2012

TMA4120 Matte 4k Høst 2012 TMA41 Matte 4k Høst 1 Norges tekiskaturviteskapelige uiversitet Istitutt for matematiske fag Løsigsforslag til oppgaver fra Kreyzig utgave 1: 11.1.18 Fuksjoe er lik for < x

Detaljer

DEL 1. Uten hjelpemidler 500+ er x

DEL 1. Uten hjelpemidler 500+ er x DEL 1 Ute hjelpemidler Oppgave 1 (18 poeg) 500 = + 8 er a) Vis at de deriverte til fuksjoe ( ) O O ( ) = 500+ 16 b) Deriver fuksjoee 1) f( ) = l( ) ) g( ) = e c) Vi har gitt polyomfuksjoe f( ) = 1 + 15

Detaljer

Emnenavn: Eksamenstid: Faglærer: Christian F Heide

Emnenavn: Eksamenstid: Faglærer: Christian F Heide EKSAMEN Emnekode: ITD15013 Emnenavn: Matematikk 1 første deleksamen Dato: 13. desember 017 Hjelpemidler: Eksamenstid: 09.00 1.00 Faglærer: To A4-ark med valgfritt innhold på begge sider. Formelhefte. Kalkulator

Detaljer