Fagdag 2-3mx

Størrelse: px
Begynne med side:

Download "Fagdag 2-3mx 24.09.07"

Transkript

1 Fagdag 2-3mx Jeg beklager at jeg ikke har fuet oe ye morsomme spill vi ka studere, til gjegjeld skal dere slippe prøve/test dee gage. Istruks: Vi arbeider som valig med 3 persoer på hver gruppe. Det er viktig at oppgavee 6 og 7 blir gjort. Hvis dere ikke rekker alle, så pass på at det ikke er 6 og 7 som utgår! Gruppee leverer referat ie høstferie fra arbeidsoppgaver merket "Referatføres". Pla for dage: Litt teori: Differaser og summer Rekker Et bevis ved hjelp av teorie om differaser og summer Økoomi Bestadproblematikk Eksamesoppgave med variasjoer Rekursjo og datamaskier Geometri - litt repetisjo av gruleggede trigoometri før trigoometri-kapitlet Trekatberegiger Oppgave Litt teori: Differaser og summer Fra aalyse kjeer vi fudametalteoremet: a b f x dx F b F a hvis F x f x Det fies faktisk et helt tilsvarede teorem for summer og differaser av følger: a i A A hvis A i a i Med meer vi differase, altså at a i a i a i og tilsvarede A i A i A i Bevis: A i a i betyr utskrevet at: A i A i a i Da blir summe: a i a a 2 a 3... a A 2 A A 3 A 2 A 4 A 3... A A A A da A 2, A 3,...,A faller bort uderveis! Studer tabelle: av 6 fagdag_2.tex

2 2 a i a i a i A i a 3 b 2 c d Vi legger merke til at hvis vi lager differasefølger så miker grade i polyomuttrykk med og hvis vi lager summefølger så øker grade i polyomuttrykk med. Hvis vi ka fie e summefølge A i med feks. regresjo, har vi også fuet summe i A A. Arbeidsoppgaver: a i som Følger Etbevis E geometrisk følge, a a k, er e ekspoetialfuksjo, da vi ka skrive de som a a k k (Form: a b x ) a) Vis at differase av e geometrisk følge, a a a, også er e ekspoetialfuksjo med k som grutall. b) Du ser at vi bare ka multiplisere med et tall år vi fier differase av geometriske følger. Hvis vi går de adre veie, dvs. fier e summefølge A istedefor e differasefølge a, må vi altså dividere med det samme tallet. Bruk dette til å bevise at summe av e geometrisk følge blir 2 Økoomi (Referatføres) a k k. Vi fikk vel ikke behadlet økoomiavedelsee i kapittel godt ok, så her er e økoomisk oppgave: Ole har brukt si digitale kompetase til å spille bort i pokerspill på Iterett i løpet av e helg. E lokal låehai har låt Ole pegee og gitt Ole valget mellom følgede fire alterativer: ) Betale om ett år. 2) Betale i året 0 gager, første beløp skal betales straks. 3) Betale straks og om et år. 4) Bli uføretrygdet i løpet av kort tid pga. ødelagte keskåler. Hvilket tilbud bør Ole akseptere hvis ha reger med årlig rete p 4%? 3 Bestadsproblematikk Vi atar at e bestad av e bestemt type hval i starte av år 990 er 2000 dyr, og at bestade øker som e geometrisk følge. Ved e y tellig i starte av år 2000 fier ma ut at bestade er 2438 dyr. Hva har de årlige, prosetvise vekste i bestade vært? 2 av 6 fagdag_2.tex

3 Hva er det maksimale atall hval vi ka høste i året hvis bestade ikke skal dø ut? Vi atar at vi høster halvparte av det bestade overstiger 2000 dyr hvert år i åree 2000 til 2005 Vis at det rekursive uttrykket for bestade i disse åree da ka skrives b b Bruk lommeregere (,setipslegered,) til å lage e tabell som viser hvor mye vi høster og størrelse på bestade i åree 2000 til Hvor mye høstet vi totalt? Bestade vil etter oe år stabilisere seg på et fast atall dyr med dee høstigsstrategie, hva blir dette tallet? Tips: Lommereger og rekursive uttrykk: Sett MODE,Fuc til Seq. Y gir da mulighet til å defiere rekursive uttrykk u og v. Når dette er gjort ka ma rege ut u, u 2 osv. på skjerme. u,0 gir dessute de 0 første leddee i følge. Et viktig trikk dere ka ha mye glede av: Defier v v u og v Mi 0, da vil v være delsummer av u! Med e følge i u får vi altså rekke i v! Det eeste vi må passe på er at v "liggereetter",slikatsummeav0leddiu ligger i v, ikke i v 0! 4 Eksamesoppgave (Privatisteksame våre 2006) (Referatføres) I tabelle edefor har vi skrevet opp de første oddetallee slik at atall oddetall som står i hver rad, stemmer med ummeret på rade. I rad 3 står det altså 3 påfølgede oddettall. Rad Oddetall Summe av oddetallee i rad a)skrivavogfylluttabelle. Atall oddetall til samme i de første radee kaller vi m. Daerm b) Bruk formele for summe av e aritmetisk rekke, og vis at summe m av de m første oddetallee er m 2. c) Bruk det du har fuet til å vise: av 6 fagdag_2.tex

4 Eller uttrykt på e ae måte: i i 3 i i d) Ut fra teorie om at differaser blir e grad lavere og summer e grad høyere, vet vi at summe av kubikktallee er et uttrykk av fjerde grad. (Se siste del av c)!) Bruk regresjo på lommeregere (STAT, CALC, 7:QuartReg) til å fie uttrykket for summe av kubikktallee, og kotroller at du får det samme som i c). Dee oppgave er forøvrig bevist geometrisk i oppgave.259 i oppgavesamlige av arabere al-karaji som levde rudt 000 e.kr. 5 Rekursjo og datamaskier/lommeregere Datamaskier og lommeregere behersker ikke aet e de fire regigsarter, så hvorda i allverde klarer de å rege ut kvadratrøtter, trigoometriske fuksjoer, ekspoetialfuksjoer og logaritmefuksjoer? Svaret er at de bruker tilærmiger basert på kovergete tallfølger hvor ma bare treger de fire regigsartee i utregigee. Prise ma betaler for dette er at ma må rege ut flere ledd i tallfølgee rekursivt, me gjetagelser er oe lommeregere og datamaskier er rimelig flike til. Det å fie gode tilærmigstallfølger er e del av disiplie Numeriske Metoder i matematikke og vi skal ta oe eksempler her. (Vi kommer tilbake til dette stoffet seere i år, er bladt aet evt i slutte av kapittel 4.) a) Heros formel Hero (ca. 00 f.kr.) fat e formel som kue brukes til å fie kvadratrøtter, defiert rekursivt på dee måte: u startverdi u u 2 u N der N er tallet vi skal fie kvadratrote av. Vi prøver med 2 og setter derfor N 2. På lommereger ka vi gjøre slik: 0.4(As 2/As).5 ENTER ENTER ENTER ENTER Det kovergerer altså til 0 siffers øyaktighet allerede i 6te ledd! 4 av 6 fagdag_2.tex

5 Prøv med adre startverdier og se om det gjør oe forskjell. Bruk MODE, Seq og legg i Heros formel i u og bruk lommeregere til å fie e følge som kovergerer mot feks. 7. b) Det gylde sitt og adregradsligiger Det gylde sitt, fremkommer ved å dele et lijestykke i to deler; x 2 og a. Forholdet mellom delee ( a x ) skal være som forholdet mellom e del og hele lijestykket( x a a ): a x a x a x 2 ax a 2 0 med løsigee:- a a2 4a 2 5 a 2 2 Da blir a x 5 5 (Forkaster egativ løsig.) 2 2 Vi omformer forholdet: x a a a x x a x a Ka skrives som adregradsligig, 2 0, me vi velger å gjøre oe mye morsommere, vi lager e såkalt kjedebrøk ved å stadig sette i i uttrykket for seg selv:... Dette tilsvarer de rekursivt defierte tallfølge: a startverdi a a Bruk lommereger til å vise at dee følge kovergerer mot (Idirekte har vi her vist at kjedebrøker og rekursive tallfølger også ka brukes til å fie løsiger av adregradsligiger.) Geometri 6 Trekatberegiger (Referatføres) Vi vet at e trekat er fullstedig defiert hvis vi kjeer: 3sider 2 sider og e vikel 2 sider og mellomliggede vikel 2 sider og vikel motståede til e av de oppgitte sidee sideogtovikler To vikler med e felles side To vikler og e side som ikke er felles Diskuter i gruppe hvorda dere ka rege ut alle resterede vikler og sider i trekater som er defiert på hver av måtee i puktee over. Oppsummer dee diskusjoe ved å lage e pe, systematisk og ryddig oversikt over det dere kom frem til. 7 Oppgave (Referatføres) 5 av 6 fagdag_2.tex

6 Fi alle vikler i firkate i figure uder og fi til slutt arealet av firkate. 6 av 6 fagdag_2.tex

Kommentarer til oppgaver;

Kommentarer til oppgaver; Kapittel - Algebra Versjo: 11.09.1 - Rettet feil i 0, 1 og 70 og lagt i litt om GeoGebra-bruk Kommetarer til oppgaver; 0, 05, 10, 13, 15, 5, 9, 37, 5,, 5, 59, 1, 70, 7, 78, 80,81 0 a) Trykkfeil i D-koloe

Detaljer

S2 kapittel 1 Rekker Løsninger til innlæringsoppgavene

S2 kapittel 1 Rekker Løsninger til innlæringsoppgavene Løsiger til ilærigsoppgavee kapittel Rekker Løsiger til ilærigsoppgavee a Vi ser at differase mellom hvert ledd er 4, så vi får det este leddet ved å legge til 4 Det este leddet blir altså 6 + 4 = 0 b

Detaljer

FØLGER, REKKER OG GJENNOMSNITT

FØLGER, REKKER OG GJENNOMSNITT FØLGER, REKKER OG GJENNOMSNITT Espe B. Lagelad realfagshjoret.wordpress.com espebl@hotmail.com 9.mars 06 Iledig E tallfølge er e serie med tall som kommer etter hveradre i e bestemt rekkefølge. Kvadrattallee

Detaljer

Avsnitt 8.1 i læreboka Differensligninger

Avsnitt 8.1 i læreboka Differensligninger Diskret Matematikk Fredag 6. ovember 015 Avsitt 8.1 i læreboka Differesligiger I kapittel lærte vi om følger og rekker. Vi studerte både aritmetiske og geometriske følger og rekker. Noe følger og rekker

Detaljer

Eksamen 20.05.2009. REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen 20.05.2009. REA3024 Matematikk R2. Nynorsk/Bokmål Eksame 20052009 REA3024 Matematikk R2 Nyorsk/Bokmål Nyorsk Eksamesiformasjo Eksamestid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Bruk av kjelder: Vedlegg: Framgagsmåte: Rettleiig om vurderiga: 5 timar:

Detaljer

Løsning eksamen S2 våren 2010

Løsning eksamen S2 våren 2010 Løsig eksame S våre 010 Oppgave 1 a) 1) f( ) l 1 f ( ) l l l l ( l 1) ) g ( ) 3e g( ) 3e 3e 6e b) Rekke er geometrisk med Rekke kovergerer. Summe er a1 1 1 s 1 k 1 1 1 1 1 k og oppfller dermed kravet 1

Detaljer

Eksamen REA3028 S2, Våren 2010

Eksamen REA3028 S2, Våren 2010 Eksame REA308 S, Våre 010 Del 1 Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave 1 (6 poeg) a) Deriver fuksjoee: 1) f x x lx f x x lx x x f

Detaljer

Eksamen REA3028 S2, Våren 2011

Eksamen REA3028 S2, Våren 2011 Eksame REA08 S, Våre 0 Del Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave (8 poeg) a) Deriver fuksjoee ) f 5 f 6 5 ) g g ) h l 9 9 6 4 h l

Detaljer

Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte.

Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte. Eksame 20052009 REA3024 Matematikk R2 Nyorsk/Bokmål Bokmål Eksamesiformasjo Eksamestid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Bruk av kilder: Vedlegg: Framgagsmåte: Veiledig om vurderige: 5 timer:

Detaljer

OPPGAVE 4 LØSNINGSFORSLAG OPPGAVE 5 LØSNINGSFORSLAG UTVIKLING AV REKURSIV FORMEL FOR FIGURTALL SOM GIR ANDREGRADSFUNKSJONER

OPPGAVE 4 LØSNINGSFORSLAG OPPGAVE 5 LØSNINGSFORSLAG UTVIKLING AV REKURSIV FORMEL FOR FIGURTALL SOM GIR ANDREGRADSFUNKSJONER OPPGAVE 4 LØSNINGSFORSLAG Tallfølge i f) rektageltallee. Her er de eksplisitte formele R = ( +1) eller R = +. Dette er e adregradsfuksjo. I figurtallsammeheg forutsetter vi at de legste side er (øyaktig)

Detaljer

Eksempeloppgave 2014. REA3028 Matematikk S2 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)

Eksempeloppgave 2014. REA3028 Matematikk S2 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler) Eksempeloppgave 2014 REA3028 Matematikk S2 Eksempel på eksame våre 2015 etter y ordig Ny eksamesordig Del 1: 3 timer (ute hjelpemidler) Del 2: 2 timer (med hjelpemidler) Mistekrav til digitale verktøy

Detaljer

ARBEIDSHEFTE I MATEMATIKK

ARBEIDSHEFTE I MATEMATIKK ARBEIDSHEFTE I MATEMATIKK Temahefte r Hvorda du reger med poteser Detaljerte forklariger Av Matthias Loretze mattegriseforlag.com Opplsig: E potes er e forkortet skrivemåte for like faktorer. E potes består

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 0 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Oppgave Midtveiseksame a) X er e stokastisk variabel

Detaljer

Løsning eksamen R1 våren 2010

Løsning eksamen R1 våren 2010 Løsig eksame R våre 00 Oppgave a) ) f ( ) l f ( ) ' l l l l f ( ) (l ) ) g( ) 4e g( ) 4 e ( ) 4 e ( ) g( ) 4( ) e b) ( ) 4 4 6 P ) P() 4 4 6 8 6 8 6 0 Divisjo med ( ) går opp. 4 4 6 : ( ) 8 4 4 8 6 8 6

Detaljer

2.1 Polynomdivisjon. Oppgave 2.10

2.1 Polynomdivisjon. Oppgave 2.10 . Polyomdivisjo Oppgave. ( 5 + ) : = + + ( + ):( ) 6 + 6 8 8 = + + c) ( + 5 ) : = + 6 6 d) + + + = + + = + + + 8+ ( ):( ) + + + Oppgave. ( + 5+ ):( ) 5 + + = + ( 5 ): 9 + + + = + + + 5 + 6 9 c) ( 8 66

Detaljer

8 + 2 n n 4. 3n 4 7 = 8 3.

8 + 2 n n 4. 3n 4 7 = 8 3. Seksjo 4. Oppgave (). Fi greseverdiee: 8 a) 4 + 4 7 b) 4 +7 5 c) + 7 4 ( ) d) 5 4 44 + 5 4 e) 5 + si() e +6 5 Løsig. Vi vil bruke samme metode som i Eksempel 4..5 fra boke i disse oppgavee. Når vi skal

Detaljer

Eksempeloppgave 2014. REA3026 Matematikk S1 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)

Eksempeloppgave 2014. REA3026 Matematikk S1 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler) Eksempeloppgave 04 REA306 Matematikk S Eksempel på eksame våre 05 etter y ordig Ny eksamesordig Del : 3 timer (ute hjelpemidler) Del : timer (med hjelpemidler) Mistekrav til digitale verktøy på datamaski:

Detaljer

DEL 1. Uten hjelpemidler 500+ er x

DEL 1. Uten hjelpemidler 500+ er x DEL 1 Ute hjelpemidler Oppgave 1 (18 poeg) 500 = + 8 er a) Vis at de deriverte til fuksjoe ( ) O O ( ) = 500+ 16 b) Deriver fuksjoee 1) f( ) = l( ) ) g( ) = e c) Vi har gitt polyomfuksjoe f( ) = 1 + 15

Detaljer

LØSNING: Eksamen 17. des. 2015

LØSNING: Eksamen 17. des. 2015 LØSNING: Eksame 17. des. 2015 MAT100 Matematikk, 2015 Oppgave 1: økoomi a I optimum av T Rx er dt Rx 0 1 som gir d Ix Kx 0 2 dix dix dkx dkx 0 3 4 dvs. greseitekt gresekostad, q.e.d. 5 b Gresekostad ekstrakostade

Detaljer

S2 kapittel 1 Rekker Løsninger til kapitteltesten i læreboka

S2 kapittel 1 Rekker Løsninger til kapitteltesten i læreboka S kapittel Rekker Løsiger til kapittelteste i læreboka A a Det femte og sjette eiffeltallet ser slik ut: b De fire første leddee er det bare å telle opp:,5,9,4 For å komme til este ledd, legger vi til,

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag ..4 EKSAMEN Løsigsforslag Emekode: ITF75 Dato: 6. desember Eme: Matematikk for IT Eksamestid: kl 9. til kl. Hjelpemidler: To A4-ark med valgfritt ihold på begge sider. Kalkulator er ikke tillatt. Faglærer:

Detaljer

Eksamen 21.05.2013. REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen 21.05.2013. REA3024 Matematikk R2. Nynorsk/Bokmål Eksame 21.05.2013 REA3024 Matematikk R2 Nyorsk/Bokmål Nyorsk Eksamesiformasjo Eksamestid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: 5 timar: Del 1 skal leverast i etter 2 timar. Del 2 skal leverast

Detaljer

Mer om utvalgsundersøkelser

Mer om utvalgsundersøkelser Mer om utvalgsudersøkelser I uderkapittel 3.6 i læreboka gir vi e kort iførig i takegage ved utvalgsudersøkelser. Vi gir her e grudigere framstillig av temaet. Populasjo og utvalg Ved e utvalgsudersøkelse

Detaljer

Løsning eksamen R2 våren 2010

Løsning eksamen R2 våren 2010 Løsig eksame R våre 010 Oppgave 1 a) f( x) x cos3x f ( x) x cos 3x x cos 3x x cos 3x x si 3x 3x xcos 3x 3x si 3x b) 1) v v u v u 1 u x x 1 x 5 x 5 x 5xe dx 5x e 5 e dx xe e dx 5 5 1 5 5 x x x x xe e C

Detaljer

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE Eme: Diskret matematikk Gruppe(r): Eksamesoppgave består av: Atall sider (ikl forside): 5 Emekode: FO 9A Dato: 69 Atall oppgaver: Fagasvarlig: Ulf Uttersrud

Detaljer

Løsningsforslag R2 Eksamen 04.06.2012. Nebuchadnezzar Matematikk.net Øistein Søvik

Løsningsforslag R2 Eksamen 04.06.2012. Nebuchadnezzar Matematikk.net Øistein Søvik Løsigsforslag R2 Eksame 6 Vår 04.06.202 Nebuchadezzar Matematikk.et Øistei Søvik Sammedrag De fleste forlagee som gir ut lærebøker til de videregåede skole, gir ut løsigsforslag til tidligere gitte eksameer.

Detaljer

3MX 2007/8 - Kapittel 5: 8. januar 5. februar 2008

3MX 2007/8 - Kapittel 5: 8. januar 5. februar 2008 3MX 00/8 - Kapittel : 8. jauar. februar 008 Pla for skoleåret 00/008: Kapittel 6: 6/ /. Kapittel : / /3. Prøver på eller skoletime etter hvert kapittel. É heildagsprøve i hver termi. Repetisjo, prøver,

Detaljer

Ma Analyse II Øving 5

Ma Analyse II Øving 5 Ma0 - Aalyse II Øvig 5 Øistei Søvik.0.0 Oppgaver 9. Determie whether the give sequece is (a) bouded (above or below), (b) positive or egative (ultimately), (c) icreasig, decreasig, or alteratig, ad (d)

Detaljer

Påliteligheten til en stikkprøve

Påliteligheten til en stikkprøve Pålitelighete til e stikkprøve Om origiale... 1 Beskrivelse... 2 Oppgaver... 4 Løsigsforslag... 4 Didaktisk bakgru... 5 Om origiale "Zuverlässigkeit eier Stichprobe" på http://www.mathe-olie.at/galerie/wstat2/stichprobe/dee

Detaljer

FX-82ES. NY CASIO teknisk / vitenskapelig lommeregner med naturlig tallvindu.

FX-82ES. NY CASIO teknisk / vitenskapelig lommeregner med naturlig tallvindu. ytt NR. 005. årgag FX-8ES NY CASIO tekisk / viteskapelig lommereger med aturlig tallvidu. Det er å mer e 5 år side kalkulatore for alvor ble tatt i bruk i orsk matematikk-udervisig, og de viteskapelige

Detaljer

Formelsamling i matematikk - R2. Vektorer. Innskuddssetningen: Skalarprodukt: Lengde: Normale: Parallelle: P, Q og R på linje: Formelsamling R2

Formelsamling i matematikk - R2. Vektorer. Innskuddssetningen: Skalarprodukt: Lengde: Normale: Parallelle: P, Q og R på linje: Formelsamling R2 Formelsamlig R Formelsamlig i matematikk - R (Uder arbeid...) Ulve.09.0 Vær sill å rapportere evetuelle feil! Her vil jeg prøve å få samlet alle formler jeg meer dere ka ha ytte av både på eksame og i

Detaljer

Utvidet løsningsforslag Eksamen i TMA4100 Matematikk 1, 16/12 2008

Utvidet løsningsforslag Eksamen i TMA4100 Matematikk 1, 16/12 2008 Utvidet løsigsforslag Eksame i TMA4 Matematikk, 6/ 8 Oppgave i) Vi gjør substitusjoe u = si θ og får π/ [ u si θ cos θ dθ = u du = E ae løsigsmetode er π/ si θ cos θ dθ = π/ ] si θ dθ = 4 = 4 ( ( ) ( ))

Detaljer

Kapittel 9: Mer kombinatorikk

Kapittel 9: Mer kombinatorikk MAT00 Disret Matemati Forelesig : Mer ombiatori Roger Atose Istitutt for iformati, Uiversitetet i Oslo Kapittel 9: Mer ombiatori 5. april 009 (Sist oppdatert: 009-04-5 00:06) MAT00 Disret Matemati 5. april

Detaljer

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 12. desember 2008

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 12. desember 2008 Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL. desember 8 EKSAMEN I MATEMATIKK, Utsatt røve Modul 5 studieoeg Tid: 5 timer Ogavesettet er å sider (ikludert formelsamlig).

Detaljer

Econ 2130 uke 15 (HG) Poissonfordelingen og innføring i estimering

Econ 2130 uke 15 (HG) Poissonfordelingen og innføring i estimering Eco 130 uke 15 (HG) Poissofordelige og iførig i estimerig 1 Poissofordelige (i) Tilærmig til biomialfordelige. Regel. ( Poissotilærmelse ) Ata Y ~ bi(, p) E( Y ) = p og var( Y ) = p(1 p). Hvis er stor

Detaljer

S2 kapittel 1 Rekker Utvalgte løsninger oppgavesamlingen

S2 kapittel 1 Rekker Utvalgte løsninger oppgavesamlingen Utvlgte løsiger oppgvesmlige S kpittel Rekker Utvlgte løsiger oppgvesmlige 0 Vi k prøve med differsemetode Differsee mellom leddee utover er 4,6,8, så det er rimelig t differse mellom femte og fjerde ledd

Detaljer

«Uncertainty of the Uncertainty» Del 4 av 6

«Uncertainty of the Uncertainty» Del 4 av 6 «Ucertaity of the Ucertaity» Del 4 av 6 v/rue Øverlad, Traior Elsikkerhet AS Iledig Dette er del fire i artikkelserie om «Ucertaity of the Ucertaity». I dag skal jeg vise deg utledige av formele: σ m s,

Detaljer

2. Bestem nullpunktene til g.

2. Bestem nullpunktene til g. Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL 0. desember 007 EKSAMEN I MATEMATIKK Modul 5 studiepoeg Tid: 5 timer Oppgavesettet er på 9 sider (ikludert formelsamlig).

Detaljer

Tallsystemer. Læringsmål. Posisjonstallsystemer. Potensregning en kort repetisjon 123 = = 7B 16. Forstå posisjonstallsystemer

Tallsystemer. Læringsmål. Posisjonstallsystemer. Potensregning en kort repetisjon 123 = = 7B 16. Forstå posisjonstallsystemer Forstå posisjostallsystemer Lærigsmål Tallsystemer Kue biærtall og heksadesimale tall Kue kovertere mellom ulike tallsystemer: Ti 3 = = 7B 6 (Kapittel 6 + 7.-7.3) Kue ekel regig med biærtall addisjo multiplikasjo

Detaljer

Ukeoppgaver i BtG207 Statistikk, uke 4 : Binomisk fordeling. 1

Ukeoppgaver i BtG207 Statistikk, uke 4 : Binomisk fordeling. 1 Ukeoppgaver i BtG20 Statistikk, uke 4 : Biomisk fordelig. 1 Høgskole i Gjøvik Avdelig for tekologi, økoomi og ledelse. Statistikk Ukeoppgaver uke 4 Biomisk fordelig. Oppgave 1 La de stokastiske variable

Detaljer

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 16. mai 2008

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 16. mai 2008 Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL 6. mai 008 EKSAMEN I MATEMATIKK Modul 5 studiepoeg Tid: 5 timer Oppgavesettet er på 8 sider (ikludert formelsamlig). Hjelpemidler:

Detaljer

2T kapittel 3 Modellering og bevis Utvalgte løsninger oppgavesamlingen

2T kapittel 3 Modellering og bevis Utvalgte løsninger oppgavesamlingen T kapittel 3 Modellerig og bevis Utvalgte løsiger oppgavesamlige 301 a Sitthøyde i 1910 blir 170,0 171, 4 170,7. I 1970 blir de 177,1 179, 4 178,3. b Med som atall år etter 1900 og y som sitthøyde i cetimeter

Detaljer

R2 - Vektorer og rekker

R2 - Vektorer og rekker R2 - Vektorer og rekker Ny versjo: 0..09 Løsigsskisser 0.0.09 I Middels ivå: Flertris typeoppgaver, krever e viss forståelse av hva formlee uttrykker. To lijer er gitt ved: l : x,y,z,0, t2,, m : x,y,z

Detaljer

Løsningsforslag Eksamen MAT112 vår 2011

Løsningsforslag Eksamen MAT112 vår 2011 Løsigsforslag Eksame MAT vår OPPGAVE Gitt følge {a } defiert rekursivt ved a = 5, a + = a + 6, =,,, 3,.... (a) Vis (for eksempel ved iduksjo) at {a } er stregt avtagede og edtil begreset. (b) Avgjør om

Detaljer

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 20. mai 2008

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 20. mai 2008 Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL. mai 8 EKSAMEN I MATEMATIKK Modul 5 studieoeg Tid: 5 timer Ogavesettet er å sider (ikludert formelsamlig). Hjelemidler:

Detaljer

8 (inkludert forsiden og formelsamling) Tegne- og skrivesaker, kalkulator, formelsamling (se vedlagt).

8 (inkludert forsiden og formelsamling) Tegne- og skrivesaker, kalkulator, formelsamling (se vedlagt). Eksamesoppgave våre 011 Ordiær eksame Bokmål Fag: Matematikk Eksamesdato: 10.06.011 Studium/klasse: GLU 5-10 Emekode: MGK00 Eksamesform: Skriftlig Atall sider: 8 (ikludert forside og formelsamlig) Eksamestid:

Detaljer

Matematikk R2. Odd Heir Gunnar Erstad Håvard Moe Per Arne Skrede BOKMÅL

Matematikk R2. Odd Heir Gunnar Erstad Håvard Moe Per Arne Skrede BOKMÅL Matematikk R Odd Heir Guar Erstad Håvard Moe Per Are Skrede BOKMÅL Matematikk R dekker målee i læreplae av 006 for Matematikk R i studiespesialiserede utdaigsprogram H Aschehoug & Co (W Nygaard) 008 utgave

Detaljer

Metoder for politiske meningsmålinger

Metoder for politiske meningsmålinger Metoder for politiske meigsmåliger AV FORSKER IB THOMSE STATISTISK SETRALBYRÅ Beregigsmetodee som brukes i de forskjellige politiske meigsmåliger har vært gjestad for mye diskusjo i dagspresse det siste

Detaljer

H T. Amundsen INNHOLD

H T. Amundsen INNHOLD Itere otater STATISTISK SENTRALBYRÅ. oktober 1980 KORRELASJONSKOEFFISIENTEN - ENDA ENGANG Av H T. Amudse INNHOLD 1. Iledig *****..... * 0 1. Produktmametkorrelasjoskoeffisiete og sammehege med lieær regresjo.

Detaljer

konjugert Reaksjonslikning for syre-basereaksjonen mellom vann og ammoniakk: base konjugert syre Et proton er et hydrogenatom som

konjugert Reaksjonslikning for syre-basereaksjonen mellom vann og ammoniakk: base konjugert syre Et proton er et hydrogenatom som Syrer og r Det fies flere defiisjoer på hva r og r er. Vi skal bruke defiisjoe til Brøsted: E Brøsted er e proto door. E Brøsted er e proto akseptor. 1s 1 Et proto er et hydrogeatom som har mistet sitt

Detaljer

Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte.

Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte. Eksame 20.05.2009 REA3028 Matematikk S2 Nyorsk/Bokmål Bokmål Eksamesiformasjo Eksamestid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Bruk av kilder: Vedlegg: Framgagsmåte: Veiledig om vurderige: 5 timer:

Detaljer

Numeriske metoder: Euler og Runge-Kutta Matematikk 3 H 2016

Numeriske metoder: Euler og Runge-Kutta Matematikk 3 H 2016 Numeriske metoder: Euler og Ruge-Kutta Matematikk 3 H 06 Iledig Differesiallikiger spiller e setral rolle i modellerigsproblemer i igeiør viteskap, matematikk, fsikk, aeroautikk, astroomi, damikk, elastisitet,

Detaljer

Eksamen R2, Våren 2013

Eksamen R2, Våren 2013 Eksame R2, Våre 2013 Oppgave 1 (4 poeg) Deriver fuksjoee a) f x 3cos x b) gx x 6si 7 2x c) hx 3e si3x Oppgave 2 (4 poeg) Bestem itegralet a) variabelskifte 2x dx x 4 2 ved å bruke b) delbrøkoppspaltig

Detaljer

Løsningsforslag ST2301 øving 3

Løsningsforslag ST2301 øving 3 Løsigsforslag ST2301 øvig 3 Kapittel 1 Exercise 11 Et utvalg på 100 idivider trekkes fra e populasjo med tilfeldig parrig. Det ble observert AA 63 idivider av geotype AA, Aa 27, og aa 10. Lag et 95 % kofidesitervall

Detaljer

«Uncertainty of the Uncertainty» Del 5 av 6

«Uncertainty of the Uncertainty» Del 5 av 6 «Ucertaity of the Ucertaity» Del 5 av 6 v/rue Øverlad, Traior Elsikkerhet AS Dette er femte del i artikkelserie om «Ucertaity of the Ucertaity». Jeg skal vise deg utledig av «Ucertaity of the Ucertaity»-formele:

Detaljer

Kap. 9: Inferens om én populasjon

Kap. 9: Inferens om én populasjon 2 ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for matematiske fag Ka. 9: Iferes om é oulasjo Hvis σ er ukjet bytter vi ut σ med s i Ny observator blir t = x μ s/ z = x μ σ/ der s = Σx 2 (Σx)

Detaljer

Løsningsforslag til eksamen

Løsningsforslag til eksamen 7. jauar 6 Løsigsforslag til eksame Emekode: ITF75 Dato: 5. desember 5 Eme: Matematikk for IT Eksamestid: kl 9. til kl. Hjelpemidler: To A4-ark med valgfritt ihold på begge sider. Kalkulator er ikke tillatt.

Detaljer

Konfidensintervall. Notat til STK1110. Ørnulf Borgan, Ingrid K. Glad og Anders Rygh Swensen Matematisk institutt, Universitetet i Oslo.

Konfidensintervall. Notat til STK1110. Ørnulf Borgan, Ingrid K. Glad og Anders Rygh Swensen Matematisk institutt, Universitetet i Oslo. Kofidesitervall Notat til STK1110 Ørulf Borga, Igrid K. Glad og Aders Rygh Swese Matematisk istitutt, Uiversitetet i Oslo August 2007 Formål E valig metode for å agi usikkerhete til et estimat er å berege

Detaljer

Forventningsverdi. MAT0100V Sannsynlighetsregning og kombinatorikk

Forventningsverdi. MAT0100V Sannsynlighetsregning og kombinatorikk MAT0100V Sasylighetsregig og kombiatorikk Forvetigsverdi Sasylighetsfordelige til e tilfeldig variabel X gir sasylighete for de ulike verdiee X ka ata Forvetig, varias og stadardavvik Tilærmig av biomiske

Detaljer

Rente og pengepolitikk 1. Innhold. Forelesningsnotat 9, februar 2015

Rente og pengepolitikk 1. Innhold. Forelesningsnotat 9, februar 2015 Forelesigsotat 9, februar 2015 Rete og pegepolitikk 1 Ihold Rete og pegepolitikk...1 Hvorda virker Norges Baks styrigsrete?...3 Pegemarkedet...3 Etterspørselskaale...4 Valutakurskaale...4 Forvetigskaale...5

Detaljer

ILLUSTRATOR enklere enn noensinne. Merete Jåsund, IGM. making. d e s i

ILLUSTRATOR enklere enn noensinne. Merete Jåsund, IGM. making. d e s i ILLUSTRATOR eklere e oesie Merete Jåsud, IGM maki maki Illustrator eklere e oesie I de siste versjoe av Illustrator er eda flere ti blitt redierbare til siste slutt - e trekk som mer e oe aet som har preet

Detaljer

e n . Videre er det en alternerende følge, da annenhvert ledd er positivt og negativt. Vi ser også at n a n = lim n e n = 0. lim n n 1 n 3n 2 = lim

e n . Videre er det en alternerende følge, da annenhvert ledd er positivt og negativt. Vi ser også at n a n = lim n e n = 0. lim n n 1 n 3n 2 = lim TMA400 Høst 206 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsforslag Øvig 9 9..8 Vi er gitt følge { ( ) } {a }. e De første leddee i følge er a e, a 2 2 e 2, a e, a 4 4

Detaljer

Ukeoppgaver, uke 42, i Matematikk 10, Bestemt integrasjon. 1

Ukeoppgaver, uke 42, i Matematikk 10, Bestemt integrasjon. 1 Ukeoppgaver, uke 2, i Matematikk, Bestemt itegrasjo. Høgskole i Gjøvik Avdelig for igeiørfag Matematikk Ukeoppgaver uke 2 I løpet av uke blir løsigsforslag lagt ut på emeside http://www.hig.o/toel/allmefag/emesider/rea2

Detaljer

1. Egenverdiproblemet.

1. Egenverdiproblemet. Forelesigsotater i matematikk Egeerdier og egeektorer Side Egeerdiproblemet De gruleggede problemstillige Fra de gruleggede matriseregige husker du sikkert at år e ektor multipliseres med e kadratisk matrise

Detaljer

Kap. 9: Inferens om én populasjon

Kap. 9: Inferens om én populasjon 2 ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for matematiske fag Ka. 9: Iferes om é oulasjo Hvis σ er ukjet bytter vi ut σ med s i Ny observator blir t = x μ s/ z = x μ σ/ der s = Σx 2 (Σx)

Detaljer

Fagdag 1 - R1. Torsdag Geometri og vektorregning Johansen og Ulven

Fagdag 1 - R1. Torsdag Geometri og vektorregning Johansen og Ulven Innledning Fagdag 1 - R1 Torsdag 26.08.09 Geometri og vektorregning Johansen og Ulven Den første fagdagen skal fokusere på vektorregning (kapittel 1), geometri (kapittel 6) og bruk av GeoGebra Jeg starter

Detaljer

E K S A M E N : FAG: Matematikk 1 MA-154 LÆRER: MORTEN BREKKE. Klasse(r): Alle Dato: 1. des 11 Eksamenstid, fra-til: 0900-1400

E K S A M E N : FAG: Matematikk 1 MA-154 LÆRER: MORTEN BREKKE. Klasse(r): Alle Dato: 1. des 11 Eksamenstid, fra-til: 0900-1400 UNIVERSITETET I AGDER Grimstad E K S A M E N : FAG: Matematikk MA-54 LÆRER: MORTEN BREKKE Klasse(r): Alle Dato:. des Eksamestid, fra-til: 0900-400 Eksamesoppgave består av følgede iklusive forside Atall

Detaljer

Eksamen 26.05.2010. REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen 26.05.2010. REA3024 Matematikk R2. Nynorsk/Bokmål Eksame 6.05.010 REA304 Matematikk R Nyorsk/Bokmål Nyorsk Eksamesiformasjo Eksamestid: Hjelpemiddel på del 1: Hjelpemiddel på del : Vedlegg: Framgagsmåte: Rettleiig om vurderiga: 5 timar: Del 1 skal leverast

Detaljer

STK1100: Kombinatorikk

STK1100: Kombinatorikk 1100: ombiatorikk auar 2009 Ørulf orga Matematisk istitutt Uiversitetet i Oslo 1 Uiform sasylighetsmodell: t stokastisk forsøk har N utfall Det er de mulige utfallee for forsøket i atar at de N utfallee

Detaljer

Econ 2130 Forelesning uke 11 (HG)

Econ 2130 Forelesning uke 11 (HG) Eco 130 Forelesig uke 11 (HG) Mer om ormalfordelige og setralgreseteoremet Uke 1 1 Fra forrige gag ~ betyr er fordelt som. ~ N( µσ, ) E( ) = µ, og var( ) = σ Normalfordelige er symmetrisk om μ og kotiuerlig

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 5

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 5 ÅMA110 Sasylighetsregig med statistikk, våre 2010 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 12. april Bjør H. Auestad Kp. 6: Hypotesetestig del 4 1/ 59

Detaljer

Forelesning Elkraftteknikk 1, 17.08.2004 Oppdatert 23.08.2004 Skrevet av Ole-Morten Midtgård. HØGSKOLEN I AGDER Fakultet for teknologi

Forelesning Elkraftteknikk 1, 17.08.2004 Oppdatert 23.08.2004 Skrevet av Ole-Morten Midtgård. HØGSKOLEN I AGDER Fakultet for teknologi Forelesig Elkrafttekikk, 7.08.004 Oppdatert 3.08.004 Skreet a Ole-Morte Midtgård HØGSKOEN I AGDER Fakultet for tekologi Komplekse tall og isere Komplekse tall er sært yttige i aalyse a elkraftsystemer.

Detaljer

CONSTANT FINESS SUNFLEX SMARTBOX

CONSTANT FINESS SUNFLEX SMARTBOX Luex terrassemarkiser. Moterig- og bruksavisig CONSTNT FINESS SUNFLEX SMRTBOX 4 5 6 7 8 Markises hovedkompoeter og mål Kombikosoll og plasserig rmklokker og justerig Parallelljusterig Motordrift og programmerig

Detaljer

KLMED8004 Medisinsk statistikk. Del I, høst Estimering. Tidligere sett på. Eksempel hypertensjon

KLMED8004 Medisinsk statistikk. Del I, høst Estimering. Tidligere sett på. Eksempel hypertensjon Tidligere sett på KLMED8004 Medisisk statistikk Del I, høst 008 Estimerig Hvorda kjete sasylighetsfordeliger (biomialfordelig, ormalfordelig) med kjete populasjosparametrer (forvetig, varias osv.) ka gi

Detaljer

Løsningsforslag. Oppgavesettet består av 16 oppgaver. Ved sensur vil alle oppgaver telle like mye med unntak av oppgave 6 som teller som to oppgaver.

Løsningsforslag. Oppgavesettet består av 16 oppgaver. Ved sensur vil alle oppgaver telle like mye med unntak av oppgave 6 som teller som to oppgaver. . mai 5 Løsigsforslag Emekode: ITF75 Dato: 5. desember 4 Eme: Matematikk for IT Eksamestid: kl 9. til kl 3. Hjelpemidler: To A4-ark med valgfritt ihold på begge sider. Kalkulator er ikke tillatt. Faglærer:

Detaljer

Rapport GPS prosjekt - Ryggeheimen sykehjem, Rygge

Rapport GPS prosjekt - Ryggeheimen sykehjem, Rygge Rapport GPS prosjekt - Ryggeheime sykehjem, Rygge Bruk av GPS på sykehjem Elisabeth Refses/ Siv Skaldstad Tidspla:1/3 10 1/10 10. Orgaiserig: Styrigsgruppe: Åse Nilsse, Ove Keeth Kvige, Elisabeth Breistei,

Detaljer

SKADEFRI - oppvarmingsprogram med skadeforebyggende hensikt. Trenerforum

SKADEFRI - oppvarmingsprogram med skadeforebyggende hensikt. Trenerforum SKADEFRI - oppvarmigsprogram med skadeforebyggede hesikt Treerforum Sist oppdatert 21.10.2009 Oppsett for et 2 timers opplegg TEORI + iledede diskusjo (ca. 30-45 mi) PRAKSIS (ca. 75-90 mi) SPILLEKLAR et

Detaljer

Eksempler fra slutten av forrige uke. Eksempler (styrke, dimensjonering,...) Eksempler fra slutten av forrige uke

Eksempler fra slutten av forrige uke. Eksempler (styrke, dimensjonering,...) Eksempler fra slutten av forrige uke Oversikt, del 5 Hypotesetestig, del 4 (oppsummerig fra Hypotesetestig, del 5 Kofidesitervall dimesjoerig Eksempler fra slutte av forrige uke Kofidesitervall p-verdi Eksempler Eksempler (styrke, dimesjoerig,...

Detaljer

Fotball krysser grenser (konfirmanter Ålgård og Gjesdal)

Fotball krysser grenser (konfirmanter Ålgård og Gjesdal) 1 Fotball krysser greser (kofirmater Ålgård og Gjesdal) Øsker du e ide til et praktisk rettet prosjekt/aksjo der kofirmater ka bidra til de fattige dele av verde? Her har du et ferdig opplegg for hvorda

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Sensorveiledning - Obligatorisk oppgave 1310, v15

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Sensorveiledning - Obligatorisk oppgave 1310, v15 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Sesorveiledig - Obligatorisk oppgave 30, v5 Ved sesure tillegges oppgave vekt 20%, oppgave 2 vekt 60%, og oppgave 3 vekt 20%. For å bestå eksame, må besvarelse

Detaljer

R2 - Algebra

R2 - Algebra R - Algebra - 9.09.14 Løsningsskisser Oppgave 1 Gitt 5 tallfølger: 1 1) 1,, 1, 1,... ) 7, 49, 343, 401,... 3 4 3 3) 1, 3, 7, 11,... 4) 1,, 5, 7,... 4 9 16 5) 1, 3, 6, 10, 15, 1,... Skriv opp det eksplisitte

Detaljer

KOMPLEKSE TALL KARL K. BRUSTAD

KOMPLEKSE TALL KARL K. BRUSTAD KOMPLEKSE TALL KARL K BRUSTAD 1 Defiisjoer og otasjo Defiisjo 1 Et kompleks tall er et objekt på forme x + i der x og er reelle tall og kalles heholdsvis realdele og imagiærdele til det komplekse tallet

Detaljer

Registrarseminar 1. april 2003. Ingrid Ofstad Norid

Registrarseminar 1. april 2003. Ingrid Ofstad Norid Registrarsemiar 1. april 2003 Igrid Ofstad Norid Statistikk 570 har fått godkjet søkad om å bli registrar ca. 450 registrarer er aktive i dag 2 5 ye avtaler hver uke på semiaret deltar både registrarer

Detaljer

n 2 +1) hvis n er et partall.

n 2 +1) hvis n er et partall. TMA445 Statistikk Vår 04 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer, blokk II Oppgave Mediae til et datasett, X, er de midterste verdie. Hvis vi har stokastiske

Detaljer

Dersom vi skriver denne reaksjonslikningen ved bruk av kjemiske tegn: side av likningen har vi ett hydrogen mens vi har to på høyre side.

Dersom vi skriver denne reaksjonslikningen ved bruk av kjemiske tegn: side av likningen har vi ett hydrogen mens vi har to på høyre side. Støkiometri (megdeforhold) Det er særs viktig i kjemie å vite om megdeforhold om stoffer. -E hodepie tablett er bra mot hodesmerter, ti passer dårlig. -E sukkerbit i kaffe fugerer, 100 er slitsomt. -100

Detaljer

Estimering og hypotesetesting. Estimering og hypotesetesting. Estimering og hypotesetesting. Kapittel 10. Ett- og toutvalgs hypotesetesting

Estimering og hypotesetesting. Estimering og hypotesetesting. Estimering og hypotesetesting. Kapittel 10. Ett- og toutvalgs hypotesetesting 3 Estimerig og hypotesetestig Kapittel 10 Ett- og toutvalgs hypotesetestig TMA445 V007: Eirik Mo Feome Bilkjørig Høyde til studeter Estimator ˆp = X, X atall ˆµ = X gjeomsittlig høyde. som syes de er flikere

Detaljer

Prøveeksamen 2. Elektronikk 24. mars 2010

Prøveeksamen 2. Elektronikk 24. mars 2010 Prøveeksame 2 Elektroikk 24. mars 21 OPPGAVE 1 E 8 bit D/A-omformer har et utspeigsområde fra til 8 V V 1LSB, der V 1LSB er de aaloge speige som svarer til det mist sigifikate bit (LSB). a) Hvor stor er

Detaljer

Eksamen REA3028 Matematikk S2. Nynorsk/Bokmål

Eksamen REA3028 Matematikk S2. Nynorsk/Bokmål Eksame 9.11.013 REA308 Matematikk S Nyorsk/Bokmål Nyorsk Eksamesiformasjo Eksamestid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast i etter timar. Del skal leverast i seiast

Detaljer

Estimering 1 -Punktestimering

Estimering 1 -Punktestimering Estimerig 1 -Puktestimerig Dekkes av kap. 8, 9.1-9.3 og 9.15/9.14. Vi har til å settpå e rekke forskjellige sasylighetsfordeliger og sett hvorda disse ka brukes til å modellere mage forskjellige typer

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-aturviteskapelige fakultet Eksame i MAT00 Matematikk I Eksamesdag: Fredag 4 jui 00 Tid for eksame: 0900 00 Oppgavesettet er på sider Vedlegg: Tillatte hjelpemidler:

Detaljer

Oversikt over konfidensintervall i Econ 2130

Oversikt over konfidensintervall i Econ 2130 1 HG Revidert april 011 Oversikt over kofidesitervall i Eco 130 Merk at dee oversikte ikke er met å leses istedefor framstillige i Løvås, me som et supplemet. Løvås ieholder mage verdifulle kommetarer

Detaljer

Estimering 1 -Punktestimering

Estimering 1 -Punktestimering Estimerig 1 -Puktestimerig Dekkes av kap. 8, 9.1-9.3 og 9.15/9.14. Vi har til å settpå e rekke forskjellige sasylighetsfordeliger og sett hvorda disse ka brukes til å modellere mage forskjellige typer

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK 5.august 2004

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK 5.august 2004 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 0 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK 5.august 2004 Oppgave Foruresig X er e stokastisk variabel som agir

Detaljer

Termodynamikk og statistisk fysikk Oblig 3

Termodynamikk og statistisk fysikk Oblig 3 FYS160 Termodyamikk og statistisk fysikk Oblig 3 Sidre Raem Bilde 19. september 015 Oppgave 0.3 - ikevekt i et spisystem a Fi multiplisitete til e krystall med atomer og vakaser. Svar: Jeg tolker oppgave

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 Høst 205 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer, blokk II Løsigsskisse Oppgave a) X bi(, p) fordi: Udersøker uavhegige delar av DNA-strukture. Fi for kvar del

Detaljer

Gir vi de resterende 2 oppgavene til én prosess vil alle sitte å vente på de to potensielt tidskrevende prosessene.

Gir vi de resterende 2 oppgavene til én prosess vil alle sitte å vente på de to potensielt tidskrevende prosessene. Figure over viser 5 arbeidsoppgaver som hver tar 0 miutter å utføre av e arbeider. (E oppgave ka ku utføres av é arbeider.) Hver pil i figure betyr at oppgave som blir pekt på ikke ka starte før oppgave

Detaljer

Signifikante sifre = alle sikre pluss ett siffer til

Signifikante sifre = alle sikre pluss ett siffer til Sigifikate siffer og stadardavvik behadles i kap. Disse to emee skal vi ta for oss i dag. Kofidesgreser behadles i kap 4. Dette skal vi ta for oss i osdag. Presetasjo av aalysedata ka gjøres på følgede

Detaljer

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 29. mai 2007

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 29. mai 2007 Høgskole Telemark Avdelg for estetske fag, folkekultur og lærerutdag BOKMÅL 9. ma 7 EKSAMEN I MATEMATIKK, Modul 5 studepoeg Td: 5 tmer Hjelpemdler: Kalkulator og vedlagt formelsamlg (bakerst oppgavesettet).

Detaljer

Relasjonen i kognitiv terapi ved psykosebehandling

Relasjonen i kognitiv terapi ved psykosebehandling Relasjoe i kogitiv terapi ved psykosebehadlig Psykolog Torkil Berge Voksepsykiatrisk avdelig Videre TIPS Nettverkskoferase 22. jauar 2013 Helhetlig og itegrert behadlig PASIENT FAMILIE NÆRMILJØ Symptommestrig

Detaljer