Eksamen REA3028 S2, Våren 2012

Størrelse: px
Begynne med side:

Download "Eksamen REA3028 S2, Våren 2012"

Transkript

1 Eksame REA08 S, Våre 0 Del Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave (4 poeg) a) Deriver fuksjoee ) f f ) g e g e e 4 g e e g e ) h l h l h l h l b) Vi har gitt rekkee ) 4680 Bruk formele for S til å bestemme S 0 a a d a a a s s0 ) Bruk formler og bestem summe av rekke. a a d a a s s0 Eksame REA08 Matematikk S, Våre 0 Side

2 ) 48 Bruk formele for S til å bestemme S 8 8 k s a s k 4) Bestem summe av de uedelige rekke. 4 8 a s S k c) Gitt fuksjoe f ( ) 4 6,, ) Løs likige f 0 f ) Bestem f f f, og teg fortegslije til de deriverte. f f 6 0 f 4 0 Jeg ka da sette opp fortegslije til f ) Bruk fortegslije i ) til å fie evetuelle topp- og bupukter på grafe til f. Fortegslije viser at grafe har et toppukt for 0 f Toppukt 0,0 Eksame REA08 Matematikk S, Våre 0 Side

3 Fortegslije viser at grafe har et bupukt for f 4 6 Bupukt, 4) Teg e skisse av grafe til f. d) Overflate til et tetraeder består av fire likesidede trekater. De ulike sidee er markert med heholdsvis,, og 4 øye. Vi kaster to slike «teriger». La X være summe av atall øye på de to sidee som veder ed. ) Skriv av og fyll ut tabelle: I tabelle til høyre viser varettt gul lije mulige utfall på «terig», og loddrett gul koloe viser mulige utfall på «terig». De hvite feltee viser de 6 mulige utfall til X. Ut fra dee tabelle ka vi sette opp sasylighetsfordelige til X X P X Eksame REA08 Matematikk S, Våre 0 Side

4 ) Bestem forvetigsverdie EX 4 EX EX E X 5 Eksame REA08 Matematikk S, Våre 0 Side 4

5 e) E buss stoppet tre steder på e rute. På første holdeplass kom det på ti bar, fire vokse og tre pesjoister. Til samme betalte disse 5 kroer. På este stoppested kom det på åtte bar, tre vokse og to pesjoister. Disse betalte til samme 70 kroer. På siste holdeplass kom det på i bar, fire vokse og tre pesjoister. Disse betalte til samme 5 kroer. Sett opp og løs et likigssystem, og bestem billettprise for bar, vokse og pesjoister. Jeg lar billettprise for bar være kroer, for vokse y kroer og for pesjoister z kroer. Opplysigee i oppgave gir da likigssettet 0 4y z 5 8 y z y z 5 Jeg løser likigssettet og fier billettprisee. 8 y z 70 z 85 4 y 0 4y 85 4 y 5 0 y 4y60 6 y y 85 4 y 5 y 40 4 y 60 y y z Billettprise for bar er 0 kroer, for vokse 0 kroer og for pesjoister 5 kroer. Eksame REA08 Matematikk S, Våre 0 Side 5

6 Del Tid: timer Hjelpemidler: Alle hjelpemidler er tillatt, med utak av Iterett og adre verktøy som tillater kommuikasjo. Oppgave (5 poeg) Tall som ka skrives på forme T 4, kalles for trekattall. a) Skriv opp de fem første trekattallee. T T T 6 T T Vi orgaiserer oddetallee i e talltrekat slik tabelle edefor viser. a a a S S b) Skriv av og fyll ut tabelle Bruk møsteret som framkommer, til å fie e formel for a. Av koloe fire ser vi at a c) Bruk møsteret til å forklare at vi ka skrive S S 9 S S S Eksame REA08 Matematikk S, Våre 0 Side 6

7 Møsteret viser at for alle aturlige tall fra og med til og med 5 ka vi skrive Oppgave (8 poeg) Lie arver kroer og vil spare pegee til e y bil. I begyelse av et år setter hu dette beløpet på e koto med fast årlig rete på 4,5 %. I tillegg bestemmer hu seg for å sette 000 kroer i på kotoe i begyelse av hvert av de este åree. a) Hvor mye peger står det på kotoe etter år? Vi atar at «etter år» betyr like før det fjerde året begyer, altså før hu har satt i det tredje beløpet på 000. Summe av de to iskuddee på 000 kroer, år beløpee har stått i bake i heholdsvis to og ett år, utgjør e geometrisk rekke med a 000,045 og k,045. I tillegg har beløpet på kroer blitt forretet i tre år. Samlet iskudd etter tre år fier vi ved å bruke CAS-verktøyet i GeoGebra Samlet iskudd etter tre år er 9 76 kroer. Eksame REA08 Matematikk S, Våre 0 Side 7

8 b) Hvor mage år må hu spare dersom det skal stå kroer på kotoe? Utrykket i a) viser samlet iskudd etter år. Når vi bytter ut med, så viser uttrykket samlet iskudd etter år. Når det samlede iskuddet skal være kroer , får vi e likig som ka løses ved CAS-verktøyet i GeoGebra Utregige viser at litt etter 6 år står det kroer på kotoe. c) For å få råd til «drømmebile» må hu likevel låe kroer til e rete på 6,0 % per år. Hu vil bruke 5 år på å betale ed lået. Det første avdraget betaler hu ett år etter låeopptaket. Hvor mye må hu betale hvert år? Vi kaller det årlige termibeløpet for. For å sammelike verdie av termibeløpee med verdie av låebeløpet, omreger vi alle termibeløpee til verdie de ville hatt da lået ble tatt opp. Samlet åverdi av termibeløpee utgjør e geometrisk rekke med fem ledd hvor a og,06 k. Summe av dee rekke skal være lik lået på kroer ,06 Vi får e likig som ka løses ved CAS-verktøyet i GeoGebra Eksame REA08 Matematikk S, Våre 0 Side 8

9 Hu må betale kroer hvert år. d) Lie syes at det årlige beløpet blir altfor høyt. Hu vil betale halvparte så mye hvert år. Hvor lag tid tar det før lået da er edbetalt, dersom rete fortsatt er 6,0 % per år? Vi erstatter med halvparte av og lar atall år være ukjet i likige ovefor. Vi får e likig som ka løses ved CAS-verktøyet i GeoGebra Det tar litt over år før lået da er edbetalt. Oppgave 4 (8 poeg) E fuksjo f er gitt ved 000,90,5 f 0 e ,0 a) Vis ved regig at f ka skrives på forme f e 0, ,90,5 0 e 0 e e 0 50e 5,0e,9 0,5 0,5 0,5 f Fuksjosverdiee til f er atall idivider som har, eller har hatt, e sykdom dager etter at sykdomme ble registrert første gag. b) Bestem hvor mage som hadde sykdomme da de ble registrert første gag, ifølge dee modelle. Jeg defierer fuksjoe f i GeoGebra og reger ut f 0 Det var ca. 7 idivider som hadde sykdomme første gag de ble registrert. Eksame REA08 Matematikk S, Våre 0 Side 9

10 c) Teg grafe til f. Hvor mage idivider vil få sykdomme i det lage løp? 00 5,0 e 0,5 f Når blir veldig stor, vil evere i fuksjosuttrykket for går mot 00. Det betyr at 00 idivider vil få sykdomme i det lage løp. Dette går også fram av grafe. f gå mot og dermed vil d) Bestem hvor mage som fikk sykdomme de sjette dage etter at sykdomme ble registrert første gag. f Atall som fikk sykdomme de sjette dage er forskjelle mellom hvor mage som har eller har hatt sykdomme de sjette dage og hvor mage som har eller har hatt sykdomme de femte dage. Grafe i GeoGebra viser at det var persoer. Eksame REA08 Matematikk S, Våre 0 Side 0

11 Oppgave 5 (7 poeg) PISA er e iterasjoal udersøkelse som blir gjeomført hvert tredje år blat skoleelever i e rekke lad. Ved udersøkelse i 009 var det med elever fra Norge. I aturfag scoret de orske elevee gjeomsittlig 500 poeg. Det var øyaktig likt det iterasjoale gjeomsittet. Stadardavviket for orske elever var 90 poeg. Vi trekker tilfeldig ut e elev blat de orske deltakere. I oppgavee a) og b) ka du rege med at poegsumme til eleve er ormalfordelt med forvetigsverdi 500 poeg og stadardavvik lik 90 poeg. a) Bestem sasylighete for at eleve scoret mist 650 poeg. Jeg bruker sasylighetskalkulatore i GeoGebra. Jeg velger ormalfordelig, setter forvetigsverdie til 500 og stadardavviket til 90. Jeg velger høyresidig sasylighet med 650 poeg som edre grese. Sasylighete for at eleve scoret mist 650 poeg er 4,78 %. b) Bestem sasylighete for at eleve scoret mellom 475 og 55 poeg. Jeg velger å itervall og setter i edre og øvre grese poegitervallet. Sasylighete for at eleve scoret mellom 475 og 55 poeg er 6, %. Eksame REA08 Matematikk S, Våre 0 Side

12 I virkelighete kjeer vi ikke forvetet poegsum for orske elever. Vi vet bare at gjeomsittet var 500 poeg for de elevee som var med i udersøkelse. c) Er det grulag for å si at orske elever var bedre e elever fra lad som scoret 495 poeg? Velg selv sigifikasivå. Nullhypotese, H 0 : Norske elever er like gode som elever fra lad som scoret 495 poeg Alterativ hypotese, H: Norske elever er bedre e elever fra adre lad som scoret 495 poeg. Jeg velger et sigifikasivå på 0, %. Vi skal være rimelig sikre før vi kokluderer med at vi er bedre. Vi atar altså at poegsumme til elevee er ormalfordelt med forvetigsverdi lik 495 poeg og med stadardavvik på 90 poeg. Da er gjeomsittspoegsumme til e stikkprøve med elever ormalfordelt med forvetigsverdi lik 495 poeg og med stadardavvik på 90, 4700 poeg. Normalfordeligsfuksjoe gir P - verdie P Gjeomsittspoegsumme 500 0,000 0,0%. Det betyr at det bare er 0,0 % sasylig at poegsumme 500 ble oppådd ret tilfeldig. P - verdie på 0,0 % er midre e sigifikasivået på 0, % og gir dermed grulag for å forkaste ullhypotese. Det er altså gru til å si at orske elever er bedre e elever fra lad som scoret 495 poeg. Eksame REA08 Matematikk S, Våre 0 Side

13 Oppgave 6 (8 poeg) E bil kjører km i løpet av t timer, der er gitt ved 0,4 t t 80t 0e 0 a) Hvor lagt kjører bile i løpet av de første halvtime? Jeg defierer fuksjoe t i et digitalt verktøy og reger ut 0.5. Bile kjører 5 km de første halvtime. b) Bruk digitalt verktøy, og bestem hvor lag tid bile bruker på de første 500 km. Dette viser at bile bruker 6 timer og 6 miutter på de første 500 km. Det samlede besiforbruket b etter å ha kjørt km er gitt ved der 0,5 0,07 b e b er målt i liter. c) Bestem b. Forklar hvilke derivasjosregler du har brukt. Hva er de praktiske betydige av tallet b 0? Jeg defierer fuksjoe b i GeoGebra og reger ut b. Jeg kom fram til samme uttrykk ved å rege for håd. Da brukte jeg produktregele og kjereregele i lije to edefor. Eksame REA08 Matematikk S, Våre 0 Side

14 0,5 0,07 0,5 0,5 b e b 0,07 e 0,07 e 0,5 Produktregele og Kjereregele b 0,07 0,07e 0,05 e b ,5 0,5 0,5 0,5 e e 00e 0,5 0, ,5 00e 00 e 0,5 e e b Jeg bruker GeoGebra og reger b 0 e b 0 forteller tilærmet hvor mye besi som brukes de este kilometere. 0,07 liter per kilometer tilsvarer 0,7 liter per mil. Besiforbruket etter 0 km er 0,7 liter per mil. Det ka vises at besiforbruket f målt i liter per time etter t timer er f t b t d) Bestem besiforbruket per miutt år bile har kjørt i e halv time. Utregiger med digitalt verktøy viser at besiforbruket etter e halv time er L L 4,9 0,08 t miutt Eksame REA08 Matematikk S, Våre 0 Side 4

Eksamen REA3028 S2, Våren 2012

Eksamen REA3028 S2, Våren 2012 Eksame REA3028 S2, Våre 2012 Del 1 Tid: 2 timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave 1 (24 poeg) a) Deriver fuksjoee 1) 3 f x x 2x 3 2) 2 2

Detaljer

Eksamen REA3028 S2, Våren 2011

Eksamen REA3028 S2, Våren 2011 Eksame REA08 S, Våre 0 Del Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave (8 poeg) a) Deriver fuksjoee ) f 5 f 6 5 ) g g ) h l 9 9 6 4 h l

Detaljer

Eksamen REA3028 S2, Våren 2010

Eksamen REA3028 S2, Våren 2010 Eksame REA308 S, Våre 010 Del 1 Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave 1 (6 poeg) a) Deriver fuksjoee: 1) f x x lx f x x lx x x f

Detaljer

Eksamen S2, Høsten 2013

Eksamen S2, Høsten 2013 Eksame S, Høste 013 Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler. Oppgave 1 (4 poeg) Deriver fuksjoee 1 x a) fx b) gx 5x 1 5 c) hx x e x 3 Oppgave (5 poeg)

Detaljer

Eksamen REA3028 S2, Våren 2010

Eksamen REA3028 S2, Våren 2010 Eksame REA308 S, Våre 010 Del 1 Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave 1 (6 poeg) a) Deriver fuksjoee: 1) f xx lx ) gx 3 e x b) Gitt

Detaljer

Eksamen R2, Høsten 2010

Eksamen R2, Høsten 2010 Eksame R, Høste 00 Del Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave (6 poeg) a) Deriver fuksjoee ) f l f ( ) l l (l ) ) g( ) si cos f si

Detaljer

Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt.

Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Tid: 3 timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave (3 poeg) Deriver fuksjoee a) f( ) cos5 f 5 si5 0 si5 g e si Vi bruker produktregele for derivasjo,

Detaljer

Eksempeloppgave 2014. REA3028 Matematikk S2 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)

Eksempeloppgave 2014. REA3028 Matematikk S2 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler) Eksempeloppgave 2014 REA3028 Matematikk S2 Eksempel på eksame våre 2015 etter y ordig Ny eksamesordig Del 1: 3 timer (ute hjelpemidler) Del 2: 2 timer (med hjelpemidler) Mistekrav til digitale verktøy

Detaljer

DEL 1. Uten hjelpemidler 500+ er x

DEL 1. Uten hjelpemidler 500+ er x DEL 1 Ute hjelpemidler Oppgave 1 (18 poeg) 500 = + 8 er a) Vis at de deriverte til fuksjoe ( ) O O ( ) = 500+ 16 b) Deriver fuksjoee 1) f( ) = l( ) ) g( ) = e c) Vi har gitt polyomfuksjoe f( ) = 1 + 15

Detaljer

Algebra S2, Prøve 2 løsning

Algebra S2, Prøve 2 løsning Algebra S, Prøve løsig Del Tid: 90 mi Hjelpemidler: Skrivesaker Oppgave I rekkee edefor får du oppgitt a og e rekursiv formel for a. Du skal. skrive opp de fire første leddee og avgjøre om rekka er aritmetisk,

Detaljer

Løsning R2-eksamen høsten 2016

Løsning R2-eksamen høsten 2016 Løsig R-eksame høste 016 Tid: 3 timer Hjelpemidler: Valige skrivesaker, lijal med cetimetermål og vikelmåler er tillatt. Oppgave 1 (4 poeg) Deriver fuksjoee a) ( ) 3cos f( x) 3 six 6six f x x b) gx ( )

Detaljer

Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte.

Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte. Eksame 20052009 REA3024 Matematikk R2 Nyorsk/Bokmål Bokmål Eksamesiformasjo Eksamestid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Bruk av kilder: Vedlegg: Framgagsmåte: Veiledig om vurderige: 5 timer:

Detaljer

Eksempeloppgave 2014. REA3026 Matematikk S1 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)

Eksempeloppgave 2014. REA3026 Matematikk S1 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler) Eksempeloppgave 04 REA306 Matematikk S Eksempel på eksame våre 05 etter y ordig Ny eksamesordig Del : 3 timer (ute hjelpemidler) Del : timer (med hjelpemidler) Mistekrav til digitale verktøy på datamaski:

Detaljer

Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte.

Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte. Eksame 20.05.2009 REA3028 Matematikk S2 Nyorsk/Bokmål Bokmål Eksamesiformasjo Eksamestid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Bruk av kilder: Vedlegg: Framgagsmåte: Veiledig om vurderige: 5 timer:

Detaljer

Terminprøve R2 Høsten 2014 Løsning

Terminprøve R2 Høsten 2014 Løsning Termiprøve R Høste 04 Løsig Del Tid: 3 timer Hjelpemidler: Skrivesaker Oppgave (6 poeg) E flate i rommet er gitt ved likige: x 4x y 6y z 8z 0 0 a) Vis at puktet P3, 5, ligger på flate Puktet P3, 5, ligger

Detaljer

Eksamen R2, Våren 2010

Eksamen R2, Våren 2010 Eksame R, Våre 010 Del 1 Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave 1 a) Deriver fuksjoe gitt ved f x x cos 3 x b) Bestem itegralee 1)

Detaljer

Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål Eksame 6.05.010 REA304 Matematikk R Nyorsk/Bokmål Bokmål Eksamesiformasjo Eksamestid: Hjelpemidler på Del 1: Hjelpemidler på Del : Vedlegg: Framgagsmåte: Veiledig om vurderige: 5 timer: Del 1 skal leveres

Detaljer

Eksamen REA3028 Matematikk S2. Nynorsk/Bokmål

Eksamen REA3028 Matematikk S2. Nynorsk/Bokmål Eksame 9.11.013 REA308 Matematikk S Nyorsk/Bokmål Nyorsk Eksamesiformasjo Eksamestid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast i etter timar. Del skal leverast i seiast

Detaljer

Eksamen REA3028 Matematikk S2. Nynorsk/Bokmål

Eksamen REA3028 Matematikk S2. Nynorsk/Bokmål Eksame 20.05.2009 REA3028 Matematikk S2 Nyorsk/Bokmål Nyorsk Eksamesiformasjo Eksamestid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Bruk av kjelder: Vedlegg: Framgagsmåte: Rettleiig om vurderiga: 5

Detaljer

R2 eksamen våren 2018

R2 eksamen våren 2018 R eksame våre 08 DEL Ute hjelpemidler Oppgave (3 poeg) Deriver fuksjoee a) f ( x) = cos ( x ) b) g ( x) = x si x Oppgave (5 poeg) Bestem itegralee a) ( 4x + 3 ) b) 4x l x dx x dx c) 0 x dx x + 4 Oppgave

Detaljer

Statistikk og økonomi, våren 2017

Statistikk og økonomi, våren 2017 Statistikk og økoomi, våre 07 Obligatorisk oppgave 6 Løsigsforslag Oppgave E terig kastes 0 gager, og det registreres hvor mage 6-ere som oppås i løpet av disse 0 kastee. Vi ka kalle atall 6-ere i løpet

Detaljer

Terminprøve R2 Høsten 2014

Terminprøve R2 Høsten 2014 Termiprøve R Høste 04 Del Tid: 3 timer Hjelpemidler: Skrivesaker Oppgave (6 poeg) E flate i rommet er gitt ved likige: x 4x y 6y z 8z 0 0 a) Vis at puktet P3, 5, ligger på flate b) Vis at dette er e kuleflate

Detaljer

S2 kapittel 1 Rekker Løsninger til innlæringsoppgavene

S2 kapittel 1 Rekker Løsninger til innlæringsoppgavene Løsiger til ilærigsoppgavee kapittel Rekker Løsiger til ilærigsoppgavee a Vi ser at differase mellom hvert ledd er 4, så vi får det este leddet ved å legge til 4 Det este leddet blir altså 6 + 4 = 0 b

Detaljer

Del1. Oppgave 1. a) Deriver funksjonene: b) Gitt den uendelige rekken. Avgjør om rekken konvergerer, og bestem eventuelt summen av rekken.

Del1. Oppgave 1. a) Deriver funksjonene: b) Gitt den uendelige rekken. Avgjør om rekken konvergerer, og bestem eventuelt summen av rekken. Del1 Oppgave 1 a) Deriver fuksjoee: 1) fx ( ) x lx ) g x 3e x b) Gitt de uedelige rekke 1 1 1 4 Avgjør om rekke kovergerer, og bestem evetuelt summe av rekke. c) Sasylighetsfordelige til e stokastisk variabel

Detaljer

Eksamen R2, Våren 2013

Eksamen R2, Våren 2013 Eksame R2, Våre 2013 Oppgave 1 (4 poeg) Deriver fuksjoee a) f x 3cos x b) gx x 6si 7 2x c) hx 3e si3x Oppgave 2 (4 poeg) Bestem itegralet a) variabelskifte 2x dx x 4 2 ved å bruke b) delbrøkoppspaltig

Detaljer

Eksamen 21.05.2013. REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen 21.05.2013. REA3024 Matematikk R2. Nynorsk/Bokmål Eksame 21.05.2013 REA3024 Matematikk R2 Nyorsk/Bokmål Nyorsk Eksamesiformasjo Eksamestid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: 5 timar: Del 1 skal leverast i etter 2 timar. Del 2 skal leverast

Detaljer

Eksamen R2, Va ren 2013

Eksamen R2, Va ren 2013 Eksame R, Va re 013 Oppgave 1 (4 poeg) Deriver fuksjoee a) f x 3cos x f x 3 six 3si x b) gx x 6si 7 Bruker kjereregele på uttrykket si x der og Vi har da guu siu u cosu cos x gx 6cos x 6 cos x u x g u

Detaljer

Løsning eksamen S2 våren 2010

Løsning eksamen S2 våren 2010 Løsig eksame S våre 010 Oppgave 1 a) 1) f( ) l 1 f ( ) l l l l ( l 1) ) g ( ) 3e g( ) 3e 3e 6e b) Rekke er geometrisk med Rekke kovergerer. Summe er a1 1 1 s 1 k 1 1 1 1 1 k og oppfller dermed kravet 1

Detaljer

Mer om utvalgsundersøkelser

Mer om utvalgsundersøkelser Mer om utvalgsudersøkelser I uderkapittel 3.6 i læreboka gir vi e kort iførig i takegage ved utvalgsudersøkelser. Vi gir her e grudigere framstillig av temaet. Populasjo og utvalg Ved e utvalgsudersøkelse

Detaljer

Introduksjon. Hypotesetesting / inferens (kap 3) Populasjon og utvalg. Populasjon og utvalg. Populasjonsvarians

Introduksjon. Hypotesetesting / inferens (kap 3) Populasjon og utvalg. Populasjon og utvalg. Populasjonsvarians Hypotesetestig / iferes (kap ) Itroduksjo Populasjo og utvalg Statistisk iferes Utvalgsfordelig (samplig distributio) Utvalgsfordelige til gjeomsittet Itroduksjo Vi øsker å få iformasjo om størrelsee i

Detaljer

Kap. 9: Inferens om én populasjon. Egenskaper ved t-fordelingen. ST0202 Statistikk for samfunnsvitere. I Kapittel 8 brukte vi observatoren

Kap. 9: Inferens om én populasjon. Egenskaper ved t-fordelingen. ST0202 Statistikk for samfunnsvitere. I Kapittel 8 brukte vi observatoren 2 Kap. 9: Iferes om é populasjo I Kapittel 8 brukte vi observatore z = x μ σ/ for å trekke koklusjoer om μ. Dette krever kjet σ (urealistisk). ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for

Detaljer

Eksamen 20.05.2009. REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen 20.05.2009. REA3024 Matematikk R2. Nynorsk/Bokmål Eksame 20052009 REA3024 Matematikk R2 Nyorsk/Bokmål Nyorsk Eksamesiformasjo Eksamestid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Bruk av kjelder: Vedlegg: Framgagsmåte: Rettleiig om vurderiga: 5 timar:

Detaljer

S2 kapittel 1 Rekker Løsninger til kapitteltesten i læreboka

S2 kapittel 1 Rekker Løsninger til kapitteltesten i læreboka S kapittel Rekker Løsiger til kapittelteste i læreboka A a Det femte og sjette eiffeltallet ser slik ut: b De fire første leddee er det bare å telle opp:,5,9,4 For å komme til este ledd, legger vi til,

Detaljer

2 Algebra R2 Oppgaver

2 Algebra R2 Oppgaver 2 Algebra R2 Oppgaver 2 Tallfølger 2 22 Tallrekker 8 23 Uedelige geometriske rekker 5 24 Iduksjosbevis 20 25 Eksamesoppgaver 2 Øvigsoppgaver Stei Aaese og Olav Kristese/NDLA Eksamesoppgavee er hetet fra

Detaljer

211.7% 2.2% 53.0% 160.5% 30.8% 46.8% 17.2% 11.3% 38.7% 0.8%

211.7% 2.2% 53.0% 160.5% 30.8% 46.8% 17.2% 11.3% 38.7% 0.8% Prøve-eksame II MET 1190 Statistikk Dato 31. mai 2019 kl 1100-1400 Alle svar skal begrues. Når besvarelse evalueres, blir det lagt vekt på at framgagsmåte og resultat preseteres så klart, presist og kortfattet

Detaljer

Del1. b) 1) Gittrekka 2 4 6 8 Finnleddnummer20 ogsummenavde20førsteleddene.

Del1. b) 1) Gittrekka 2 4 6 8 Finnleddnummer20 ogsummenavde20førsteleddene. Del1 Oppgave 1 a) Deriver fuksjoee: 1) fx ( ) x 2 1 x 2 1 2) g x x 2 2 e x b) 1) Gittrekka 2 4 6 8 Fileddummer20 ogsummeavde20førsteleddee. 1 1 2) Gitt de uedelige rekka 2 1 2 4 Avgjør om rekka kovergerer.

Detaljer

TMA4240 Statistikk Høst 2009

TMA4240 Statistikk Høst 2009 TMA440 Statistikk Høst 009 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b4 Løsigsskisse Oppgave Øsker å fie 99% kofidesitervall for µ µ år vi atar ormalfordeliger

Detaljer

Løsningsforslag til eksamen i STK desember 2010

Løsningsforslag til eksamen i STK desember 2010 Løsigsforslag til eksame i STK0 0. desember 200 Løsigsforslaget har med flere detaljer e det vil bli krevd til eksame. Oppgave a Det er tilpasset e multippel lieær regresjosmodell av forme β 0 + β x i

Detaljer

Kap. 9: Inferens om én populasjon

Kap. 9: Inferens om én populasjon 2 ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for matematiske fag Ka. 9: Iferes om é oulasjo Hvis σ er ukjet bytter vi ut σ med s i Ny observator blir t = x μ s/ z = x μ σ/ der s = Σx 2 (Σx)

Detaljer

Forventningsverdi. MAT0100V Sannsynlighetsregning og kombinatorikk

Forventningsverdi. MAT0100V Sannsynlighetsregning og kombinatorikk MAT0100V Sasylighetsregig og kombiatorikk Forvetigsverdi Sasylighetsfordelige til e tilfeldig variabel X gir sasylighete for de ulike verdiee X ka ata Forvetig, varias og stadardavvik Tilærmig av biomiske

Detaljer

2 Algebra. Innhold. Algebra R2

2 Algebra. Innhold. Algebra R2 Algebra Ihold. Tallfølger... 3 Formler som beskriver tallfølger... 5 Aritmetiske tallfølger... 9 Geometriske tallfølger... 0. Tallrekker... Aritmetiske rekker... 3 Geometriske rekker... 6 Praktiske problemer

Detaljer

8 (inkludert forsiden og formelsamling) Tegne- og skrivesaker, kalkulator, formelsamling (se vedlagt).

8 (inkludert forsiden og formelsamling) Tegne- og skrivesaker, kalkulator, formelsamling (se vedlagt). Eksamesoppgave våre 011 Ordiær eksame Bokmål Fag: Matematikk Eksamesdato: 10.06.011 Studium/klasse: GLU 5-10 Emekode: MGK00 Eksamesform: Skriftlig Atall sider: 8 (ikludert forside og formelsamlig) Eksamestid:

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK 5.august 2004

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK 5.august 2004 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 0 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK 5.august 2004 Oppgave Foruresig X er e stokastisk variabel som agir

Detaljer

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>. 1 ECON130: EKSAMEN 013 VÅR - UTSATT PRØVE TALLSVAR. Det abefales at de 9 deloppgavee merket med A, B, teller likt uasett variasjo i vaskelighetsgrad. Svaree er gitt i

Detaljer

X = 1 5. X i, i=1. som vil være normalfordelt med forventningsverdi E( X) = µ og varians Var( X) = σ 2 /5. En rimelig estimator for variansen er

X = 1 5. X i, i=1. som vil være normalfordelt med forventningsverdi E( X) = µ og varians Var( X) = σ 2 /5. En rimelig estimator for variansen er Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalte oppgaver 11, blokk II Løsigsskisse Oppgave 1 a) E rimelig estimator for forvetigsverdie µ er gjeomsittet X = 1 X i, som

Detaljer

LØSNING, EKSAMEN I STATISTIKK, TMA4240, DESEMBER Anta at sann porøsitet er r. Måling med utstyret gir da X n(x; r, 0,03).

LØSNING, EKSAMEN I STATISTIKK, TMA4240, DESEMBER Anta at sann porøsitet er r. Måling med utstyret gir da X n(x; r, 0,03). LØSNING, EKSAMEN I STATISTIKK, TMA440, DESEMBER 006 OPPGAVE 1 Ata at sa porøsitet er r. Målig med utstyret gir da X (x; r, 0,03). a) ( ) X r P(X > r) P 0,03 > 0 P(Z > 0) 0,5. ( X r P(X r > 0,05) P 0,03

Detaljer

LØSNINGSFORSLAG TILEKSAMEN I FAG TMA4240/TMA4245 STATISTIKK 10. august 2005

LØSNINGSFORSLAG TILEKSAMEN I FAG TMA4240/TMA4245 STATISTIKK 10. august 2005 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 8 LØSNINGSFORSLAG TILEKSAMEN I FAG TMA440/TMA445 STATISTIKK 0. august 005 Oppgave Smeltepuktsbestemmelse a) Vi jobber i dette

Detaljer

5 y y! e 5 = = y=0 P (Y < 5) = P (Y 4) = 0.44,

5 y y! e 5 = = y=0 P (Y < 5) = P (Y 4) = 0.44, Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalte oppgaver 9, blokk II Løsigsskisse Oppgave a) Vi lar her Y være atall fugler som kolliderer med vidmølla i løpet av de gitte

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalt øvig 11 Løsigsskisse Oppgave 1 a) E rimelig estimator for forvetigsverdie µ er gjeomsittet X = 1 X i, som vil være ormalfordelt

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 5. Hypotesetesting, del 5

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 5. Hypotesetesting, del 5 ÅMA11 Sasylighetsregig med statistikk, våre 7 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 26. mars Bjør H. Auestad Kp. 6: Hypotesetestig del 5 1/ 59 Bjør

Detaljer

Del1. c) Nedenforerdetgitttoutsagn.Skrivavutsagneneibesvarelsen.Iboksenmellom utsagneneskaldusetteinnettavsymbolene, eller.

Del1. c) Nedenforerdetgitttoutsagn.Skrivavutsagneneibesvarelsen.Iboksenmellom utsagneneskaldusetteinnettavsymbolene, eller. Del1 Oppgave 1 a) Deriver fuksjoee 1) ) f ( ) l g ( ) 4e b) Vi har polyomfuksjoe P ( ) 4 4 16. 1) Reg ut P (). Bruk polyomdivisjo til å faktorisere uttrykket P( ) i førstegradsfaktorer. ) Løsulikhete P

Detaljer

2. Bestem nullpunktene til g.

2. Bestem nullpunktene til g. Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL 0. desember 007 EKSAMEN I MATEMATIKK Modul 5 studiepoeg Tid: 5 timer Oppgavesettet er på 9 sider (ikludert formelsamlig).

Detaljer

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 16. mai 2008

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 16. mai 2008 Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL 6. mai 008 EKSAMEN I MATEMATIKK Modul 5 studiepoeg Tid: 5 timer Oppgavesettet er på 8 sider (ikludert formelsamlig). Hjelpemidler:

Detaljer

Løsning eksamen R2 våren 2010

Løsning eksamen R2 våren 2010 Løsig eksame R våre 010 Oppgave 1 a) f( x) x cos3x f ( x) x cos 3x x cos 3x x cos 3x x si 3x 3x xcos 3x 3x si 3x b) 1) v v u v u 1 u x x 1 x 5 x 5 x 5xe dx 5x e 5 e dx xe e dx 5 5 1 5 5 x x x x xe e C

Detaljer

Bokmål OPPGAVE 1. a) Deriver funksjonene: b) Finn integralene ved regning: c) Løs likningen ved regning, og oppgi svaret som eksakte verdier: + =

Bokmål OPPGAVE 1. a) Deriver funksjonene: b) Finn integralene ved regning: c) Løs likningen ved regning, og oppgi svaret som eksakte verdier: + = OPPGAVE a) Deriver fuksjoee: ) f ( x) = 3six+ cosx ) gx ( ) = six cosx b) Fi itegralee ved regig: ) ) e 3e x d x l xd x Tips: l xdx= l xdx c) Løs likige ved regig, og oppgi svaret som eksakte verdier:

Detaljer

DEL 1. Uten hjelpemidler. Oppgave 1 (5 poeng) Oppgave 2 (5 poeng) Oppgave 3 (4 poeng) x x. Deriver funksjonene. a) f( x) 2 sin 3x. Bestem integralene

DEL 1. Uten hjelpemidler. Oppgave 1 (5 poeng) Oppgave 2 (5 poeng) Oppgave 3 (4 poeng) x x. Deriver funksjonene. a) f( x) 2 sin 3x. Bestem integralene DEL 1 Ute hjelpemidler Oppgave 1 (5 poeg) Deriver fuksjoee a) f( x) si 3x b) c) si x g ( x) x h( x) x cos x Oppgave (5 poeg) Bestem itegralee a) 3 ( 3 ) d x x x b) xe x dx c) x x 1 dx Oppgave 3 (4 poeg)

Detaljer

TMA4245 Statistikk Eksamen mai 2017

TMA4245 Statistikk Eksamen mai 2017 TMA445 Statistikk Eksame mai 07 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsskisse Oppgave a Når vi reger ut disse tre sasylighetee må ma huske på at de mulige verdiee

Detaljer

Kapittel 8: Estimering

Kapittel 8: Estimering Kaittel 8: Estimerig Estimerig hadler kort sagt om hvorda å aslå verdie å arametre som,, og dersom disse er ukjete. like arametre sier oss oe om oulasjoe vi studerer (dvs om alle måliger av feomeet som

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008 Kp. 6, del 5

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008 Kp. 6, del 5 ÅMA110 Sasylighetsregig med statistikk, våre 2008 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 3. april Bjør H. Auestad Kp. 6: Hypotesetestig del 5 1/ 56

Detaljer

R2 eksamen høsten 2017

R2 eksamen høsten 2017 R eksame høste 017 DEL 1 Ute hjelpemidler Oppgave 1 (5 poeg) Deriver fuksjoee a) f x si3 b) g x si x x h x x cos x c) x Oppgave (5 poeg) Bestem itegralee 3 a) x 3x dx b) xe x dx c) x x 1 dx Oppgave 3 (4

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 5

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 5 ÅMA110 Sasylighetsregig med statistikk, våre 2006 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 3. april Bjør H. Auestad Kp. 6: Hypotesetestig del 5 1 / 56

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 Høst 205 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer, blokk II Løsigsskisse Oppgave a) X bi(, p) fordi: Udersøker uavhegige delar av DNA-strukture. Fi for kvar del

Detaljer

OM TAYLOR POLYNOMER. f x K f a x K a. f ' a = lim x/ a. f ' a z

OM TAYLOR POLYNOMER. f x K f a x K a. f ' a = lim x/ a. f ' a z OM TAYLOR POLYNOMER I dette otatet, som utfyller avsitt 6. i Gullikses bok, skal vi se på Taylor polyomer og illustrere hvorfor disse er yttige. Det å berege Taylor polyomer for håd er i prisippet ikke

Detaljer

OPPGAVE 4 LØSNINGSFORSLAG OPPGAVE 5 LØSNINGSFORSLAG UTVIKLING AV REKURSIV FORMEL FOR FIGURTALL SOM GIR ANDREGRADSFUNKSJONER

OPPGAVE 4 LØSNINGSFORSLAG OPPGAVE 5 LØSNINGSFORSLAG UTVIKLING AV REKURSIV FORMEL FOR FIGURTALL SOM GIR ANDREGRADSFUNKSJONER OPPGAVE 4 LØSNINGSFORSLAG Tallfølge i f) rektageltallee. Her er de eksplisitte formele R = ( +1) eller R = +. Dette er e adregradsfuksjo. I figurtallsammeheg forutsetter vi at de legste side er (øyaktig)

Detaljer

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 12. desember 2008

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 12. desember 2008 Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL. desember 8 EKSAMEN I MATEMATIKK, Utsatt røve Modul 5 studieoeg Tid: 5 timer Ogavesettet er å sider (ikludert formelsamlig).

Detaljer

Kap. 9: Inferens om én populasjon

Kap. 9: Inferens om én populasjon 2 ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for matematiske fag Ka. 9: Iferes om é oulasjo Hvis σ er ukjet bytter vi ut σ med s i Ny observator blir t = x μ s/ z = x μ σ/ der s = Σx 2 (Σx)

Detaljer

Emnenavn: Eksamenstid: 4 timer. Faglærer: Hans Kristian Bekkevard

Emnenavn: Eksamenstid: 4 timer. Faglærer: Hans Kristian Bekkevard EKSAMEN Emekode: SFB107111 Emeav: Metode 1, statistikk deleksame Dato: 7. mai 2018 Hjelpemidler: Godkjet kalkulator og vedlagt formelsamlig m/tabeller Eksamestid: 4 timer Faglærer: Has Kristia Bekkevard

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalt øvig 8 Løsigsskisse Oppgave 1 a) Simuler 1000 datasett i MATLAB. Hvert datasett skal bestå av 100 utfall fra e ormalfordelig

Detaljer

1 Algebra oppgaver S2

1 Algebra oppgaver S2 1 Algebra oppgaver S Ihold 11 Tallfølger 1 Tallrekker 9 13 Uedelige geometriske rekker 17 14 Faktoriserig Polyomdivisjo 3 15 Likiger 6 Tredjegradslikiger 6 Likiger med rasjoale uttrykk 7 Likigssett 8 Øvigsoppgaver

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 ÅMA Sasylighetsregig med statistikk, våre 27 Kp. 6 (kp. 6) Tre deler av faget/kurset:. Beskrivede statistikk 2. Sasylighetsteori, sasylighetsregig 3. Statistisk iferes estimerig kofidesitervall hypotesetestig

Detaljer

Econ 2130 Forelesning uke 11 (HG)

Econ 2130 Forelesning uke 11 (HG) Eco 130 Forelesig uke 11 (HG) Mer om ormalfordelige og setralgreseteoremet Uke 1 1 Fra forrige gag ~ betyr er fordelt som. ~ N( µσ, ) E( ) = µ, og var( ) = σ Normalfordelige er symmetrisk om μ og kotiuerlig

Detaljer

Løsningsforsalg til første sett med obligatoriske oppgaver i STK1110 høsten 2018

Løsningsforsalg til første sett med obligatoriske oppgaver i STK1110 høsten 2018 Løsigsforsalg til første sett med obligatoriske oppgaver i STK1110 høste 2018 Oppgave 1 (a Et 100(1 α% kofidesitervall for forvetigsverdie µ er gitt ved formel (8.15 på side 403 i læreboka. For situasjoe

Detaljer

1 Algebra. Innhold. Algebra S2

1 Algebra. Innhold. Algebra S2 Algebra S Algebra Ihold Kompetasemål Algebra, S.... Tallfølger... 3 Formler som beskriver tallfølger... 5 Aritmetiske tallfølger... 9 Geometriske tallfølger... 0. Tallrekker... Aritmetiske rekker... 3

Detaljer

H 1 : µ 1 µ 2 > 0. t = ( x 1 x 2 ) (µ 1 µ 2 ) s p. s 2 p = s2 1 (n 1 1) + s 2 2 (n 2 1) n 1 + n 2 2

H 1 : µ 1 µ 2 > 0. t = ( x 1 x 2 ) (µ 1 µ 2 ) s p. s 2 p = s2 1 (n 1 1) + s 2 2 (n 2 1) n 1 + n 2 2 TMA4245 Statistikk Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b4 Løsigsskisse Oppgave 1 Vi øsker å fie ut om et ytt serum ka stase leukemi. 5 mus får serumet, 4

Detaljer

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 20. mai 2008

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 20. mai 2008 Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL. mai 8 EKSAMEN I MATEMATIKK Modul 5 studieoeg Tid: 5 timer Ogavesettet er å sider (ikludert formelsamlig). Hjelemidler:

Detaljer

Emnenavn: Metode 1, statistikk deleksamen. Eksamenstid: 4 timer. Faglærer: Bjørnar Karlsen Kivedal

Emnenavn: Metode 1, statistikk deleksamen. Eksamenstid: 4 timer. Faglærer: Bjørnar Karlsen Kivedal EKSAMEN Emekode: SFB10711 Emeav: Metode 1, statistikk deleksame Dato: 10. oktober 2018 Hjelpemidler: Godkjet kalkulator og vedlagt formelsamlig m/tabeller Eksamestid: 4 timer Faglærer: Bjørar Karlse Kivedal

Detaljer

Oppgaver fra boka: Med lik men ukjent varians antatt har vi fra pensum at. t n1 +n 2 2 under H 0 (12 1) (12 1)

Oppgaver fra boka: Med lik men ukjent varians antatt har vi fra pensum at. t n1 +n 2 2 under H 0 (12 1) (12 1) MOT30 Statistiske metoder, høste00 Løsiger til regeøvig r. 5 (s. ) Oppgaver fra boka: Oppgave 0.36 (0.0:8) Dekkslitasje X,..., X u.i.f. N(µ, σ ) og X,..., X u.i.f. N(µ, σ ) og alle variable er uavhegige.

Detaljer

Kapittel 7: Noen viktige sannsynlighetsfordelinger

Kapittel 7: Noen viktige sannsynlighetsfordelinger Kapittel 7: Noe viktige sasylighetsfordeliger I mage situasjoer ka feomeet vi ser på beskrives med e bestemt type sasylighetsfordelig e sasylighetsfordelig gitt ved e bestemt formel. Vi skal se på oe av

Detaljer

Ukeoppgaver i BtG207 Statistikk, uke 4 : Binomisk fordeling. 1

Ukeoppgaver i BtG207 Statistikk, uke 4 : Binomisk fordeling. 1 Ukeoppgaver i BtG20 Statistikk, uke 4 : Biomisk fordelig. 1 Høgskole i Gjøvik Avdelig for tekologi, økoomi og ledelse. Statistikk Ukeoppgaver uke 4 Biomisk fordelig. Oppgave 1 La de stokastiske variable

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 2

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 2 ÅMA11 Sasylighetsregig med statistikk, våre 27 Kp. 6, del 2 Bjør H. Auestad Istitutt for matematikk og aturviteskap 5. mars 21 Bjør H. Auestad Kp. 6: del 1/2 1/ 42 Bjør H. Auestad Kp. 6: del 1/2 2/ 42

Detaljer

2.1 Polynomdivisjon. Oppgave 2.10

2.1 Polynomdivisjon. Oppgave 2.10 . Polyomdivisjo Oppgave. ( 5 + ) : = + + ( + ):( ) 6 + 6 8 8 = + + c) ( + 5 ) : = + 6 6 d) + + + = + + = + + + 8+ ( ):( ) + + + Oppgave. ( + 5+ ):( ) 5 + + = + ( 5 ): 9 + + + = + + + 5 + 6 9 c) ( 8 66

Detaljer

) = P(Z > 0.555) = > ) = P(Z > 2.22) = 0.013

) = P(Z > 0.555) = > ) = P(Z > 2.22) = 0.013 TMA4240 Statistikk Vår 2008 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b5 Løsigsskisse Oppgave 1 a) X 1,...,X 16 er u.i.f. N(80,18 2 ). Setter Y = X. i) P(X 1 >

Detaljer

Ulike typer utvalg. MAT0100V Sannsynlighetsregning og kombinatorikk. Ordnet utvalg uten tilbakelegging. Ordnet utvalg med tilbakelegging.

Ulike typer utvalg. MAT0100V Sannsynlighetsregning og kombinatorikk. Ordnet utvalg uten tilbakelegging. Ordnet utvalg med tilbakelegging. MAT0100V Sasylighetsregig og kombiatorikk Ordet utvalg med og ute tilbakeleggig (repetisjo) Uordet utvalg ute tilbakeleggig (repetisjo) Tilfeldige variabler og sasylighetsfordeliger Hypergeometrisk fordelig

Detaljer

2. Hypotesetesting i ulike sitausjoner: i. for forventingen, μ, i målemodellen med normalantakelse og kjent varians, σ 2.

2. Hypotesetesting i ulike sitausjoner: i. for forventingen, μ, i målemodellen med normalantakelse og kjent varians, σ 2. Oversikt 1. Hva er hypotesetestig? 2. i ulike sitausjoer: i. for forvetige, μ, med ormalatakelse og kjet varias, σ 2. ii. for forvetige, μ, med stor og ormaltilærmig (variase, σ 2, ukjet). iii. for suksessasylighete,

Detaljer

ECON240 Statistikk og økonometri

ECON240 Statistikk og økonometri ECON240 Statistikk og økoometri Arild Aakvik, Istitutt for økoomi 1 Mellomregig MKM Model: Y i = a i + bx i + e i MKM-estimator for b: b = = Xi Y i 1 Xi Yi Xi 1 ( X i ) 2 (Xi X)(Y i Ȳi) (Xi X) 2 hvor vi

Detaljer

Oppgaver fra boka: X 2 X n 1

Oppgaver fra boka: X 2 X n 1 MOT30 Statistiske metoder, høste 00 Løsiger til regeøvig r 3 (s ) Oppgaver fra boka: 94 (99:7) X,, X uif N(µ, σ ) og X,, X uif N(µ, σ ) og alle variable er uavhegige Atar videre at σ = σ = σ og ukjet Kodesitervall

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 5

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 5 ÅMA110 Sasylighetsregig med statistikk, våre 2010 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 12. april Bjør H. Auestad Kp. 6: Hypotesetestig del 4 1/ 59

Detaljer

1 Algebra løsninger S2

1 Algebra løsninger S2 S, Algebra Algebra løsiger S Ihold. Tallfølger.... Tallrekker... 5. Uedelige geometriske rekker... 8.4 Faktoriserig... 49 Polyomdivisjo... 5.5 Likiger... 65 Tredjegradslikiger... 65 Likiger med rasjoale

Detaljer

EKSAMENSOPPGAVE. Mat-1060 Beregningsorientert programmering og statistikk

EKSAMENSOPPGAVE. Mat-1060 Beregningsorientert programmering og statistikk Fakultet for aturviteskap og tekologi EKSAMENSOPPGAVE Eksame i: (Kode og av) Dato: 05.1.017 Klokkeslett: 09:00-13:00 Sted: Åsgårdv 9 Mat-1060 Beregigsorietert programmerig og statistikk Tillatte hjelpemidler:

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 ÅMA110 Sasylighetsregig med statistikk, våre 2006 Kp. 6, del 2 Bjør H. Auestad Kp. 6: Hypotesetesig del 2 1/ 38 Bjør H. Auestad Kp. 6: Hypotesetesig del 2 2/ 38 Oversikt 1. Hva er hypotesetestig? 2. Hypotesetestig

Detaljer

Konfidensintervall. Notat til STK1110. Ørnulf Borgan, Ingrid K. Glad og Anders Rygh Swensen Matematisk institutt, Universitetet i Oslo.

Konfidensintervall. Notat til STK1110. Ørnulf Borgan, Ingrid K. Glad og Anders Rygh Swensen Matematisk institutt, Universitetet i Oslo. Kofidesitervall Notat til STK1110 Ørulf Borga, Igrid K. Glad og Aders Rygh Swese Matematisk istitutt, Uiversitetet i Oslo August 2007 Formål E valig metode for å agi usikkerhete til et estimat er å berege

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 ÅMA0 Sasylighetsregig med statistikk, våre 007 Kp. 4 Kotiuerlige tilfeldige variable; Normalfordelig Kotiuerlige tilfeldige variable, itro. (eller: Kotiuerlige sasylighetsfordeliger) Vi har til å sett

Detaljer

Oppgave 1 Hardheten til en bestemt legering er undersøkt med åtte målinger og resultatene ble (i kg/mm 2 ) som i tabellen til høyre.

Oppgave 1 Hardheten til en bestemt legering er undersøkt med åtte målinger og resultatene ble (i kg/mm 2 ) som i tabellen til høyre. EKSAMEN I: ÅMA110 SANNSYNLIGHETSREGNING MED STATISTIKK VARIGHET: 4 TIMER DATO: 28. AUGUST 2010 BOKMÅL TILLATTE HJELPEMIDLER: KALKULATOR: HP30S, Casio FX82 eller TI-30 OPPGAVESETTET BESTÅR AV 3 OPPGAVER

Detaljer

Forelesning Moment og Momentgenererende funksjoner

Forelesning Moment og Momentgenererende funksjoner ushu.li@uib.o Forelesig + 3 Momet og Mometgeererede fuksjoer 1. Oppsummerig til Forelesig 1 1.1) Fuksjoe av S.V: hvis variabele er e fuksjo (trasformasjo) av S.V. : g( ), da er også e S.V.: til ethvert

Detaljer

Oppgave 1. (i) Hva er sannsynligheten for at det øverste kortet i bunken er et JA-kort?

Oppgave 1. (i) Hva er sannsynligheten for at det øverste kortet i bunken er et JA-kort? ECON EKSAMEN 8 VÅR TALLSVAR Oppgave Vi har e kortstokk beståede av 6 kort. På av disse står det skrevet JA på forside mes det står NEI på forside av de adre kortee. Hvis ma får se kortet med bakside vedt

Detaljer

Eksamen REA3028 S2, Høsten 2011

Eksamen REA3028 S2, Høsten 2011 Eksamen REA08 S, Høsten 0 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (4 poeng) a) Deriver funksjonene ) f f 4 ) g e g e 6e ) h

Detaljer

TMA4245 Statistikk Eksamen 9. desember 2013

TMA4245 Statistikk Eksamen 9. desember 2013 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag TMA4245 Statistikk Eksame 9. desember 2013 Oppgave 1 I kortspillet Blackjack får ma de høyeste geviste hvis de to første kortee ma

Detaljer

MOT310 Statistiske metoder 1, høsten 2011

MOT310 Statistiske metoder 1, høsten 2011 MOT310 Statistiske metoder 1, høste 2011 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 24. august, 2011 Bjør H. Auestad Itroduksjo og repetisjo 1 / 32 Repetisjo; 9.1,

Detaljer

Oppgave 1 a) Minste kvadraters metode tilpasser en linje til punktene ved å velge den linja som minimerer kvadratsummen. x i (y i α βx i ) = 0, SSE =

Oppgave 1 a) Minste kvadraters metode tilpasser en linje til punktene ved å velge den linja som minimerer kvadratsummen. x i (y i α βx i ) = 0, SSE = Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalte oppgaver 2, blokk II Løsigsskisse Oppgave a Miste kvadraters metode tilpasser e lije til puktee ved å velge de lija som

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksame i: ECON130 Statistikk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamesdag: 6.05.017 Sesur kugøres: 16.06.017 Tid for eksame: kl. 14:30 17:30 Oppgavesettet er på 6 sider Tillatte helpemidler: Alle

Detaljer