TMA4240 Statistikk Høst 2016

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "TMA4240 Statistikk Høst 2016"

Transkript

1 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalt øvig 8 Løsigsskisse Oppgave 1 a) Simuler 1000 datasett i MATLAB. Hvert datasett skal bestå av 100 utfall fra e ormalfordelig med forvetigsverdi 5 og stadardavvik 2. Løsig: sample_size=100; umber_of_samples=1000; mu=5; %forvetig sigma=2; %stadardavvik sample_matrix=ormrd(mu,sigma,sample_size,umber_of_samples); b) Reg ut gjeomsittsverdie av alle de 1000 datasettee. Lag et histogram basert på gjeomsittsverdiee du har reget ut. Mier forme på histogrammet om forme til e ormalfordelig? Var dette forvetet? Forklar. Løsig: sample_matrix_mea=mea(sample_matrix); hist(sample_matrix_mea); xlabel( Gjeomsittsverdier ); ylabel( Frekves ); title( Gjeomsittsverdier fra e ormalfordelig ); figure ormplot(sample_matrix_mea); title( Normal kvatil-kvatil plott for gjeomsittsverdiee ); Fra Figur 3 ser vi at gjeomsittsverdiee mier om e ormalfordelig og dette støttes av kvatil-kvatil plottet i Figur 2. Dette er forvetet side vi vet fra setralgreseteoremet at fordelige til X er N(5; 4/1000) og at e lieær kombiasjo av ormalfordelte variabler også er ormalfordelt. c) Gjør det samme som i a), me å skal utfallee komme fra e biomisk fordelig med parametre N = 5,p = 0.2 og utvalgsstørrelser = 2, 5, 10, 20, 50, 100. Løsig: ab8-lsf-b 26. september 2016 Side 1

2 250 Gjeomsittsverdier fra e ormalfordelig 200 Frekves Gjeomsittsverdier Figur 1: Histogram av gjeomsittsverdiee reget fra 1000 utvalg av størrelse 100 fra ormalfordelige med forvetig 5 og stadardavvik Normal kvatil kvatil plott for gjeomsittsverdiee Probability Data Figur 2: Normal kvatil-kvatil plott av gjeomsittsverdiee reget fra 1000 utvalg av størrelse 100 fra ormalfordelige med forvetig 5 og stadardavvik 2 ab8-lsf-b 26. september 2016 Side 2

3 =[ ]; umber_of_sizes=legth(); Sample = 1000; N = 5; p = 0.2; for :umber_of_sizes bi_sample_mea = mea(biord(n,p,(i),sample)); samplesize_strig=um2str((i)); figure hist(bi_sample_mea); xlabel( Gjeomsitt ); ylabel( Frekves ); title([ Biomisk fordelig med =,samplesize_strig]); ed d) Hvilke av simulerigee gir et histogram som liger e ormalfordelig? Bruk setralgreseteoremet til å forklare resultatet du får. Løsig: Vi ser fra histogrammee i Figur 4 at de liger på e ormalfordelig allerede ved utvalgsstørrelse = 20. Vi vet fra setralgreseteoremet at hvis utvalgsstã rrelse er stor ok ka vi tilærme fordelige med e ormalfordelig. Vårt resultat her viser at de biomiske fordelige ka tilærmes godt med e ormalfordelig for utvalgsstørrelser så små som 20. R = mea(biord(5,0.2,50,1000)) ormplot(mea(r)) Oppgave 2 a) Variase til utvalgsgjeomsittet er ( ) ( Var( X) 1 ) = Var X i = 1 2 Var X i = 1 2 Var(X i ) = 1 2 σ 2 = 1 2 σ2 = σ2. Sasylighetstetthetsfuksjoe til ormalfordelige er gitt på s. 25 i Tabeller og formler i statistikk som f(x) = 1 ( exp 1 (x µ) 2πσ 2 σ 2, slik at vi har f(µ) = 1 ( exp 1 ) 2πσ 2 0 σ 2 = 1 e 0 = 1. 2πσ 2πσ ab8-lsf-b 26. september 2016 Side 3

4 Figur 3: Normalkvatilplott av et utvalg med 50 datapukter trukket fra Bi(5,0.2)- fordelige. Dette gir at hvilket skulle vises. Var( X) = 1 4 ( f(µ) ) 2 = 1 ( ) 2 = πσ = π Var( X), 2 2πσ Når vi skal velge mellom to estimatorer som begge er forvetigsrette, velger vi alltid de med mist varias. Side π > 1 har vi Var( X) > Var( X), som betyr at vi foretrekker å bruke X som estimator for µ. b) På gru av de to tydelige outliere på oppside, kommer mediae X til å være midre e utvalgsgjeomsittet X (for disse dataee er X = mes X = 175.3). Vi har atatt at rekruttees høyder er ormalfordelte. Utfra histogrammet ser det ut til at gjeomsittet ligger rudt 170 cm. I så fall er sasylighete for at to av de tretti datapuktee er større e 235 cm eglisjerbar, så de ekstreme verdiee til disse to datapuktee skyldes atakelig e feil hos rekrutte som fylte i dataee i regearket ikke spesielt usasylig, gitt det gulede papiret og falmede blekket. Side utvalgsgjeomsittet er følsomt for outliere, mes utvalgsmediae ikke er det, gir mediae et bedre estimat e gjeomsittet i dette tilfellet. Amerkig vedrørede dataee Datasettet i dee oppgave er aturligvis fiktivt. Histogrammet er laget for 28 datapukt trukket tilfeldig fra e ormalfordelig med forvetigsverdi 166 cm (litt lavere ab8-lsf-b 26. september 2016 Side 4

5 Figur 4: Gjeomsittsverdier for 1000 utvalg fra biomisk fordelig med p = 0.2, N = 5, utvalgsstã rrelser = 2, 5, 10, 20, 50, 100 ab8-lsf-b 26. september 2016 Side 5

6 e gjeomsittshøyde for 1878, som er cm) og stadardavvik 7 cm, og med to outliere på 239 cm og 251 cm (høyde til verdes høyeste ma). Når X N(166, 7 så er P (X 239) = Oppgave 3 a) For å rege ut P (L A beytter vi regele for sasylighet for komplemetære hedelser: P (L A + P (L A = 1 P (L A = = 1 P (L A = = 0.8 For å rege ut P (L) bruker vi setige om total sasylighet. Vi vet at A 1, A 2, A 3 er e partisjo av utfallsrommet (det ser vi lett av vediagrammet). P (L) = P (L A 1 ) + P (L A + P (L A 3 ) = P (L A 1 ) P (A 1 ) + P (L A P (A + P (L A 3 ) P (A 3 ) = = b) Betigelser for at X er biomisk fordelt: Vi spør persoer. For hver perso registerer vi om persoe lyver eller ikke lyver (to komplmetære hedelser). Sasylighete for at e tilfeldig valgt perso lyver er p, og dee er de samme for alle de persoee vi spør. De persoee vi spør svarer uavhegig av hveradre ( uavhegige forsøk). Uder disse 4 betigelsee er X= atall persoer som lyver biomisk fordelt med parametere og p. Dermed er sasylighetsfordelige til X gitt ved puktsasylighete f(x), ( ) f(x) = p x (1 p) x, x = 0, 1,..., x Vi vet at da er forvetige til X E(X) = p og variase Var(X) = p(1 p). Videre: vi har at p = 0.2, og = 20. P (X = 4) fier vi ved å sette i X = 4 i puktsasylighete f(x) over. ( ) 20 P (X = 4) = f(4) = (1 0.2) 20 4 = Det er også mulig å fie P (X = 4) ved tabelloppslag (s 17 i formelsamlige), P (X = 4) = P (X 4) P (X 3) = = Sasylighete P [(X 2) (X > 5)] fier vi eklest ved tabelloppslag (s 17 i formelsamlige), P [(X 2) (X > 5) = P (X 2) + P (X > 5) = (X 2) + 1 P (X 5) = = ab8-lsf-b 26. september 2016 Side 6

7 c) Nå er p ukjet. Først forvetig: E(ˆp) = E( X ) = 1 E(X) = 1 p = p E(p X ) = E( 1 ) = 1 1 E(X) = 1 1 p = 1 p Vi ser videre på varias: Var(ˆp) = Var( X ) = 1 2 Var(X) = 1 p(1 p) p(1 p) = 2 Var(p X ) = Var( 1 ) = 1 ( 1) 2 Var(X) = 1 p(1 p) p(1 p) = ( 1) 2 ( 1) 2 E god estimator ˆp er e estimator som er forvetigsrett, dvs. E(ˆp) = p, og har lite varias, dvs. Var(ˆp) er lite. Vi liker veldig godt hvis variase miker år atall observasjoer som estimatore er basert på øker. Sammeliger vi to estimatorer som begge er forvetigsrette velger vi estimatore med mist varias. Sammeliger vi to estimatorer der ku de ee er forvetigsrett, velger vi gjere de estimatore som er forvetigsrett (ofte sjekker vi også at det ikke er veldig stor forskjell på variasee). For å velge mellom ˆp og p ser vi på uttrykkee for forvetig og varias til begge estimatoree. Vi ser at ˆp er forvetigsrett, me det er ikke p. I prisippet ka vi stoppe her og kokluere med at vi foretrekker de forvetigsrette estimatore ˆp. Me, det ka være fit å sjekke at det ikke er stor forskjell på variase til de to estimatoree (hva hvis de ee hadde hatt to gager så stor varias?). Vi ser at Var(ˆp) = ( ( 1) )2 Var(p ), dvs. Var(ˆp) < Var(p ) med e faktor ( 1 )2 i forskjell. For = 20 er dee faktore ( )2 = = 0.9, dvs. Var(ˆp) = 0.9 Var(p ). Dermed har estimatore Var( ˆp) både mist varias og er forvetigsrett. Vi velger derfor estimatore ˆp. Kommetarer: Asymptotisk (år ) vil de to estimatoree være like gode. Vi har i vårt pesum ikke sakket om begrepet kosistete estimatorer, me begge disse estimatoree er kosistete. Oppgave 4 ab8-lsf-b 26. september 2016 Side 7

8 a) Setig om forvetig til fuksjoer av stokastiske variable gir at E( Y ) = = = 0 0 y 1/2 f(y)dy v 2 v 2 Γ( v y 2 1 e y 2 dy y 1/2 1 1 v v 2 Γ( v 2 1 e y 2 dy 2 )y = 2 v+1 2 Γ( v v 2 Γ( v = 2Γ( v+1 Γ( v 0 2 v+1 2 Γ( v+1 y v e y 2 dy TMA4240 Statistikk side itegrade i est siste uttrykk ovefor er e sasylighetstetthet (til e kjikvadratfordelt variabel med v + 1 frihetsgrader). b) Bruker vi resultatet i forrige pukt med v = 1 følger det at S E 2 ( 1) 1 2Γ( 2 σ 2 = ES = ) σ Γ( 1. Altså er σ 2Γ( ES = 2 ) 1 Γ( 1 slik at S ikke er forvetigsrett for σ. E forvetigsfeilkorrigert, forvetigsrett estimator av σ er dermed ˆσ = S 1 1 Γ( 2Γ( = Γ( 1 2Γ( (X i X) 2. På tilsvarede måte som i pukt a) ka e mediarett estimator for σ utledes med utgagspukt i samme pivotale stã rrelse. Vi vet at ( S ( 1) P < χ 2 1/2, 1 = 1/2. σ 2 Omskrivig av ulikhete gir at ( P S 1 χ 2 1/2, 1 < σ ) = 1/2, som i følge defiisjo av mediaretthet betyr at 1 σ = S χ 2 = 1 1/2, 1 χ 2 1/2, 1 er mediarett for σ. (X i X) 2 ab8-lsf-b 26. september 2016 Side 8

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 0 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Oppgave Midtveiseksame a) X er e stokastisk variabel

Detaljer

n 2 +1) hvis n er et partall.

n 2 +1) hvis n er et partall. TMA445 Statistikk Vår 04 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer, blokk II Oppgave Mediae til et datasett, X, er de midterste verdie. Hvis vi har stokastiske

Detaljer

Mer om utvalgsundersøkelser

Mer om utvalgsundersøkelser Mer om utvalgsudersøkelser I uderkapittel 3.6 i læreboka gir vi e kort iførig i takegage ved utvalgsudersøkelser. Vi gir her e grudigere framstillig av temaet. Populasjo og utvalg Ved e utvalgsudersøkelse

Detaljer

Econ 2130 uke 15 (HG) Poissonfordelingen og innføring i estimering

Econ 2130 uke 15 (HG) Poissonfordelingen og innføring i estimering Eco 130 uke 15 (HG) Poissofordelige og iførig i estimerig 1 Poissofordelige (i) Tilærmig til biomialfordelige. Regel. ( Poissotilærmelse ) Ata Y ~ bi(, p) E( Y ) = p og var( Y ) = p(1 p). Hvis er stor

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 4. Hypotesetesting, del 4

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 4. Hypotesetesting, del 4 ÅMA11 Sasylighetsregig med statistikk, våre 27 Kp. 6, del 4 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 19. mars Bjør H. Auestad Kp. 6: Hypotesetestig del 4 1/ 27 Bjør

Detaljer

Ukeoppgaver i BtG207 Statistikk, uke 4 : Binomisk fordeling. 1

Ukeoppgaver i BtG207 Statistikk, uke 4 : Binomisk fordeling. 1 Ukeoppgaver i BtG20 Statistikk, uke 4 : Biomisk fordelig. 1 Høgskole i Gjøvik Avdelig for tekologi, økoomi og ledelse. Statistikk Ukeoppgaver uke 4 Biomisk fordelig. Oppgave 1 La de stokastiske variable

Detaljer

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 12. desember 2008

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 12. desember 2008 Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL. desember 8 EKSAMEN I MATEMATIKK, Utsatt røve Modul 5 studieoeg Tid: 5 timer Ogavesettet er å sider (ikludert formelsamlig).

Detaljer

Tabell 1: Beskrivende statistikker for dataene

Tabell 1: Beskrivende statistikker for dataene Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7, blokk II Løsningsskisse Oppgave 1 a) Utfør en beskrivende analyse av datasettet % Data for Trondheim: TRD_mean=mean(TRD);

Detaljer

Estimering og hypotesetesting. Estimering og hypotesetesting. Estimering og hypotesetesting. Kapittel 10. Ett- og toutvalgs hypotesetesting

Estimering og hypotesetesting. Estimering og hypotesetesting. Estimering og hypotesetesting. Kapittel 10. Ett- og toutvalgs hypotesetesting 3 Estimerig og hypotesetestig Kapittel 10 Ett- og toutvalgs hypotesetestig TMA445 V007: Eirik Mo Feome Bilkjørig Høyde til studeter Estimator ˆp = X, X atall ˆµ = X gjeomsittlig høyde. som syes de er flikere

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 5

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 5 ÅMA110 Sasylighetsregig med statistikk, våre 2010 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 12. april Bjør H. Auestad Kp. 6: Hypotesetestig del 4 1/ 59

Detaljer

Påliteligheten til en stikkprøve

Påliteligheten til en stikkprøve Pålitelighete til e stikkprøve Om origiale... 1 Beskrivelse... 2 Oppgaver... 4 Løsigsforslag... 4 Didaktisk bakgru... 5 Om origiale "Zuverlässigkeit eier Stichprobe" på http://www.mathe-olie.at/galerie/wstat2/stichprobe/dee

Detaljer

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 20. mai 2008

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 20. mai 2008 Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL. mai 8 EKSAMEN I MATEMATIKK Modul 5 studieoeg Tid: 5 timer Ogavesettet er å sider (ikludert formelsamlig). Hjelemidler:

Detaljer

8 (inkludert forsiden og formelsamling) Tegne- og skrivesaker, kalkulator, formelsamling (se vedlagt).

8 (inkludert forsiden og formelsamling) Tegne- og skrivesaker, kalkulator, formelsamling (se vedlagt). Eksamesoppgave våre 011 Ordiær eksame Bokmål Fag: Matematikk Eksamesdato: 10.06.011 Studium/klasse: GLU 5-10 Emekode: MGK00 Eksamesform: Skriftlig Atall sider: 8 (ikludert forside og formelsamlig) Eksamestid:

Detaljer

Sted Gj.snitt Median St.avvik Varians Trondheim 6.86 7.50 6.52 42.49 Værnes 7.07 7.20 6.79 46.05 Oppdal 4.98 5.80 7.00 48.96

Sted Gj.snitt Median St.avvik Varians Trondheim 6.86 7.50 6.52 42.49 Værnes 7.07 7.20 6.79 46.05 Oppdal 4.98 5.80 7.00 48.96 Vår 213 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 8, blokk II Matlabøving Løsningsskisse Oppgave 1 a) Ingen løsningsskisse. b) Finn, for hvert datasett,

Detaljer

Eksamen REA3028 S2, Våren 2011

Eksamen REA3028 S2, Våren 2011 Eksame REA08 S, Våre 0 Del Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave (8 poeg) a) Deriver fuksjoee ) f 5 f 6 5 ) g g ) h l 9 9 6 4 h l

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 ÅMA110 asylighetsregig med statistikk våre 011 Kp. 5 Estimerig 1 Estimerig. Målemodelle. Ihold: 1. (ukt)estimerig i biomisk modell (kp. 5.). Målemodelle... (kp. 5.3) 3. (ukt)estimerig i målemodelle (kp.

Detaljer

3MX 2007/8 - Kapittel 5: 8. januar 5. februar 2008

3MX 2007/8 - Kapittel 5: 8. januar 5. februar 2008 3MX 00/8 - Kapittel : 8. jauar. februar 008 Pla for skoleåret 00/008: Kapittel 6: 6/ /. Kapittel : / /3. Prøver på eller skoletime etter hvert kapittel. É heildagsprøve i hver termi. Repetisjo, prøver,

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. Noen viktige sannsynlighetsmodeller. Binomisk modell. Kp. 3 Diskrete tilfeldige variable

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. Noen viktige sannsynlighetsmodeller. Binomisk modell. Kp. 3 Diskrete tilfeldige variable ÅMA Saslighetsregig med statistikk, våre K. 3 Diskrete tilfeldige variable Noe viktige saslighetsmodeller Noe viktige saslighetsmodeller ( Sas.modell : å betr det klasse/te sas.fordelig.) Biomisk modell

Detaljer

Eksempeloppgave 2014. REA3028 Matematikk S2 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)

Eksempeloppgave 2014. REA3028 Matematikk S2 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler) Eksempeloppgave 2014 REA3028 Matematikk S2 Eksempel på eksame våre 2015 etter y ordig Ny eksamesordig Del 1: 3 timer (ute hjelpemidler) Del 2: 2 timer (med hjelpemidler) Mistekrav til digitale verktøy

Detaljer

Eksamensoppgave i TMA4240 Statistikk

Eksamensoppgave i TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Jo Eidsvik og Arild Brandrud Næss Tlf: 90 12 74 72 og 99 53 82 94 Eksamensdato: 9. desember 2013 Eksamenstid

Detaljer

Eksempler fra slutten av forrige uke. Eksempler (styrke, dimensjonering,...) Eksempler fra slutten av forrige uke

Eksempler fra slutten av forrige uke. Eksempler (styrke, dimensjonering,...) Eksempler fra slutten av forrige uke Oversikt, del 5 Hypotesetestig, del 4 (oppsummerig fra Hypotesetestig, del 5 Kofidesitervall dimesjoerig Eksempler fra slutte av forrige uke Kofidesitervall p-verdi Eksempler Eksempler (styrke, dimesjoerig,...

Detaljer

Metoder for politiske meningsmålinger

Metoder for politiske meningsmålinger Metoder for politiske meigsmåliger AV FORSKER IB THOMSE STATISTISK SETRALBYRÅ Beregigsmetodee som brukes i de forskjellige politiske meigsmåliger har vært gjestad for mye diskusjo i dagspresse det siste

Detaljer

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 29. mai 2007

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 29. mai 2007 Høgskole Telemark Avdelg for estetske fag, folkekultur og lærerutdag BOKMÅL 9. ma 7 EKSAMEN I MATEMATIKK, Modul 5 studepoeg Td: 5 tmer Hjelpemdler: Kalkulator og vedlagt formelsamlg (bakerst oppgavesettet).

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST101 Innføring i statistikk og sannsynlighetsregning. Eksamensdag: Mandag 29. november 1993. Tid for eksamen: 09.00 15.00. Oppgavesettet

Detaljer

H T. Amundsen INNHOLD

H T. Amundsen INNHOLD Itere otater STATISTISK SENTRALBYRÅ. oktober 1980 KORRELASJONSKOEFFISIENTEN - ENDA ENGANG Av H T. Amudse INNHOLD 1. Iledig *****..... * 0 1. Produktmametkorrelasjoskoeffisiete og sammehege med lieær regresjo.

Detaljer

ARBEIDSHEFTE I MATEMATIKK

ARBEIDSHEFTE I MATEMATIKK ARBEIDSHEFTE I MATEMATIKK Temahefte r Hvorda du reger med poteser Detaljerte forklariger Av Matthias Loretze mattegriseforlag.com Opplsig: E potes er e forkortet skrivemåte for like faktorer. E potes består

Detaljer

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 14.12.2007

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 14.12.2007 Høgskole Telemark Avdelg for estetske fag, folkekultur og lærerutdag BOKMÅL 4..7 UTATT PRØVE I MATEMATIKK, Modul 5 studepoeg Td: 5 tmer Hjelpemdler: Kalkulator og vedlagt formelsamlg (bakerst oppgavesettet).

Detaljer

Kommentarer til oppgaver;

Kommentarer til oppgaver; Kapittel - Algebra Versjo: 11.09.1 - Rettet feil i 0, 1 og 70 og lagt i litt om GeoGebra-bruk Kommetarer til oppgaver; 0, 05, 10, 13, 15, 5, 9, 37, 5,, 5, 59, 1, 70, 7, 78, 80,81 0 a) Trykkfeil i D-koloe

Detaljer

FX-82ES. NY CASIO teknisk / vitenskapelig lommeregner med naturlig tallvindu.

FX-82ES. NY CASIO teknisk / vitenskapelig lommeregner med naturlig tallvindu. ytt NR. 005. årgag FX-8ES NY CASIO tekisk / viteskapelig lommereger med aturlig tallvidu. Det er å mer e 5 år side kalkulatore for alvor ble tatt i bruk i orsk matematikk-udervisig, og de viteskapelige

Detaljer

IO 77/45 29. november 1977 ESTIMERING AV ENGELDERIVERTE PA DATA MED MALEFEIL. Odd Skarstad 1) INNHOLD

IO 77/45 29. november 1977 ESTIMERING AV ENGELDERIVERTE PA DATA MED MALEFEIL. Odd Skarstad 1) INNHOLD IO 77/45 29. ovember 977 ESTIMERING V ENGELDERIVERTE P DT MED MLEFEIL av Odd Skarstad ) INNHOLD I. Data fra forbruksudersøkelse II. Estimerig ved målefeil. Iledig 2. Systematiske målefeil 2 3. Tilfeldige

Detaljer

Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte.

Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte. Eksame 20.05.2009 REA3028 Matematikk S2 Nyorsk/Bokmål Bokmål Eksamesiformasjo Eksamestid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Bruk av kilder: Vedlegg: Framgagsmåte: Veiledig om vurderige: 5 timer:

Detaljer

MAT4010 PROSJEKTOPPGAVE: Statistikk i S2. Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem

MAT4010 PROSJEKTOPPGAVE: Statistikk i S2. Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem MAT400 PROSJEKTOPPGAVE: Statistikk i S2 Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem 20. mai 205 Innhold. Stokastisk Variabel.. Stokastiske variable som funksjoner 3 2. Forventningsverdi

Detaljer

Registrarseminar 1. april 2003. Ingrid Ofstad Norid

Registrarseminar 1. april 2003. Ingrid Ofstad Norid Registrarsemiar 1. april 2003 Igrid Ofstad Norid Statistikk 570 har fått godkjet søkad om å bli registrar ca. 450 registrarer er aktive i dag 2 5 ye avtaler hver uke på semiaret deltar både registrarer

Detaljer

E K S A M E N : FAG: Matematikk 1 MA-154 LÆRER: MORTEN BREKKE. Klasse(r): Alle Dato: 1. des 11 Eksamenstid, fra-til: 0900-1400

E K S A M E N : FAG: Matematikk 1 MA-154 LÆRER: MORTEN BREKKE. Klasse(r): Alle Dato: 1. des 11 Eksamenstid, fra-til: 0900-1400 UNIVERSITETET I AGDER Grimstad E K S A M E N : FAG: Matematikk MA-54 LÆRER: MORTEN BREKKE Klasse(r): Alle Dato:. des Eksamestid, fra-til: 0900-400 Eksamesoppgave består av følgede iklusive forside Atall

Detaljer

Løsningsforslag til øving 9 OPPGAVE 1 a)

Løsningsforslag til øving 9 OPPGAVE 1 a) Høgskole i Gjøvik vd for ek, øk og ledelse aemaikk 5 Løsigsforslag il øvig 9 OPPGVE ) Bereger egeverdiee: de I) ) ) ) Egeverdier: og ) ) Bereger egevekoree: vi ivi ii) vi ed λ : ) ) v Velger s som gir

Detaljer

Formelsamling i matematikk og statistikk

Formelsamling i matematikk og statistikk Høgskole i Berge Formelsamlig i matematikk og statistikk for Igeiørutdaige FOA, FOA, FOA3, FOA7, FVA4 5.utgave Fuksjoer. Elemetære fuksjoer: a) l y = y = e a = b = log a b = lb l a b) l(ab) = l A + l B,

Detaljer

Eksempeloppgave 2014. REA3026 Matematikk S1 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)

Eksempeloppgave 2014. REA3026 Matematikk S1 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler) Eksempeloppgave 04 REA306 Matematikk S Eksempel på eksame våre 05 etter y ordig Ny eksamesordig Del : 3 timer (ute hjelpemidler) Del : timer (med hjelpemidler) Mistekrav til digitale verktøy på datamaski:

Detaljer

år i 1 2 3 4 5 6 7 8 9 alder x i 37 38 39 40 41 42 43 44 45 tid y i 45.54 41.38 42.50 38.80 41.26 37.20 38.19 38.05 37.45 i=1 (x i x) 2 = 60, 9

år i 1 2 3 4 5 6 7 8 9 alder x i 37 38 39 40 41 42 43 44 45 tid y i 45.54 41.38 42.50 38.80 41.26 37.20 38.19 38.05 37.45 i=1 (x i x) 2 = 60, 9 TMA424 Statistikk Vår 214 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 11, blokk II Oppgave 1 Matlabkoden linearreg.m, tilgjengelig fra emnets hjemmeside, utfører

Detaljer

B Bakgrunnsinformasjon om ROS-analysen.

B Bakgrunnsinformasjon om ROS-analysen. RI SI KO- O G SÅRBARH ET SANALYSE (RO S) A Hva som skal utredes Beredskapog ulykkesrisiko(ros) vurderesut fra sjekklistefra Direktoratetfor samfussikkerhetog beredskap.aalyse blir utført ved vurderigav

Detaljer

To-utvalgstest (def 8.1) vs ettutvalgstest: Hypotesetesting, to utvalg (Kapitel 8) Longitudinell studie (oppfølgingsstudie) - eqn 8.1. Eksempel 8.

To-utvalgstest (def 8.1) vs ettutvalgstest: Hypotesetesting, to utvalg (Kapitel 8) Longitudinell studie (oppfølgingsstudie) - eqn 8.1. Eksempel 8. Hypotesetestig, to utvalg (Kapitel 8) Medisisk statistikk 009 http://folk.tu.o/slyderse/medstat/medstati_h09.html To-utvalgstest (def 8.) vs ettutvalgstest: To-utvalgstest: Sammelike de uderliggede parameter

Detaljer

Løsningsforslag R2 Eksamen 04.06.2012. Nebuchadnezzar Matematikk.net Øistein Søvik

Løsningsforslag R2 Eksamen 04.06.2012. Nebuchadnezzar Matematikk.net Øistein Søvik Løsigsforslag R2 Eksame 6 Vår 04.06.202 Nebuchadezzar Matematikk.et Øistei Søvik Sammedrag De fleste forlagee som gir ut lærebøker til de videregåede skole, gir ut løsigsforslag til tidligere gitte eksameer.

Detaljer

Utvidet løsningsforslag Eksamen i TMA4100 Matematikk 1, 16/12 2008

Utvidet løsningsforslag Eksamen i TMA4100 Matematikk 1, 16/12 2008 Utvidet løsigsforslag Eksame i TMA4 Matematikk, 6/ 8 Oppgave i) Vi gjør substitusjoe u = si θ og får π/ [ u si θ cos θ dθ = u du = E ae løsigsmetode er π/ si θ cos θ dθ = π/ ] si θ dθ = 4 = 4 ( ( ) ( ))

Detaljer

Eksamensoppgave i TMA4245 Statistikk

Eksamensoppgave i TMA4245 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4245 Statistikk Faglig kontakt under eksamen: Håkon Tjelmeland Tlf: 48 22 18 96 Eksamensdato:??. august 2014 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte

Detaljer

Løsning eksamen R1 våren 2010

Løsning eksamen R1 våren 2010 Løsig eksame R våre 00 Oppgave a) ) f ( ) l f ( ) ' l l l l f ( ) (l ) ) g( ) 4e g( ) 4 e ( ) 4 e ( ) g( ) 4( ) e b) ( ) 4 4 6 P ) P() 4 4 6 8 6 8 6 0 Divisjo med ( ) går opp. 4 4 6 : ( ) 8 4 4 8 6 8 6

Detaljer

2.1 Polynomdivisjon. Oppgave 2.10

2.1 Polynomdivisjon. Oppgave 2.10 . Polyomdivisjo Oppgave. ( 5 + ) : = + + ( + ):( ) 6 + 6 8 8 = + + c) ( + 5 ) : = + 6 6 d) + + + = + + = + + + 8+ ( ):( ) + + + Oppgave. ( + 5+ ):( ) 5 + + = + ( 5 ): 9 + + + = + + + 5 + 6 9 c) ( 8 66

Detaljer

STK1100: Kombinatorikk

STK1100: Kombinatorikk 1100: ombiatorikk auar 2009 Ørulf orga Matematisk istitutt Uiversitetet i Oslo 1 Uiform sasylighetsmodell: t stokastisk forsøk har N utfall Det er de mulige utfallee for forsøket i atar at de N utfallee

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag ..4 EKSAMEN Løsigsforslag Emekode: ITF75 Dato: 6. desember Eme: Matematikk for IT Eksamestid: kl 9. til kl. Hjelpemidler: To A4-ark med valgfritt ihold på begge sider. Kalkulator er ikke tillatt. Faglærer:

Detaljer

Er neste datapar ved kalibrering en ekstremverdi som skal forkastes?

Er neste datapar ved kalibrering en ekstremverdi som skal forkastes? Er este datapar ved kalibrerig e ekstremverdi som skal forkastes? v/rue Øverlad, Traior Elsikkerhet AS 1. Iledig Dee artikkele utleder formel for usikkerhetsitervallet PI (Predictio Iterval) som omslutter

Detaljer

Universitetet i Oslo Institutt for geofag. Flomrisikoanalyse for Hamar og Lillestrøm. Helge Bakkehøi. Candidatus Scientiarum

Universitetet i Oslo Institutt for geofag. Flomrisikoanalyse for Hamar og Lillestrøm. Helge Bakkehøi. Candidatus Scientiarum Uiversitetet i Oslo Istitutt for geofag Flomrisikoaalse for Hamar og Lillestrøm Helge Bakkehøi Cadidatus Scietiarum 1. september 2003 ABSTRACT 2 Abstract This work focuses o the two tows most exposed

Detaljer

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 16. mai 2008

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 16. mai 2008 Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL 6. mai 008 EKSAMEN I MATEMATIKK Modul 5 studiepoeg Tid: 5 timer Oppgavesettet er på 8 sider (ikludert formelsamlig). Hjelpemidler:

Detaljer

Oblig 2 - MAT1120. Fredrik Meyer 26. oktober 2009 = A = P1 1 A 1 P 1 A 1 A 2 = P 1. A k+1. A k P k

Oblig 2 - MAT1120. Fredrik Meyer 26. oktober 2009 = A = P1 1 A 1 P 1 A 1 A 2 = P 1. A k+1. A k P k Oblig 2 - MAT20 Fredri Meyer 26 otober 2009 Matrisee A i er defiert sli der P er e rotasjosmatrise som defierer i oppgave 2: A A 2 A + = A = P A P = P A P Oppgave Matrisee A i+ og A i er similære det fies

Detaljer

Tilfeldig utvalg [8.1] U.i.f. Statistisk inferens. Kapittel 8 og 9

Tilfeldig utvalg [8.1] U.i.f. Statistisk inferens. Kapittel 8 og 9 3 Tilfeldig utvalg [8.1] DEF 8.1: En populasjon er mengden av observasjoner som vi ønsker å studere, dvs. alle observasjoner det er mulig å gjøre. (Dersom elementene i populasjonen har fordeling f(x),

Detaljer

Duo HOME Duo OFFICE. Programmerings manual NO 65.044.30-1

Duo HOME Duo OFFICE. Programmerings manual NO 65.044.30-1 Duo HOME Duo OFFICE Programmerigs maual NO 65.044.30-1 INNHOLD Tekisk data Side 2 Systemiformasjo, brukere Side 3-4 Legge til og slette brukere Side 5-7 Edrig av sikkerhetsivå Side 8 Programmere: Nødkode

Detaljer

Oppgave 1. T = 9 Hypotesetest for å teste om kolesterolnivået har endret seg etter dietten: T observert = 2.16 0

Oppgave 1. T = 9 Hypotesetest for å teste om kolesterolnivået har endret seg etter dietten: T observert = 2.16 0 Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 08. mai 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir

Detaljer

Del1. b) 1) Gittrekka 2 4 6 8 Finnleddnummer20 ogsummenavde20førsteleddene.

Del1. b) 1) Gittrekka 2 4 6 8 Finnleddnummer20 ogsummenavde20førsteleddene. Del1 Oppgave 1 a) Deriver fuksjoee: 1) fx ( ) x 2 1 x 2 1 2) g x x 2 2 e x b) 1) Gittrekka 2 4 6 8 Fileddummer20 ogsummeavde20førsteleddee. 1 1 2) Gitt de uedelige rekka 2 1 2 4 Avgjør om rekka kovergerer.

Detaljer

CONSTANT FINESS SUNFLEX SMARTBOX

CONSTANT FINESS SUNFLEX SMARTBOX Luex terrassemarkiser. Moterig- og bruksavisig CONSTNT FINESS SUNFLEX SMRTBOX 4 5 6 7 8 Markises hovedkompoeter og mål Kombikosoll og plasserig rmklokker og justerig Parallelljusterig Motordrift og programmerig

Detaljer

#include <stddisclaimer.h>

#include <stddisclaimer.h> Ihold Kapittel Sasylighet.3 Sasylighetsfuksjo : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :.4 Diskrete og kotiuerlige sasylighetsfuksjoer : : : : : : : : : : : : : : : : : :.6 Betiget

Detaljer

Institutt for økonomi og administrasjon

Institutt for økonomi og administrasjon Fakultet for safusfag Istitutt for økooi og adiistraso Ivesterig og fiasierig Bokål Dato: Tirsdag. deseber 4 Tid: 4 tier / kl. 9-3 Atall sider (ikl. forside): 5 + 9 sider vedlegg Atall oppgaver: 4 Tillatte

Detaljer

Fagdag 2-3mx 24.09.07

Fagdag 2-3mx 24.09.07 Fagdag 2-3mx 24.09.07 Jeg beklager at jeg ikke har fuet oe ye morsomme spill vi ka studere, til gjegjeld skal dere slippe prøve/test dee gage. Istruks: Vi arbeider som valig med 3 persoer på hver gruppe.

Detaljer

Formler og regler i statistikk ifølge lærebok Gunnar Løvås: Statistikk for universiteter og høgskoler

Formler og regler i statistikk ifølge lærebok Gunnar Løvås: Statistikk for universiteter og høgskoler Formler og regler statstkk følge lærebok Guar Løvås: tatstkk for uversteter og høgskoler Kap. Hva er fakta om utvalget etralmål Meda: mdterste verd etter sorterg Modus: hyppgst forekommede verd Gjeomstt:

Detaljer

Første sett med obligatoriske oppgaver i STK1110 høsten 2015

Første sett med obligatoriske oppgaver i STK1110 høsten 2015 Første sett med obligatoriske oppgaver i STK1110 høsten 2015 Dette er det første obligatoriske oppgavesettet i STK1110 høsten 2015. Oppgavesettet består av fire oppgaver. Du må bruke Matematisk institutts

Detaljer

Andre sett med obligatoriske oppgaver i STK1110 høsten 2010

Andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Dette er det andre settet med obligatoriske oppgaver i STK1110 høsten 2010. Oppgavesettet består av fire oppgaver. Det er valgfritt om du vil

Detaljer

EKSAMEN I TMA4240 Statistikk

EKSAMEN I TMA4240 Statistikk Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Henning Omre (909 37848) Mette Langaas (988 47649) EKSAMEN I TMA4240 Statistikk 18.

Detaljer

LØSNING: Eksamen 17. des. 2015

LØSNING: Eksamen 17. des. 2015 LØSNING: Eksame 17. des. 2015 MAT100 Matematikk, 2015 Oppgave 1: økoomi a I optimum av T Rx er dt Rx 0 1 som gir d Ix Kx 0 2 dix dix dkx dkx 0 3 4 dvs. greseitekt gresekostad, q.e.d. 5 b Gresekostad ekstrakostade

Detaljer

Rente og pengepolitikk. 8. forelesning ECON 1310 21. september 2015

Rente og pengepolitikk. 8. forelesning ECON 1310 21. september 2015 Rete og pegepolitikk 8. forelesig ECON 1310 21. september 2015 1 Norge: lav og stabil iflasjo det operative målet for pegepolitikke, ær 2,5 proset i årlig rate. Iflasjosmålet er fleksibelt, dvs. at setralbake

Detaljer

Eksamen 20.05.2009. REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen 20.05.2009. REA3024 Matematikk R2. Nynorsk/Bokmål Eksame 20052009 REA3024 Matematikk R2 Nyorsk/Bokmål Nyorsk Eksamesiformasjo Eksamestid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Bruk av kjelder: Vedlegg: Framgagsmåte: Rettleiig om vurderiga: 5 timar:

Detaljer

Institutt for økonomi og administrasjon

Institutt for økonomi og administrasjon Fakultet for samfusfag Istitutt for økoomi og admiistraso Ivesterig og fiasierig Bokmål Dato: Madag. desember 3 Tid: 4 timer / kl. 9-3 Atall sider (ikl. forside): 5 + sider vedlegg Atall oppgaver: 4 Tillatte

Detaljer

+ S2 Y ) 2. = 6.737 6 (avrundet nedover til nærmeste heltall) n Y 1

+ S2 Y ) 2. = 6.737 6 (avrundet nedover til nærmeste heltall) n Y 1 Løsningsforslag for: MOT10 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 6. november 007 TILLATTE HJELPEMIDLER: Kalkulator: HP0S, Casio FX8 eller TI-0 Tabeller og formler i statistikk (Tapir forlag) MERKNADER:

Detaljer

Leseforståelse og matematikk

Leseforståelse og matematikk Leseforståelse og matematikk av guri a. ortvedt To studier av sammehege mellom leseforståelse og løsig av tekstoppgaver viser at ekelte elever ka mislykkes i oppgaveløsige fordi de tolker språket i oppgavee

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1120 Statistiske metoder og dataanalyse 2. Eksamensdag: Tirsdag 2. juni 2009. Tid for eksamen: 14.30 17.30. Oppgavesettet

Detaljer

OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 6 SIDER MERKNADER: Alle deloppgaver vektlegges likt.

OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 6 SIDER MERKNADER: Alle deloppgaver vektlegges likt. EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 08. mai 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir forlag) OPPGAVESETTET

Detaljer

Rente og pengepolitikk 1. Innhold. Forelesningsnotat 9, februar 2015

Rente og pengepolitikk 1. Innhold. Forelesningsnotat 9, februar 2015 Forelesigsotat 9, februar 2015 Rete og pegepolitikk 1 Ihold Rete og pegepolitikk...1 Hvorda virker Norges Baks styrigsrete?...3 Pegemarkedet...3 Etterspørselskaale...4 Valutakurskaale...4 Forvetigskaale...5

Detaljer

TMA4240 Statistikk Høst 2012

TMA4240 Statistikk Høst 2012 TMA424 Statistikk Høst 212 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving blokk II Oppgave 1 Oppgave 11.3 fra læreboka. Oppgave 2 Oppgave 11.19 fra læreboka. Oppgave

Detaljer

Kontinuerlige sannsynlighetsfordelinger.

Kontinuerlige sannsynlighetsfordelinger. Kontinuerlige sannsynlighetsfordelinger. Dekkes av kap. 6 og deler av kap. 8.5 i boka. Husk: f(x er sannsynlighetstettheten til en kontinuerlig X dersom:. f(x 0 for alle x R 2. f(xdx = 3. P (a

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. BtG207 EKSAMENSDATO: 11. juni 2007. KLASSE: HIS 05 08. TID: kl. 8.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 5 (innkl. forside)

Detaljer

EKSAMEN I FAG TMA4275 LEVETIDSANALYSE Mandag 27. mai 2013 Tid: 09:00 13:00

EKSAMEN I FAG TMA4275 LEVETIDSANALYSE Mandag 27. mai 2013 Tid: 09:00 13:00 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 Faglig kontakt under eksamen: Bo Lindqvist 975 89 418 EKSAMEN I FAG TMA4275 LEVETIDSANALYSE Mandag 27. mai 2013

Detaljer

Dersom vi skriver denne reaksjonslikningen ved bruk av kjemiske tegn: side av likningen har vi ett hydrogen mens vi har to på høyre side.

Dersom vi skriver denne reaksjonslikningen ved bruk av kjemiske tegn: side av likningen har vi ett hydrogen mens vi har to på høyre side. Støkiometri (megdeforhold) Det er særs viktig i kjemie å vite om megdeforhold om stoffer. -E hodepie tablett er bra mot hodesmerter, ti passer dårlig. -E sukkerbit i kaffe fugerer, 100 er slitsomt. -100

Detaljer

Øving 1 TMA4240 - Grunnleggende dataanalyse i Matlab

Øving 1 TMA4240 - Grunnleggende dataanalyse i Matlab Øving 1 TMA4240 - Grunnleggende dataanalyse i Matlab For grunnleggende introduksjon til Matlab, se kursets hjemmeside https://wiki.math.ntnu.no/tma4240/2015h/matlab. I denne øvingen skal vi analysere to

Detaljer

Prøveeksamen 2. Elektronikk 24. mars 2010

Prøveeksamen 2. Elektronikk 24. mars 2010 Prøveeksame 2 Elektroikk 24. mars 21 OPPGAVE 1 E 8 bit D/A-omformer har et utspeigsområde fra til 8 V V 1LSB, der V 1LSB er de aaloge speige som svarer til det mist sigifikate bit (LSB). a) Hvor stor er

Detaljer

HØGSKOLEN I STAVANGER

HØGSKOLEN I STAVANGER EKSAMEN I: MOT310 STATISTISKE METODER VARIGHET: 4 TIMER DATO: 27. FEBRUAR 2004 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 5

Detaljer

Dekkes av pensumsidene i kap. lesingsnotatene. Hypotesetesting er en systematisk fremgangsmåte

Dekkes av pensumsidene i kap. lesingsnotatene. Hypotesetesting er en systematisk fremgangsmåte Hypotesetesting. 10 og fore- Dekkes av pensumsidene i kap. lesingsnotatene. Hypotesetesting er en systematisk fremgangsmåte for å undersøke hypoteser (påstander) knyttet til parametre i sannsynlighetsfordelinger.

Detaljer

Øving 1 TMA4245 - Grunnleggende dataanalyse i Matlab

Øving 1 TMA4245 - Grunnleggende dataanalyse i Matlab Øving 1 TMA4245 - Grunnleggende dataanalyse i Matlab For grunnleggende bruk av Matlab vises til slides fra basisintroduksjon til Matlab som finnes på kursets hjemmeside. I denne øvingen skal vi analysere

Detaljer

Konfidensintervall for µ med ukjent σ (t intervall)

Konfidensintervall for µ med ukjent σ (t intervall) Forelesning 3, kapittel 6 Konfidensintervall for µ med ukjent σ (t intervall) Konfidensintervall for µ basert på n observasjoner fra uavhengige N( µ, σ) fordelinger når σ er kjent : Hvis σ er ukjent har

Detaljer

Eksamensoppgåve i ST1201/ST6201 Statistiske metoder

Eksamensoppgåve i ST1201/ST6201 Statistiske metoder Institutt for matematiske fag Eksamensoppgåve i ST1201/ST6201 Statistiske metoder Fagleg kontakt under eksamen: Tlf: Eksamensdato: august 2015 Eksamenstid (frå til): Hjelpemiddelkode/Tillatne hjelpemiddel:

Detaljer

Luktrisikovurdering fra legemiddelproduksjon på Fikkjebakke Screening

Luktrisikovurdering fra legemiddelproduksjon på Fikkjebakke Screening Luktrisikovurderig fra legemiddelproduksjo på Fikkjebakke Screeig Aquateam COWI AS Rapport r: 14-046 Prosjekt r: O-14062 Prosjektleder: Liv B. Heige Medarbeidere: Lie Diaa Blytt Karia Ødegård (Molab AS)

Detaljer

Reglement for fagskolestudier

Reglement for fagskolestudier Reglemet for fagskolestudier Ved Høyskole Kristiaia R Fra og med studieåret 2015/16 Ihold INNHOLD 3 Kapittel 1 Geerelle bestemmelser 4 Kapittel 2 - Studiereglemet 6 Kapittel 3 - Opptaksreglemet 8 Kapittel

Detaljer

Positive rekker. Forelest: 3. Sept, 2004

Positive rekker. Forelest: 3. Sept, 2004 Postve rekker Forelest: 3. Sept, 004 V skal tde utover fokusere på å teste om e rekke kovergerer, og skyve formler for summerg bakgrue. Dette er gje ford det første målet vårt er å lære hvorda v ka fe

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon

ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon Bo Lindqvist Institutt for matematiske fag 2 Kap. 9: Inferens om én populasjon Statistisk inferens har som mål å tolke/analysere

Detaljer

S2 kapittel 1 Rekker Utvalgte løsninger oppgavesamlingen

S2 kapittel 1 Rekker Utvalgte løsninger oppgavesamlingen Utvlgte løsiger oppgvesmlige S kpittel Rekker Utvlgte løsiger oppgvesmlige 0 Vi k prøve med differsemetode Differsee mellom leddee utover er 4,6,8, så det er rimelig t differse mellom femte og fjerde ledd

Detaljer

LØSNINGSFORSLAG TIL ØVING NR. 1, VÅR 2015

LØSNINGSFORSLAG TIL ØVING NR. 1, VÅR 2015 NTNU Norges tekisk-aturviteskapelige uiversitet Fakultet for aturviteskap og tekologi Istitutt for aterialtekologi TT4110 KJEI LØSNINGSFORSLAG TIL ØVING NR. 1, VÅR 015 OPPGAVE 1 Vi starter ALLTID ed å

Detaljer

EN LITEN INNFØRING I USIKKERHETSANALYSE

EN LITEN INNFØRING I USIKKERHETSANALYSE EN LITEN INNFØRING I USIKKERHETSANALYSE 1. Forskjellige typer feil: a) Definisjonsusikkerhet Eksempel: Tenk deg at du skal måle lengden av et noe ullent legeme, f.eks. en sau. Botemiddel: Legg vekt på

Detaljer

Page 1 EN DAG PÅ HELSESTASJONEN. Lises klassevenninnner. Formelen: Du har en hypotese om vanlig høyde

Page 1 EN DAG PÅ HELSESTASJONEN. Lises klassevenninnner. Formelen: Du har en hypotese om vanlig høyde 1 E DAG PÅ HELSESTASJOE Lises klassevenninnner Lise er veldig liten Hva gjør at du sier at hun er liten? Du har en hypotese om vanlig høyde Du har en hypotese om vanlig høyde Du sammenligner Lises høyde

Detaljer

Adaptive filtre - Oversikt

Adaptive filtre - Oversikt Adaptive filtre - Oversikt Hva er adaptive filtre? Avgresiger i dee forelesige Bakgru og avedelser Eksempler på avedelser Adaptiv utjevig Adaptiv ekkokasellerig Overgager tidsdiskret tidskotiuerlig tidsdiskret

Detaljer

EKSAMEN. Flexibel ingeniørutdanning, 2kl. Bygg m.fl.

EKSAMEN. Flexibel ingeniørutdanning, 2kl. Bygg m.fl. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. REA 1081 og REA1081F EKSAMENSDATO: 1. juni 2011. KLASSE: Flexibel ingeniørutdanning, 2kl. Bygg m.fl. TID: kl. 9.00 12.00. FAGLÆRER: Hans Petter Hornæs

Detaljer

Formelsamling V-2014 MAT110. Statistikk 1. Per Kristian Rekdal

Formelsamling V-2014 MAT110. Statistikk 1. Per Kristian Rekdal Formelsamling V-2014 MAT110 Statistikk 1 Per Kristian Rekdal 2 Forord Dette er formelsamlingen i emnet MAT110 Statistikk 1 ved høgskolen i Molde. Formlene i denne formelsamlingen er stort sett de formlene

Detaljer

Kartleggings- og oppfølgingsplan for enslige mindreårige asylsøkere/flyktninger (KOPP)

Kartleggings- og oppfølgingsplan for enslige mindreårige asylsøkere/flyktninger (KOPP) 2. KOPP: Kartleggigs- og oppfølgigspla - Bufetat... 149 Vedlegg 2 Vedlegg 2 Kartleggigs- og oppfølgigspla for eslige midreårige asylsøkere/flyktiger (KOPP) Utatt offetlighet jfr. Off.love 13, jfr. Lov

Detaljer

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Ved sensuren teller alle delspørsmål likt.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Ved sensuren teller alle delspørsmål likt. Eksamen i: MET00 Statistikk for økonomer Eksamensdag: 8. november 2007 Tid for eksamen: 09.00-13.00 Oppgavesettet er på 5 sider. Tillatte hjelpemidler: Alle trykte eller egenskrevne hjelpemidler og kalkulator.

Detaljer

Høgskolen i Sør-Trøndelag Avdeling Trondheim Økonomisk Høgskole EKSAMENSOPPGAVE

Høgskolen i Sør-Trøndelag Avdeling Trondheim Økonomisk Høgskole EKSAMENSOPPGAVE Høgskolen i Sør-Trøndelag Avdeling Trondheim Økonomisk Høgskole EKSAMENSOPPGAVE MET1002 Statistikk Grunnkurs 7,5 studiepoeng Torsdag 14. mai 2007 kl. 09.00-13.00 Faglærer: Sjur Westgaard (97122019) Kontaktperson

Detaljer

EKSAMEN I TMA4245 Statistikk

EKSAMEN I TMA4245 Statistikk Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Turid Follestad (98 06 68 80/73 59 35 37) Hugo Hammer (45 21 01 84/73 59 77 74) Eirik

Detaljer

Leica Lino Presis selvhorisonterende punkt- og linjelaser

Leica Lino Presis selvhorisonterende punkt- og linjelaser Impex Produkter AS Verkseier Furuluds vei 15 0668 OSLO Tel. 22 32 77 20 Fax 22 32 77 25 ifo@impex.o www.impex.o Leica Lio Presis selvhorisoterede pukt- og lijelaser Still opp, slå på, klar! Med Leica Lio

Detaljer