ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 5

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 5"

Transkript

1 ÅMA110 Sasylighetsregig med statistikk, våre 2006 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 3. april Bjør H. Auestad Kp. 6: Hypotesetestig del 5 1 / 56

2 Oppsummerig, del 4 Bjør H. Auestad Kp. 6: Hypotesetestig del 5 2 / 56

3 Oppsummerig, del 4 Oppsummerig, del 4 t-fordelig, t-test, t-itervall Test for forvetige, λt, i Poissomodell; lite. Kofidesitervall Bjør H. Auestad Kp. 6: Hypotesetestig del 5 3 / 56

4 Bjør H. Auestad Kp. 6: Hypotesetestig del 5 4 / 56

5 Oversikt, del 5 Eksempler fra slutte av forrige uke Kofidesitervall p-verdi Eksempler Eksempler (styrke,,... Bjør H. Auestad Kp. 6: Hypotesetestig del 5 5 / 56

6 Kofidesitervall Geerelt: La (L, U være et (ev. tilærmet 100(1 α% kofidesitervall for parametere θ. Vi vil teste H 0 : θ = θ 0 mot H 1 : θ θ 0 Test: Forkast H 0 dersom θ 0 (L, U. Teste har sigifikasivå α (ev. tilærmet. Veldig god måte å gjeomføre (tosidige tester på! Obs.: dersom dette blir brukt for esidig test får vi e ae sammeheg mellom itervallets kofidesgrad og sig.ivået til teste. Bjør H. Auestad Kp. 6: Hypotesetestig del 5 6 / 56

7 Kofidesitervall Eksempel: Hardhet til et spesielt stål blir udersøkt; seks måliger (i kg/mm 2 : 351, 322, 297, 291, 354, 322. Gjeomsitt: 322.8; estimert varias (empirisk varias: Ma er iteressert i om hardhete er forskjelig fra 300 kg/mm 2. Tyder resultatee på at hardhete er ulik 300? Målemodell med ormalatakelse; ukjet varias. Estimator for variase: S 2 = σ 2 = 1 ( 1 i=1 Xi X 2 Forvetige, µ: virkelig hardhet Vil teste: H 0 : µ = 300 mot H 1 : µ 300 Bjør H. Auestad Kp. 6: Hypotesetestig del 5 7 / 56

8 Kofidesitervall Øsker å bruke 5% sigifikasivå. Gjeomfører test vha. kofidesitervall; dvs., teste er: Forkast H 0 dersom et 95% kofidesitervall for µ ikke ieholder 300. Et 95% kofidesitervall for µ er gitt ved: S (X t ,5 6, X + t S ,5 6 Bjør H. Auestad Kp. 6: Hypotesetestig del 5 8 / 56

9 Kofidesitervall Et 95% kofidesitervall for µ er gitt ved: S (X t ,5 6, X + t S ,5 6 Isatt data (Gj.s. = 322.8, emp. varias = 689.4, t 0.025,5 = 2.571, blir utreget itervall: ( ( , = 295.2, Koklusjo: Behold H 0 side µ 0 = 300 (295.2, side µ 0 = 300 er ieholdt i kofidesitervallet. Bjør H. Auestad Kp. 6: Hypotesetestig del 5 9 / 56

10 Kofidesitervall Eksempel: Sammelige meigsmåliger Forrige meigsmålig: 28% oppslutig Dee meigsmålig: 31% oppslutig Er det edrig i virkelig oppslutig? Obs.: Sammeliger resultater fra to grupper; ikke stadardmetode i dette kurset. Bjør H. Auestad Kp. 6: Hypotesetestig del 5 10 / 56

11 Kofidesitervall Modell: Forrige meigsmålig: X 1 B( 1, p 1 Dee meigsmålig: X 2 B( 2, p 2 X 1 og X 2 atas å være statistisk uavhegige. Vi vil teste H 0 : p 1 = p 2 mot H 1 : p 1 p 2 Vi vil teste H 0 : p 1 p 2 = 0 mot H 1 : p 1 p 2 0 Det vil være best å lage et kofidesitervall for p 1 p 2, og bruke dette til teste. p 1 p 2 estimeres med: p 1 p 2 = X 1 1 X 2 2 Bjør H. Auestad Kp. 6: Hypotesetestig del 5 11 / 56

12 Kofidesitervall p 1 = X 1 1, p 2 = X 2 2 E ( p 1 p 2 = E ( p1 E ( p2 = p1 p 2 Var ( p 1 p 2 = Var ( p1 + Var ( p2 = p 1 (1 p p 2(1 p 2 2 p 1 og p 2 er begge tilærmet ormalfordelte og de uavhegige. Vi ka da slutte at også p 1 p 2 er tilærmet ormalfordelt. Bjør H. Auestad Kp. 6: Hypotesetestig del 5 12 / 56

13 Kofidesitervall p 1 p 2 er tilærmet ormalfordelt. Altså: p 1 p 2 (p 1 p 2 p1 (1 p p 2(1 p 2 2 N(0, 1, tilærmet Nevere (stadardavviket til p 1 p 2 ka tilærmes med: p1 (1 p 1 + p 2(1 p Bruker symbolet ŜD( p 1 p 2 for dee. Vi har: p 1 p 2 (p 1 p 2 ŜD( p 1 p 2 N(0, 1, tilærmet Bjør H. Auestad Kp. 6: Hypotesetestig del 5 13 / 56

14 Kofidesitervall Vi har: Medfører: ( P Derfor: p 1 p 2 (p 1 p 2 ŜD( p 1 p 2 N(0, 1, z α/2 p 1 p 2 (p 1 p 2 ŜD( p 1 p 2 L ({}}{ P p 1 p 2 z α/2 ŜD( p 1 p 2 p 1 p 2 p 1 p 2 + z α/2 ŜD( p 1 p 2 }{{} U tilærmet z α/2 1 α 1 α Bjør H. Auestad Kp. 6: Hypotesetestig del 5 14 / 56

15 Kofidesitervall Vi har altså at (L, U er et tilærmet (1 α100% kofidesitervall for differase p 1 p 2. Data: 1 = 1120, 2 = 1050; α = 0.05 α/2 = og z = 1.96 Utfall av p 1 p 2 : = 0.03 p1 Utfall av ŜD( p (1 p 1 1 p 2 = + p 2(1 p 2 : ( ( = Derfor, kofidesitervall: ( , = ( 0.008, Bjør H. Auestad Kp. 6: Hypotesetestig del 5 15 / 56

16 Kofidesitervall Derfor, kofidesitervall: ( , = ( 0.008, Koklusjo: Side 0 er ieholdt i itervallet ka vi ikke forkaste H 0. Det er ikke grulag for å påstå at virkelig oppslutig er edret. Bjør H. Auestad Kp. 6: Hypotesetestig del 5 16 / 56

17 Kofidesitervall Hva er problemet med å gjeomføre esidige tester på dee måte? Det er ikke oe problem dersom vi er øye!! Illustrer med eksempelet med smoltdata: Bjør H. Auestad Kp. 6: Hypotesetestig del 5 17 / 56

18 Kofidesitervall Eksempel: Vi skal kjøpe smolt av e smoltoppdretter. Det hevdes at gjeomsittsvekte til smolte i merde er (mist 80 gram. Vekt av i tilfeldig valgte smolt: gj.s.-vekt: gram. Vi er iteressert i om vekte (gjeomsittsvekt for alle smolt i merde er midre e 80 gram. Tyder resultatee på at vekte er midre e 80 gram? Målemodell med ormalatakelse; kjet varias, σ 2 = Forvetige, µ: vekt (gjeomsittsvekt for alle smolt i merde Vil teste: H 0 : µ = 80 mot H 1 : µ < 80 Bjør H. Auestad Kp. 6: Hypotesetestig del 5 18 / 56

19 Kofidesitervall Vil teste: H 0 : µ = 80 mot H 1 : µ < 80 Ata at vi øsker å bruke sig.ivå α = 0.10, og at vi vil bruke kofidesitervall for å gjeomføre teste. 90% kofidesitervall for µ: ( 10 2 X z 0.05 } {{ 9 } L 10 2, X + z 0.05 }{{ 9 } U Dersom hele itervallet er edfor (til vestre for µ 0 = 80, idikerer dette at H 1 er riktig. Mao., Teste er: Forkast H 0 dersom U < µ 0 = 80. Sig.ivå til dee teste? Bjør H. Auestad Kp. 6: Hypotesetestig del 5 19 / 56

20 Kofidesitervall Forkast H 0 dersom U < µ 0 = 80. Dette er det samme som: Forkast H 0 dersom: U = X + z X < 80 < z 0.05 Dvs. E slik måte å gjeomføre teste på svarer til e test med sigifikasivå på 5% (α/2. Bjør H. Auestad Kp. 6: Hypotesetestig del 5 20 / 56

21 Oversikt, del 5 Eksempler fra slutte av forrige uke Kofidesitervall p-verdi Eksempler Eksempler (styrke,,... Eksempler fra slutte av forrige uke Kofidesitervall p-verdi Eksempler Eksempler (styrke,,... Bjør H. Auestad Kp. 6: Hypotesetestig del 5 21 / 56

22 p-verdi Tester ka gjeomføres vha. p-verdi. Svært mye brukt. (Kombiasjo av p-verdi og kofidesitervall er ideell! Obs: Vi sakker ikke om suksessasylighete i e biomisk modell. Itroduserer vha. eksempel: Bjør H. Auestad Kp. 6: Hypotesetestig del 5 22 / 56

23 p-verdi Eksempel: Vi har gjort 20 kast med et pegestykke; 5 gav kro. Vi er iteressert i p = P(kro. Vi betrakter resultatet (5 kro av 20 kast som utfall av e tilfeldig variabel Y, der Y B(, p, = 20, p: ukjet. Vil teste H 0 : p = 0.5 mot H 1 : p < 0.5; Øsker å bruke sigifikasivå Bjør H. Auestad Kp. 6: Hypotesetestig del 5 23 / 56

24 p-verdi Vi vil teste H 0 : p = 0.5 mot H 1 : p < 0.5 Teststørrelse: Y ; ullfordelig: Y B(20, 0.5: Dette beskriver hva som er tekelige utfall uder H 0 Små verdier av Y idikerer at H 1 er riktig. Rødt: sasylighete for å få 5 eller et utfall som i eda sterkere grad peker i retig av at H 1 er riktig. Bjør H. Auestad Kp. 6: Hypotesetestig del 5 24 / 56

25 p-verdi H 0 : p = 0.5 mot H 1 : p < 0.5 Nullfordelig: Y B(20, 0.5: B(20, 0.5-fordelig; p-verdi farget. p-verdie for resultatet er sasylighete som svarer til rødt areal. Dvs.: Sasylighete i ullfordelige for å få 5 eller midre. Lite p idikerer at H 1 er riktig. ( Lite sasylig å få et slikt resultat som vi har fått, dersom H 0 skal forutettes å være sa. Bjør H. Auestad Kp. 6: Hypotesetestig del 5 25 / 56

26 p-verdi Fra biomisk tabell ( = 20, p = 0.5: y P(Y y Beregig av p-verdi: Her: p-verdi = P ( Y 5 p = 0.5 Her: p-verdi = P ( Y 5 p = 0.5 = B(20, 0.5-fordelig; p-verdi farget. Bjør H. Auestad Kp. 6: Hypotesetestig del 5 26 / 56

27 p-verdi Tosidig test, biomisk, lite Gjeomførig/koklusjo: Side p-verdie er midre e 0.05, forkastes H 0. Obs.1: Dette er øyaktig det samme som å gjeomføre e test med kritiske verdier på 5% sigifikasivå. Bjør H. Auestad Kp. 6: Hypotesetestig del 5 27 / 56

28 p-verdi Geerelt: Dersom p-verdie er lavere e fastlagt sigifikasivå, forkastes H 0. (Da har teststørrelse verdi i forkastigsområdet. Geerell defiisjo av p-verdi: Def.: p-verdie til et resultat er sasylighete bereget uder H 0 for å få det observerte resultatet eller et som i eda sterkere grad peker i retig av at H 1 er riktig. Bjør H. Auestad Kp. 6: Hypotesetestig del 5 28 / 56

29 p-verdi Eksempel: Vi skal kjøpe smolt av e smoltoppdretter. Det hevdes at gjeomsittsvekte til smolte i merde er (mist 80 gram. Vekt av i tilfeldig valgte smolt: gj.s.-vekt: gram. Vi er iteressert i om vekte (gjeomsittsvekt for alle smolt i merde er midre e 80 gram. Tyder resultatee på at vekte er midre e 80 gram? Målemodell med ormalatakelse; kjet varias, σ 2 = Forvetige, µ: vekt (gjeomsittsvekt for alle smolt i merde Vil teste: H 0 : µ = 80 mot H 1 : µ < 80 Bjør H. Auestad Kp. 6: Hypotesetestig del 5 29 / 56

30 p-verdi Vil teste: H 0 : µ = 80 mot H 1 : µ < 80 Øsker å bruke sig.ivå α = 0.10 Teststørrelse og ullfordelig: Z = X /9 N(0, 1 Data, utfall av teststørrelse: /9 = Null-fordelig; p-verdi fargelagt. Bjør H. Auestad Kp. 6: Hypotesetestig del 5 30 / 56

31 p-verdi Teststørrelse og ullfordelig: Z = X /9 N(0, 1 Data, utfall av teststørrelse: H 1 : µ < 80; /9 = Null-fordelig; p-verdi fargelagt. små verdier av Z tyder på at H 1 er riktig. Derfor: p-verdi = P ( Z < 0.94 H 0 riktig = > α = 0.1 Dvs.: Behold H 0. Det er klart at: p-verdi < α = 0.1 er øyaktig det samme som: Z < z α = z 0.1 = Bjør H. Auestad Kp. 6: Hypotesetestig del 5 31 / 56

32 p-verdi Eksempel: Vi vil udersøke et tilsettigsstoff si ivirkig på herdetide til betog. Normal betog herder på 120 timer ved e gitt temperatur. Med tilsettigsstoffet ble 40 blokker laget og herdetide registrert: gjeomsitt = timer; emp.stadardavvik = Tyder resultatee på at virkelig herdetid m/tils.stoff er aerledes e for ormal betog? Målemodell med ormaltilærmig; dataee x 1,...,x 40 utfalll av = 40 u.i.f. tilf.var. X 1,...,X 40. Forvetige, µ = E(X i : virkelig herdetid m/tils.stoff Vil teste: H 0 : µ = 120 mot H 1 : µ 120 Bjør H. Auestad Kp. 6: Hypotesetestig del 5 32 / 56

33 p-verdi H 0 : µ = 120 mot H 1 : µ 120 Øsker å bruke sig.ivå α = 0.05 Teststørrelse og ullfordelig: Z = X 120 S 2 /40 N(0, 1, til. Data, utfall av teststørrelse: /40 = Null-fordelig; p-verdi fargelagt. Bjør H. Auestad Kp. 6: Hypotesetestig del 5 33 / 56

34 p-verdi Teststørrelse og ullfordelig: Z = X 120 S 2 /40 N(0, 1, til. Data, utfall av teststørrelse: /40 = Null-fordelig; p-verdi fargelagt. H 1 : µ 120; Z-utfalll lagt fra 0 (positive eller egative tyder på at H 1 er riktig. Derfor: p-verdi = P ( Z < 2.2 H 0 riktig + P ( Z > 2.2 H 0 riktig = 2 P ( Z < 2.2 H 0 riktig = = < α = 0.05 Dvs.: Forkast H 0. Bjør H. Auestad Kp. 6: Hypotesetestig del 5 34 / 56

35 p-verdi p-verdi = P ( Z < 2.2 H0 riktig +P ( Z > 2.2 H0 riktig = 2 P ( Z < 2.2 H 0 riktig = = < α = 0.05 Det er klart at: p-verdi < α = 0.05 er øyaktig det samme som: Z < z α/2 = z = 1.96 eller Z > z α/ Null-fordelig; p-verdi fargelagt. Bjør H. Auestad Kp. 6: Hypotesetestig del 5 35 / 56

36 Oversikt, del 5 Eksempler fra slutte av forrige uke Kofidesitervall p-verdi Eksempler Eksempler (styrke,,... Eksempler fra slutte av forrige uke Kofidesitervall p-verdi Eksempler Eksempler (styrke,,... Bjør H. Auestad Kp. 6: Hypotesetestig del 5 36 / 56

37 Eksempel; styrke, Styrke Vi har sett på styrkefuksjo for esidige tester. Nå: Styrkefuksjo for tosidige tester. Først litt repetisjo! Bjør H. Auestad Kp. 6: Hypotesetestig del 5 37 / 56

38 Eksempel; styrke, Repetisjo av: Geerell defiisjo av styrke/styrkefuksjo Situasjo og modell fastlagt; test ag. parametere θ Følgede er også fastlagt: H 0 og H 1 Teststørrelse, sig.ivå og forkastigsområde / kritisk verdi Def.: Styrkefuksjoe, γ, er defiert ved: γ(θ = P(forkaste H 0 θ. For e bestemt verdi θ 1 (slik at H 1 er riktig, kalles sasylighete γ(θ 1 for styrke i alterativet θ 1. Bjør H. Auestad Kp. 6: Hypotesetestig del 5 38 / 56

39 Eksempel; styrke, Eksempel: Herdetider til betog. Forvetige, µ = E(X i : virkelig herdetid m/tils.stoff Vil teste : H 0 : µ = 120 mot H 1 : µ 120 Teststørrelse: Z = X 120, Nullfordelig: N(0, 1, til. S 2 Test (tilærmet sig.ivå α = 0.05: Forkast H 0 dersom Z z }{{} 1.96 eller Z z }{{} N(0, 1 tetthet Bjør H. Auestad Kp. 6: Hypotesetestig del 5 39 / 56

40 Eksempel; styrke, Styrkefuksjo til dee teste; Betrakt µ 1 slik at H 1 er riktig: γ(µ 1 = P(forkaste H 0 µ = µ 1 = P(Z z µ = µ 1 + P(Z z µ = µ 1 Vi ser på et av leddee om gage, først P(Z z µ = µ 1 Bjør H. Auestad Kp. 6: Hypotesetestig del 5 40 / 56

41 Eksempel; styrke, P(Z z µ = µ 1 = P = P P ( X 120 S 2 ( X µ1 S 2 (Z : teststørrelse z µ = µ 1 z µ 1 S 2 ( Z z µ 1 S S 2 µ = µ 1, der Z N(0, 1 Bjør H. Auestad Kp. 6: Hypotesetestig del 5 41 / 56

42 Eksempel; styrke, Det adre leddet, P(Z z µ = µ 1 : P(Z z µ = µ 1 = P = P P = 1 P ( X 120 S 2 ( X µ1 S 2 (Z : teststørrelse z µ = µ1 z µ 1 S 2 ( Z z µ 1 S 2 ( Z z µ 1 S S 2 µ = µ 1, der Z N(0, 1 Bjør H. Auestad Kp. 6: Hypotesetestig del 5 42 / 56

43 Eksempel; styrke, Berege styrke: γ(µ 1 = P(forkaste H 0 µ = µ 1 = P(Z z µ = µ 1 + P(Z z µ = µ 1 P ( Z z µ 1 S 2 ( = 40, S 2 : , z = P ( Z z µ 1 S 2 Uttrykkee på siste lije ka vi berege vha., N(0, 1-tabelle: γ(115 P(Z P(Z 3.65 = γ(125 P(Z P(Z 0.27 = Bjør H. Auestad Kp. 6: Hypotesetestig del 5 43 / 56

44 Eksempel; styrke, Plott av styrkefuksjoe: γ(µ 1 P ( Z z µ 1 S 2 ( = 40, S 2 : , z = P ( Z z µ 1 S γ(µ 1 mot µ 1 (på x-akse. Bjør H. Auestad Kp. 6: Hypotesetestig del 5 44 / 56

45 Eksempel; styrke, Vi skal se på problemet: Hvor mage data (måliger må vi ha for å få e gitt øsket styrke? Dimesjoerig av forsøk Svært viktig fordi ihetig av data ka være resurskrevede. Tar utgagspukt i eksempel med utprøvig av y medisi. Bjør H. Auestad Kp. 6: Hypotesetestig del 5 45 / 56

46 Eksempel; styrke, Eksempel: E y medisi for e bestemt sykdom skal prøves ut. Gammel medisi for dee sykdomme helbreder i 60% av tilfellee (fastslått etter lag tids erfarig. Forsøk for å prøve ut de ye: 20 tilfeldig valgte idivid med sykdomme får medisie og det blir registrert at 14 blir helbredet; 14 av 20 er 70%. Tyder dette resultatet på at de ye er bedre e de gamle? Bjør H. Auestad Kp. 6: Hypotesetestig del 5 46 / 56

47 Eksempel; styrke, Vi betrakter resultatet (14 av 20 helbredet som utfall av e tilfeldig variabel Y, der Y B(, p, = 20, p: ukjet. Vi vil teste H 0 : p = 0.6 mot H 1 : p > 0.6 Teststørrelse: Y ; ullfordelig: Y B(20, Test (sig.ivå ca. 0.05: Forkast H 0 dersom Y Y B(20, 0.6-fordelig Bjør H. Auestad Kp. 6: Hypotesetestig del 5 47 / 56

48 Eksempel; styrke, Styrkefuksjo til dee teste; Betrakt p 1 slik at H 1 er riktig (p 1 > 0.6: γ(p 1 = P(forkaste H 0 p = p 1 = P ( Y 16 p = p 1 = 1 P ( Y 15 p = p1 Ka bereges vha. biomiske tabeller. p 1 ( γ(p 1 ( Bjør H. Auestad Kp. 6: Hypotesetestig del 5 48 / 56

49 Eksempel; styrke, Hvor mye forbedres styrke dersom vi hadde hatt = 200 idivid med i utprøvige? Test med ormaltilærmig (til. 5% sig.ivå: Forkast H 0 dersom p ( z 0.05 = Bjør H. Auestad Kp. 6: Hypotesetestig del 5 49 / 56

50 Eksempel; styrke, Styrkefuksjo: γ(p 1 = P(forkaste H 0 p = p 1 = P ( p ( z 0.05 p = p 1 Obs: år p = p 1, er p p 1 p 1 (1 p N(0, 1, tilærmet Bjør H. Auestad Kp. 6: Hypotesetestig del 5 50 / 56

51 Eksempel; styrke, Styrkefuksjo: ( p 0.6 γ(p 1 = P z 0.05 p = p 1 0.6( ( 0.6(1 0.6 = P p z p = p 1 ( p p1 = P z 0.6( p 1 p 1 (1 p 1 p 1 (1 p P ( Z z ( p 1, p 1 (1 p p = p 1 der Z N(0, 1 Bjør H. Auestad Kp. 6: Hypotesetestig del 5 51 / 56

52 Eksempel; styrke, Beregiger, for p 1 = 0.7: γ(0.7 1 P ( Z ( ( = 1 P(Z 1.33 = = (Med = 20 var styrke i alterativet p 1 = 0.7. Bjør H. Auestad Kp. 6: Hypotesetestig del 5 52 / 56

53 Eksempel; styrke, Dimesjoerig; Eksempel på problemstillig: Hvor mage pasieter måtte vi hatt med i forsøket for å få styrke mist 0.9 i alterativet p 1 = 0.8? Test med ormaltilærmig (til. 5% sig.ivå: Forkast H 0 dersom p (1 0.6 z 0.05 = Bjør H. Auestad Kp. 6: Hypotesetestig del 5 53 / 56

54 Eksempel; styrke, Styrke: γ(p 1 = P P ( p p1 p 1 (1 p 1 ( Z 0.6(1 0.6 z (1 0.6 z 0.05 p 1 (1 p 1 p 1 (1 p p p 1 p = p 1, der Z N(0, 1 Bjør H. Auestad Kp. 6: Hypotesetestig del 5 54 / 56

55 Eksempel; styrke, Styrke for p 1 = 0.8 lik 0.9: γ( γ(0.8 P ( Z dersom 0.6(1 0.6 z ( (1 0.6 z ( = z 0.1 = = 0.9, N(0, 1 tetthet Bjør H. Auestad Kp. 6: Hypotesetestig del 5 55 / 56

56 Eksempel; styrke, 0.6(1 0.6 z ( ( = z ( (1 0.8 = z ( (1 0.8 = z 0.1 z = 6.59 = (1 0.8 Bjør H. Auestad Kp. 6: Hypotesetestig del 5 56 / 56

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 5

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 5 ÅMA110 Sasylighetsregig med statistikk, våre 2010 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 12. april Bjør H. Auestad Kp. 6: Hypotesetestig del 4 1/ 59

Detaljer

Hypotesetesting, del 5

Hypotesetesting, del 5 Oversikt, del 5 Kofidesitervall p-verdi Kofidesitervall E (tosidig test ka gjeomføres vha. av et kofidesitervall. For eksempel, dersom vi i målemodell 1 vil teste: H 0 : μ = μ 0 mot H 1 : μ μ 0, ka vi

Detaljer

Eksempler fra slutten av forrige uke. Eksempler (styrke, dimensjonering,...) Eksempler fra slutten av forrige uke

Eksempler fra slutten av forrige uke. Eksempler (styrke, dimensjonering,...) Eksempler fra slutten av forrige uke Oversikt, del 5 Hypotesetestig, del 4 (oppsummerig fra Hypotesetestig, del 5 Kofidesitervall dimesjoerig Eksempler fra slutte av forrige uke Kofidesitervall p-verdi Eksempler Eksempler (styrke, dimesjoerig,...

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 4. Hypotesetesting, del 4

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 4. Hypotesetesting, del 4 ÅMA11 Sasylighetsregig med statistikk, våre 27 Kp. 6, del 4 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 19. mars Bjør H. Auestad Kp. 6: Hypotesetestig del 4 1/ 27 Bjør

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 5 Estimering. Målemodellen.

ÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 5 Estimering. Målemodellen. ÅMA0 Sasylighetsregig med statistikk, våre 0 Kp. 5 Estimerig. Målemodelle. Estimerig. Målemodelle. Ihold:. (Pukt)Estimerig i biomisk modell (kp. 5.). Målemodelle... (kp. 5.). (Pukt)Estimerig i målemodelle

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 20. mars Bjørn H. Auestad Kp. 6: Hypotesetesting

Detaljer

Mer om utvalgsundersøkelser

Mer om utvalgsundersøkelser Mer om utvalgsudersøkelser I uderkapittel 3.6 i læreboka gir vi e kort iførig i takegage ved utvalgsudersøkelser. Vi gir her e grudigere framstillig av temaet. Populasjo og utvalg Ved e utvalgsudersøkelse

Detaljer

Estimering og hypotesetesting. Estimering og hypotesetesting. Estimering og hypotesetesting. Kapittel 10. Ett- og toutvalgs hypotesetesting

Estimering og hypotesetesting. Estimering og hypotesetesting. Estimering og hypotesetesting. Kapittel 10. Ett- og toutvalgs hypotesetesting 3 Estimerig og hypotesetestig Kapittel 10 Ett- og toutvalgs hypotesetestig TMA445 V007: Eirik Mo Feome Bilkjørig Høyde til studeter Estimator ˆp = X, X atall ˆµ = X gjeomsittlig høyde. som syes de er flikere

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 ÅMA110 asylighetsregig med statistikk våre 011 Kp. 5 Estimerig 1 Estimerig. Målemodelle. Ihold: 1. (ukt)estimerig i biomisk modell (kp. 5.). Målemodelle... (kp. 5.3) 3. (ukt)estimerig i målemodelle (kp.

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 0 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Oppgave Midtveiseksame a) X er e stokastisk variabel

Detaljer

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 12. desember 2008

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 12. desember 2008 Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL. desember 8 EKSAMEN I MATEMATIKK, Utsatt røve Modul 5 studieoeg Tid: 5 timer Ogavesettet er å sider (ikludert formelsamlig).

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. Noen viktige sannsynlighetsmodeller. Binomisk modell. Kp. 3 Diskrete tilfeldige variable

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. Noen viktige sannsynlighetsmodeller. Binomisk modell. Kp. 3 Diskrete tilfeldige variable ÅMA Saslighetsregig med statistikk, våre K. 3 Diskrete tilfeldige variable Noe viktige saslighetsmodeller Noe viktige saslighetsmodeller ( Sas.modell : å betr det klasse/te sas.fordelig.) Biomisk modell

Detaljer

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 20. mai 2008

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 20. mai 2008 Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL. mai 8 EKSAMEN I MATEMATIKK Modul 5 studieoeg Tid: 5 timer Ogavesettet er å sider (ikludert formelsamlig). Hjelemidler:

Detaljer

Econ 2130 uke 15 (HG) Poissonfordelingen og innføring i estimering

Econ 2130 uke 15 (HG) Poissonfordelingen og innføring i estimering Eco 130 uke 15 (HG) Poissofordelige og iførig i estimerig 1 Poissofordelige (i) Tilærmig til biomialfordelige. Regel. ( Poissotilærmelse ) Ata Y ~ bi(, p) E( Y ) = p og var( Y ) = p(1 p). Hvis er stor

Detaljer

8 (inkludert forsiden og formelsamling) Tegne- og skrivesaker, kalkulator, formelsamling (se vedlagt).

8 (inkludert forsiden og formelsamling) Tegne- og skrivesaker, kalkulator, formelsamling (se vedlagt). Eksamesoppgave våre 011 Ordiær eksame Bokmål Fag: Matematikk Eksamesdato: 10.06.011 Studium/klasse: GLU 5-10 Emekode: MGK00 Eksamesform: Skriftlig Atall sider: 8 (ikludert forside og formelsamlig) Eksamestid:

Detaljer

Påliteligheten til en stikkprøve

Påliteligheten til en stikkprøve Pålitelighete til e stikkprøve Om origiale... 1 Beskrivelse... 2 Oppgaver... 4 Løsigsforslag... 4 Didaktisk bakgru... 5 Om origiale "Zuverlässigkeit eier Stichprobe" på http://www.mathe-olie.at/galerie/wstat2/stichprobe/dee

Detaljer

Eksamen REA3028 S2, Våren 2011

Eksamen REA3028 S2, Våren 2011 Eksame REA08 S, Våre 0 Del Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave (8 poeg) a) Deriver fuksjoee ) f 5 f 6 5 ) g g ) h l 9 9 6 4 h l

Detaljer

n 2 +1) hvis n er et partall.

n 2 +1) hvis n er et partall. TMA445 Statistikk Vår 04 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer, blokk II Oppgave Mediae til et datasett, X, er de midterste verdie. Hvis vi har stokastiske

Detaljer

TMA4245 Statistikk. Øving nummer b5. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag

TMA4245 Statistikk. Øving nummer b5. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b5 Oppgave 1 Eksame mai 2001, oppgave 1 av 4 Vi ser på kosetrasjoe av et giftstoff i havbue like utefor

Detaljer

11,7 12,4 12,8 12,9 13,3.

11,7 12,4 12,8 12,9 13,3. TMA4240 Statistikk Vår 2008 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b6 Oppgave 1 Eksame mai 2001, oppgave 1 av 4 Vi ser på kosetrasjoe av et giftstoff i havbue

Detaljer

TMA4245 Statistikk Eksamen 9. desember 2013

TMA4245 Statistikk Eksamen 9. desember 2013 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag TMA4245 Statistikk Eksame 9. desember 2013 Oppgave 1 I kortspillet Blackjack får ei de høgaste geviste derssom dei to første korta

Detaljer

3MX 2007/8 - Kapittel 5: 8. januar 5. februar 2008

3MX 2007/8 - Kapittel 5: 8. januar 5. februar 2008 3MX 00/8 - Kapittel : 8. jauar. februar 008 Pla for skoleåret 00/008: Kapittel 6: 6/ /. Kapittel : / /3. Prøver på eller skoletime etter hvert kapittel. É heildagsprøve i hver termi. Repetisjo, prøver,

Detaljer

Eksempeloppgave 2014. REA3028 Matematikk S2 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)

Eksempeloppgave 2014. REA3028 Matematikk S2 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler) Eksempeloppgave 2014 REA3028 Matematikk S2 Eksempel på eksame våre 2015 etter y ordig Ny eksamesordig Del 1: 3 timer (ute hjelpemidler) Del 2: 2 timer (med hjelpemidler) Mistekrav til digitale verktøy

Detaljer

Ukeoppgaver i BtG207 Statistikk, uke 4 : Binomisk fordeling. 1

Ukeoppgaver i BtG207 Statistikk, uke 4 : Binomisk fordeling. 1 Ukeoppgaver i BtG20 Statistikk, uke 4 : Biomisk fordelig. 1 Høgskole i Gjøvik Avdelig for tekologi, økoomi og ledelse. Statistikk Ukeoppgaver uke 4 Biomisk fordelig. Oppgave 1 La de stokastiske variable

Detaljer

Metoder for politiske meningsmålinger

Metoder for politiske meningsmålinger Metoder for politiske meigsmåliger AV FORSKER IB THOMSE STATISTISK SETRALBYRÅ Beregigsmetodee som brukes i de forskjellige politiske meigsmåliger har vært gjestad for mye diskusjo i dagspresse det siste

Detaljer

Eksamen 20.05.2009. REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen 20.05.2009. REA3024 Matematikk R2. Nynorsk/Bokmål Eksame 20052009 REA3024 Matematikk R2 Nyorsk/Bokmål Nyorsk Eksamesiformasjo Eksamestid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Bruk av kjelder: Vedlegg: Framgagsmåte: Rettleiig om vurderiga: 5 timar:

Detaljer

To-utvalgstest (def 8.1) vs ettutvalgstest: Hypotesetesting, to utvalg (Kapitel 8) Longitudinell studie (oppfølgingsstudie) - eqn 8.1. Eksempel 8.

To-utvalgstest (def 8.1) vs ettutvalgstest: Hypotesetesting, to utvalg (Kapitel 8) Longitudinell studie (oppfølgingsstudie) - eqn 8.1. Eksempel 8. Hypotesetestig, to utvalg (Kapitel 8) Medisisk statistikk 009 http://folk.tu.o/slyderse/medstat/medstati_h09.html To-utvalgstest (def 8.) vs ettutvalgstest: To-utvalgstest: Sammelike de uderliggede parameter

Detaljer

Oversikt over konfidensintervall i Econ 2130

Oversikt over konfidensintervall i Econ 2130 1 HG Revidert april 013 Oversikt over kofidesitervall i Eco 130 Merk at dee oversikte ikke er met å leses istedefor framstillige i Løvås, me som et supplemet. De ieholder tabeller med formler for kofidesitervaller

Detaljer

FORFATTER(E) Jan-W. Lippestad og Trond Harsvik OPPDRAGSGIVER(E) Rikstrygdeverket. Nanna Stender, Mari K. Rollag og Kristian Munthe

FORFATTER(E) Jan-W. Lippestad og Trond Harsvik OPPDRAGSGIVER(E) Rikstrygdeverket. Nanna Stender, Mari K. Rollag og Kristian Munthe SINTEF RAPPORT TITTEL SINTEF Uimed Postadresse: Boks 124, Blider 0314 Oslo Besøksadresse: Forskigsveie 1 Telefo: 22 06 73 00 Telefaks: 22 06 79 09 Foretaksregisteret: NO 948 007 029 MVA Evaluerig av hevisigsprosjektet

Detaljer

B Bakgrunnsinformasjon om ROS-analysen.

B Bakgrunnsinformasjon om ROS-analysen. RI SI KO- O G SÅRBARH ET SANALYSE (RO S) A Hva som skal utredes Beredskapog ulykkesrisiko(ros) vurderesut fra sjekklistefra Direktoratetfor samfussikkerhetog beredskap.aalyse blir utført ved vurderigav

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 ÅMA0 Sasylghetsregg med statstkk, våre 007 Kp. 5 Estmerg. Målemodelle. Estmerg. Målemodelle. Ihold:. (Pukt)Estmerg bomsk modell (kp. 5.). Målemodelle... (kp. 5.3) 3. (Pukt)Estmerg målemodelle (kp. 5.3)

Detaljer

Kommentarer til oppgaver;

Kommentarer til oppgaver; Kapittel - Algebra Versjo: 11.09.1 - Rettet feil i 0, 1 og 70 og lagt i litt om GeoGebra-bruk Kommetarer til oppgaver; 0, 05, 10, 13, 15, 5, 9, 37, 5,, 5, 59, 1, 70, 7, 78, 80,81 0 a) Trykkfeil i D-koloe

Detaljer

H T. Amundsen INNHOLD

H T. Amundsen INNHOLD Itere otater STATISTISK SENTRALBYRÅ. oktober 1980 KORRELASJONSKOEFFISIENTEN - ENDA ENGANG Av H T. Amudse INNHOLD 1. Iledig *****..... * 0 1. Produktmametkorrelasjoskoeffisiete og sammehege med lieær regresjo.

Detaljer

IO 77/45 29. november 1977 ESTIMERING AV ENGELDERIVERTE PA DATA MED MALEFEIL. Odd Skarstad 1) INNHOLD

IO 77/45 29. november 1977 ESTIMERING AV ENGELDERIVERTE PA DATA MED MALEFEIL. Odd Skarstad 1) INNHOLD IO 77/45 29. ovember 977 ESTIMERING V ENGELDERIVERTE P DT MED MLEFEIL av Odd Skarstad ) INNHOLD I. Data fra forbruksudersøkelse II. Estimerig ved målefeil. Iledig 2. Systematiske målefeil 2 3. Tilfeldige

Detaljer

OPPGAVE 4 LØSNINGSFORSLAG OPPGAVE 5 LØSNINGSFORSLAG UTVIKLING AV REKURSIV FORMEL FOR FIGURTALL SOM GIR ANDREGRADSFUNKSJONER

OPPGAVE 4 LØSNINGSFORSLAG OPPGAVE 5 LØSNINGSFORSLAG UTVIKLING AV REKURSIV FORMEL FOR FIGURTALL SOM GIR ANDREGRADSFUNKSJONER OPPGAVE 4 LØSNINGSFORSLAG Tallfølge i f) rektageltallee. Her er de eksplisitte formele R = ( +1) eller R = +. Dette er e adregradsfuksjo. I figurtallsammeheg forutsetter vi at de legste side er (øyaktig)

Detaljer

STK1100: Kombinatorikk

STK1100: Kombinatorikk 1100: ombiatorikk auar 2009 Ørulf orga Matematisk istitutt Uiversitetet i Oslo 1 Uiform sasylighetsmodell: t stokastisk forsøk har N utfall Det er de mulige utfallee for forsøket i atar at de N utfallee

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008 ÅMA0 Sasylighetsregig med statistikk, våre 008 ÅMA0 Sasylighetsregig med statistikk våre 008 Praktisk om kurset Foreleser og faglig asvarlig: Øystei Arild (IRIS, oystei.arild@iris.o) Bjør H. Auestad (kotor:

Detaljer

Universitetet i Oslo Institutt for geofag. Flomrisikoanalyse for Hamar og Lillestrøm. Helge Bakkehøi. Candidatus Scientiarum

Universitetet i Oslo Institutt for geofag. Flomrisikoanalyse for Hamar og Lillestrøm. Helge Bakkehøi. Candidatus Scientiarum Uiversitetet i Oslo Istitutt for geofag Flomrisikoaalse for Hamar og Lillestrøm Helge Bakkehøi Cadidatus Scietiarum 1. september 2003 ABSTRACT 2 Abstract This work focuses o the two tows most exposed

Detaljer

Fagdag 2-3mx 24.09.07

Fagdag 2-3mx 24.09.07 Fagdag 2-3mx 24.09.07 Jeg beklager at jeg ikke har fuet oe ye morsomme spill vi ka studere, til gjegjeld skal dere slippe prøve/test dee gage. Istruks: Vi arbeider som valig med 3 persoer på hver gruppe.

Detaljer

Relasjonen i kognitiv terapi ved psykosebehandling

Relasjonen i kognitiv terapi ved psykosebehandling Relasjoe i kogitiv terapi ved psykosebehadlig Psykolog Torkil Berge Voksepsykiatrisk avdelig Videre TIPS Nettverkskoferase 22. jauar 2013 Helhetlig og itegrert behadlig PASIENT FAMILIE NÆRMILJØ Symptommestrig

Detaljer

Kp. 11 Enkel lineær regresjon (og korrelasjon) Kp. 11 Regresjonsanalyse; oversikt

Kp. 11 Enkel lineær regresjon (og korrelasjon) Kp. 11 Regresjonsanalyse; oversikt Bjørn H. Auestad Kp. 11: Regresjonsanalyse 1 / 57 Kp. 11 Regresjonsanalyse; oversikt 11.1 Introduction to Linear Regression 11.2 Simple Linear Regression 11.3 Least Squares and the Fitted Model 11.4 Properties

Detaljer

ARBEIDSHEFTE I MATEMATIKK

ARBEIDSHEFTE I MATEMATIKK ARBEIDSHEFTE I MATEMATIKK Temahefte r Hvorda du reger med poteser Detaljerte forklariger Av Matthias Loretze mattegriseforlag.com Opplsig: E potes er e forkortet skrivemåte for like faktorer. E potes består

Detaljer

Ulike typer utvalg. MAT0100V Sannsynlighetsregning og kombinatorikk. Ordnet utvalg uten tilbakelegging 29 (29 1) (29 2) (29 3) =

Ulike typer utvalg. MAT0100V Sannsynlighetsregning og kombinatorikk. Ordnet utvalg uten tilbakelegging 29 (29 1) (29 2) (29 3) = MAT000V Sasylighetsregig og kombiatorikk Urdede utvalg ute tilbakeleggig Pascals talltrekat og biomialkoeffisietee Ørulf Borga Matematisk istitutt Uiversitetet i Oslo Ulike typer utvalg Eksempel 6.: Vi

Detaljer

+ S2 Y ) 2. = 6.737 6 (avrundet nedover til nærmeste heltall) n Y 1

+ S2 Y ) 2. = 6.737 6 (avrundet nedover til nærmeste heltall) n Y 1 Løsningsforslag for: MOT10 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 6. november 007 TILLATTE HJELPEMIDLER: Kalkulator: HP0S, Casio FX8 eller TI-0 Tabeller og formler i statistikk (Tapir forlag) MERKNADER:

Detaljer

2.1 Polynomdivisjon. Oppgave 2.10

2.1 Polynomdivisjon. Oppgave 2.10 . Polyomdivisjo Oppgave. ( 5 + ) : = + + ( + ):( ) 6 + 6 8 8 = + + c) ( + 5 ) : = + 6 6 d) + + + = + + = + + + 8+ ( ):( ) + + + Oppgave. ( + 5+ ):( ) 5 + + = + ( 5 ): 9 + + + = + + + 5 + 6 9 c) ( 8 66

Detaljer

2. Bestem nullpunktene til g.

2. Bestem nullpunktene til g. Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL 0. desember 007 EKSAMEN I MATEMATIKK Modul 5 studiepoeg Tid: 5 timer Oppgavesettet er på 9 sider (ikludert formelsamlig).

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag ..4 EKSAMEN Løsigsforslag Emekode: ITF75 Dato: 6. desember Eme: Matematikk for IT Eksamestid: kl 9. til kl. Hjelpemidler: To A4-ark med valgfritt ihold på begge sider. Kalkulator er ikke tillatt. Faglærer:

Detaljer

EKSAMEN KANDIDATNUMMER: EKSAMENSDATO: 11. juni HiS Jørstadmoen. TID: kl EMNEANSVARLIG: Hans Petter Hornæs

EKSAMEN KANDIDATNUMMER: EKSAMENSDATO: 11. juni HiS Jørstadmoen. TID: kl EMNEANSVARLIG: Hans Petter Hornæs KANDIDATNUMMER: EKSAMEN EMNENAVN: EMNENUMMER: Statistikk. BtG27 EKSAMENSDATO: 11. juni 28 KLASSE: HiS 6-9 Jørstadmoen. TID: kl. 8. 13.. EMNEANSVARLIG: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 4 (innkl.

Detaljer

ERP-implementering: Shakedown-fasen

ERP-implementering: Shakedown-fasen ERP-implemeterig: Shakedow-fase «Hvilke faktorer asees som viktige i shakedow-fase ved implemeterig av ERP i orske virksomheter?» Frak Erik Strømlad Veiledere Maug Kyaw Sei Stig Nordheim Masteroppgave

Detaljer

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 14.12.2007

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 14.12.2007 Høgskole Telemark Avdelg for estetske fag, folkekultur og lærerutdag BOKMÅL 4..7 UTATT PRØVE I MATEMATIKK, Modul 5 studepoeg Td: 5 tmer Hjelpemdler: Kalkulator og vedlagt formelsamlg (bakerst oppgavesettet).

Detaljer

Leseforståelse og matematikk

Leseforståelse og matematikk Leseforståelse og matematikk av guri a. ortvedt To studier av sammehege mellom leseforståelse og løsig av tekstoppgaver viser at ekelte elever ka mislykkes i oppgaveløsige fordi de tolker språket i oppgavee

Detaljer

Eksempeloppgave 2014. REA3026 Matematikk S1 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)

Eksempeloppgave 2014. REA3026 Matematikk S1 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler) Eksempeloppgave 04 REA306 Matematikk S Eksempel på eksame våre 05 etter y ordig Ny eksamesordig Del : 3 timer (ute hjelpemidler) Del : timer (med hjelpemidler) Mistekrav til digitale verktøy på datamaski:

Detaljer

Formler og regler i statistikk ifølge lærebok Gunnar Løvås: Statistikk for universiteter og høgskoler

Formler og regler i statistikk ifølge lærebok Gunnar Løvås: Statistikk for universiteter og høgskoler Formler og regler statstkk følge lærebok Guar Løvås: tatstkk for uversteter og høgskoler Kap. Hva er fakta om utvalget etralmål Meda: mdterste verd etter sorterg Modus: hyppgst forekommede verd Gjeomstt:

Detaljer

FX-82ES. NY CASIO teknisk / vitenskapelig lommeregner med naturlig tallvindu.

FX-82ES. NY CASIO teknisk / vitenskapelig lommeregner med naturlig tallvindu. ytt NR. 005. årgag FX-8ES NY CASIO tekisk / viteskapelig lommereger med aturlig tallvidu. Det er å mer e 5 år side kalkulatore for alvor ble tatt i bruk i orsk matematikk-udervisig, og de viteskapelige

Detaljer

Institutt for økonomi og administrasjon

Institutt for økonomi og administrasjon Fakultet for samfusfag Istitutt for økoomi og admiistraso Ivesterig og fiasierig Bokmål Dato: Madag. desember 3 Tid: 4 timer / kl. 9-3 Atall sider (ikl. forside): 5 + sider vedlegg Atall oppgaver: 4 Tillatte

Detaljer

Løsningsforslag R2 Eksamen 04.06.2012. Nebuchadnezzar Matematikk.net Øistein Søvik

Løsningsforslag R2 Eksamen 04.06.2012. Nebuchadnezzar Matematikk.net Øistein Søvik Løsigsforslag R2 Eksame 6 Vår 04.06.202 Nebuchadezzar Matematikk.et Øistei Søvik Sammedrag De fleste forlagee som gir ut lærebøker til de videregåede skole, gir ut løsigsforslag til tidligere gitte eksameer.

Detaljer

Kraftforsyningsberedskap. Roger Steen Seniorrådgiver Beredskapsseksjonen NVE, rost@nve.no

Kraftforsyningsberedskap. Roger Steen Seniorrådgiver Beredskapsseksjonen NVE, rost@nve.no Kraftforsyigsberedskap Roger Stee Seiorrådgiver Beredskapsseksjoe NVE, rost@ve.o Beredskapsasvar Olje- og eergidepartemetet har det overordede asvaret for ladets kraftforsyig. Det operative asvaret for

Detaljer

LØSNING: Eksamen 17. des. 2015

LØSNING: Eksamen 17. des. 2015 LØSNING: Eksame 17. des. 2015 MAT100 Matematikk, 2015 Oppgave 1: økoomi a I optimum av T Rx er dt Rx 0 1 som gir d Ix Kx 0 2 dix dix dkx dkx 0 3 4 dvs. greseitekt gresekostad, q.e.d. 5 b Gresekostad ekstrakostade

Detaljer

Del1. b) 1) Gittrekka 2 4 6 8 Finnleddnummer20 ogsummenavde20førsteleddene.

Del1. b) 1) Gittrekka 2 4 6 8 Finnleddnummer20 ogsummenavde20førsteleddene. Del1 Oppgave 1 a) Deriver fuksjoee: 1) fx ( ) x 2 1 x 2 1 2) g x x 2 2 e x b) 1) Gittrekka 2 4 6 8 Fileddummer20 ogsummeavde20førsteleddee. 1 1 2) Gitt de uedelige rekka 2 1 2 4 Avgjør om rekka kovergerer.

Detaljer

Luktrisikovurdering fra legemiddelproduksjon på Fikkjebakke Screening

Luktrisikovurdering fra legemiddelproduksjon på Fikkjebakke Screening Luktrisikovurderig fra legemiddelproduksjo på Fikkjebakke Screeig Aquateam COWI AS Rapport r: 14-046 Prosjekt r: O-14062 Prosjektleder: Liv B. Heige Medarbeidere: Lie Diaa Blytt Karia Ødegård (Molab AS)

Detaljer

Formelsamling i matematikk og statistikk

Formelsamling i matematikk og statistikk Høgskole i Berge Formelsamlig i matematikk og statistikk for Igeiørutdaige FOA, FOA, FOA3, FOA7, FVA4 5.utgave Fuksjoer. Elemetære fuksjoer: a) l y = y = e a = b = log a b = lb l a b) l(ab) = l A + l B,

Detaljer

Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte.

Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte. Eksame 20.05.2009 REA3028 Matematikk S2 Nyorsk/Bokmål Bokmål Eksamesiformasjo Eksamestid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Bruk av kilder: Vedlegg: Framgagsmåte: Veiledig om vurderige: 5 timer:

Detaljer

Notat 1: Grunnleggende statistikk og introduksjon til økonometri

Notat 1: Grunnleggende statistikk og introduksjon til økonometri Notat : Gruleggede statstkk og troduksjo tl økoometr Gruleggede statstkk Populasjo vs. utvalg Statstsk feres gjør bruk av formasjoe et utvalg tl å trekke koklusjoer (el. slutger) om populasjoe som utvalget

Detaljer

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 29. mai 2007

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 29. mai 2007 Høgskole Telemark Avdelg for estetske fag, folkekultur og lærerutdag BOKMÅL 9. ma 7 EKSAMEN I MATEMATIKK, Modul 5 studepoeg Td: 5 tmer Hjelpemdler: Kalkulator og vedlagt formelsamlg (bakerst oppgavesettet).

Detaljer

Kp. 13. Enveis ANOVA

Kp. 13. Enveis ANOVA -tabell Bjørn H. Auestad Kp. 13: Én-faktor eksperiment 1 / 13 Kp. 13: Én-faktor -tabell 13.1 Analysis-of-Variance Technique 13.2 The Strategy of Experimental Design 13.3 One-Way Analysis of Variance: Completely

Detaljer

Refleksjon og brytning av bølger

Refleksjon og brytning av bølger Refleksjo og brytig a bølger Når i å skal studere oe bølgefeomeer, bruker i oerflatebølger på a som eksempel. Derfor begyer i med å gjøre oss kjet med abølger. Fotografiee edefor iser to eksempler på bølgeformer

Detaljer

UNIVERSITETET I OSLO. De forskningsintensive universitetenes rolle. UiOs innspill til Forskningsmeldingen 2009

UNIVERSITETET I OSLO. De forskningsintensive universitetenes rolle. UiOs innspill til Forskningsmeldingen 2009 UNIVERSITETET I OSLO Kuskapsdepartemetet Postboks 8119 Dep Postboks 1072, Blider 0032 Oslo 0316 OSLO Dato: 02.01.2009 Vår ref.: 2008/20593 Deres ref.: Telefo: 22 85 63 01 Telefaks: 22 85 44 42 E-post:

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksame i: ECON30 Statistikk Exam: ECON30 Statistics UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamesdag: Tirsdag. jui 00 Sesur kugjøres: Tirsdag 5. jui, ca. 6.00 Date of exam: Tuesday, Jue, 00 Grades will

Detaljer

Rente og pengepolitikk 1. Innhold. Forelesningsnotat 9, februar 2015

Rente og pengepolitikk 1. Innhold. Forelesningsnotat 9, februar 2015 Forelesigsotat 9, februar 2015 Rete og pegepolitikk 1 Ihold Rete og pegepolitikk...1 Hvorda virker Norges Baks styrigsrete?...3 Pegemarkedet...3 Etterspørselskaale...4 Valutakurskaale...4 Forvetigskaale...5

Detaljer

Eksamen 21.05.2013. REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen 21.05.2013. REA3024 Matematikk R2. Nynorsk/Bokmål Eksame 21.05.2013 REA3024 Matematikk R2 Nyorsk/Bokmål Nyorsk Eksamesiformasjo Eksamestid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: 5 timar: Del 1 skal leverast i etter 2 timar. Del 2 skal leverast

Detaljer

HØGSKOLEN I MOLDE Sensurveiledning Log300 Innføring i logistikk - Vår 2006

HØGSKOLEN I MOLDE Sensurveiledning Log300 Innføring i logistikk - Vår 2006 HØGSKOLEN I MOLDE Sesurveiledig Log300 Iførig i logistikk - Vår 2006 Dato: Tid: 13.06.06 09:00 13:00 Asvarlig faglærer: Jøra Gårde Hjelpemidler: Oppgave består av totalt 6 sider (5 sider + ormalfordeligstabell).

Detaljer

SKADEFRI - oppvarmingsprogram med skadeforebyggende hensikt. Trenerforum

SKADEFRI - oppvarmingsprogram med skadeforebyggende hensikt. Trenerforum SKADEFRI - oppvarmigsprogram med skadeforebyggede hesikt Treerforum Sist oppdatert 21.10.2009 Oppsett for et 2 timers opplegg TEORI + iledede diskusjo (ca. 30-45 mi) PRAKSIS (ca. 75-90 mi) SPILLEKLAR et

Detaljer

Oppgave 1. T = 9 Hypotesetest for å teste om kolesterolnivået har endret seg etter dietten: T observert = 2.16 0

Oppgave 1. T = 9 Hypotesetest for å teste om kolesterolnivået har endret seg etter dietten: T observert = 2.16 0 Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 08. mai 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir

Detaljer

6.2 Signifikanstester

6.2 Signifikanstester 6.2 Signifikanstester Konfidensintervaller er nyttige når vi ønsker å estimere en populasjonsparameter Signifikanstester er nyttige dersom vi ønsker å teste en hypotese om en parameter i en populasjon

Detaljer

1. Egenverdiproblemet.

1. Egenverdiproblemet. Forelesigsotater i matematikk Egeerdier og egeektorer Side Egeerdiproblemet De gruleggede problemstillige Fra de gruleggede matriseregige husker du sikkert at år e ektor multipliseres med e kadratisk matrise

Detaljer

Rapport Brukertilfredshet blant pårørende til beboere ved sykehjem i Oslo kommune 2009

Rapport Brukertilfredshet blant pårørende til beboere ved sykehjem i Oslo kommune 2009 Rapport Brukertilfredshet blat pårørede til beboere ved sykehjem i Oslo kommue Resultater fra e spørreudersøkelse blat pårørede til sykehjemsbeboere februar 2010 Forord Brukerudersøkelser er ett av tre

Detaljer

Eksamen 26.05.2010. REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen 26.05.2010. REA3024 Matematikk R2. Nynorsk/Bokmål Eksame 6.05.010 REA304 Matematikk R Nyorsk/Bokmål Nyorsk Eksamesiformasjo Eksamestid: Hjelpemiddel på del 1: Hjelpemiddel på del : Vedlegg: Framgagsmåte: Rettleiig om vurderiga: 5 timar: Del 1 skal leverast

Detaljer

Utdanningsdirektoratet

Utdanningsdirektoratet Utdaigsdirektoratet Nav på rettssubjekt* Norges Toppidrettsgymas Berge Kommue* Berge Orgaisasjosummer * 991569030 Kommueummer * 1201 Fylkeskommue * Hordalad For orske skoler i utladet Lad/delstat/provis

Detaljer

Prøveeksamen 2. Elektronikk 24. mars 2010

Prøveeksamen 2. Elektronikk 24. mars 2010 Prøveeksame 2 Elektroikk 24. mars 21 OPPGAVE 1 E 8 bit D/A-omformer har et utspeigsområde fra til 8 V V 1LSB, der V 1LSB er de aaloge speige som svarer til det mist sigifikate bit (LSB). a) Hvor stor er

Detaljer

1 TIGRIS Tidlig intervensjon i forhold til rusmiddelbruk i graviditet og småbarnsperiode

1 TIGRIS Tidlig intervensjon i forhold til rusmiddelbruk i graviditet og småbarnsperiode 1 TIGRIS Tidlig itervesjo i forhold til rusmiddelbruk i graviditet og småbarsperiode 1 - TIGRIS 1 Ihold 1 Bakgru for prosjektet........................................... 5 2 Prosjektkommuer....................................................

Detaljer

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 16. mai 2008

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 16. mai 2008 Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL 6. mai 008 EKSAMEN I MATEMATIKK Modul 5 studiepoeg Tid: 5 timer Oppgavesettet er på 8 sider (ikludert formelsamlig). Hjelpemidler:

Detaljer

Innføring i medisinsk statistikk

Innføring i medisinsk statistikk Stoastis forsø el. esperimet Iførig i medisis statisti KLH3 - Høst 9 Kapittel. Stoastis variabel og Disret sasylighetsfordelig Et ret teis begrep for e prosess der hesite er å framsaffe data om hedelser

Detaljer

Dekkes av pensumsidene i kap. lesingsnotatene. Hypotesetesting er en systematisk fremgangsmåte

Dekkes av pensumsidene i kap. lesingsnotatene. Hypotesetesting er en systematisk fremgangsmåte Hypotesetesting. 10 og fore- Dekkes av pensumsidene i kap. lesingsnotatene. Hypotesetesting er en systematisk fremgangsmåte for å undersøke hypoteser (påstander) knyttet til parametre i sannsynlighetsfordelinger.

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. BtG207 EKSAMENSDATO: 16. juni 2009. KLASSE: HIS 07 10. TID: kl. 8.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 3 innkl. forside)

Detaljer

DRIVHJUL. - benyttes ved lave turtall n. - gir lav periferikraft F i forhold til effekten P. - gir stor periferikraft F

DRIVHJUL. - benyttes ved lave turtall n. - gir lav periferikraft F i forhold til effekten P. - gir stor periferikraft F Trasmisjoer (lectures otes) Trasmisjoer DRIVHJUL Reimdrift Rullekjeder Tahjul - beyttes ved store turtall - gir lav periferikraft F i forhold til effekte P - beyttes ved lave turtall - gir stor periferikraft

Detaljer

Rapport mai 2013 MØBEL- OG INTERIØRBRANSJENE 2012

Rapport mai 2013 MØBEL- OG INTERIØRBRANSJENE 2012 apport mai 013 ØBE- G ITEIØBSJEE 01 1 3 IHD 01 Iledig 01 Iledig 0 øbelhadele 03 Boligtekstilbrasje 0 Servise- og kjøkkeutstyrbrasje 05 Belysigsutstyr 06 Butikkhadele med iredigsartikler 07 Spesialbutikker

Detaljer

Innsamling og modellering av data for analyse av militære operasjoner

Innsamling og modellering av data for analyse av militære operasjoner FFI-rapport 008/059 Isamlig og modellerig av data for aalyse av militære operasjoer Håko Ljøgodt Forsvarets forskigsistitutt (FFI) 9. august 008 FFI-rapport 008/059 068 P: ISBN 978-8-464-447-8 E: ISBN

Detaljer

Utvidet løsningsforslag Eksamen i TMA4100 Matematikk 1, 16/12 2008

Utvidet løsningsforslag Eksamen i TMA4100 Matematikk 1, 16/12 2008 Utvidet løsigsforslag Eksame i TMA4 Matematikk, 6/ 8 Oppgave i) Vi gjør substitusjoe u = si θ og får π/ [ u si θ cos θ dθ = u du = E ae løsigsmetode er π/ si θ cos θ dθ = π/ ] si θ dθ = 4 = 4 ( ( ) ( ))

Detaljer

Partielle differensiallikninger.

Partielle differensiallikninger. Partielle differesiallikiger. à. Iledig. Differesiallikiger kytter samme størrelse og edriger i størrelse. Matematisk kommer dette til uttrykk ved at likige i tillegg til de ukjete fuksjoe også ieholder

Detaljer

EKSAMEN. EMNEANSVARLIG: Inger Gamme og Hans Petter Hornæs. TILLATTE HJELPEMIDLER: Kalkulator og alle trykte og skrevne hjelpemidler.

EKSAMEN. EMNEANSVARLIG: Inger Gamme og Hans Petter Hornæs. TILLATTE HJELPEMIDLER: Kalkulator og alle trykte og skrevne hjelpemidler. KANDIDATNUMMER: EKSAMEN EMNENAVN: EMNENUMMER: Kvalitetsledelse med Statistikk. SMF2121 EKSAMENSDATO: 1. juni 2011 KLASSE: Ingeniørutdanning TID: kl. 9.00 13.00. EMNEANSVARLIG: Inger Gamme og Hans Petter

Detaljer

Er neste datapar ved kalibrering en ekstremverdi som skal forkastes?

Er neste datapar ved kalibrering en ekstremverdi som skal forkastes? Er este datapar ved kalibrerig e ekstremverdi som skal forkastes? v/rue Øverlad, Traior Elsikkerhet AS 1. Iledig Dee artikkele utleder formel for usikkerhetsitervallet PI (Predictio Iterval) som omslutter

Detaljer

EKSAMEN KANDIDATNUMMER: EKSAMENSDATO: 26. mai 2006. SENSURFRIST: 16. juni 2006. KLASSE: HIS 04 07. TID: kl. 8.00 13.00.

EKSAMEN KANDIDATNUMMER: EKSAMENSDATO: 26. mai 2006. SENSURFRIST: 16. juni 2006. KLASSE: HIS 04 07. TID: kl. 8.00 13.00. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. BtG207 EKSAMENSDATO: 26. mai 2006. SENSURFRIST: 16. juni 2006. KLASSE: HIS 04 07. TID: kl. 8.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER

Detaljer

konjugert Reaksjonslikning for syre-basereaksjonen mellom vann og ammoniakk: base konjugert syre Et proton er et hydrogenatom som

konjugert Reaksjonslikning for syre-basereaksjonen mellom vann og ammoniakk: base konjugert syre Et proton er et hydrogenatom som Syrer og r Det fies flere defiisjoer på hva r og r er. Vi skal bruke defiisjoe til Brøsted: E Brøsted er e proto door. E Brøsted er e proto akseptor. 1s 1 Et proto er et hydrogeatom som har mistet sitt

Detaljer

Oblig 2 - MAT1120. Fredrik Meyer 26. oktober 2009 = A = P1 1 A 1 P 1 A 1 A 2 = P 1. A k+1. A k P k

Oblig 2 - MAT1120. Fredrik Meyer 26. oktober 2009 = A = P1 1 A 1 P 1 A 1 A 2 = P 1. A k+1. A k P k Oblig 2 - MAT20 Fredri Meyer 26 otober 2009 Matrisee A i er defiert sli der P er e rotasjosmatrise som defierer i oppgave 2: A A 2 A + = A = P A P = P A P Oppgave Matrisee A i+ og A i er similære det fies

Detaljer

Løsningsforslag til øving 9 OPPGAVE 1 a)

Løsningsforslag til øving 9 OPPGAVE 1 a) Høgskole i Gjøvik vd for ek, øk og ledelse aemaikk 5 Løsigsforslag il øvig 9 OPPGVE ) Bereger egeverdiee: de I) ) ) ) Egeverdier: og ) ) Bereger egevekoree: vi ivi ii) vi ed λ : ) ) v Velger s som gir

Detaljer

Verdens statistikk-dag. Signifikanstester. Eksempel studentlån. http://unstats.un.org/unsd/wsd/

Verdens statistikk-dag. Signifikanstester. Eksempel studentlån. http://unstats.un.org/unsd/wsd/ Verdens statistikk-dag http://unstats.un.org/unsd/wsd/ Signifikanstester Ønsker å teste hypotese om populasjon Bruker data til å teste hypotese Typisk prosedyre Beregn sannsynlighet for utfall av observator

Detaljer

#include <stddisclaimer.h>

#include <stddisclaimer.h> Ihold Kapittel Sasylighet.3 Sasylighetsfuksjo : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :.4 Diskrete og kotiuerlige sasylighetsfuksjoer : : : : : : : : : : : : : : : : : :.6 Betiget

Detaljer

EKSAMEN. Flexibel ingeniørutdanning, 2kl. Bygg m.fl.

EKSAMEN. Flexibel ingeniørutdanning, 2kl. Bygg m.fl. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. REA 1081 og REA1081F EKSAMENSDATO: 1. juni 2011. KLASSE: Flexibel ingeniørutdanning, 2kl. Bygg m.fl. TID: kl. 9.00 12.00. FAGLÆRER: Hans Petter Hornæs

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. ÅMA110 Sannsynlighetsregning med statistikk, våren 2010

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 ÅMA Sannsynlighetsregning med statistikk, våren Kp. Diskrete tilfeldige variable ÅMA Sannsynlighetsregning med statistikk, våren Kp. Diskrete tilfeldige variable Diskrete tilfeldige variable, innledning

Detaljer

Stiftelsen! Tryggere!

Stiftelsen! Tryggere! Trygg orgaisasjo Dysleksi Norge 14. ovember 2015 Bjør Løvlad Seiorrådgiver og terapeut Stiftelse! Tryggere! www.tryggere.o Stiftelse Tryggere på Iledig Ugdommer utsettes 3 5 gager så mye for vold og overgrep

Detaljer