Forventningsverdi. MAT0100V Sannsynlighetsregning og kombinatorikk
|
|
- Pernille Askeland
- 7 år siden
- Visninger:
Transkript
1 MAT0100V Sasylighetsregig og kombiatorikk Forvetigsverdi Sasylighetsfordelige til e tilfeldig variabel X gir sasylighete for de ulike verdiee X ka ata Forvetig, varias og stadardavvik Tilærmig av biomiske sasyligheter Kofidesitervall og hypotesetestig Vi øsker i tillegg et summarisk mål som forteller oss hvor fordelige er «plassert» på tallija Forvetigsverdie er et slikt summarisk mål Ørulf Borga Matematisk istitutt Uiversitetet i Oslo 1 Vi vil bruke rulett som motivasjo (avsitt 8.1) 2 Ruletthjulet har 37 felt som er ummerert fra 0 til 36 Når ruletthjulet surrer slippes e lite kule oppi Kula blir liggede på ett av de 37 ummererte feltee år hjulet stopper Feltee 1-36 er røde eller sorte, mes 0 er grøt 3 Spillere setter si isats på grupper av felt (det er ikke lov å satse på 0) Hvis e spiller satser et beløp på k felt og kula stopper på et av dem, vier spillere og hu får utbetalt 36/k gager isatse 4
2 Vi ser på e «forsiktig» spiller som satser 10 euro på 18 felt (f. eks. de røde) Spillere får 20 euro hvis hu vier og igetig hvis hu taper. Uasett beholder kasioet isatse på 10 euro Spilleres ettogevist i e spilleomgag er 10 euro hvis hu vier, og de er -10 euro hvis hu taper Kvie spiller tre omgager på dee måte La Y være hees samlede ettogevist i de tre omgagee 5 Sasylighetsfordelige til Y : P( Y = 30) P( Y = 10) P( Y = 10) P( Y = 30) 19 ( ) 3 = = ( ) = 3 = ( ) 2 19 = 3 = ( ) = = (taper 3 gager) (vier 1 gag og taper 2 gager) (vier 2 gager og taper 1 gag) (vier 3 gager ) 6 Ata at kvie kveld etter kveld spiller tre omgager rulett Etter N kvelder er hees gjeomsittlig ettogevist: 30 r ( 30) 10 r ( 10) + 10 r ( 10) + 30 r ( 30) N N N N Ruletteksempelet motiverer defiisjoe: E tilfeldig variabel X har mulige verdier x 1, x 2,, x m. Da er forvetigsverdie E( X ) = x P( X = x ) x P( X = x ) 1 1 m m Relative frekveser av de mulige verdiee av ettogeviste Når N øker vil gjeomsittet vil ærme seg 30 P( Y = 30) 10 P( Y = 10) + 10 P( Y = 10) + 30 P( Y = 30) = 0.81 Dette er forvetigsverdie E(Y) 7 Vi sier ofte forvetig i stedet for forvetigsverdi De greske bokstave µ («my») brukes for å betege forvetigsverdi Forvetige er «tygdepuktet» i fordelige 8
3 Store talls lov Ruletteksemplet motiverer også store talls lov: Vi har et forsøk med e tilfeldig variabel X. Hvis vi gjetar forsøket mage gager, vil gjeomsittet av verdiee til X ærme seg forvetigsverdie E(X) To resultater om forvetig Hvis X er biomisk fordelt, er E(X) = p E(a+bX) = a + b E(X) Store talls lov er blat aet grulaget for kasiodrift og forsikrigsvirksomhet 9 10 Varias Forvetigsverdie til e tilfeldig variabel X forteller oss hva gjeomsittlig X-verdi vil bli i det lage løp Vi øsker oss også et summarisk mål som sier oe om hvor mye verdie til e tilfeldig variabel vil variere fra forsøk til forsøk Vi ser på de «forsiktige» spillere som tre gager satser 10 euro på 18 felt og på e ae litt «dristigere» spiller som tre gager satser 10 euro på 6 felt Figure viser fordelige for ettogeviste for de to spillere: «Forsiktig» spiller (Y) Variase er et slikt mål Vi bruker igje rulett som motivasjo «Dristig» spiller (Z) 11 12
4 Nettogeviste Y for de «forsiktige» spillere og ettogeviste Z for de «dristige» spillere har begge forvetigsverdi µ = 30 / 37 = 0.81 Me fordelige til Z er mer «spredt ut» e fordelige til Y For å få et mål på hvor mye fordelige til Y er «spredt ut» tar vi utgagspukt i kvadratavvikee mellom Y-verdiee og forvetigsverdie Hvis Y får verdie -30 er kvadratavviket µ ( 30 ) = ( / 37) = Kvie spiller kveld etter kveld tre omgager rulett. Etter N kvelder er det gjeomsittlige kvadratavviket ( 30 µ ) rn ( 30) + ( 10 µ ) rn ( 10) + (10 µ ) rn ( 10) + (30 µ ) rn ( 30) Relative frekveser av de mulige verdiee av ettogeviste Når N øker, ærmer dette seg µ P Y µ ( 30 ) ( = 30) + ( 10 ) ( = 10) + (10 µ ) P( Y = 10) + (30 µ ) P( Y = 30) = P Y Dee summe kaller vi variase til Y De skriver vi Var(Y). Altså Var(Y)=300 For de «dristige» spillere får vi tilsvarede at Var(Z)=1467 Ruletteksempelet motiverer defiisjoe: E tilfeldig variabel X har mulige verdier x 1, x 2,, x m og forvetigsverdi Da er variase µ Eksempel 9.1: Vi kaster to teriger, og lar X være summe av atall øye Vi har fuet E(X) = 7 Var( X ) = ( x µ ) P( X = x ) ( x µ ) P( X = x ) 1 1 m 2 Ofte bruker e σ for å betege varias m 15 Variase blir: Var( X ) (2 7) (3 7) (4 7) 2 = (11 7) (12 7) = =
5 Stadardavvik Nettogeviste til de «forsiktige» spillere har varias 300 Beevige for variase er «kvadrateuro» Et mål for spredig som har «riktig» beevig er stadardavvik: Stadardavviket til e tilfeldig variabel X er gitt ved SD( X ) = Var( X ) Ofte bruker e σ for å betege stadardavvik Nettogeviste til de «forsiktige» spillere har stadardavvik euro 17 Varias for biomisk fordelig Eksempel 9.2: I e søskeflokk er det fire bar X = «atall gutter i søskeflokke» er biomisk fordelt med =4 og p=0.514 Har fra før at P( X = 0) = P( X = 1) = P( X = 2) = P( X = 3) = P( X = 4) = µ = E( X ) = 2.06 Variase blir X µ µ µ 2 Var( ) = (0 ) (1 ) (2 ) (3 ) (4 ) µ + µ = I eksemplet fat vi (avrudet) Var(X) = 1.00 Merk at ( ) = 1.00 (avrudet) Ka vise at vi har geerelt: Hvis X er biomisk fordelt, er Var(X) = p(1-p) Eksempel 9.3. E bestemt type frø spirer med 70% sasylighet. Vi sår 20 frø Variase til atall frø som spirer er = Variase til a + bx La X være e tilfeldig variabel med forvetigsverdi µ X Y = a + bx har forvetigsverdi µ = a + bµ Y Kvadratavviket for Y blir ( Y µ Y ) 2 Det motiverer resultatet: X = ( a + bx { a + bµ X }) Var(a+bX) = b 2 Var(X) 2 = b ( X µ X ) 20
6 Eksempel 9.4: Vi ser på de «forsiktige» rulettspillere som tre gager satser 10 euro på 18 felt La X være atall gager hu vier X er biomisk fordelt med = 3 og p = 18/ Var( X ) = 3 = Samlet ettogevist: Y = X Tilærmig av biomiske sasyligheter Tidligere var det vaskelig å bruke formele for biomisk fordelig til å rege ut sasyligheter år er stor Alt i 1733 viste Abraham de Moivre hvorda e ka fie tilærmigsverdier for biomiske sasyligheter ( Dermed: Var( Y ) = Var( X ) 2 = 20 Var( X ) = = Selv om det å er eklere å bestemme biomiske sasyligheter, er dee tilærmelse fortsatt viktig 22 Biomisk fordelig for p = 0.25 og = 10, 25, 50, 100 For å fie e tilærmig «forskyver» vi fordeligee slik at de får "tygdepuktet" i origo, og vi «skalerer» dem slik at de får samme spredig Vi ser derfor på de stadardiserte variabele Z X E( X ) X p = = SD( X ) p(1 p) Vi har at E(Z) = 0 og SD(Z) = 1 Fordelige forskyves mot høyre og blir mer «spredt ut» år øker 23 Vi merker oss at hvis X = k så er Z = k p p(1 p) Vi får derfor fordelige til Z av fordelige til X 24
7 Stolpediagram for fordelige til Z Arealet av e stolpe svarer til sasylighete for at Z får de aktuelle verdie Stolpediagrammee ærmer seg stadardormalfordeligsfuksjoe f ( x) = 1 2π e x 2 / 2 25 Vil bruke de Moivres tilærmig til å fie P( X 33) år = 100 og p = 0.25 Vi merker oss at P( X 33) Vi skal egetlig summere arealee av alle søylee til vestre for ( ) = P Z = P ( Z 1.85) Summe av arealee av søylee er omtret like stor som arealet uder f(x) til vestre for Arealet uder stadardormalfordeligsfuksjoe til vestre for 1.85 fier vi av tabelle bak i kompediet: Vil så bruke de Moivres tilærmig til å fie P( X 19) år = 100 og p = 0.25 Vi merker oss at ( ) P( X 19) = P Z = P( Z 1.39) De Moivres tilærmig gir at P( X 33) ( 1.85) Vi skal egetlig summere arealee av alle søylee til høyre for Summe av arealee av søylee er omtret like stor som arealet uder f(x) til høyre for = P Z 27 28
8 Arealet uder stadardormalfordeligsfuksjoe til vestre for fier vi av tabelle bak i kompediet: Eksempel 10.3: Vi teker oss at Arbeiderpartiet på et tidspukt har oppslutig av 32.0% av velgere Et meigsmåligsistitutt spør et tilfeldig utvalg på 1000 persoer over 18 år hvilket parti de ville stemt på hvis det hadde vært valg Arealet til høyre for er lik é mius arealet til vestre for Derfor P( X 19) = P( Z 1.39) = Hva er sasylighete for at mellom 300 og 340 av dem ville ha stemt på Arbeiderpartiet? Med adre ord: hva er sasylighete for at Arbeiderpartiets oppslutig på meigsmålige vil bli mellom 30.0% og 34.0%? 30 La X være atallet av de spurte som ville ha stemt på Arbeiderpartiet Side det trekkes ute tilbakeleggig, er stregt tatt X hypergeometrisk fordelt Me da atallet som trekkes ut er lite i forhold til atall over 18 år i hele befolkige, ka vi rege som om X er biomisk fordelt med = 1000 og p = Nå har vi at P(300 X 340) ( Z ) = P ( 1.36 Z 1.36) = P Arealet uder stadardormalfordeligsfuksjoe mellom og 1.36 er lik arealet til vestre for 1.36 mius arealet til vestre for
9 Sasylighetsregig og statistikk Vi har sett på tilfeldige variabler og deres sasylighetsfordeliger. Det er e del av sasylighetsregige Vi vil å se på hvorda sasylighetsregige daer grulaget for statistiske metoder Vi øyer oss med å se på biomiske situasjoer I sasylighetsregige kjeer vi verdie til p De Moivres tilærmig gir at P (300 X 340) = P ( 1.36 Z 1.36 ) = Geerelt ser vi på e stor populasjo der e ukjet adel p har et bestemt "kjeeteg" Estimerig og kofidesitervall Vi er ofte iteressert i å aslå («estimere») verdie av p ut fra resultatet av et forsøk, og også å si oe om hvor presist aslaget er I eksemplet er populasjoe alle over 18 år som ville ha stemt hvis det var valg, og kjeeteget er at e perso ville stemt på Ap Eksempel 11.1: Av 1001 persoer som ble itervjuet, ville 411 ha stemt på Arbeiderpartiet hvis det hadde vært valg Arbeiderpartiets oppslutig er 411/1001=0.411, dvs 41.1%. Hvor sikkert er dette aslaget? I statistikke gjør vi ikke det. Der er poeget ettopp å kue si oe om verdie til p år vi har observert X Vi trekker et tilfeldig utvalg på idivider fra populasjoe. Størrelse av utvalget er lite i forhold til størrelse av hele populasjoe La X være atall i utvalget som har kjeeteget 35 Vi ka rege som om X er biomisk fordelt med p lik de ukjete adele i populasjoe som har kjeeteget 36
10 Til å aslå («estimere») p bruker vi adele i utvalget som har kjeeteget, dvs. Av de Moivres resultat fier vi at X pˆ = Merk at ˆp («p hatt») er e tilfeldig variabel I eksempelet fikk ˆp verdie X p P p(1 p) Nå er X p pˆ p = p(1 p) p p (1 ) 2.5% % 2.5% For å kue si oe om hvor presist et aslag er, må vi ta hesy til hvor mye verdie av ˆp vil variere fra udersøkelse til udersøkelse bare på gru av tilfeldige variasjoer 37 Dermed pˆ p P p(1 p) 38 Ka vise at vi ka erstatte p med ˆp i evere: 1.96 pˆ p P pˆ (1 pˆ ) Ulikhetee ka omformes slik at vi får p alee i midte: ˆ ˆ ˆ ˆ ( ˆ ) p(1 p) ˆ p(1 p) P p 1.96 p p Det er altså tilærmet 95% sasylig at udersøkelse vil gi et resultat som er slik at p blir liggede i itervallet pˆ p ˆ (1 p ˆ ) ˆ (1 ˆ ), ˆ p p p Dette itervallet kaller vi et (tilærmet) 95% kofidesitervall for p 39 40
11 Eksempel 11.2: Vi ser igje på meigsmålige Vårt estimat for Aps oppslutig er pˆ = = % kofidesitervall: Dvs.: ( ) 1001 [ 0.381, ] 41, ( ) 1001 (dette gir e «feilmargi») 41
Tilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk
MAT0100V Sannsynlighetsregning og kombinatorikk Forventning, varians og standardavvik Tilnærming av binomiske sannsynligheter Konfidensintervall Ørnulf Borgan Matematisk institutt Universitetet i Oslo
DetaljerMer om utvalgsundersøkelser
Mer om utvalgsudersøkelser I uderkapittel 3.6 i læreboka gir vi e kort iførig i takegage ved utvalgsudersøkelser. Vi gir her e grudigere framstillig av temaet. Populasjo og utvalg Ved e utvalgsudersøkelse
DetaljerSTK1100 våren 2017 Estimering
STK1100 våre 017 Estimerig Svarer til sidee 331-339 i læreboka Ørulf Borga Matematisk istitutt Uiversitetet i Oslo 1 Politisk meigsmålig Spør et tilfeldig utvalg på 1000 persoer hva de ville ha stemt hvis
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 5 Estimering. Målemodellen.
ÅMA0 Sasylighetsregig med statistikk, våre 0 Kp. 5 Estimerig. Målemodelle. Estimerig. Målemodelle. Ihold:. (Pukt)Estimerig i biomisk modell (kp. 5.). Målemodelle... (kp. 5.). (Pukt)Estimerig i målemodelle
DetaljerTALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.
1 ECON130: EKSAMEN 013 VÅR - UTSATT PRØVE TALLSVAR. Det abefales at de 9 deloppgavee merket med A, B, teller likt uasett variasjo i vaskelighetsgrad. Svaree er gitt i
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren Estimering. Målemodellen. Konfidensintervall, innledning. Kp. 5 Estimering.
ÅMA0 Sasylighetsregig med statistikk våre 006 Kp. 5 Estimerig Estimerig. Målemodelle. Ihold:. (Pukt)Estimerig i biomisk modell (kp. 5.). Målemodelle... (kp. 5.3) 3. (Pukt)Estimerig i målemodelle (kp. 5.3)
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren Estimering. Målemodellen. Sannsynlighetsregning med statistikk. Kp. 5 Estimering.
ÅMA asylighetsregig med statistikk våre 008 Kp. 5 Estimerig Estimerig. Målemodelle. Ihold:. (ukt)estimerig i biomisk modell (kp. 5.). Målemodelle... (kp. 5.3) 3. (ukt)estimerig i målemodelle (kp. 5.3)
DetaljerStatistikk og økonomi, våren 2017
Statistikk og økoomi, våre 07 Obligatorisk oppgave 6 Løsigsforslag Oppgave E terig kastes 0 gager, og det registreres hvor mage 6-ere som oppås i løpet av disse 0 kastee. Vi ka kalle atall 6-ere i løpet
DetaljerUlike typer utvalg. MAT0100V Sannsynlighetsregning og kombinatorikk. Ordnet utvalg uten tilbakelegging. Ordnet utvalg med tilbakelegging.
MAT0100V Sasylighetsregig og kombiatorikk Ordet utvalg med og ute tilbakeleggig (repetisjo) Uordet utvalg ute tilbakeleggig (repetisjo) Tilfeldige variabler og sasylighetsfordeliger Hypergeometrisk fordelig
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 5. Hypotesetesting, del 5
ÅMA11 Sasylighetsregig med statistikk, våre 7 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 26. mars Bjør H. Auestad Kp. 6: Hypotesetestig del 5 1/ 59 Bjør
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2006
ÅMA110 Sasylighetsregig med statistikk, våre 2006 Kp. 6, del 2 Bjør H. Auestad Kp. 6: Hypotesetesig del 2 1/ 38 Bjør H. Auestad Kp. 6: Hypotesetesig del 2 2/ 38 Oversikt 1. Hva er hypotesetestig? 2. Hypotesetestig
DetaljerX = 1 5. X i, i=1. som vil være normalfordelt med forventningsverdi E( X) = µ og varians Var( X) = σ 2 /5. En rimelig estimator for variansen er
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalte oppgaver 11, blokk II Løsigsskisse Oppgave 1 a) E rimelig estimator for forvetigsverdie µ er gjeomsittet X = 1 X i, som
DetaljerKapittel 8: Estimering
Kaittel 8: Estimerig Estimerig hadler kort sagt om hvorda å aslå verdie å arametre som,, og dersom disse er ukjete. like arametre sier oss oe om oulasjoe vi studerer (dvs om alle måliger av feomeet som
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2008 Kp. 6, del 5
ÅMA110 Sasylighetsregig med statistikk, våre 2008 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 3. april Bjør H. Auestad Kp. 6: Hypotesetestig del 5 1/ 56
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 5
ÅMA110 Sasylighetsregig med statistikk, våre 2006 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 3. april Bjør H. Auestad Kp. 6: Hypotesetestig del 5 1 / 56
DetaljerIntroduksjon. Hypotesetesting / inferens (kap 3) Populasjon og utvalg. Populasjon og utvalg. Populasjonsvarians
Hypotesetestig / iferes (kap ) Itroduksjo Populasjo og utvalg Statistisk iferes Utvalgsfordelig (samplig distributio) Utvalgsfordelige til gjeomsittet Itroduksjo Vi øsker å få iformasjo om størrelsee i
DetaljerTMA4245 Statistikk Eksamen mai 2017
TMA445 Statistikk Eksame mai 07 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsskisse Oppgave a Når vi reger ut disse tre sasylighetee må ma huske på at de mulige verdiee
DetaljerOppgaver fra boka: X 2 X n 1
MOT30 Statistiske metoder, høste 00 Løsiger til regeøvig r 3 (s ) Oppgaver fra boka: 94 (99:7) X,, X uif N(µ, σ ) og X,, X uif N(µ, σ ) og alle variable er uavhegige Atar videre at σ = σ = σ og ukjet Kodesitervall
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2007
ÅMA Sasylighetsregig med statistikk, våre 27 Kp. 6 (kp. 6) Tre deler av faget/kurset:. Beskrivede statistikk 2. Sasylighetsteori, sasylighetsregig 3. Statistisk iferes estimerig kofidesitervall hypotesetestig
DetaljerOppgaven består av 9 delspørsmål, A,B,C,., som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom <<.. >>.
ECON 130 EKSAMEN 008 VÅR - UTSATT PRØVE SENSORVEILEDNING Oppgave består av 9 delspørsmål, A,B,C,., som abefales å veie like mye, Kommetarer og tallsvar er skrevet i mellom . Oppgave 1 Ved e spørreudersøkelse
DetaljerSTK1100 våren Forventningsverdi. Forventning, varians og standardavvik
STK00 våren 0 Forventning, varians og standardavvik Svarer til avsnitt 3.3 i læreboka Geir Storvik (Ørnulf Borgan) Matematisk institutt Universitetet i Oslo Forventningsverdi Punktsannsynligheten px (
DetaljerKap. 9: Inferens om én populasjon. Egenskaper ved t-fordelingen. ST0202 Statistikk for samfunnsvitere. I Kapittel 8 brukte vi observatoren
2 Kap. 9: Iferes om é populasjo I Kapittel 8 brukte vi observatore z = x μ σ/ for å trekke koklusjoer om μ. Dette krever kjet σ (urealistisk). ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for
DetaljerMOT310 Statistiske metoder 1, høsten 2011
MOT310 Statistiske metoder 1, høste 2011 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 24. august, 2011 Bjør H. Auestad Itroduksjo og repetisjo 1 / 32 Repetisjo; 9.1,
DetaljerOppgave 1. (i) Hva er sannsynligheten for at det øverste kortet i bunken er et JA-kort?
ECON EKSAMEN 8 VÅR TALLSVAR Oppgave Vi har e kortstokk beståede av 6 kort. På av disse står det skrevet JA på forside mes det står NEI på forside av de adre kortee. Hvis ma får se kortet med bakside vedt
DetaljerH 1 : µ 1 µ 2 > 0. t = ( x 1 x 2 ) (µ 1 µ 2 ) s p. s 2 p = s2 1 (n 1 1) + s 2 2 (n 2 1) n 1 + n 2 2
TMA4245 Statistikk Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b4 Løsigsskisse Oppgave 1 Vi øsker å fie ut om et ytt serum ka stase leukemi. 5 mus får serumet, 4
DetaljerKap. 9: Inferens om én populasjon
2 ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for matematiske fag Ka. 9: Iferes om é oulasjo Hvis σ er ukjet bytter vi ut σ med s i Ny observator blir t = x μ s/ z = x μ σ/ der s = Σx 2 (Σx)
DetaljerEKSAMENSOPPGAVE. Mat-1060 Beregningsorientert programmering og statistikk
Fakultet for aturviteskap og tekologi EKSAMENSOPPGAVE Eksame i: (Kode og av) Dato: 05.1.017 Klokkeslett: 09:00-13:00 Sted: Åsgårdv 9 Mat-1060 Beregigsorietert programmerig og statistikk Tillatte hjelpemidler:
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2008 Kp. 6, del 5
ÅMA110 Sasylighetsregig med statistikk, våre 2008 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 26. mars Bjør H. Auestad Kp. 6: Hypotesetestig del 5 1/ 53
DetaljerEstimering 1 -Punktestimering
Estimerig 1 -Puktestimerig Dekkes av kap. 8, 9.1-9.3 og 9.15/9.14. Vi har til å settpå e rekke forskjellige sasylighetsfordeliger og sett hvorda disse ka brukes til å modellere mage forskjellige typer
DetaljerKap. 9: Inferens om én populasjon
2 ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for matematiske fag Ka. 9: Iferes om é oulasjo Hvis σ er ukjet bytter vi ut σ med s i Ny observator blir t = x μ s/ z = x μ σ/ der s = Σx 2 (Σx)
DetaljerEstimering 1 -Punktestimering
Estimerig 1 -Puktestimerig Dekkes av kap. 8, 9.1-9.3 og 9.15/9.14. Vi har til å settpå e rekke forskjellige sasylighetsfordeliger og sett hvorda disse ka brukes til å modellere mage forskjellige typer
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 2
ÅMA11 Sasylighetsregig med statistikk, våre 27 Kp. 6, del 2 Bjør H. Auestad Istitutt for matematikk og aturviteskap 5. mars 21 Bjør H. Auestad Kp. 6: del 1/2 1/ 42 Bjør H. Auestad Kp. 6: del 1/2 2/ 42
DetaljerRepetisjon; 9.1, 9.2, 9.3, 9.4, 9.5, og Repetisjon; 9.1, 9.2, 9.3, 9.4, 9.5, og 9.10
Repetisjo; 9.1, 9.2, 9.3, 9.4, 9.5, og 9.10 og Geerell defiisjo av : Situasjo: Data x 1,...,x ;utfallav:x 1,...,X ; u.i.f. tilfeldige variable Ukjet parameter i fordelige til X i ee: θ Dersom L og U L
DetaljerKLMED8004 Medisinsk statistikk. Del I, høst Estimering. Tidligere sett på. Eksempel hypertensjon
Tidligere sett på KLMED8004 Medisisk statistikk Del I, høst 008 Estimerig Hvorda kjete sasylighetsfordeliger (biomialfordelig, ormalfordelig) med kjete populasjosparametrer (forvetig, varias osv.) ka gi
DetaljerTMA4240 Statistikk Høst 2009
TMA440 Statistikk Høst 009 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b4 Løsigsskisse Oppgave Øsker å fie 99% kofidesitervall for µ µ år vi atar ormalfordeliger
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro.
ÅMA Sasylighetsregig med statistikk, våre 6 Kp. 4 Kotiuerlige tilfeldige variable og ormaldelige Kotiuerlige tilfeldige variable, itro. (eller: Kotiuerlige sasylighetsdeliger) Vi har til å sett på diskrete
Detaljer5 y y! e 5 = = y=0 P (Y < 5) = P (Y 4) = 0.44,
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalte oppgaver 9, blokk II Løsigsskisse Oppgave a) Vi lar her Y være atall fugler som kolliderer med vidmølla i løpet av de gitte
DetaljerTMA4245 Statistikk Eksamen 9. desember 2013
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag TMA4245 Statistikk Eksame 9. desember 2013 Oppgave 1 I kortspillet Blackjack får ma de høyeste geviste hvis de to første kortee ma
DetaljerTilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk
MAT000V Sannsynlighetsregning og kombinatorikk Tilfeldige variabler og sannsynlighetsfordelinger (repetisjon) Hypergeometrisk fordeling (repetisjon) Binomisk fordeling Forventningsverdi Tilfeldige variabler
Detaljer) = P(Z > 0.555) = > ) = P(Z > 2.22) = 0.013
TMA4240 Statistikk Vår 2008 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b5 Løsigsskisse Oppgave 1 a) X 1,...,X 16 er u.i.f. N(80,18 2 ). Setter Y = X. i) P(X 1 >
DetaljerEmnenavn: Eksamenstid: 4 timer. Faglærer: Hans Kristian Bekkevard
EKSAMEN Emekode: SFB107111 Emeav: Metode 1, statistikk deleksame Dato: 7. mai 2018 Hjelpemidler: Godkjet kalkulator og vedlagt formelsamlig m/tabeller Eksamestid: 4 timer Faglærer: Has Kristia Bekkevard
DetaljerEmnenavn: Metode 1, statistikk deleksamen. Eksamenstid: 4 timer. Faglærer: Bjørnar Karlsen Kivedal
EKSAMEN Emekode: SFB10711 Emeav: Metode 1, statistikk deleksame Dato: 10. oktober 2018 Hjelpemidler: Godkjet kalkulator og vedlagt formelsamlig m/tabeller Eksamestid: 4 timer Faglærer: Bjørar Karlse Kivedal
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro.
ÅMA0 Sasylighetsregig med statistikk, våre 008 Kp. 4 Kotiuerlige tilfeldige variable; Normalfordelig Kotiuerlige tilfeldige variable, itro. (eller: Kotiuerlige sasylighetsfordeliger) Vi har til å sett
DetaljerEcon 2130 uke 15 (HG) Poissonfordelingen og innføring i estimering
Eco 130 uke 15 (HG) Poissofordelige og iførig i estimerig 1 Poissofordelige (i) Tilærmig til biomialfordelige. Regel. ( Poissotilærmelse ) Ata Y ~ bi(, p) E( Y ) = p og var( Y ) = p(1 p). Hvis er stor
DetaljerTMA4240 Statistikk Høst 2016
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalt øvig 8 Løsigsskisse Oppgave 1 a) Simuler 1000 datasett i MATLAB. Hvert datasett skal bestå av 100 utfall fra e ormalfordelig
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro.
ÅMA Sasylighetsregig med statistikk, våre Kp. 4 Kotiuerlige tilfeldige variable; Normalfordelig Kotiuerlige tilfeldige variable, itro. (eller: Kotiuerlige sasylighetsfordeliger) Vi har til å sett på diskrete
Detaljer2. Hypotesetesting i ulike sitausjoner: i. for forventingen, μ, i målemodellen med normalantakelse og kjent varians, σ 2.
Oversikt 1. Hva er hypotesetestig? 2. i ulike sitausjoer: i. for forvetige, μ, med ormalatakelse og kjet varias, σ 2. ii. for forvetige, μ, med stor og ormaltilærmig (variase, σ 2, ukjet). iii. for suksessasylighete,
DetaljerTMA4240 Statistikk Eksamen desember 2015
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag TMA20 Statistikk Eksame desember 205 Løsigsskisse Oppgave a) De kumulative fordeligsfuksjoe til X, F (x) P (X x): F (x) P (X x) x
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 4
ÅMA11 Sasylighetsregig med statistikk, våre 21 Kp. 6, del 4 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 22. mars Bjør H. Auestad Kp. 6: Hypotesetestig del 4 1/ 29 Bjør
DetaljerKonfidensintervall. Notat til STK1110. Ørnulf Borgan, Ingrid K. Glad og Anders Rygh Swensen Matematisk institutt, Universitetet i Oslo.
Kofidesitervall Notat til STK1110 Ørulf Borga, Igrid K. Glad og Aders Rygh Swese Matematisk istitutt, Uiversitetet i Oslo August 2007 Formål E valig metode for å agi usikkerhete til et estimat er å berege
DetaljerOppgave 1 Hardheten til en bestemt legering er undersøkt med åtte målinger og resultatene ble (i kg/mm 2 ) som i tabellen til høyre.
EKSAMEN I: ÅMA110 SANNSYNLIGHETSREGNING MED STATISTIKK VARIGHET: 4 TIMER DATO: 28. AUGUST 2010 BOKMÅL TILLATTE HJELPEMIDLER: KALKULATOR: HP30S, Casio FX82 eller TI-30 OPPGAVESETTET BESTÅR AV 3 OPPGAVER
DetaljerOppgaver fra boka: Med lik men ukjent varians antatt har vi fra pensum at. t n1 +n 2 2 under H 0 (12 1) (12 1)
MOT30 Statistiske metoder, høste00 Løsiger til regeøvig r. 5 (s. ) Oppgaver fra boka: Oppgave 0.36 (0.0:8) Dekkslitasje X,..., X u.i.f. N(µ, σ ) og X,..., X u.i.f. N(µ, σ ) og alle variable er uavhegige.
DetaljerEksamen S2, Høsten 2013
Eksame S, Høste 013 Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler. Oppgave 1 (4 poeg) Deriver fuksjoee 1 x a) fx b) gx 5x 1 5 c) hx x e x 3 Oppgave (5 poeg)
DetaljerLØSNINGSFORSLAG TILEKSAMEN I FAG TMA4240/TMA4245 STATISTIKK 10. august 2005
Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 8 LØSNINGSFORSLAG TILEKSAMEN I FAG TMA440/TMA445 STATISTIKK 0. august 005 Oppgave Smeltepuktsbestemmelse a) Vi jobber i dette
DetaljerLøsningsforslag ST1101/ST6101 kontinuasjonseksamen 2018
Løsigsforslag ST/ST6 kotiuasjoseksame Oppgave a Defier hedelsee R, B, B rød kule i første trekig, blå kule i adre trekig, blå kule i tredje trekig. Vi skal fie PR B B for to ulike situasjoer. Geerelt vet
DetaljerLøsningsforslag for andre obligatoriske oppgave i STK1100 Våren 2007 Av Ingunn Fride Tvete og Ørnulf Borgan
Løsigsforslag for adre obligatoriske oppgave i STK11 Våre 27 Av Igu Fride Tvete (ift@math..uio.o) og Ørulf Borga (borga@math.uio.o). NB! Feil ka forekomme. NB! Sed gjere e mail hvis du fier e feil! Oppgave
DetaljerTMA4240 Statistikk Høst 2016
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalt øvig 11 Løsigsskisse Oppgave 1 a) E rimelig estimator for forvetigsverdie µ er gjeomsittet X = 1 X i, som vil være ormalfordelt
DetaljerLøsningsforslag ST2301 øving 3
Løsigsforslag ST2301 øvig 3 Kapittel 1 Exercise 11 Et utvalg på 100 idivider trekkes fra e populasjo med tilfeldig parrig. Det ble observert AA 63 idivider av geotype AA, Aa 27, og aa 10. Lag et 95 % kofidesitervall
DetaljerUkeoppgaver i BtG207 Statistikk, uke 4 : Binomisk fordeling. 1
Ukeoppgaver i BtG20 Statistikk, uke 4 : Biomisk fordelig. 1 Høgskole i Gjøvik Avdelig for tekologi, økoomi og ledelse. Statistikk Ukeoppgaver uke 4 Biomisk fordelig. Oppgave 1 La de stokastiske variable
Detaljer3MX 2007/8 - Kapittel 5: 8. januar 5. februar 2008
3MX 00/8 - Kapittel : 8. jauar. februar 008 Pla for skoleåret 00/008: Kapittel 6: 6/ /. Kapittel : / /3. Prøver på eller skoletime etter hvert kapittel. É heildagsprøve i hver termi. Repetisjo, prøver,
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Oppsummering
ÅMA110 Sasylighetsregig med statistikk, våre 2007 Oppsummerig Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 19. april Bjør H. Auestad Oppsummerig våre 2006 1 / 37 Oversikt
DetaljerLØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK 5.august 2004
Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 0 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK 5.august 2004 Oppgave Foruresig X er e stokastisk variabel som agir
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2007
ÅMA0 Sasylighetsregig med statistikk, våre 007 Kp. 4 Kotiuerlige tilfeldige variable; Normalfordelig Kotiuerlige tilfeldige variable, itro. (eller: Kotiuerlige sasylighetsfordeliger) Vi har til å sett
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdelig for tekologi Målform: Bokmål Eksamesdato: 5 jui 2015 Varighet/eksamestid: Emekode: 3 timer TALM1005 Emeav: Statistikk og Økoomi statistikkdele Klasser: Logistikk 1 Kjemi
DetaljerBinomisk fordeling. Tilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk
MAT0100V Sannsynlighetsregning og kombinatorikk Forventning, varians og standardavvik Tilfeldige variabler Når vi kaster to terninger er det 36 utfall Vi ser på X = «sum antall øyne» De mulige verdiene
DetaljerMOT310 Statistiske metoder 1, høsten 2012
MOT310 Statistiske metoder 1, høste 2012 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 20. august, 2012 Bjør H. Auestad Itroduksjo og repetisjo 1 / 57 Iformasjo Litt om
DetaljerKapittel 7: Noen viktige sannsynlighetsfordelinger
Kapittel 7: Noe viktige sasylighetsfordeliger I mage situasjoer ka feomeet vi ser på beskrives med e bestemt type sasylighetsfordelig e sasylighetsfordelig gitt ved e bestemt formel. Vi skal se på oe av
DetaljerEstimering 2. -Konfidensintervall
Estimerig 2 -Kofidesitervall Dekkes av kap. 9.4-9.5, 9.10, 9.12 og forelesigsotatee. Dersom forsøket gjetas mage gager vil (1 α)100% av itervallee [ ˆΘ L, ˆΘ U ] ieholde de ukjete parametere θ (som er
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdelig for tekologi Målform: Bokmål Eksamesdato: 19 des. 2014 Varighet/eksamestid: Emekode: 3 timer TALM1005 Emeav: Statistikk og Økoomi statistikkdele Klasser: Logistikk 1 Kjemi
DetaljerKort repetisjon fra kapittel 4. Oppsummering kapittel ST0202 Statistikk for samfunnsvitere. Betinget sannsynlighet og trediagram
2 Kort reetisjo fra kaittel 4 Betiget sasylighet og trediagram Eksemel: Fra e oulasjo av idrettsfolk trekkes e erso tilfeldig og testes for doig. De iteressate hedelsee er D=ersoe er doet, A=teste er ositiv.
DetaljerLøsningsforsalg til første sett med obligatoriske oppgaver i STK1110 høsten 2015
Løsigsforsalg til første sett med obligatoriske oppgaver i STK1110 høste 2015 Oppgave 1 (a Et 100(1 α% kofidesitervall for forvetigsverdie µ er gitt ved formel (8.15 på side 403 i læreboka. For situasjoe
DetaljerEcon 2130 Forelesning uke 11 (HG)
Eco 130 Forelesig uke 11 (HG) Mer om ormalfordelige og setralgreseteoremet Uke 1 1 Fra forrige gag ~ betyr er fordelt som. ~ N( µσ, ) E( ) = µ, og var( ) = σ Normalfordelige er symmetrisk om μ og kotiuerlig
DetaljerLØSNING, EKSAMEN I STATISTIKK, TMA4240, DESEMBER Anta at sann porøsitet er r. Måling med utstyret gir da X n(x; r, 0,03).
LØSNING, EKSAMEN I STATISTIKK, TMA440, DESEMBER 006 OPPGAVE 1 Ata at sa porøsitet er r. Målig med utstyret gir da X (x; r, 0,03). a) ( ) X r P(X > r) P 0,03 > 0 P(Z > 0) 0,5. ( X r P(X r > 0,05) P 0,03
DetaljerTMA4240 Statistikk Høst 2015
Høst 205 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer, blokk II Løsigsskisse Oppgave a) X bi(, p) fordi: Udersøker uavhegige delar av DNA-strukture. Fi for kvar del
DetaljerLøsningsforsalg til første sett med obligatoriske oppgaver i STK1110 høsten 2018
Løsigsforsalg til første sett med obligatoriske oppgaver i STK1110 høste 2018 Oppgave 1 (a Et 100(1 α% kofidesitervall for forvetigsverdie µ er gitt ved formel (8.15 på side 403 i læreboka. For situasjoe
DetaljerPåliteligheten til en stikkprøve
Pålitelighete til e stikkprøve Om origiale... 1 Beskrivelse... 2 Oppgaver... 4 Løsigsforslag... 4 Didaktisk bakgru... 5 Om origiale "Zuverlässigkeit eier Stichprobe" på http://www.mathe-olie.at/galerie/wstat2/stichprobe/dee
DetaljerECON240 Statistikk og økonometri
ECON240 Statistikk og økoometri Arild Aakvik, Istitutt for økoomi 1 Mellomregig MKM Model: Y i = a i + bx i + e i MKM-estimator for b: b = = Xi Y i 1 Xi Yi Xi 1 ( X i ) 2 (Xi X)(Y i Ȳi) (Xi X) 2 hvor vi
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 5
ÅMA110 Sasylighetsregig med statistikk, våre 2010 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 12. april Bjør H. Auestad Kp. 6: Hypotesetestig del 4 1/ 59
DetaljerTMA4240 Statistikk H2010
TMA440 Statistikk H00 9.8: To uvalg (siste del) 9.9: Parvise observasjoer 9.0-9.: Adelser 9.: Varias Mette Lagaas Foreleses oag 0.oktober, 00 Norske hoppdommere og Jae Ahoe Jae Ahoe er e fisk skihopper,
DetaljerHypotesetesting, del 4
Oversikt, del 4 t-fordelig t-test t-itervall Del 5 Kofidesitervall vs. test p-verdi t-fordelig Rett på defiisjo: Utgagspuktet er målemodelle med ormalatakelse: X 1,...,X,u.i.f.tilf.var.derX i Nμ, σ 2 ).La
DetaljerKapittel 7: Noen viktige sannsynlighetsfordelinger
Kapittel 7: Noe viktige sasylighetsfordeliger I mage situasjoer ka feomeet vi ser på beskrives med e bestemt type sasylighetsfordelig (e sasylighetsfordelig gitt ved e bestemt formel. Vi skal se på oe
DetaljerTMA4245 Statistikk Eksamen august 2015
Eksame august 15 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsskisse Oppgave 1 a asylighetee blir og X > Z > 1 1 Z 1 Φ.3,.5 W > 5 X + Y > 5 b Forvetet samfuskostad blir
DetaljerEksamen REA3028 S2, Våren 2012
Eksame REA08 S, Våre 0 Del Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave (4 poeg) a) Deriver fuksjoee ) f f ) g e 4 4 4 g e e 4 g e e g e
Detaljer211.7% 2.2% 53.0% 160.5% 30.8% 46.8% 17.2% 11.3% 38.7% 0.8%
Prøve-eksame II MET 1190 Statistikk Dato 31. mai 2019 kl 1100-1400 Alle svar skal begrues. Når besvarelse evalueres, blir det lagt vekt på at framgagsmåte og resultat preseteres så klart, presist og kortfattet
DetaljerTMA4245 Statistikk Vår 2015
TMA4245 Statistikk Vår 2015 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer 12, blokk II Oppgave 1 Kari har ylig kjøpt seg e y bil. Nå øsker hu å udersøke biles besiforbruk
DetaljerUlike typer utvalg. MAT0100V Sannsynlighetsregning og kombinatorikk. Ordnet utvalg uten tilbakelegging 29 (29 1) (29 2) (29 3) =
MAT000V Sasylighetsregig og kombiatorikk Urdede utvalg ute tilbakeleggig Pascals talltrekat og biomialkoeffisietee Ørulf Borga Matematisk istitutt Uiversitetet i Oslo Ulike typer utvalg Eksempel 6.: Vi
DetaljerOversikt over konfidensintervall i Econ 2130
1 HG Revidert april 011 Oversikt over kofidesitervall i Eco 130 Merk at dee oversikte ikke er met å leses istedefor framstillige i Løvås, me som et supplemet. Løvås ieholder mage verdifulle kommetarer
DetaljerSkrivne og trykte hjelpemiddel samt kalkulator er tillate. Ta med all mellomrekning som trengst for å grunngje svaret.
Eksame 11. mai 2015 Eksamestid 4 timar IR201812 Statistikk og Simulerig Skrive og trykte hjelpemiddel samt kalkulator er tillate. Ta med all mellomrekig som tregst for å grugje svaret. Oppgåve 1......................................................................................
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
Eksame i: ECON130 Statistikk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamesdag: 6.05.017 Sesur kugøres: 16.06.017 Tid for eksame: kl. 14:30 17:30 Oppgavesettet er på 6 sider Tillatte helpemidler: Alle
DetaljerTMA4240 Statistikk Høst 2015
TMA4240 Statistikk Høst 2015 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer 12, blokk II I dee siste øvige fokuserer vi på lieær regresjo, der vi har kjete kovariater
DetaljerNoen vanlige. Indikatorfordeling: 1, dersom suksess. I mange situasjoner kan fenomenet vi ser på. 0, dersom ikke suksess
Kapittel 5: Noe valige sasylighetsfordeliger I mage situasjoer ka feomeet vi ser på beskrives med e bestemt type sasylighets- fordelig (e sasylighetsfordelig gitt ved e bestemt formel. Vi skal se på oe
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2011
ÅMA110 asylighetsregig med statistikk våre 011 Kp. 5 Estimerig 1 Estimerig. Målemodelle. Ihold: 1. (ukt)estimerig i biomisk modell (kp. 5.). Målemodelle... (kp. 5.3) 3. (ukt)estimerig i målemodelle (kp.
DetaljerLØSNING: Eksamen 28. mai 2015
LØSNING: Eksame 28. mai 2015 MAT110 Statistikk 1, vår 2015 Oppgave 1: revisjo ) a) Situasjoe som beskrives i oppgave ka modelleres med e ure. I dee ure er fordelige kjet, M atall bilag med feil og N 100
DetaljerIntroduksjon. Hypotesetesting / inferens (kap 3) Populasjon og utvalg. Populasjon og utvalg. Populasjonsvarians
Hypotesetestig / iferes (kap ) Itroduksjo Populasjo og utvalg Statistisk iferes Utvalgsfordelig (samplig distributio) Utvalgsfordelige til gjeomsittet «The hardest thig to teach i ay itroductory statistics
DetaljerMetoder for politiske meningsmålinger
Metoder for politiske meigsmåliger AV FORSKER IB THOMSE STATISTISK SETRALBYRÅ Beregigsmetodee som brukes i de forskjellige politiske meigsmåliger har vært gjestad for mye diskusjo i dagspresse det siste
DetaljerRep.: generelle begrep og definisjoner Kp. 10.1, 10.2 og 10.3
Kp. 1, oversikt ; oversikt, t- ; oversikt ; stor ; Hypoteseig; ett- og to-utvalg Rep.: geerelle begrep og defiisjoer Kp. 1.1, 1.2 og 1.3 Rep.: ett-utvalgser for μ (...), p Kp. 1 og 1.8 Nytt: ett-utvalgs
DetaljerKapittel 5: Tilfeldige variable, forventning og varians.
Kapittel 5: Tilfeldige variable, forvetig og varias. Tilfeldige variable Tilfeldige variable kalles også stokastiske variable. Defiisjo: E tilfeldig variabel er e variabel som får si umeriske verdi bestemt
DetaljerOversikt over konfidensintervall i Econ 2130
1 HG Revidert april 014 Oversikt over kofidesitervall i Eco 130 Merk at dee oversikte ikke er met å leses istedefor framstillige i Løvås, me som et supplemet. De ieholder tabeller med formler for kofidesitervaller
Detaljerbetegne begivenheten at det trekkes et billedkort i trekning j (for j=1,2,3), og komplementet til
1 ECON1: EKSAMEN 17v SENSORVEILEDNING. Det abefales at de 9 deloppgavee merket med A, B, teller likt uasett variaso i vaskelighetsgrad. Svaree er gitt i
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2011
ÅMA0 Sasylighetsregig statistikk våre 0 Kp. 4 Kotiulige tilfeldige variable; Normalfordelig Kotiulige tilfeldige variable itro. (ell: Kotiulige sasylighetsfordelig Vi har til å sett på diskrete fordelig
Detaljer