Repetisjon; 9.1, 9.2, 9.3, 9.4, 9.5, og Repetisjon; 9.1, 9.2, 9.3, 9.4, 9.5, og 9.10
|
|
- Annar Marthinsen
- 5 år siden
- Visninger:
Transkript
1 Repetisjo; 9.1, 9.2, 9.3, 9.4, 9.5, og 9.10 og Geerell defiisjo av : Situasjo: Data x 1,...,x ;utfallav:x 1,...,X ; u.i.f. tilfeldige variable Ukjet parameter i fordelige til X i ee: θ Dersom L og U L <U er to fuksjoer av X 1,...,X,som er slik at: 1 α = P L θ U, sier vi at det utregete itervallet l, u er et 1 α 100% for θ. Typisk: L = θ z α/2 SD θ, U = θ + z α/2 SD θ Bjør H. Auestad Itroduksjo og repetisjo 1 / 31 Repetisjo; 9.1, 9.2, 9.3, 9.4, 9.5, og 9.10 og Obs. 1: 1 α: kofidesgrad Obs. 2: Det utregete itervallet l, u: Framkommer år vi setter dataverdiee x 1,...,x i i fuksjoee L og U. Obs. 3: a Evetuelt tilærmede itervall; b Bytt z α/2 med t 1,α/2 for t-itervall Obs. 4, fortolkig Stregt tatt: Itervallet l, u er et; Vi ka ikke si: P l θ u =1 α Bjør H. Auestad Itroduksjo og repetisjo 2 / 31
2 Repetisjo; 9.1, 9.2, 9.3, 9.4, 9.5, og 9.10 og Situasjo 1; 1 α 100% for μ er σ X z 2 α/2, X + z α/2 Situasjo 2; 1 α 100% for μ er X t α/2, 1 X + t α/2, 1 S 2, Situasjo 3; til. 1 α 100% for μ er S X z 2 α/2, X + z S 2 α/2 σ 2 S 2 Biomisk modell; til. 1 α 100% for p er p1 p p1 p p z α/2, p + z α/2 Bjør H. Auestad Itroduksjo og repetisjo 3 / 31 Kommetar til biomisk modell og Situasjo: Data x 1,...,x ;utfallav:x 1,...,X ; u.i.f. tilfeldige variable. I biomisk situasjo: Y B, p; da ka vi repesetere Y som: Y = X 1 + X X, der X i er 0 fiasko eller 1 suksess avh. av resultatet i delforsøk r. i, i =1, 2,...,. Da er X 1,...,X u.i.f. tilfeldige variable, EX i =p og VarX i =p1 p,x = Y Y = X i = i=1 S 2 = 1 1 i=1 Xi 2.Derfor: i=1 = Y 1 p2 X i X 2 = 1 1 i=1 = p p 2 = 1 X 2 i X 2 = p, og = 1 Y p 2 1 } { p1 p p1 p 1 Bjør H. Auestad Itroduksjo og repetisjo 4 / 31
3 Repetisjo; 9.1, 9.2, 9.3, 9.4, 9.5, og 9.10 og Legde av et Hvor stor må være for å få itervall av bestemt legde?... Les selv; bl.a. teorem 9.1 og 9.2; for ettutvalgsaalyser. øvigsoppgaver seiere; Bjør H. Auestad Itroduksjo og repetisjo 5 / 31 Kp. 8.3 Normalplott og Normal kvatil-kvatil-diagram Hvorda udersøke om ormalatakelse er rimelig? Histogram over dataee Normalplott Data: x 1,x 2,...,x ; sortert: x 1 <x 2 <...<x Lag et diagram med x i på y-akse og [ 4.91 F 0.14 x i { 1 F x i } ] 0.14 på x-akse. Dersom puktee ligger lags e rett lije, er ormalatakelse rimelig! Illustrasjoer EXCEL! Bjør H. Auestad Itroduksjo og repetisjo 6 / 31
4 Kp. 8.3 Normalplott og Begruelse.: X Nμ, σ 2 : F x =P X x = P Z x μ σ der Φv = v =Φ x μ σ 1 2π e 1 2 x2 dx; N0,1 kumulativ fordeligsfuksjo. Dvs.: for e fordeligsfuksjo, F x, fårvi: Φ 1 F x = x μ σ, dersom fordeligsfuksjoe er e ormalfordelig, F x =Φ x μ σ I så tilfelle vil vi ha lieær sammeheg mellom x og Φ 1 F x Bjør H. Auestad Itroduksjo og repetisjo 7 / 31 Kp. 8.3 Normalplott og I så tilfelle vil vi ha lieær sammeheg mellom x og Φ 1 F x Dataees fordeligsfuksjo, F x, er ukjet; bruker estimat: F x i = i 3/8 +1/4 atall x i er x i Φ 1 er vaskelig å berege, bruker tilærmig: Φ 1{ F xi } [ 4.91 F 0.14 x i { 1 F x i } ] 0.14 EXCEL-rutier! Dersom plottet ser omtret lieært ut, vil ormalatakelse ikke være urimelig. Bjør H. Auestad Itroduksjo og repetisjo 8 / 31
5 Kp Estimere og Eks.: Vekt av laks. Vi er iterssert i spredige i laksevekte. Data: x 1,x 2,...,x Variase til X i ee, VarX i =σ 2,eretmålpåspredigivekt. Estimat av e: s 2 = 1 1 i=1 x i x 2 =0.276 Usikkerhet i estimatet? Vi vil ha et for σ 2. Vi treger å vite oe om fordelige til estimatore: S 2 = 1 1 X i X 2 i=1 Bjør H. Auestad Itroduksjo og repetisjo 9 / 31 Kp Estimere og Kp. 8.5, fordelig til S 2. Teorem 8.4: Dersom X 1,X 2,...,X er u.i.f. N μ, σ 2,såer 1 S2 σ 2 = 1 σ 2 X i X 2 χ 2 1, i=1 kji-kvadratfordelt med 1 frihetsgrader. Def.: Dersom U er χ 2 ν-fordelt, defieres tallet χ α,ν ved at P U >χ α,ν =α. Bjør H. Auestad Itroduksjo og repetisjo 10 / 31
6 Ki-kvadrat-tettheter og df=4 ad x df= x Dersom U χ 2 ν,så E U = ν og Var U =2ν. Bjør H. Auestad Itroduksjo og repetisjo 11 / 31 Kp Estimere og Dersom U χ 2 ν,så E U = ν ; Av dette ser vi S 2 er forevtigsrett for σ 2 : E S 2 = σ2 1 E χ σ 2 S 2 }{{}, jf. teorem 8.4 = σ2 1 = σ2 1 Kofidesitervall for σ 2 : Bjør H. Auestad Itroduksjo og repetisjo 12 / 31
7 Kp Estimere og Situasjo: måliger; x 1,...,x ; betraktes som utfall av u.i.f. tilfeldige variable: X 1,...,X. EX i =μ og VarX i =σ 2, i =1,...,, og der X i er ormalfordelt. Side 1 S2 σ 2 χ2 1, har vi: P χ 1 α/2, 1 1 S2 σ 2 χ α/2, 1 = 1 α Bjør H. Auestad Itroduksjo og repetisjo 13 / 31 Kp Estimere og Me: χ 1 α/2, 1 1 S2 σ 2 1S 2 χ α/2, 1 σ 2 χ α/2, 1 1S2 χ 1 α/2, 1 Derfor har vi: P 1S 2 χ α/2, 1 σ 2 1S2 = 1 α, χ 1 α/2, 1 Bjør H. Auestad Itroduksjo og repetisjo 14 / 31
8 Kp Estimere og Derfor er 1S 2 χ α/2, 1, for σ 2. 1S 2 χ 1 α/2, 1,et1001 α% Eks., laksedata: =25; for å lage et 95% for σ 2, treger vi α =0.05 χ 0.025,24 = og χ 0.975,24 = s 2 = , =0.168, Itervallet er ikke symmetrisk omkrig puktestimatet s 2 = Bjør H. Auestad Itroduksjo og repetisjo 15 / 31 Oversikt, kp. 9 og I kp. 9 har vi til å vært gjeom: 9.1, 9.2, 9.3, 9.4, 9.5, 9.10 og 9.12 Videre: : , 9.9, 9.11, 9.13:, to-utvalg Bjør H. Auestad Itroduksjo og repetisjo 16 / 31
9 Kp. 9.6 og Kofidesitervall, P L θ U =1 α: itervallet, L, U, ieholder virkelig verdi til parameter, θ, med sasylighet 1 α. : Vi øsker et itervall som er slik at utfallet av e y tilfeldig variabel, faller i itervallet med sasylighet 1 α. Bjør H. Auestad Itroduksjo og repetisjo 17 / 31 Kp. 9.6 og Eks.: Bruddstyrke til bærebjelker har tidligere blitt målt =12,gj.s. bruddstyrke: 3.16 og emp. stadardavvik: Vi skal å bruke e slik bjelke, og øsker å berege et itervall hvor bruddstyrke til dee ee bjelke, X 0, med stor sasylighet ligger. Et slikt itervall kalles et prediksjositervall. For de tidligere måligee: X 1,...,X Vi har: X 1,...,X og X 0 er u.i.f. og atar videre at X i Nμ, σ 2, i =0, 1,...,. Vår beste prediksjo av utfallet av X 0,erX som er estimator til forvetigsverdie, μ. Forskjell mellom prediksjo og utfall: X 0 X. Fordelige til X 0 X gir sasyligheter for forskjellee mellom prediksjo og virkelig utfall. Bjør H. Auestad Itroduksjo og repetisjo 18 / 31
10 Kp. 9.6 og E X 0 X = EX 0 EX =μ μ =0 Var X 0 X = VarX 0 +VarX =σ 2 + σ2 Vi baserer oss på: Z = X 0 X σ 2 + σ2 N0, 1 eller T = X 0 X S 2 + S2 t 1, dersom e σ 2 er ukjet. Bjør H. Auestad Itroduksjo og repetisjo 19 / 31 Kp. 9.6 og Med t-fordelig ka vi stille opp: P t α/2, 1 som er det samme som at: P X 0 X S 2 + S2 X t α/2, 1 S 2 + S2 X 0 X + t α/2, 1 t α/2, 1 = 1 α, S 2 + S2 = 1 α. Dvs.: et 1001 α% prediksjositervall for X 0 er gitt ved: X t α/2, 1 S 2 + S2, X + t α/2, 1 S 2 + S2. Bjør H. Auestad Itroduksjo og repetisjo 20 / 31
11 Kp. 9.6 og Eks.: =12, x =3.16 og s =0.31. Øsker et 99% prediksjositervall for styrke til y bjelke. α =0.01 t α/2, 1 = t 0.005,11 = Itervall: , = 2.16, Oppgave: Fi 99% for forvetet bruddstyrke, kommeter! Bjør H. Auestad Itroduksjo og repetisjo 21 / 31 Oversikt og Repetisjo av for μ og p Normalplott Kofidesitervall for σ 2 kp. 9.6 Videre: 9.8, 9.9, 9.11, 9.13: estimerig og, to-utvalg Bjør H. Auestad Itroduksjo og repetisjo 22 / 31
12 Kp. 9: Estimerig og to utvalg og Estimerig og : For forskjell i, μ X μ Y, uder ulike forutsetiger; kp. 9.8 og 9.9. For forskjell i adeler, p 1 p 2 ; kp For forhold mellom ee, σx 2 /σ2 Y ; kp Vi har allerede sett på: kp : ett utvalg. Bjør H. Auestad Itroduksjo og repetisjo 23 / 31 Kp. 9.8 Forskjell og Eks.: Trykktest av to typer betogbladig; resultater: Betogbladig r. 2 r gj.s emp.std Trykktest av betogteriger med mål cm; ehet: Newto/mm 2 Mega-Pascal. Har de to bladigee forskjellig styrke i virkelighete? Bjør H. Auestad Itroduksjo og repetisjo 24 / 31
13 Kp. 9.8 Forskjell og Har de to bladigee forskjellig styrke i virkelighete? X Y Prikkdiagram N mm 2 Bjør H. Auestad Itroduksjo og repetisjo 25 / 31 Kp. 9.8 Forskjell og Geerelt, situasjo: data: x 1,...,x X og y 1,...,y Y Modell: X 1,...,X X er X u.i.f. tilfeldige variable, og Y 1,...,Y Y er Y u.i.f. tilfeldige variable, og EX i =μ X og VarX i =σ 2 X, i =1,..., X EY i =μ Y og VarY i =σ 2 Y, i =1,..., Y Vi er iteressert i differase μ X μ Y. I eksempelet represeterer forvetige virkelig styrke ukjet. Bjør H. Auestad Itroduksjo og repetisjo 26 / 31
14 Kp. 9.8 Forskjell og I aalysee skal vi se på situasjoee der 1 σx 2 og σy 2 er kjete; ormalatakelse 2a σx 2 og σy 2 er ukjete, me σx 2 = σy 2 ; ormalatakelse, og 2b σx 2 og σy 2 er ukjete, og σx 2 σy 2 ; ormalatakelse 3 X og Y store; ormaltilærmig for estimator Estimator for μ X μ Y er μ X μ Y = X Y. For alle fire situasjoee 1, 2a, 2b og 3: E X Y = μ X μ Y Var X Y = Var X + Var Y = σ2 X X + σ2 Y Y Med ormalatakelse får vi: X Y er ormalfordelt fordi det er e li.komb. av uavhegige ormalfordelte tilf. var.; se ev. teorem 7.11, s. 221 utg. 9. Bjør H. Auestad Itroduksjo og repetisjo 27 / 31 Kp. 9.8 Forskjell og For situasjo 1: Z = X Y μ X μ Y N0, 1 σ 2 X + σ2 Y X Y Dette betyr at vi ka stille opp: P z α/2 X Y μ X μ Y z σ 2 α/2 = 1 α, X + σ2 Y X Y som gir at ved stadard resoemet! σx 2 X Y z α/2 + σ2 Y σx 2, X Y + z α/2 + σ2 Y, X Y X Y er et 1001 α% for μ X μ Y. Bjør H. Auestad Itroduksjo og repetisjo 28 / 31
15 Kp. 9.8 Forskjell og Eks.: Trykktest av to typer betogbladig; resultater: Betogbladig r. 2 r. 3 gj.s emp.std Vi bruker ormalatakelse rimelig? 500 og ata at vi kjeer 480 σx 2 = σ2 Y = Normalplott; samlet for begge datasett. Bjør H. Auestad Itroduksjo og repetisjo 29 / 31 Kp. 9.8 Forskjell og Et 95 % for forskjell i virkelig styrke, μ X μ Y, til de to betogbladigee er gitt ved: Isatt data: σx 2 X Y z σ2 Y σx 2, X + Y z σ2 Y. X Y X Y , = 57.64, Bjør H. Auestad Itroduksjo og repetisjo 30 / 31
16 Kp. 9.8 Forskjell og I aalysee skal vi se på situasjoee der 1 σx 2 og σ2 Y er kjete; ormalatakelse 2a σx 2 og σ2 Y er ukjete, me σ2 X = σ2 Y ; ormalatakelse, og 2b σx 2 og σ2 Y er ukjete, og σ2 X σ2 Y ; ormalatakelse 3 X og Y store; ormaltilærmig for estimator Ferdigmed1;2aeste! Bjør H. Auestad Itroduksjo og repetisjo 31 / 31
MOT310 Statistiske metoder 1, høsten 2011
MOT310 Statistiske metoder 1, høste 2011 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 24. august, 2011 Bjør H. Auestad Itroduksjo og repetisjo 1 / 32 Repetisjo; 9.1,
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 4
ÅMA11 Sasylighetsregig med statistikk, våre 21 Kp. 6, del 4 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 22. mars Bjør H. Auestad Kp. 6: Hypotesetestig del 4 1/ 29 Bjør
DetaljerHypotesetesting, del 4
Oversikt, del 4 t-fordelig t-test t-itervall Del 5 Kofidesitervall vs. test p-verdi t-fordelig Rett på defiisjo: Utgagspuktet er målemodelle med ormalatakelse: X 1,...,X,u.i.f.tilf.var.derX i Nμ, σ 2 ).La
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2008 Kp. 6, del 5
ÅMA110 Sasylighetsregig med statistikk, våre 2008 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 26. mars Bjør H. Auestad Kp. 6: Hypotesetestig del 5 1/ 53
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren Estimering. Målemodellen. Konfidensintervall, innledning. Kp. 5 Estimering.
ÅMA0 Sasylighetsregig med statistikk våre 006 Kp. 5 Estimerig Estimerig. Målemodelle. Ihold:. (Pukt)Estimerig i biomisk modell (kp. 5.). Målemodelle... (kp. 5.3) 3. (Pukt)Estimerig i målemodelle (kp. 5.3)
DetaljerRep.: generelle begrep og definisjoner Kp. 10.1, 10.2 og 10.3
Kp. 1, oversikt ; oversikt, t- ; oversikt ; stor ; Hypoteseig; ett- og to-utvalg Rep.: geerelle begrep og defiisjoer Kp. 1.1, 1.2 og 1.3 Rep.: ett-utvalgser for μ (...), p Kp. 1 og 1.8 Nytt: ett-utvalgs
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 4. Hypotesetesting, del 4
ÅMA11 Sasylighetsregig med statistikk, våre 27 Kp. 6, del 4 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 19. mars Bjør H. Auestad Kp. 6: Hypotesetestig del 4 1/ 27 Bjør
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 5. Hypotesetesting, del 5
ÅMA11 Sasylighetsregig med statistikk, våre 7 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 26. mars Bjør H. Auestad Kp. 6: Hypotesetestig del 5 1/ 59 Bjør
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2008 Kp. 6, del 5
ÅMA110 Sasylighetsregig med statistikk, våre 2008 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 3. april Bjør H. Auestad Kp. 6: Hypotesetestig del 5 1/ 56
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 5
ÅMA110 Sasylighetsregig med statistikk, våre 2006 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 3. april Bjør H. Auestad Kp. 6: Hypotesetestig del 5 1 / 56
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren Estimering. Målemodellen. Sannsynlighetsregning med statistikk. Kp. 5 Estimering.
ÅMA asylighetsregig med statistikk våre 008 Kp. 5 Estimerig Estimerig. Målemodelle. Ihold:. (ukt)estimerig i biomisk modell (kp. 5.). Målemodelle... (kp. 5.3) 3. (ukt)estimerig i målemodelle (kp. 5.3)
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2007
ÅMA Sasylighetsregig med statistikk, våre 27 Kp. 6 (kp. 6) Tre deler av faget/kurset:. Beskrivede statistikk 2. Sasylighetsteori, sasylighetsregig 3. Statistisk iferes estimerig kofidesitervall hypotesetestig
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 2
ÅMA11 Sasylighetsregig med statistikk, våre 27 Kp. 6, del 2 Bjør H. Auestad Istitutt for matematikk og aturviteskap 5. mars 21 Bjør H. Auestad Kp. 6: del 1/2 1/ 42 Bjør H. Auestad Kp. 6: del 1/2 2/ 42
DetaljerTMA4240 Statistikk Høst 2015
Høst 205 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer, blokk II Løsigsskisse Oppgave a) X bi(, p) fordi: Udersøker uavhegige delar av DNA-strukture. Fi for kvar del
Detaljer2. Hypotesetesting i ulike sitausjoner: i. for forventingen, μ, i målemodellen med normalantakelse og kjent varians, σ 2.
Oversikt 1. Hva er hypotesetestig? 2. i ulike sitausjoer: i. for forvetige, μ, med ormalatakelse og kjet varias, σ 2. ii. for forvetige, μ, med stor og ormaltilærmig (variase, σ 2, ukjet). iii. for suksessasylighete,
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Oppsummering
ÅMA110 Sasylighetsregig med statistikk, våre 2007 Oppsummerig Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 19. april Bjør H. Auestad Oppsummerig våre 2006 1 / 37 Oversikt
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2006
ÅMA110 Sasylighetsregig med statistikk, våre 2006 Kp. 6, del 2 Bjør H. Auestad Kp. 6: Hypotesetesig del 2 1/ 38 Bjør H. Auestad Kp. 6: Hypotesetesig del 2 2/ 38 Oversikt 1. Hva er hypotesetestig? 2. Hypotesetestig
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 5 Estimering. Målemodellen.
ÅMA0 Sasylighetsregig med statistikk, våre 0 Kp. 5 Estimerig. Målemodelle. Estimerig. Målemodelle. Ihold:. (Pukt)Estimerig i biomisk modell (kp. 5.). Målemodelle... (kp. 5.). (Pukt)Estimerig i målemodelle
DetaljerX = 1 5. X i, i=1. som vil være normalfordelt med forventningsverdi E( X) = µ og varians Var( X) = σ 2 /5. En rimelig estimator for variansen er
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalte oppgaver 11, blokk II Løsigsskisse Oppgave 1 a) E rimelig estimator for forvetigsverdie µ er gjeomsittet X = 1 X i, som
DetaljerMOT310 Statistiske metoder 1, høsten 2012
MOT310 Statistiske metoder 1, høste 2012 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 20. august, 2012 Bjør H. Auestad Itroduksjo og repetisjo 1 / 57 Iformasjo Litt om
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro.
ÅMA Sasylighetsregig med statistikk, våre Kp. 4 Kotiuerlige tilfeldige variable; Normalfordelig Kotiuerlige tilfeldige variable, itro. (eller: Kotiuerlige sasylighetsfordeliger) Vi har til å sett på diskrete
Detaljer211.7% 2.2% 53.0% 160.5% 30.8% 46.8% 17.2% 11.3% 38.7% 0.8%
Prøve-eksame II MET 1190 Statistikk Dato 31. mai 2019 kl 1100-1400 Alle svar skal begrues. Når besvarelse evalueres, blir det lagt vekt på at framgagsmåte og resultat preseteres så klart, presist og kortfattet
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 5
ÅMA110 Sasylighetsregig med statistikk, våre 2010 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 12. april Bjør H. Auestad Kp. 6: Hypotesetestig del 4 1/ 59
DetaljerOppgave 1 Hardheten til en bestemt legering er undersøkt med åtte målinger og resultatene ble (i kg/mm 2 ) som i tabellen til høyre.
EKSAMEN I: ÅMA110 SANNSYNLIGHETSREGNING MED STATISTIKK VARIGHET: 4 TIMER DATO: 28. AUGUST 2010 BOKMÅL TILLATTE HJELPEMIDLER: KALKULATOR: HP30S, Casio FX82 eller TI-30 OPPGAVESETTET BESTÅR AV 3 OPPGAVER
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro.
ÅMA0 Sasylighetsregig med statistikk, våre 008 Kp. 4 Kotiuerlige tilfeldige variable; Normalfordelig Kotiuerlige tilfeldige variable, itro. (eller: Kotiuerlige sasylighetsfordeliger) Vi har til å sett
Detaljer5 y y! e 5 = = y=0 P (Y < 5) = P (Y 4) = 0.44,
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalte oppgaver 9, blokk II Løsigsskisse Oppgave a) Vi lar her Y være atall fugler som kolliderer med vidmølla i løpet av de gitte
DetaljerTMA4240 Statistikk Høst 2009
TMA440 Statistikk Høst 009 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b4 Løsigsskisse Oppgave Øsker å fie 99% kofidesitervall for µ µ år vi atar ormalfordeliger
DetaljerTMA4240 Statistikk Høst 2016
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalt øvig 11 Løsigsskisse Oppgave 1 a) E rimelig estimator for forvetigsverdie µ er gjeomsittet X = 1 X i, som vil være ormalfordelt
DetaljerEstimering 2. -Konfidensintervall
Estimerig 2 -Kofidesitervall Dekkes av kap. 9.4-9.5, 9.10, 9.12 og forelesigsotatee. Dersom forsøket gjetas mage gager vil (1 α)100% av itervallee [ ˆΘ L, ˆΘ U ] ieholde de ukjete parametere θ (som er
DetaljerOversikt over konfidensintervall i Econ 2130
1 HG Revidert april 011 Oversikt over kofidesitervall i Eco 130 Merk at dee oversikte ikke er met å leses istedefor framstillige i Løvås, me som et supplemet. Løvås ieholder mage verdifulle kommetarer
DetaljerKapittel 8: Estimering
Kaittel 8: Estimerig Estimerig hadler kort sagt om hvorda å aslå verdie å arametre som,, og dersom disse er ukjete. like arametre sier oss oe om oulasjoe vi studerer (dvs om alle måliger av feomeet som
DetaljerOppgaver fra boka: Med lik men ukjent varians antatt har vi fra pensum at. t n1 +n 2 2 under H 0 (12 1) (12 1)
MOT30 Statistiske metoder, høste00 Løsiger til regeøvig r. 5 (s. ) Oppgaver fra boka: Oppgave 0.36 (0.0:8) Dekkslitasje X,..., X u.i.f. N(µ, σ ) og X,..., X u.i.f. N(µ, σ ) og alle variable er uavhegige.
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2007
ÅMA0 Sasylighetsregig med statistikk, våre 007 Kp. 4 Kotiuerlige tilfeldige variable; Normalfordelig Kotiuerlige tilfeldige variable, itro. (eller: Kotiuerlige sasylighetsfordeliger) Vi har til å sett
DetaljerKap. 9: Inferens om én populasjon
2 ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for matematiske fag Ka. 9: Iferes om é oulasjo Hvis σ er ukjet bytter vi ut σ med s i Ny observator blir t = x μ s/ z = x μ σ/ der s = Σx 2 (Σx)
DetaljerLøsningsforsalg til første sett med obligatoriske oppgaver i STK1110 høsten 2018
Løsigsforsalg til første sett med obligatoriske oppgaver i STK1110 høste 2018 Oppgave 1 (a Et 100(1 α% kofidesitervall for forvetigsverdie µ er gitt ved formel (8.15 på side 403 i læreboka. For situasjoe
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro.
ÅMA Sasylighetsregig med statistikk, våre 6 Kp. 4 Kotiuerlige tilfeldige variable og ormaldelige Kotiuerlige tilfeldige variable, itro. (eller: Kotiuerlige sasylighetsdeliger) Vi har til å sett på diskrete
DetaljerIntroduksjon. Hypotesetesting / inferens (kap 3) Populasjon og utvalg. Populasjon og utvalg. Populasjonsvarians
Hypotesetestig / iferes (kap ) Itroduksjo Populasjo og utvalg Statistisk iferes Utvalgsfordelig (samplig distributio) Utvalgsfordelige til gjeomsittet Itroduksjo Vi øsker å få iformasjo om størrelsee i
DetaljerLøsningsforsalg til første sett med obligatoriske oppgaver i STK1110 høsten 2015
Løsigsforsalg til første sett med obligatoriske oppgaver i STK1110 høste 2015 Oppgave 1 (a Et 100(1 α% kofidesitervall for forvetigsverdie µ er gitt ved formel (8.15 på side 403 i læreboka. For situasjoe
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdelig for tekologi Målform: Bokmål Eksamesdato: 19 des. 2014 Varighet/eksamestid: Emekode: 3 timer TALM1005 Emeav: Statistikk og Økoomi statistikkdele Klasser: Logistikk 1 Kjemi
DetaljerTMA4245 Statistikk Eksamen mai 2017
TMA445 Statistikk Eksame mai 07 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsskisse Oppgave a Når vi reger ut disse tre sasylighetee må ma huske på at de mulige verdiee
DetaljerKort repetisjon fra kapittel 4. Oppsummering kapittel ST0202 Statistikk for samfunnsvitere. Betinget sannsynlighet og trediagram
2 Kort reetisjo fra kaittel 4 Betiget sasylighet og trediagram Eksemel: Fra e oulasjo av idrettsfolk trekkes e erso tilfeldig og testes for doig. De iteressate hedelsee er D=ersoe er doet, A=teste er ositiv.
DetaljerOppgaver fra boka: X 2 X n 1
MOT30 Statistiske metoder, høste 00 Løsiger til regeøvig r 3 (s ) Oppgaver fra boka: 94 (99:7) X,, X uif N(µ, σ ) og X,, X uif N(µ, σ ) og alle variable er uavhegige Atar videre at σ = σ = σ og ukjet Kodesitervall
DetaljerOversikt over konfidensintervall i Econ 2130
HG April 00 Oversikt over kofidesitervall i Eco 30 Merk at dee oversikte ikke er met å leses istedefor framstillige i Løvås, me som et supplemet. Løvås ieholder mage verdifulle kommetarer og eksempler.
DetaljerKap. 9: Inferens om én populasjon
2 ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for matematiske fag Ka. 9: Iferes om é oulasjo Hvis σ er ukjet bytter vi ut σ med s i Ny observator blir t = x μ s/ z = x μ σ/ der s = Σx 2 (Σx)
DetaljerTALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.
1 ECON130: EKSAMEN 013 VÅR - UTSATT PRØVE TALLSVAR. Det abefales at de 9 deloppgavee merket med A, B, teller likt uasett variasjo i vaskelighetsgrad. Svaree er gitt i
DetaljerLØSNING, EKSAMEN I STATISTIKK, TMA4240, DESEMBER Anta at sann porøsitet er r. Måling med utstyret gir da X n(x; r, 0,03).
LØSNING, EKSAMEN I STATISTIKK, TMA440, DESEMBER 006 OPPGAVE 1 Ata at sa porøsitet er r. Målig med utstyret gir da X (x; r, 0,03). a) ( ) X r P(X > r) P 0,03 > 0 P(Z > 0) 0,5. ( X r P(X r > 0,05) P 0,03
DetaljerOversikt, del 5. Vi har sett på styrkefunksjon for ensidige tester. Eksempler (styrke, dimensjonering,...) Eksempler fra slutten av forrige uke
Hypotesetestig, del 4 oppsummerig fra Hypotesetestig, del 5 Kofidesitervall dimesjoerig Oversikt, del 5 Eksempler fra slutte av forrige uke Kofidesitervall p-verdi Eksempler Eksempler styrke, dimesjoerig,...
DetaljerH 1 : µ 1 µ 2 > 0. t = ( x 1 x 2 ) (µ 1 µ 2 ) s p. s 2 p = s2 1 (n 1 1) + s 2 2 (n 2 1) n 1 + n 2 2
TMA4245 Statistikk Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b4 Løsigsskisse Oppgave 1 Vi øsker å fie ut om et ytt serum ka stase leukemi. 5 mus får serumet, 4
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdelig for tekologi Målform: Bokmål Eksamesdato: 5 jui 2015 Varighet/eksamestid: Emekode: 3 timer TALM1005 Emeav: Statistikk og Økoomi statistikkdele Klasser: Logistikk 1 Kjemi
DetaljerLøsningsforslag ST1101/ST6101 kontinuasjonseksamen 2018
Løsigsforslag ST/ST6 kotiuasjoseksame Oppgave a Defier hedelsee R, B, B rød kule i første trekig, blå kule i adre trekig, blå kule i tredje trekig. Vi skal fie PR B B for to ulike situasjoer. Geerelt vet
DetaljerOppgave 1 a) Minste kvadraters metode tilpasser en linje til punktene ved å velge den linja som minimerer kvadratsummen. x i (y i α βx i ) = 0, SSE =
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalte oppgaver 2, blokk II Løsigsskisse Oppgave a Miste kvadraters metode tilpasser e lije til puktee ved å velge de lija som
DetaljerKonfidensintervall. Notat til STK1110. Ørnulf Borgan, Ingrid K. Glad og Anders Rygh Swensen Matematisk institutt, Universitetet i Oslo.
Kofidesitervall Notat til STK1110 Ørulf Borga, Igrid K. Glad og Aders Rygh Swese Matematisk istitutt, Uiversitetet i Oslo August 2007 Formål E valig metode for å agi usikkerhete til et estimat er å berege
DetaljerECON240 Statistikk og økonometri
ECON240 Statistikk og økoometri Arild Aakvik, Istitutt for økoomi 1 Mellomregig MKM Model: Y i = a i + bx i + e i MKM-estimator for b: b = = Xi Y i 1 Xi Yi Xi 1 ( X i ) 2 (Xi X)(Y i Ȳi) (Xi X) 2 hvor vi
DetaljerHypotesetesting, del 5
Oversikt, del 5 Kofidesitervall p-verdi Kofidesitervall E (tosidig test ka gjeomføres vha. av et kofidesitervall. For eksempel, dersom vi i målemodell 1 vil teste: H 0 : μ = μ 0 mot H 1 : μ μ 0, ka vi
DetaljerLØSNINGSFORSLAG TILEKSAMEN I FAG TMA4240/TMA4245 STATISTIKK 10. august 2005
Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 8 LØSNINGSFORSLAG TILEKSAMEN I FAG TMA440/TMA445 STATISTIKK 0. august 005 Oppgave Smeltepuktsbestemmelse a) Vi jobber i dette
DetaljerKLMED8004 Medisinsk statistikk. Del I, høst Estimering. Tidligere sett på. Eksempel hypertensjon
Tidligere sett på KLMED8004 Medisisk statistikk Del I, høst 008 Estimerig Hvorda kjete sasylighetsfordeliger (biomialfordelig, ormalfordelig) med kjete populasjosparametrer (forvetig, varias osv.) ka gi
Detaljer) = P(Z > 0.555) = > ) = P(Z > 2.22) = 0.013
TMA4240 Statistikk Vår 2008 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b5 Løsigsskisse Oppgave 1 a) X 1,...,X 16 er u.i.f. N(80,18 2 ). Setter Y = X. i) P(X 1 >
DetaljerEmnenavn: Eksamenstid: 4 timer. Faglærer: Hans Kristian Bekkevard
EKSAMEN Emekode: SFB107111 Emeav: Metode 1, statistikk deleksame Dato: 7. mai 2018 Hjelpemidler: Godkjet kalkulator og vedlagt formelsamlig m/tabeller Eksamestid: 4 timer Faglærer: Has Kristia Bekkevard
DetaljerTMA4240/4245 Statistikk 11. august 2012
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag TMA424/4245 Statistikk. august 22 Eksame - løsigsforslag Oppgave Vi har N Nµ,σ 2, µ 85 og X > 88. a X µ X > 88 σ > 88 µ Z > 88 85
DetaljerKp. 9.8 Forskjell mellom to forventninger
andeler I analysene skal vi se på situasjonene der σx og σ Y er kjente; normalantakelse a σx og σ Y er ukjente men σ X = σ Y ; normalantakelse og b σx og σ Y er ukjente og σ X σ Y ; normalantakelse 3 og
DetaljerLØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK 5.august 2004
Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 0 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK 5.august 2004 Oppgave Foruresig X er e stokastisk variabel som agir
DetaljerEstimering og hypotesetesting. Estimering og hypotesetesting. Estimering og hypotesetesting. Kapittel 10. Ett- og toutvalgs hypotesetesting
3 Estimerig og hypotesetestig Kapittel 10 Ett- og toutvalgs hypotesetestig TMA4240 H2006: Eirik Mo Feome Bilkjørig Høyde til studeter Estimator ˆp = X, X atall ˆµ = X gjeomsittlig høyde. som syes de er
DetaljerEmnenavn: Metode 1, statistikk deleksamen. Eksamenstid: 4 timer. Faglærer: Bjørnar Karlsen Kivedal
EKSAMEN Emekode: SFB10711 Emeav: Metode 1, statistikk deleksame Dato: 10. oktober 2018 Hjelpemidler: Godkjet kalkulator og vedlagt formelsamlig m/tabeller Eksamestid: 4 timer Faglærer: Bjørar Karlse Kivedal
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2011
ÅMA0 Sasylighetsregig statistikk våre 0 Kp. 4 Kotiulige tilfeldige variable; Normalfordelig Kotiulige tilfeldige variable itro. (ell: Kotiulige sasylighetsfordelig Vi har til å sett på diskrete fordelig
DetaljerStatistikk og økonomi, våren 2017
Statistikk og økoomi, våre 07 Obligatorisk oppgave 6 Løsigsforslag Oppgave E terig kastes 0 gager, og det registreres hvor mage 6-ere som oppås i løpet av disse 0 kastee. Vi ka kalle atall 6-ere i løpet
DetaljerTMA4245 Statistikk Eksamen august 2015
Eksame august 15 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsskisse Oppgave 1 a asylighetee blir og X > Z > 1 1 Z 1 Φ.3,.5 W > 5 X + Y > 5 b Forvetet samfuskostad blir
DetaljerLøsningsforslag Oppgave 1
Løsigsforslag Oppgave 1 a X i µ 0 σ X i µ 0 2 σ 2, i 1,..., er uavhegige og stadard N0, 1 fordelte. Da er, i 1,..., uavhegige og χ 2 -fordelte med e frihetsgrad. Da er summe χ 2 -fordelt med atall frihetsgrader
DetaljerTMA4240 Statistikk Eksamen desember 2015
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag TMA20 Statistikk Eksame desember 205 Løsigsskisse Oppgave a) De kumulative fordeligsfuksjoe til X, F (x) P (X x): F (x) P (X x) x
DetaljerEKSAMENSOPPGAVE. Mat-1060 Beregningsorientert programmering og statistikk
Fakultet for aturviteskap og tekologi EKSAMENSOPPGAVE Eksame i: (Kode og av) Dato: 05.1.017 Klokkeslett: 09:00-13:00 Sted: Åsgårdv 9 Mat-1060 Beregigsorietert programmerig og statistikk Tillatte hjelpemidler:
DetaljerLøsningsforslag ST2301 øving 3
Løsigsforslag ST2301 øvig 3 Kapittel 1 Exercise 11 Et utvalg på 100 idivider trekkes fra e populasjo med tilfeldig parrig. Det ble observert AA 63 idivider av geotype AA, Aa 27, og aa 10. Lag et 95 % kofidesitervall
DetaljerKap. 9: Inferens om én populasjon. Egenskaper ved t-fordelingen. ST0202 Statistikk for samfunnsvitere. I Kapittel 8 brukte vi observatoren
2 Kap. 9: Iferes om é populasjo I Kapittel 8 brukte vi observatore z = x μ σ/ for å trekke koklusjoer om μ. Dette krever kjet σ (urealistisk). ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for
DetaljerEstimering 1 -Punktestimering
Estimerig 1 -Puktestimerig Dekkes av kap. 8, 9.1-9.3 og 9.15/9.14. Vi har til å settpå e rekke forskjellige sasylighetsfordeliger og sett hvorda disse ka brukes til å modellere mage forskjellige typer
DetaljerTMA4240 Statistikk H2010
TMA440 Statistikk H00 9.8: To uvalg (siste del) 9.9: Parvise observasjoer 9.0-9.: Adelser 9.: Varias Mette Lagaas Foreleses oag 0.oktober, 00 Norske hoppdommere og Jae Ahoe Jae Ahoe er e fisk skihopper,
DetaljerEstimering 1 -Punktestimering
Estimerig 1 -Puktestimerig Dekkes av kap. 8, 9.1-9.3 og 9.15/9.14. Vi har til å settpå e rekke forskjellige sasylighetsfordeliger og sett hvorda disse ka brukes til å modellere mage forskjellige typer
DetaljerOversikt over konfidensintervall i Econ 2130
1 HG Revidert april 014 Oversikt over kofidesitervall i Eco 130 Merk at dee oversikte ikke er met å leses istedefor framstillige i Løvås, me som et supplemet. De ieholder tabeller med formler for kofidesitervaller
DetaljerForelesning 4 og 5 Transformasjon, Weibull-, lognormal, beta-, kji-kvadrat -, t-, F- fordeling
STAT (V6) Statistikk Metoder Yushu.Li@uib.o Forelesig 4 og 5 Trasformasjo, Weibull-, logormal, beta-, kji-kvadrat -, t-, F- fordelig. Oppsummerig til Forelesig og..) Momet (momet about 0) og setral momet
DetaljerEKSAMEN. Oppgavesettet består av 5 oppgaver, hvor vekten til hver oppgave er angitt i prosent i oppgaveteksten. Alle oppgavene skal besvares.
EKSAMEN Emekode: SFB12003 Eme: Metodekurs II: Samfusviteskapelig metode og avedt statistikk Dato: 2.6.2014 Eksamestid: kl. 09.00 til kl. 13.00 Hjelpemidler: Kalkulator Faglærer: Bjørar Karlse Kivedal Eksamesoppgave:
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2011
ÅMA110 asylighetsregig med statistikk våre 011 Kp. 5 Estimerig 1 Estimerig. Målemodelle. Ihold: 1. (ukt)estimerig i biomisk modell (kp. 5.). Målemodelle... (kp. 5.3) 3. (ukt)estimerig i målemodelle (kp.
DetaljerEksempler fra slutten av forrige uke. Eksempler (styrke, dimensjonering,...) Eksempler fra slutten av forrige uke
Oversikt, del 5 Hypotesetestig, del 4 (oppsummerig fra Hypotesetestig, del 5 Kofidesitervall dimesjoerig Eksempler fra slutte av forrige uke Kofidesitervall p-verdi Eksempler Eksempler (styrke, dimesjoerig,...
DetaljerModeller og parametre. STK Punktestimering - Kap 7. Eksempel støtfangere. Statistisk inferens. Binomisk fordeling. p X (x) = p x (1 p) n x
STK1100 - Puktestimerig - Kap 7 Geir Storvik Modeller og parametre Biomisk fordelig ( ) p X (x) = p x (1 p) x x Parameter: p Normalfordelig f X (x) = 1 2πσ e 1 2σ 2 (x µ) 2 11. april 2016 Parametre: µ,
DetaljerNoen vanlige. Indikatorfordeling: 1, dersom suksess. I mange situasjoner kan fenomenet vi ser på. 0, dersom ikke suksess
Kapittel 5: Noe valige sasylighetsfordeliger I mage situasjoer ka feomeet vi ser på beskrives med e bestemt type sasylighets- fordelig (e sasylighetsfordelig gitt ved e bestemt formel. Vi skal se på oe
DetaljerForventningsverdi. MAT0100V Sannsynlighetsregning og kombinatorikk
MAT0100V Sasylighetsregig og kombiatorikk Forvetigsverdi Sasylighetsfordelige til e tilfeldig variabel X gir sasylighete for de ulike verdiee X ka ata Forvetig, varias og stadardavvik Tilærmig av biomiske
DetaljerOppgave 1. (i) Hva er sannsynligheten for at det øverste kortet i bunken er et JA-kort?
ECON EKSAMEN 8 VÅR TALLSVAR Oppgave Vi har e kortstokk beståede av 6 kort. På av disse står det skrevet JA på forside mes det står NEI på forside av de adre kortee. Hvis ma får se kortet med bakside vedt
DetaljerTMA4240 Statistikk Høst 2016
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalt øvig 8 Løsigsskisse Oppgave 1 a) Simuler 1000 datasett i MATLAB. Hvert datasett skal bestå av 100 utfall fra e ormalfordelig
DetaljerSTK1100 våren 2017 Estimering
STK1100 våre 017 Estimerig Svarer til sidee 331-339 i læreboka Ørulf Borga Matematisk istitutt Uiversitetet i Oslo 1 Politisk meigsmålig Spør et tilfeldig utvalg på 1000 persoer hva de ville ha stemt hvis
DetaljerTMA4240 Statistikk Høst 2016
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalt øvig 2 Løsigsskisse Oppgave a Miste kvadraters metode tilpasser e lije til puktee ved å velge de lija som miimerer kvadratsumme
DetaljerForelesning Moment og Momentgenererende funksjoner
ushu.li@uib.o Forelesig + 3 Momet og Mometgeererede fuksjoer 1. Oppsummerig til Forelesig 1 1.1) Fuksjoe av S.V: hvis variabele er e fuksjo (trasformasjo) av S.V. : g( ), da er også e S.V.: til ethvert
DetaljerMer om utvalgsundersøkelser
Mer om utvalgsudersøkelser I uderkapittel 3.6 i læreboka gir vi e kort iførig i takegage ved utvalgsudersøkelser. Vi gir her e grudigere framstillig av temaet. Populasjo og utvalg Ved e utvalgsudersøkelse
DetaljerEcon 2130 uke 15 (HG) Poissonfordelingen og innføring i estimering
Eco 130 uke 15 (HG) Poissofordelige og iførig i estimerig 1 Poissofordelige (i) Tilærmig til biomialfordelige. Regel. ( Poissotilærmelse ) Ata Y ~ bi(, p) E( Y ) = p og var( Y ) = p(1 p). Hvis er stor
DetaljerEcon 2130 Forelesning uke 11 (HG)
Eco 130 Forelesig uke 11 (HG) Mer om ormalfordelige og setralgreseteoremet Uke 1 1 Fra forrige gag ~ betyr er fordelt som. ~ N( µσ, ) E( ) = µ, og var( ) = σ Normalfordelige er symmetrisk om μ og kotiuerlig
DetaljerIntroduksjon. Hypotesetesting / inferens (kap 3) Populasjon og utvalg. Populasjon og utvalg. Populasjonsvarians
Hypotesetestig / iferes (kap ) Itroduksjo Populasjo og utvalg Statistisk iferes Utvalgsfordelig (samplig distributio) Utvalgsfordelige til gjeomsittet «The hardest thig to teach i ay itroductory statistics
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
Eksame i: ECON130 Statistikk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamesdag: 6.05.017 Sesur kugøres: 16.06.017 Tid for eksame: kl. 14:30 17:30 Oppgavesettet er på 6 sider Tillatte helpemidler: Alle
DetaljerLineær regresjonsanalyse (13.4)
2 Kap. 13: Lieær korrelasjos- og regresjosaalyse ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for matematiske fag Kap. 13.1-13.3: Lieær korrelasjosaalyse. Disse avsitt er ikke pesum, me de lieære
DetaljerTMA4245 Statistikk Eksamen 9. desember 2013
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag TMA4245 Statistikk Eksame 9. desember 2013 Oppgave 1 I kortspillet Blackjack får ma de høyeste geviste hvis de to første kortee ma
DetaljerLØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004
Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 0 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Oppgave Midtveiseksame a) X er e stokastisk variabel
DetaljerKapittel 7: Noen viktige sannsynlighetsfordelinger
Kapittel 7: Noe viktige sasylighetsfordeliger I mage situasjoer ka feomeet vi ser på beskrives med e bestemt type sasylighetsfordelig e sasylighetsfordelig gitt ved e bestemt formel. Vi skal se på oe av
DetaljerLøsningsforslag til eksamen i STK desember 2010
Løsigsforslag til eksame i STK0 0. desember 200 Løsigsforslaget har med flere detaljer e det vil bli krevd til eksame. Oppgave a Det er tilpasset e multippel lieær regresjosmodell av forme β 0 + β x i
DetaljerTMA4240 Statistikk Høst 2015
TMA4240 Statistikk Høst 2015 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer 12, blokk II I dee siste øvige fokuserer vi på lieær regresjo, der vi har kjete kovariater
DetaljerSammendrag i statistikk
Sammedrag i statistikk Sammedrag Dette dokumetet er et sammedrag av pesum i faget ST0103 ved NTNU høste 2014. Notatet er derfor ikke tekt å være komplett eller spesielt grudig gjeomlest for feil, me det
DetaljerEstimering og hypotesetesting. Estimering og hypotesetesting. Estimering og hypotesetesting. Kapittel 10. Ett- og toutvalgs hypotesetesting
3 Estimerig og hypotesetestig Kapittel 10 Ett- og toutvalgs hypotesetestig TMA445 V007: Eirik Mo Feome Bilkjørig Høyde til studeter Estimator ˆp = X, X atall ˆµ = X gjeomsittlig høyde. som syes de er flikere
Detaljer