ÅMA110 Sannsynlighetsregning med statistikk, våren 2007

Størrelse: px
Begynne med side:

Download "ÅMA110 Sannsynlighetsregning med statistikk, våren 2007"

Transkript

1 ÅMA Sasylighetsregig med statistikk, våre 27 Kp. 6 (kp. 6) Tre deler av faget/kurset:. Beskrivede statistikk 2. Sasylighetsteori, sasylighetsregig 3. Statistisk iferes estimerig kofidesitervall hypotesetestig 2, iledig Begrep: ullhypotese alterativhypotese esidig, tosidig teststørrelse (testobservator) ullfordelig kritisk verdi, forkastigsområde sigifikasivå 3

2 , iledig Oversikt over emer:. Mer om hva hypotesetestig er 2. i ulike situasjoer: i. for forvetige,, med 2 ormalatakelse og kjet varias,. ii. for forvetige,, med stor og ormaltilærmig. iii. for suksessasylighete, p, i biomisk modell med stor og ormaltilærmig. iv.... 4, iledig Oversikt over emer: i ulike situasjoer: iv.... for suksessasylighete, p, i biomisk modell med lite. v. for forvetige,, med 2 ormalatakelse og ukjet varias,. (Og lite; t-fordelig; t-test.) vi. test for forvetige i Poissomodell. 5, iledig Oversikt over emer:. Mer om hva hypotesetestig er 6

3 , iledig Eks.: Vi har gjort = måliger (x, x 2,..., x ) av ph i Breiavatet; 6., Problem: Er virkelig ph lavere e 6.? 7, iledig Eks.: Vi har gjort = måliger (x, x 2,..., x ) av ph i Breiavatet; 6., Problem: Er virkelig ph lavere e 6.? Gjeomsitt er 5.27; me oe måliger er større e 6., og det er e del variasjo...?? Hvorda kokludere??? 3, 4, 5, 6, 7, 8, iledig Statistisk metode for å trekke koklusjo: (i e situasjo som dee). Vi atar (i dee situasjoe): målemodelle: x, x 2,..., x utfall av X, X 2,..., X, u.i.f. tilf. var. ormalatakelse: X i ee er ormalfordelte kjet varias: Var(X i ) er et kjet tall,. i dette tilfellet 2. Vi vil teste: H : 6. mot H : 6. E( X ) i H uttrykker det utsaget vi må tro i utgagspuktet; H ka vi hevde dersom dataee tyder klart på at dette i virkelighete er tilfelle. 9

4 , iledig 3. Gjeomsitt betydelig lavere e 6. idikerer at H er riktig i virkelighete. 4. Dersom gjeomsittet lavere e 5.48, så forkast H, og påstå H : virkelig ph er midre e Data: gjeomsittet er 5.27 som er midre e Dvs.: forkast H!, iledig Hvorfor akkurat 5.48?? Hvorfor, hvorfor...?, iledig Først oe kommetarer. Statistisk hypoteser: alterativhypotese, H : 6., uttrykker at virkelig ph er midre e 6.. ullhypotese, H : 6., ville det gjere vært aturlig å hatt som: H : 6., me det er e foreklig å bruke =; dette spiller i praksis ige rolle for resultatet i de fleste situasjoer. 2. Vi forblir ved å tro på H itil oe aet er bevist. 2

5 , iledig Først oe kommetarer 3. Vi legger til gru: målemodelle: x, x 2,..., x utfall av X, X 2,..., X, u.i.f. tilf. var. ormalatakelse: X i ee er ormalfordelte kjet varias: Var(X i ) er et kjet tall,. i dette tilfellet 3, iledig Statistisk tekig:. Dersom H er riktig i virkelighete, så kommer dataee fra e ormalfordelig med forvetig 6. (og varias ), grø kurve: 2. Dette ka brukes som utgagspukt for 3, 4, 5, 6, 7, å vurdere om vi kue fått det aktuelle resultatet ved e tilfeldighet år H faktisk er riktig. 4, iledig Vi baserer teste på gjeomsittet ikke på ekeltmåligee; Teststørrelse (testobservator): (tilf.var.) X X X Vi har (i dette eksempelet): og år H forutsettes å være riktig: X ~ N6., 2 X ~ N, H 2 5 : 6.

6 , iledig Teststørrelse si fordelig år H er riktig: ullfordelige. X ~ N6., 3, 4, 5, 6, 7, Dee fordelige ullfordelige ka brukes til å vurdere om vi kue fått det aktuelle gjeomsittsresultatet ved e tilfeldighet dersom H faktisk er riktig. 6, iledig Et lavt (i forhold til 6.) gjeomsittsresultat idikerer at H er riktig. 3, 4, 5, 6, 7, Vi bruker ullfordelige til å fastsette hva som lavt ok for å kokludere med H. 7, iledig Dersom vi setter (som i eks.) grese til 5.48, 3, 4, 5, 6, 7, er det ku 5% sjase for å få gj.s.resultat lavere e dette ved e tilfeldighet dersom H er riktig. PX 5.48 H riktig PX X P 6 P Z.5 / / /.645 Z ~ N(,) 8

7 , iledig 5.48: kritisk verdi Itervallet (, 5.48) : forkastigsområde 3, 4, 5, 6, 7, Når H o er riktig er det ku 5% sjase for ved e tilfeldighet å få utfall av teststørrelse i forkastigsområdet. Dee sasylighete kalles sigifikasivået til teste. 9, iledig 5.48: kritisk verdi Itervallet (, 5.48) : forkastigsområde Når H o er riktig er det ku 5% sjase for ved e tilfeldighet å få utfall av teststørrelse i forkastigsområdet. 3, 4, 5, 6, 7, Dvs.: ku 5% sjase for å kokludere feil dersom i virkelighete ph e er 6. : 6. H 2, iledig 5.48: kritisk verdi De kritiske verdie fastlegges av sigifikasivået (5% i eksempelet). 3, 4, 5, 6, 7, Eksempel: La k være de kritiske verdie. Vi øsker da at k skal være slik at: X k H riktig.5 P 2

8 , iledig Berege kritisk verdi: P X k H riktig.5 X 6 P / k 6 z / k k 6 H / riktig P Z 5.48 k 6.5 / Z ~ N,,5,4,3,2,, -4, -2,, 2, 4, -, 22, iledig Det er valig å bruke stadardisert teststørrelse. X - 2 / Når vi skal teste (f.eks.): H : mot H : 23, iledig Eksempelet: H : 6. mot H : 6. Stadardisert teststørrelse: Dersom H er riktig, er Z N(,)-fordelt. Z X - 6. / Små verdier (utfall) av Z idikerer at H i virkelighete er riktig. (Hva som er små verdier ses i forhold til ullfordelige til Z; N(,)-fordelige.) 24

9 , iledig Eksempelet: H : 6. mot H : 6. Stadardisert teststørrelse: X - 6. Kritisk verdi, k: / P Z k H riktig.5,5 Z k.645 ( -z.5 ),4,3,2,, -4, -2,, 2, 4, -, 25, iledig Eksempelet: H : 6. mot H : 6. Gjeomførig: Test : Vi forkaster H dersom Z - utfallet k.645 X - 6. Z / Data, utfall av Z : / Koklusjo : forkast H, side Z - utfall , iledig Begrep: ullhypotese alterativhypotese esidig, tosidig teststørrelse (testobservator) ullfordelig kritisk verdi, forkastigsområde sigifikasivå 27

10 Oversikt over emer:. Mer om hva hypotesetestig er 2. i ulike situasjoer: i. for forvetige,, med 2 ormalatakelse og kjet varias,. ii. for forvetige,, med stor og ormaltilærmig. iii. for suksessasylighete, p, i biomisk modell med stor og ormaltilærmig. iv Bjør H. Auestad Kp. 6: del 2/ 43 Oversikt. Hva er hypotesetestig? 2. i ulike sitausjoer: i. for forvetige, μ, med ormalatakelse og kjet varias, σ 2. ii. iii. for forvetige, μ, med stor og ormaltilærmig (variase, σ 2, ukjet). for suksessasylighete, p, i biomisk og ormaltilærmig. Bjør H. Auestad Kp. 6: del 3/ 43

11 μ, målemodell, ormalatakelse, kjet varias Målemodelle m/ormalatakelse og kjet σ 2 : måliger: x,...,x ; betraktes som utfall av: X,...,X, u.i.f. tilfeldige variable E(X i )=μ og Var(X i )=σ 2, i =,..., X i ormalfordelt og σ 2 kjet. Test (m/ sig.ivå α) for H : μ = μ mot H : μ<μ Forkast H dersom X μ z α σ 2 Stadardisert teststørrelse): Forkast H dersom X μ σ 2 z α Bjør H. Auestad Kp. 6: del 4/ 43 μ, målemodell, ormalatakelse, kjet varias Test (m/ sig.ivå α) for H : μ = μ mot H : μ>μ σ Forkast H dersom X μ +z 2 α Test med stadardisert teststørrelse: Forkast H dersom X μ z α σ 2 Bjør H. Auestad Kp. 6: del 5/ 43 μ, målemodell, ormalatakelse, kjet varias; Eksempel Eksempel: blodsukkerih.måliger: 4., 5., 4.3, 3.8, 3.7, 5.2, 4.5, 4.8, 3.6, 4.4 Gjeomsitt: 4.35; ormalatakelse med kjet varias lik.5 2 3, 3,5 4, 4,5 5, 5,5 Prikkdiagram over blodsukkermåligee. Problem: Er virkelig blodsukkerihold høyere e 4.? Vi vil teste: H : μ = μ =4 mot H : μ>μ =4 Bjør H. Auestad Kp. 6: del 6/ 43

12 μ, målemodell, ormalatakelse, kjet varias; Eksempel Målemodell med ormalatakelse og med kjet varias (lik.5 2 ) Dersom H er riktig i virkelighete, så er dataee utfall av e ormalfordelig med forvetig 4 og varias.5 2, grø kurve: 3, 3,5 4, 4,5 5, 5,5 Prikkdiagram over blodsukkermåligee og ullfordelige (til X i ee) N(4,.5 2 ) tetthet. Syes det rimelig? Ka det tekes at dataee er utfall av e slik fordelig (eller er det ku rimelig dersom fordelige flyttes mer oppover/til høyre)? Bjør H. Auestad Kp. 6: del 7/ 43 μ, målemodell, ormalatakelse, kjet varias; Eksempel Gjeomsitt av måligee er Dersom H er riktig i virkelighete, så er gjeomsittet utfall av e ormalfordelig med forvetig 4 og varias.52,blåkurve: 3, 3,5 4, 4,5 5, 5,5 Prikkdiagram over blodsukkermåligee og ullfordelige til X i ee: N(4,.5 2 ) tetthet og til X: N(4,.25) tetthet. Dersom datagjeomsittet er stort i forhold til ullfordelige til X, har vi grulag for å forkaste H og istede tro på at H : μ>4 er riktig i virkelighete. Bjør H. Auestad Kp. 6: del 8/ 43 μ, målemodell, ormalatakelse, kjet varias; Eksempel Test for: H : μ =4. mot H : μ>4. Test: Forkast H dersom 3 X k Test på stadardisert form: Forkast H dersom Blodsukkermåligee og ullfordelig til X: N(4,.25) tetthet X z α Blodsukkermåligee og ullfordelig til X : N(, ) tetthet. Bjør H. Auestad Kp. 6: del 9/ 43

13 μ, målemodell, ormalatakelse, kjet varias; Eksempel Test for: H : μ =4. mot H : μ>4. Test: Forkast H dersom.5 X z α )( Blodsukkermåligee og ullfordelig til X : N(, ) tetthet. Dersom vi vil ha test med 5% sigifkasivå: velg α =.5 (z.5 =.645) Forkastigsområdet er itervallet (.645, ). Forkast H dersom utfallet av X 4. er i forkastigsområdet..5 2 Bjør H. Auestad Kp. 6: del / 43 μ, målemodell, ormalatakelse, kjet varias; Eksempel Test (m/ sig.ivå α =.5) for H : μ =4.mot H : μ>4. Forkast H dersom X Data: utfall av teststørrelse: =2.2 Side 2.2 er i forkastigsområdet (.645, ) (er større e kritisk verdi =.645), forkastes H Vi tror på H : μ>4; at virkelig blodsukkerihold er høyere e 4. Lag e test med sigifikasivå.25! ( X form og stadardisert form.) Bjør H. Auestad Kp. 6: del / 43 Oversikt. Hva er hypotesetestig? 2. i ulike sitausjoer: i. for forvetige, μ, med ormalatakelse og kjet varias, σ 2. ii. iii. for forvetige, μ, med stor og ormaltilærmig (variase, σ 2, ukjet). for suksessasylighete, p, i biomisk og ormaltilærmig. Bjør H. Auestad Kp. 6: del 2 / 43

14 μ, målemodell, stor og tilærmet ormalfordelig Målemodelle: måliger: x,...,x ; betraktes som utfall av: X,...,X, u.i.f. tilfeldige variable E(X i )=μ og Var(X i )=σ 2, i =,...,. σ 2 (og μ ) ukjet; (ige forutsetig om fordelig til X i ee eller om kjet varias) Test (m/ tilærmet sig.ivå α) for H : μ = μ mot H : μ<μ Forkast H dersom X μ S 2 z α Estimator for variase: S 2 = σ 2 = ( i= Xi X ) 2 Bjør H. Auestad Kp. 6: del 3 / 43 μ, målemodell, stor og tilærmet ormalfordelig Dersom H : μ = μ er riktig i virkelighete ( uder H ), har vi tilærmet at: X μ N(, ). S 2 Dvs.: ullfordelige til teststørrelse X μ S 2 er N (, ) α ) N(, ) tetthet. ( Vi forkaster H dersom utfallet av teststørrelse faller i forkastigsområdet, (, z α ). Bjør H. Auestad Kp. 6: del 4 / 43 μ, målemodell, stor og tilærmet ormalfordelig, Eksempel Eksempel: Levetid til e type mikroorgaisme er kjet å være 5 dager ormalt. Uder påvirkig av e kjemikalie er levetide til 4 orgaismer registrert; prikkdiagram over datee:,, 2, 3, 4, 5, 6, Prikkdiagram over levetidee. Gjeomsitt: 3.68 dager Normalatakelse er urimelig (hvorfor?), og varias ukjet Problem: Er virkelig levetid lavere e 5? Vi vil teste: H : μ = μ =5 mot H : μ<μ =5 Bjør H. Auestad Kp. 6: del 5 / 43

15 μ, målemodell, stor og tilærmet ormalfordelig, Eksempel Målemodelle: dataee er utfall av =4uif. tilfeldige variable X,...,X 4 μ = E(X i )=virkelig levetid (med kjemikaliepåvirkig). SGT sier at X N(μ, σ2 ), tilærmet. Estimat av variase, σ 2 : s 2 = 4 (x i x) 2 = Uder H (levetid er virkelig 5), er gjeomsittet (3.68) utfall av tilærmet e ormalfordelig med forvetig 5 og varias =5.63, blå 4 kurve: i=,, 2, 3, 4, 5, 6, Bakterielevetidee og ullfordelig til X:N (5, 5.63) tetthet. Bjør H. Auestad Kp. 6: del 6 / 43 μ, målemodell, stor og tilærmet ormalfordelig, Eksempel Uder H (levetid er virkelig 5), er gjeomsittet (3.68) utfall av tilærmet e ormalfordelig med forvetig 5 og varias =5.63, blåkurve: 4,, 2, 3, 4, 5, 6, Bakterielevetidee og ullfordelig til X. Dersom datagjeomsittet, 3.68, er lite i forhold til ullfordelige til X, har vi grulag for å forkaste H og istede tro på at H : μ<5 er riktig i virkelighete. Stadardisert teststørrelse:.5 X 5.4 ; Nullfordelig N (, ), til. S Små utfall av teststørrelse idikerer at H er rktig i virkelighete.. α ) N(, ) tetthet. ( Bjør H. Auestad Kp. 6: del 7 / 43 μ, målemodell, stor og tilærmet ormalfordelig, Eksempel Vi forkaster H dersom utfallet av teststørrelse faller i forkastigsområdet, (, z α ). Sig.ivå 5%: α =.5 z.5 = = kritisk verdi. α -2 ) ( Utfall: =.56 > N(, ) tetthet. Side utfallet av teststørrelse ikke er i forkastigsområdet (-.56 er ikke midre e -.645), gir ikke dataee grulag for å hevde at H : μ<5. (Dataee gir ikke grulag for å hevde at kjemikaliepåvirket levetid i virkelighete er midre e 5 dager.) Bjør H. Auestad Kp. 6: del 8 / 43

16 μ, målemodell, stor og tilærmet ormalfordelig Test (m/ tilærmet sig.ivå α) for H : μ = μ mot H : μ>μ Forkast H dersom X μ z α S 2 Vi forkaster H dersom utfallet av teststørrelse faller i forkastigsområdet, (z α, ) α )( N(, ) tetthet. Bjør H. Auestad Kp. 6: del 9 / 43 μ, målemodell, stor og tilærmet ormalfordelig Eksempel: E type tabletter ieholder et stoff R. Iholdet pr. tablett må helst ikke overstige 3 mg. I e kotroll ble iholdet i 5 tilfeldig utvalgte tabletter registrert. Resultat (x,...,x 5 ): Gjeomsitt: x =3.7; empirisk stadardavvik: s = 5 5 i= (x i x) 2 =4. Gir dette grulag for å hevde at iholdet av R er mer e 3 mg? Formuler problemet som et hypotesetestigsproblem, og gjeomfør teste! Ev.: Bruk sigifikasivå... Bjør H. Auestad Kp. 6: del 2 / 43 Oversikt. Geerelt om hypotesetestig 2. i ulike sitausjoer: i. for forvetige, μ, med ormalatakelse og kjet varias, σ 2. ii. iii. for forvetige, μ, med stor og ormaltilærmig (variase, σ 2, ukjet). for suksessasylighete, p, i biomisk og ormaltilærmig. Bjør H. Auestad Kp. 6: del 2 / 43

17 Geerelt om hypotesetestig Vi ka kokludere feil. To typer feil ka gjøres: type I-feil, ogtype II-feil Virkelighete H riktig H riktig Koklusjo på test: Forkast H I-feil ok! Koklusjo på test: Behold H ok! II-feil Bjør H. Auestad Kp. 6: del 22 / 43 Geerelt om hypotesetestig Def.: Sigifikasivå til test = P (forkaste H H riktig) Sigifikasivået er sasylighete at utfallet faller i forkastigsområdet ved e tilfeldighet (og at vi kokluderer med H ), år i virkelghete H er riktig. ph-eks; Forkast H dersom X =5.48 Forkastigsområde: (, 5.48) Stadardisert teststørrelse: Test: Forkast H dersom X 6. z α =.645 Fork.omr.: (,.645) Nullfordelig til X: N (6,.) α )( Nullfordelig, N (, ) Bjør H. Auestad Kp. 6: del 23 / 43 Geerelt om hypotesetestig Eks.: ph-måliger Det ble av oe hevdet at ma ikke skulle påstå at ph e var lavere e 6. dersom ikke gjeomsittet var lavere e 5.. Dvs. bruke teste: Forkast H dersom X 5. Eller: forkast H dersom X N (6,.) tetthet Hva er sigifikasivået til dee teste? Bjør H. Auestad Kp. 6: del 24 / 43

18 Geerelt om hypotesetestig Sigifikasivå til test = P (forkaste H H riktig) Dvs.: sigifikasivå til test = P (gjøre type I-feil ) Virkelighete H riktig H riktig Koklusjo på test: Forkast H I-feil ok! Koklusjo på test: Behold H ok! II-feil Lavt sig.ivå: lite sasylighet for type I-feil. Type II-feil. Sasylighete for å ikke gjøre type II-feil år H riktig har med testes styrke å gjøre; jf. kp. 6.4 i boke (seiere). Bjør H. Auestad Kp. 6: del 25 / 43 Oversikt. Iledig 2. i ulike sitausjoer: i. for forvetige, μ, med ormalatakelse og kjet varias, σ 2. ii. iii. for forvetige, μ, med stor og ormaltilærmig (variase, σ 2, ukjet). for suksessasylighete, p, i biomisk og ormaltilærmig. Bjør H. Auestad Kp. 6: del 26 / 43 biomisk; stor Bjør H. Auestad Kp. 6: del 27 / 43

19 p, i biomisk og ormaltilærmig biomisk; stor Eksempel: Et bestemt parti hadde 2% oppslutig ved sist valg. Meigsmålig å: 9 av 5 spurte (8.2%) vil stemme på partiet. Problem: Har oppslutige gått ed? Ved sist valg: N stemmebrettigede M stemte på aktuelt parti M/N =.2 Problem: Hva er å M? Hva er å p = M/N? Bjør H. Auestad Kp. 6: del 28 / 43 p, i biomisk og ormaltilærmig p = M N : adel som vil stemme partiet å biomisk; stor (ukjet parameter) Estimat av p: 9 5 =.82 Er det grulag for å hevde at (virkelig) oppslutig har gått ed? Vi vil teste: H : p =.2 mot H : p<.2 Bjør H. Auestad Kp. 6: del 29 / 43 p, i biomisk og ormaltilærmig biomisk; stor Vi betrakter resultatet av meigsmålige (9 av 5) som utfall av e tilfeldig variabel Y, der Y B(, p), = 5, p: ukjet adel. (Egetlig: Y hyperg.(m,n,), me til. Y B(, p)) Dersom H er riktig, har Y fordelige B(5,.2): Dette beskriver hva som er tekelige utfall uder H Bjør H. Auestad Kp. 6: del 3 / 43

20 p, i biomisk og ormaltilærmig biomisk; stor Normaltilærmiger: Rød kurve: N (, 8) tetthet Geerelt har vi, år Y B(, p) og p( p) : Y p = p p p( p) p( p) N(, ), tilærmet. ( p = Y ) Bjør H. Auestad Kp. 6: del 3 / 43 p, i biomisk og ormaltilærmig biomisk; stor Teststørrelse: vi ka bruke p = Y (forvetigsrett estimator for p) ( ) Nullfordelig (tilærmet): N.2,.2(.2) 5 Små verdier/utfall av p idikerer at H : p<.2, erriktig Bjør H. Auestad Kp. 6: del 32 / 43 p, i biomisk og ormaltilærmig biomisk; stor Stadardisert teststørrelse: Små verdier/utfall av p, svarer til små verdier/utfall av teststørrelse p (.2) 5.2. Nullfordelig: N (, ).. α -2 ) ( N(, ) tetthet. Vi forkaster H dersom utfallet av teststørrelse faller i forkastigsområdet, (, z α ). Bjør H. Auestad Kp. 6: del 33 / 43

21 p, i biomisk og ormaltilærmig biomisk; stor Gjeomførig/koklusjo: Vi forkaster H dersom utfallet av teststørrelse faller i forkastigsområdet, (, z α ). Sig.ivå 5%: α =.5 z.5 =.645 = kritisk verdi. α -2 ) ( N(, ) tetthet. Utfall av: p.2.2(.2) 5 : (.2) 5 =. >k=.645 Side utfallet av teststørrelse ikke er i forkastigsområdet (-. er ikke midre e -.645), gir ikke dataee grulag for å hevde at H : p<.2. (Dataee gir ikke grulag for å hevde at partiets oppslutig har gått ed.) Bjør H. Auestad Kp. 6: del 34 / 43 p, i biomisk og ormaltilærmig biomisk; stor Geerelt Situasjo: Biomisk modell (ev. som tilærmig til hypergeom.) Data: atall suksesser av mulige er registrert. Resultatet betraktes som utfall av de tilfeldige variable Y der Y B(, p) og p er slik at fordelige til Y ka tilærmes med ormalfordelige. La p = Y (estimator for p). Bjør H. Auestad Kp. 6: del 35 / 43 p, i biomisk og ormaltilærmig biomisk; stor Vi vil teste: H : p = p mot H : p<p Teststørrelse: p p p ( p ) Nullfordelig (tilærmet): N (, ) Små verdier idikerer at H er riktig α )( Nullfordelig, N (, ) Test (m/ til. sig.ivå α): forkast H dersom p p p ( p ) z α Bjør H. Auestad Kp. 6: del 36 / 43

22 p, i biomisk og ormaltilærmig biomisk; stor Vi vil teste: H : p = p mot H : p>p Teststørrelse: p p p ( p ) Nullfordelig (tilærmet): N (, ) Store verdier idikerer at H er riktig α )( Nullfordelig, N (, ) Test (m/ til. sig.ivå α): forkast H dersom p p p ( p ) z α Bjør H. Auestad Kp. 6: del 37 / 43 p, i biomisk og ormaltilærmig, eksempel biomisk; stor Produksjo av tallerkeer; kvalitetsovervåkig Stikkprøve på 2 tilfeldig valgte tallerkeer tas regelmessig av produksjoe og atall defekte registreres. Normalt: 5% defekte i det lage løp Basert på resultatet av e stikkprøve, vil vi teste: H : p =.5 mot H : p>.5 Lag e test med tilærmet sigifikasivå 5%, og lag e test med tilærmet sigifikasivå %. Hva er tilærmet sigifikasivået til teste: Forkast H dersom det er mist 2 defekte i stikkprøve? Bjør H. Auestad Kp. 6: del 38 / 43

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 2

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 2 ÅMA11 Sasylighetsregig med statistikk, våre 27 Kp. 6, del 2 Bjør H. Auestad Istitutt for matematikk og aturviteskap 5. mars 21 Bjør H. Auestad Kp. 6: del 1/2 1/ 42 Bjør H. Auestad Kp. 6: del 1/2 2/ 42

Detaljer

2. Hypotesetesting i ulike sitausjoner: i. for forventingen, μ, i målemodellen med normalantakelse og kjent varians, σ 2.

2. Hypotesetesting i ulike sitausjoner: i. for forventingen, μ, i målemodellen med normalantakelse og kjent varians, σ 2. Oversikt 1. Hva er hypotesetestig? 2. i ulike sitausjoer: i. for forvetige, μ, med ormalatakelse og kjet varias, σ 2. ii. for forvetige, μ, med stor og ormaltilærmig (variase, σ 2, ukjet). iii. for suksessasylighete,

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 ÅMA110 Sasylighetsregig med statistikk, våre 2006 Kp. 6, del 2 Bjør H. Auestad Kp. 6: Hypotesetesig del 2 1/ 38 Bjør H. Auestad Kp. 6: Hypotesetesig del 2 2/ 38 Oversikt 1. Hva er hypotesetestig? 2. Hypotesetestig

Detaljer

Rep.: generelle begrep og definisjoner Kp. 10.1, 10.2 og 10.3

Rep.: generelle begrep og definisjoner Kp. 10.1, 10.2 og 10.3 Kp. 1, oversikt ; oversikt, t- ; oversikt ; stor ; Hypoteseig; ett- og to-utvalg Rep.: geerelle begrep og defiisjoer Kp. 1.1, 1.2 og 1.3 Rep.: ett-utvalgser for μ (...), p Kp. 1 og 1.8 Nytt: ett-utvalgs

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 4

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 4 ÅMA11 Sasylighetsregig med statistikk, våre 21 Kp. 6, del 4 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 22. mars Bjør H. Auestad Kp. 6: Hypotesetestig del 4 1/ 29 Bjør

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008 Kp. 6, del 5

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008 Kp. 6, del 5 ÅMA110 Sasylighetsregig med statistikk, våre 2008 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 26. mars Bjør H. Auestad Kp. 6: Hypotesetestig del 5 1/ 53

Detaljer

Hypotesetesting, del 4

Hypotesetesting, del 4 Oversikt, del 4 t-fordelig t-test t-itervall Del 5 Kofidesitervall vs. test p-verdi t-fordelig Rett på defiisjo: Utgagspuktet er målemodelle med ormalatakelse: X 1,...,X,u.i.f.tilf.var.derX i Nμ, σ 2 ).La

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Estimering. Målemodellen. Sannsynlighetsregning med statistikk. Kp. 5 Estimering.

ÅMA110 Sannsynlighetsregning med statistikk, våren Estimering. Målemodellen. Sannsynlighetsregning med statistikk. Kp. 5 Estimering. ÅMA asylighetsregig med statistikk våre 008 Kp. 5 Estimerig Estimerig. Målemodelle. Ihold:. (ukt)estimerig i biomisk modell (kp. 5.). Målemodelle... (kp. 5.3) 3. (ukt)estimerig i målemodelle (kp. 5.3)

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 5. Hypotesetesting, del 5

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 5. Hypotesetesting, del 5 ÅMA11 Sasylighetsregig med statistikk, våre 7 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 26. mars Bjør H. Auestad Kp. 6: Hypotesetestig del 5 1/ 59 Bjør

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008 Kp. 6, del 5

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008 Kp. 6, del 5 ÅMA110 Sasylighetsregig med statistikk, våre 2008 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 3. april Bjør H. Auestad Kp. 6: Hypotesetestig del 5 1/ 56

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 5

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 5 ÅMA110 Sasylighetsregig med statistikk, våre 2006 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 3. april Bjør H. Auestad Kp. 6: Hypotesetestig del 5 1 / 56

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Estimering. Målemodellen. Konfidensintervall, innledning. Kp. 5 Estimering.

ÅMA110 Sannsynlighetsregning med statistikk, våren Estimering. Målemodellen. Konfidensintervall, innledning. Kp. 5 Estimering. ÅMA0 Sasylighetsregig med statistikk våre 006 Kp. 5 Estimerig Estimerig. Målemodelle. Ihold:. (Pukt)Estimerig i biomisk modell (kp. 5.). Målemodelle... (kp. 5.3) 3. (Pukt)Estimerig i målemodelle (kp. 5.3)

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 5 Estimering. Målemodellen.

ÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 5 Estimering. Målemodellen. ÅMA0 Sasylighetsregig med statistikk, våre 0 Kp. 5 Estimerig. Målemodelle. Estimerig. Målemodelle. Ihold:. (Pukt)Estimerig i biomisk modell (kp. 5.). Målemodelle... (kp. 5.). (Pukt)Estimerig i målemodelle

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Oppsummering

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Oppsummering ÅMA110 Sasylighetsregig med statistikk, våre 2007 Oppsummerig Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 19. april Bjør H. Auestad Oppsummerig våre 2006 1 / 37 Oversikt

Detaljer

Repetisjon; 9.1, 9.2, 9.3, 9.4, 9.5, og Repetisjon; 9.1, 9.2, 9.3, 9.4, 9.5, og 9.10

Repetisjon; 9.1, 9.2, 9.3, 9.4, 9.5, og Repetisjon; 9.1, 9.2, 9.3, 9.4, 9.5, og 9.10 Repetisjo; 9.1, 9.2, 9.3, 9.4, 9.5, og 9.10 og Geerell defiisjo av : Situasjo: Data x 1,...,x ;utfallav:x 1,...,X ; u.i.f. tilfeldige variable Ukjet parameter i fordelige til X i ee: θ Dersom L og U L

Detaljer

MOT310 Statistiske metoder 1, høsten 2011

MOT310 Statistiske metoder 1, høsten 2011 MOT310 Statistiske metoder 1, høste 2011 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 24. august, 2011 Bjør H. Auestad Itroduksjo og repetisjo 1 / 32 Repetisjo; 9.1,

Detaljer

Kap. 9: Inferens om én populasjon. Egenskaper ved t-fordelingen. ST0202 Statistikk for samfunnsvitere. I Kapittel 8 brukte vi observatoren

Kap. 9: Inferens om én populasjon. Egenskaper ved t-fordelingen. ST0202 Statistikk for samfunnsvitere. I Kapittel 8 brukte vi observatoren 2 Kap. 9: Iferes om é populasjo I Kapittel 8 brukte vi observatore z = x μ σ/ for å trekke koklusjoer om μ. Dette krever kjet σ (urealistisk). ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 4. Hypotesetesting, del 4

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 4. Hypotesetesting, del 4 ÅMA11 Sasylighetsregig med statistikk, våre 27 Kp. 6, del 4 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 19. mars Bjør H. Auestad Kp. 6: Hypotesetestig del 4 1/ 27 Bjør

Detaljer

Oversikt, del 5. Vi har sett på styrkefunksjon for ensidige tester. Eksempler (styrke, dimensjonering,...) Eksempler fra slutten av forrige uke

Oversikt, del 5. Vi har sett på styrkefunksjon for ensidige tester. Eksempler (styrke, dimensjonering,...) Eksempler fra slutten av forrige uke Hypotesetestig, del 4 oppsummerig fra Hypotesetestig, del 5 Kofidesitervall dimesjoerig Oversikt, del 5 Eksempler fra slutte av forrige uke Kofidesitervall p-verdi Eksempler Eksempler styrke, dimesjoerig,...

Detaljer

Oppgave 1 Hardheten til en bestemt legering er undersøkt med åtte målinger og resultatene ble (i kg/mm 2 ) som i tabellen til høyre.

Oppgave 1 Hardheten til en bestemt legering er undersøkt med åtte målinger og resultatene ble (i kg/mm 2 ) som i tabellen til høyre. EKSAMEN I: ÅMA110 SANNSYNLIGHETSREGNING MED STATISTIKK VARIGHET: 4 TIMER DATO: 28. AUGUST 2010 BOKMÅL TILLATTE HJELPEMIDLER: KALKULATOR: HP30S, Casio FX82 eller TI-30 OPPGAVESETTET BESTÅR AV 3 OPPGAVER

Detaljer

Introduksjon. Hypotesetesting / inferens (kap 3) Populasjon og utvalg. Populasjon og utvalg. Populasjonsvarians

Introduksjon. Hypotesetesting / inferens (kap 3) Populasjon og utvalg. Populasjon og utvalg. Populasjonsvarians Hypotesetestig / iferes (kap ) Itroduksjo Populasjo og utvalg Statistisk iferes Utvalgsfordelig (samplig distributio) Utvalgsfordelige til gjeomsittet Itroduksjo Vi øsker å få iformasjo om størrelsee i

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 5

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 5 ÅMA110 Sasylighetsregig med statistikk, våre 2010 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 12. april Bjør H. Auestad Kp. 6: Hypotesetestig del 4 1/ 59

Detaljer

X = 1 5. X i, i=1. som vil være normalfordelt med forventningsverdi E( X) = µ og varians Var( X) = σ 2 /5. En rimelig estimator for variansen er

X = 1 5. X i, i=1. som vil være normalfordelt med forventningsverdi E( X) = µ og varians Var( X) = σ 2 /5. En rimelig estimator for variansen er Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalte oppgaver 11, blokk II Løsigsskisse Oppgave 1 a) E rimelig estimator for forvetigsverdie µ er gjeomsittet X = 1 X i, som

Detaljer

Oppgaver fra boka: Med lik men ukjent varians antatt har vi fra pensum at. t n1 +n 2 2 under H 0 (12 1) (12 1)

Oppgaver fra boka: Med lik men ukjent varians antatt har vi fra pensum at. t n1 +n 2 2 under H 0 (12 1) (12 1) MOT30 Statistiske metoder, høste00 Løsiger til regeøvig r. 5 (s. ) Oppgaver fra boka: Oppgave 0.36 (0.0:8) Dekkslitasje X,..., X u.i.f. N(µ, σ ) og X,..., X u.i.f. N(µ, σ ) og alle variable er uavhegige.

Detaljer

Statistikk og økonomi, våren 2017

Statistikk og økonomi, våren 2017 Statistikk og økoomi, våre 07 Obligatorisk oppgave 6 Løsigsforslag Oppgave E terig kastes 0 gager, og det registreres hvor mage 6-ere som oppås i løpet av disse 0 kastee. Vi ka kalle atall 6-ere i løpet

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro.

ÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro. ÅMA0 Sasylighetsregig med statistikk, våre 008 Kp. 4 Kotiuerlige tilfeldige variable; Normalfordelig Kotiuerlige tilfeldige variable, itro. (eller: Kotiuerlige sasylighetsfordeliger) Vi har til å sett

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro.

ÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro. ÅMA Sasylighetsregig med statistikk, våre Kp. 4 Kotiuerlige tilfeldige variable; Normalfordelig Kotiuerlige tilfeldige variable, itro. (eller: Kotiuerlige sasylighetsfordeliger) Vi har til å sett på diskrete

Detaljer

H 1 : µ 1 µ 2 > 0. t = ( x 1 x 2 ) (µ 1 µ 2 ) s p. s 2 p = s2 1 (n 1 1) + s 2 2 (n 2 1) n 1 + n 2 2

H 1 : µ 1 µ 2 > 0. t = ( x 1 x 2 ) (µ 1 µ 2 ) s p. s 2 p = s2 1 (n 1 1) + s 2 2 (n 2 1) n 1 + n 2 2 TMA4245 Statistikk Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b4 Løsigsskisse Oppgave 1 Vi øsker å fie ut om et ytt serum ka stase leukemi. 5 mus får serumet, 4

Detaljer

) = P(Z > 0.555) = > ) = P(Z > 2.22) = 0.013

) = P(Z > 0.555) = > ) = P(Z > 2.22) = 0.013 TMA4240 Statistikk Vår 2008 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b5 Løsigsskisse Oppgave 1 a) X 1,...,X 16 er u.i.f. N(80,18 2 ). Setter Y = X. i) P(X 1 >

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro.

ÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro. ÅMA Sasylighetsregig med statistikk, våre 6 Kp. 4 Kotiuerlige tilfeldige variable og ormaldelige Kotiuerlige tilfeldige variable, itro. (eller: Kotiuerlige sasylighetsdeliger) Vi har til å sett på diskrete

Detaljer

Oppgaver fra boka: X 2 X n 1

Oppgaver fra boka: X 2 X n 1 MOT30 Statistiske metoder, høste 00 Løsiger til regeøvig r 3 (s ) Oppgaver fra boka: 94 (99:7) X,, X uif N(µ, σ ) og X,, X uif N(µ, σ ) og alle variable er uavhegige Atar videre at σ = σ = σ og ukjet Kodesitervall

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 ÅMA0 Sasylighetsregig med statistikk, våre 007 Kp. 4 Kotiuerlige tilfeldige variable; Normalfordelig Kotiuerlige tilfeldige variable, itro. (eller: Kotiuerlige sasylighetsfordeliger) Vi har til å sett

Detaljer

Hypotesetesting, del 5

Hypotesetesting, del 5 Oversikt, del 5 Kofidesitervall p-verdi Kofidesitervall E (tosidig test ka gjeomføres vha. av et kofidesitervall. For eksempel, dersom vi i målemodell 1 vil teste: H 0 : μ = μ 0 mot H 1 : μ μ 0, ka vi

Detaljer

Kapittel 8: Estimering

Kapittel 8: Estimering Kaittel 8: Estimerig Estimerig hadler kort sagt om hvorda å aslå verdie å arametre som,, og dersom disse er ukjete. like arametre sier oss oe om oulasjoe vi studerer (dvs om alle måliger av feomeet som

Detaljer

Oppgave 1. (i) Hva er sannsynligheten for at det øverste kortet i bunken er et JA-kort?

Oppgave 1. (i) Hva er sannsynligheten for at det øverste kortet i bunken er et JA-kort? ECON EKSAMEN 8 VÅR TALLSVAR Oppgave Vi har e kortstokk beståede av 6 kort. På av disse står det skrevet JA på forside mes det står NEI på forside av de adre kortee. Hvis ma får se kortet med bakside vedt

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 Høst 205 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer, blokk II Løsigsskisse Oppgave a) X bi(, p) fordi: Udersøker uavhegige delar av DNA-strukture. Fi for kvar del

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalt øvig 11 Løsigsskisse Oppgave 1 a) E rimelig estimator for forvetigsverdie µ er gjeomsittet X = 1 X i, som vil være ormalfordelt

Detaljer

Kap. 9: Inferens om én populasjon

Kap. 9: Inferens om én populasjon 2 ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for matematiske fag Ka. 9: Iferes om é oulasjo Hvis σ er ukjet bytter vi ut σ med s i Ny observator blir t = x μ s/ z = x μ σ/ der s = Σx 2 (Σx)

Detaljer

211.7% 2.2% 53.0% 160.5% 30.8% 46.8% 17.2% 11.3% 38.7% 0.8%

211.7% 2.2% 53.0% 160.5% 30.8% 46.8% 17.2% 11.3% 38.7% 0.8% Prøve-eksame II MET 1190 Statistikk Dato 31. mai 2019 kl 1100-1400 Alle svar skal begrues. Når besvarelse evalueres, blir det lagt vekt på at framgagsmåte og resultat preseteres så klart, presist og kortfattet

Detaljer

LØSNINGSFORSLAG TILEKSAMEN I FAG TMA4240/TMA4245 STATISTIKK 10. august 2005

LØSNINGSFORSLAG TILEKSAMEN I FAG TMA4240/TMA4245 STATISTIKK 10. august 2005 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 8 LØSNINGSFORSLAG TILEKSAMEN I FAG TMA440/TMA445 STATISTIKK 0. august 005 Oppgave Smeltepuktsbestemmelse a) Vi jobber i dette

Detaljer

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>. 1 ECON130: EKSAMEN 013 VÅR - UTSATT PRØVE TALLSVAR. Det abefales at de 9 deloppgavee merket med A, B, teller likt uasett variasjo i vaskelighetsgrad. Svaree er gitt i

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Hypotesetesting (kp. 6) Hypotesetesting, innledning. Kp.

ÅMA110 Sannsynlighetsregning med statistikk, våren Hypotesetesting (kp. 6) Hypotesetesting, innledning. Kp. ÅMA Sannsynlighetsregning med statistikk, våren 8 Kp. 6 Hypotesetesting Hypotesetesting (kp. 6) Tre deler av faget/kurset:. Beskrivende statistikk. Sannsynlighetsteori, sannsynlighetsregning 3. Statistisk

Detaljer

Estimering og hypotesetesting. Estimering og hypotesetesting. Estimering og hypotesetesting. Kapittel 10. Ett- og toutvalgs hypotesetesting

Estimering og hypotesetesting. Estimering og hypotesetesting. Estimering og hypotesetesting. Kapittel 10. Ett- og toutvalgs hypotesetesting 3 Estimerig og hypotesetestig Kapittel 10 Ett- og toutvalgs hypotesetestig TMA4240 H2006: Eirik Mo Feome Bilkjørig Høyde til studeter Estimator ˆp = X, X atall ˆµ = X gjeomsittlig høyde. som syes de er

Detaljer

MOT310 Statistiske metoder 1, høsten 2012

MOT310 Statistiske metoder 1, høsten 2012 MOT310 Statistiske metoder 1, høste 2012 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 20. august, 2012 Bjør H. Auestad Itroduksjo og repetisjo 1 / 57 Iformasjo Litt om

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 ÅMA110 asylighetsregig med statistikk våre 011 Kp. 5 Estimerig 1 Estimerig. Målemodelle. Ihold: 1. (ukt)estimerig i biomisk modell (kp. 5.). Målemodelle... (kp. 5.3) 3. (ukt)estimerig i målemodelle (kp.

Detaljer

ECON240 Statistikk og økonometri

ECON240 Statistikk og økonometri ECON240 Statistikk og økoometri Arild Aakvik, Istitutt for økoomi 1 Mellomregig MKM Model: Y i = a i + bx i + e i MKM-estimator for b: b = = Xi Y i 1 Xi Yi Xi 1 ( X i ) 2 (Xi X)(Y i Ȳi) (Xi X) 2 hvor vi

Detaljer

Kap. 9: Inferens om én populasjon

Kap. 9: Inferens om én populasjon 2 ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for matematiske fag Ka. 9: Iferes om é oulasjo Hvis σ er ukjet bytter vi ut σ med s i Ny observator blir t = x μ s/ z = x μ σ/ der s = Σx 2 (Σx)

Detaljer

Hypotesetesting (kp. 6) ÅMA110 Sannsynlighetsregning med statistikk, våren Tre deler av faget/kurset: 1. Beskrivende statistikk

Hypotesetesting (kp. 6) ÅMA110 Sannsynlighetsregning med statistikk, våren Tre deler av faget/kurset: 1. Beskrivende statistikk ÅMA Sannsynlighetsregning med statistikk, våren 2 Kp. 6 Hypotesetesting Hypotesetesting (kp. 6) Tre deler av faget/kurset:. Beskrivende statistikk 2. Sannsynlighetsteori, sannsynlighetsregning 3. Statistisk

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Hypotesetesting (kp. 6) Hypotesetesting. Kp. 6 Hypotesetesting ...

ÅMA110 Sannsynlighetsregning med statistikk, våren Hypotesetesting (kp. 6) Hypotesetesting. Kp. 6 Hypotesetesting ... ÅMA Sannsynlighetsregning med statistikk, våren 6 Kp. 6 (kp. 6)... Begrep: nullhypotese alternativhypotese ensidig, tosidig teststørrelse (testobservator) nullfordeling kritisk verdi, forkastningsområde

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 ÅMA0 Sasylighetsregig statistikk våre 0 Kp. 4 Kotiulige tilfeldige variable; Normalfordelig Kotiulige tilfeldige variable itro. (ell: Kotiulige sasylighetsfordelig Vi har til å sett på diskrete fordelig

Detaljer

Introduksjon. Hypotesetesting / inferens (kap 3) Populasjon og utvalg. Populasjon og utvalg. Populasjonsvarians

Introduksjon. Hypotesetesting / inferens (kap 3) Populasjon og utvalg. Populasjon og utvalg. Populasjonsvarians Hypotesetestig / iferes (kap ) Itroduksjo Populasjo og utvalg Statistisk iferes Utvalgsfordelig (samplig distributio) Utvalgsfordelige til gjeomsittet «The hardest thig to teach i ay itroductory statistics

Detaljer

Emnenavn: Eksamenstid: 4 timer. Faglærer: Hans Kristian Bekkevard

Emnenavn: Eksamenstid: 4 timer. Faglærer: Hans Kristian Bekkevard EKSAMEN Emekode: SFB107111 Emeav: Metode 1, statistikk deleksame Dato: 7. mai 2018 Hjelpemidler: Godkjet kalkulator og vedlagt formelsamlig m/tabeller Eksamestid: 4 timer Faglærer: Has Kristia Bekkevard

Detaljer

Løsningsforslag Oppgave 1

Løsningsforslag Oppgave 1 Løsigsforslag Oppgave 1 a X i µ 0 σ X i µ 0 2 σ 2, i 1,..., er uavhegige og stadard N0, 1 fordelte. Da er, i 1,..., uavhegige og χ 2 -fordelte med e frihetsgrad. Da er summe χ 2 -fordelt med atall frihetsgrader

Detaljer

Mer om utvalgsundersøkelser

Mer om utvalgsundersøkelser Mer om utvalgsudersøkelser I uderkapittel 3.6 i læreboka gir vi e kort iførig i takegage ved utvalgsudersøkelser. Vi gir her e grudigere framstillig av temaet. Populasjo og utvalg Ved e utvalgsudersøkelse

Detaljer

Estimering 2. -Konfidensintervall

Estimering 2. -Konfidensintervall Estimerig 2 -Kofidesitervall Dekkes av kap. 9.4-9.5, 9.10, 9.12 og forelesigsotatee. Dersom forsøket gjetas mage gager vil (1 α)100% av itervallee [ ˆΘ L, ˆΘ U ] ieholde de ukjete parametere θ (som er

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK 5.august 2004

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK 5.august 2004 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 0 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK 5.august 2004 Oppgave Foruresig X er e stokastisk variabel som agir

Detaljer

TMA4245 Statistikk Eksamen mai 2017

TMA4245 Statistikk Eksamen mai 2017 TMA445 Statistikk Eksame mai 07 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsskisse Oppgave a Når vi reger ut disse tre sasylighetee må ma huske på at de mulige verdiee

Detaljer

Kort repetisjon fra kapittel 4. Oppsummering kapittel ST0202 Statistikk for samfunnsvitere. Betinget sannsynlighet og trediagram

Kort repetisjon fra kapittel 4. Oppsummering kapittel ST0202 Statistikk for samfunnsvitere. Betinget sannsynlighet og trediagram 2 Kort reetisjo fra kaittel 4 Betiget sasylighet og trediagram Eksemel: Fra e oulasjo av idrettsfolk trekkes e erso tilfeldig og testes for doig. De iteressate hedelsee er D=ersoe er doet, A=teste er ositiv.

Detaljer

Konfidensintervall. Notat til STK1110. Ørnulf Borgan, Ingrid K. Glad og Anders Rygh Swensen Matematisk institutt, Universitetet i Oslo.

Konfidensintervall. Notat til STK1110. Ørnulf Borgan, Ingrid K. Glad og Anders Rygh Swensen Matematisk institutt, Universitetet i Oslo. Kofidesitervall Notat til STK1110 Ørulf Borga, Igrid K. Glad og Aders Rygh Swese Matematisk istitutt, Uiversitetet i Oslo August 2007 Formål E valig metode for å agi usikkerhete til et estimat er å berege

Detaljer

Løsningsforsalg til første sett med obligatoriske oppgaver i STK1110 høsten 2018

Løsningsforsalg til første sett med obligatoriske oppgaver i STK1110 høsten 2018 Løsigsforsalg til første sett med obligatoriske oppgaver i STK1110 høste 2018 Oppgave 1 (a Et 100(1 α% kofidesitervall for forvetigsverdie µ er gitt ved formel (8.15 på side 403 i læreboka. For situasjoe

Detaljer

Eksempler fra slutten av forrige uke. Eksempler (styrke, dimensjonering,...) Eksempler fra slutten av forrige uke

Eksempler fra slutten av forrige uke. Eksempler (styrke, dimensjonering,...) Eksempler fra slutten av forrige uke Oversikt, del 5 Hypotesetestig, del 4 (oppsummerig fra Hypotesetestig, del 5 Kofidesitervall dimesjoerig Eksempler fra slutte av forrige uke Kofidesitervall p-verdi Eksempler Eksempler (styrke, dimesjoerig,...

Detaljer

TMA4240 Statistikk Høst 2009

TMA4240 Statistikk Høst 2009 TMA440 Statistikk Høst 009 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b4 Løsigsskisse Oppgave Øsker å fie 99% kofidesitervall for µ µ år vi atar ormalfordeliger

Detaljer

Løsning TALM1005 (statistikkdel) juni 2017

Løsning TALM1005 (statistikkdel) juni 2017 Løsig TALM1005 statistikkdel jui 2017 Oppgave 1 a Har oppgitt at sasyligte for at é harddisk svikter er p = 0, 037. Ifører hedelsee A : harddisk 1 svikter B : harddisk 2 svikter C : harddisk 3 svikter

Detaljer

5 y y! e 5 = = y=0 P (Y < 5) = P (Y 4) = 0.44,

5 y y! e 5 = = y=0 P (Y < 5) = P (Y 4) = 0.44, Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalte oppgaver 9, blokk II Løsigsskisse Oppgave a) Vi lar her Y være atall fugler som kolliderer med vidmølla i løpet av de gitte

Detaljer

Oppgaven består av 9 delspørsmål, A,B,C,., som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom <<.. >>.

Oppgaven består av 9 delspørsmål, A,B,C,., som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom <<.. >>. ECON 130 EKSAMEN 008 VÅR - UTSATT PRØVE SENSORVEILEDNING Oppgave består av 9 delspørsmål, A,B,C,., som abefales å veie like mye, Kommetarer og tallsvar er skrevet i mellom . Oppgave 1 Ved e spørreudersøkelse

Detaljer

Forventningsverdi. MAT0100V Sannsynlighetsregning og kombinatorikk

Forventningsverdi. MAT0100V Sannsynlighetsregning og kombinatorikk MAT0100V Sasylighetsregig og kombiatorikk Forvetigsverdi Sasylighetsfordelige til e tilfeldig variabel X gir sasylighete for de ulike verdiee X ka ata Forvetig, varias og stadardavvik Tilærmig av biomiske

Detaljer

TMA4245 Statistikk Eksamen august 2015

TMA4245 Statistikk Eksamen august 2015 Eksame august 15 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsskisse Oppgave 1 a asylighetee blir og X > Z > 1 1 Z 1 Φ.3,.5 W > 5 X + Y > 5 b Forvetet samfuskostad blir

Detaljer

LØSNING, EKSAMEN I STATISTIKK, TMA4240, DESEMBER Anta at sann porøsitet er r. Måling med utstyret gir da X n(x; r, 0,03).

LØSNING, EKSAMEN I STATISTIKK, TMA4240, DESEMBER Anta at sann porøsitet er r. Måling med utstyret gir da X n(x; r, 0,03). LØSNING, EKSAMEN I STATISTIKK, TMA440, DESEMBER 006 OPPGAVE 1 Ata at sa porøsitet er r. Målig med utstyret gir da X (x; r, 0,03). a) ( ) X r P(X > r) P 0,03 > 0 P(Z > 0) 0,5. ( X r P(X r > 0,05) P 0,03

Detaljer

Emnenavn: Metode 1, statistikk deleksamen. Eksamenstid: 4 timer. Faglærer: Bjørnar Karlsen Kivedal

Emnenavn: Metode 1, statistikk deleksamen. Eksamenstid: 4 timer. Faglærer: Bjørnar Karlsen Kivedal EKSAMEN Emekode: SFB10711 Emeav: Metode 1, statistikk deleksame Dato: 10. oktober 2018 Hjelpemidler: Godkjet kalkulator og vedlagt formelsamlig m/tabeller Eksamestid: 4 timer Faglærer: Bjørar Karlse Kivedal

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 20. mars Bjørn H. Auestad Kp. 6: Hypotesetesting

Detaljer

TMA4240 Statistikk Eksamen desember 2015

TMA4240 Statistikk Eksamen desember 2015 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag TMA20 Statistikk Eksame desember 205 Løsigsskisse Oppgave a) De kumulative fordeligsfuksjoe til X, F (x) P (X x): F (x) P (X x) x

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdelig for tekologi Målform: Bokmål Eksamesdato: 19 des. 2014 Varighet/eksamestid: Emekode: 3 timer TALM1005 Emeav: Statistikk og Økoomi statistikkdele Klasser: Logistikk 1 Kjemi

Detaljer

TMA4240/4245 Statistikk 11. august 2012

TMA4240/4245 Statistikk 11. august 2012 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag TMA424/4245 Statistikk. august 22 Eksame - løsigsforslag Oppgave Vi har N Nµ,σ 2, µ 85 og X > 88. a X µ X > 88 σ > 88 µ Z > 88 85

Detaljer

Oppgave 1 a) Minste kvadraters metode tilpasser en linje til punktene ved å velge den linja som minimerer kvadratsummen. x i (y i α βx i ) = 0, SSE =

Oppgave 1 a) Minste kvadraters metode tilpasser en linje til punktene ved å velge den linja som minimerer kvadratsummen. x i (y i α βx i ) = 0, SSE = Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalte oppgaver 2, blokk II Løsigsskisse Oppgave a Miste kvadraters metode tilpasser e lije til puktee ved å velge de lija som

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 20. mars Bjørn H. Auestad Kp. 6: Hypotesetesting

Detaljer

STK1100 våren 2017 Estimering

STK1100 våren 2017 Estimering STK1100 våre 017 Estimerig Svarer til sidee 331-339 i læreboka Ørulf Borga Matematisk istitutt Uiversitetet i Oslo 1 Politisk meigsmålig Spør et tilfeldig utvalg på 1000 persoer hva de ville ha stemt hvis

Detaljer

Estimering og hypotesetesting. Estimering og hypotesetesting. Estimering og hypotesetesting. Kapittel 10. Ett- og toutvalgs hypotesetesting

Estimering og hypotesetesting. Estimering og hypotesetesting. Estimering og hypotesetesting. Kapittel 10. Ett- og toutvalgs hypotesetesting 3 Estimerig og hypotesetestig Kapittel 10 Ett- og toutvalgs hypotesetestig TMA445 V007: Eirik Mo Feome Bilkjørig Høyde til studeter Estimator ˆp = X, X atall ˆµ = X gjeomsittlig høyde. som syes de er flikere

Detaljer

KLMED8004 Medisinsk statistikk. Del I, høst Estimering. Tidligere sett på. Eksempel hypertensjon

KLMED8004 Medisinsk statistikk. Del I, høst Estimering. Tidligere sett på. Eksempel hypertensjon Tidligere sett på KLMED8004 Medisisk statistikk Del I, høst 008 Estimerig Hvorda kjete sasylighetsfordeliger (biomialfordelig, ormalfordelig) med kjete populasjosparametrer (forvetig, varias osv.) ka gi

Detaljer

EKSAMENSOPPGAVE. Mat-1060 Beregningsorientert programmering og statistikk

EKSAMENSOPPGAVE. Mat-1060 Beregningsorientert programmering og statistikk Fakultet for aturviteskap og tekologi EKSAMENSOPPGAVE Eksame i: (Kode og av) Dato: 05.1.017 Klokkeslett: 09:00-13:00 Sted: Åsgårdv 9 Mat-1060 Beregigsorietert programmerig og statistikk Tillatte hjelpemidler:

Detaljer

Løsningsforslag til eksamen i STK desember 2010

Løsningsforslag til eksamen i STK desember 2010 Løsigsforslag til eksame i STK0 0. desember 200 Løsigsforslaget har med flere detaljer e det vil bli krevd til eksame. Oppgave a Det er tilpasset e multippel lieær regresjosmodell av forme β 0 + β x i

Detaljer

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 12. desember 2008

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 12. desember 2008 Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL. desember 8 EKSAMEN I MATEMATIKK, Utsatt røve Modul 5 studieoeg Tid: 5 timer Ogavesettet er å sider (ikludert formelsamlig).

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksame i: ECON130 Statistikk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamesdag: 6.05.017 Sesur kugøres: 16.06.017 Tid for eksame: kl. 14:30 17:30 Oppgavesettet er på 6 sider Tillatte helpemidler: Alle

Detaljer

Løsningsforsalg til første sett med obligatoriske oppgaver i STK1110 høsten 2015

Løsningsforsalg til første sett med obligatoriske oppgaver i STK1110 høsten 2015 Løsigsforsalg til første sett med obligatoriske oppgaver i STK1110 høste 2015 Oppgave 1 (a Et 100(1 α% kofidesitervall for forvetigsverdie µ er gitt ved formel (8.15 på side 403 i læreboka. For situasjoe

Detaljer

Estimering 1 -Punktestimering

Estimering 1 -Punktestimering Estimerig 1 -Puktestimerig Dekkes av kap. 8, 9.1-9.3 og 9.15/9.14. Vi har til å settpå e rekke forskjellige sasylighetsfordeliger og sett hvorda disse ka brukes til å modellere mage forskjellige typer

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdelig for tekologi Målform: Bokmål Eksamesdato: 5 jui 2015 Varighet/eksamestid: Emekode: 3 timer TALM1005 Emeav: Statistikk og Økoomi statistikkdele Klasser: Logistikk 1 Kjemi

Detaljer

Econ 2130 uke 15 (HG) Poissonfordelingen og innføring i estimering

Econ 2130 uke 15 (HG) Poissonfordelingen og innføring i estimering Eco 130 uke 15 (HG) Poissofordelige og iførig i estimerig 1 Poissofordelige (i) Tilærmig til biomialfordelige. Regel. ( Poissotilærmelse ) Ata Y ~ bi(, p) E( Y ) = p og var( Y ) = p(1 p). Hvis er stor

Detaljer

Estimering 1 -Punktestimering

Estimering 1 -Punktestimering Estimerig 1 -Puktestimerig Dekkes av kap. 8, 9.1-9.3 og 9.15/9.14. Vi har til å settpå e rekke forskjellige sasylighetsfordeliger og sett hvorda disse ka brukes til å modellere mage forskjellige typer

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 0 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Oppgave Midtveiseksame a) X er e stokastisk variabel

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalt øvig 8 Løsigsskisse Oppgave 1 a) Simuler 1000 datasett i MATLAB. Hvert datasett skal bestå av 100 utfall fra e ormalfordelig

Detaljer

Oversikt over konfidensintervall i Econ 2130

Oversikt over konfidensintervall i Econ 2130 HG April 00 Oversikt over kofidesitervall i Eco 30 Merk at dee oversikte ikke er met å leses istedefor framstillige i Løvås, me som et supplemet. Løvås ieholder mage verdifulle kommetarer og eksempler.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-aturviteskapelige fakultet Eksame i STK2120 Statistiske metoder og dataaalyse 2 Eksamesdag: Madag 6. jui 2011. Tid for eksame: 09.00 13.00. Oppgavesettet er på 5 sider.

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA440 Statistikk H00 9.8: To uvalg (siste del) 9.9: Parvise observasjoer 9.0-9.: Adelser 9.: Varias Mette Lagaas Foreleses oag 0.oktober, 00 Norske hoppdommere og Jae Ahoe Jae Ahoe er e fisk skihopper,

Detaljer

Oversikt over konfidensintervall i Econ 2130

Oversikt over konfidensintervall i Econ 2130 1 HG Revidert april 011 Oversikt over kofidesitervall i Eco 130 Merk at dee oversikte ikke er met å leses istedefor framstillige i Løvås, me som et supplemet. Løvås ieholder mage verdifulle kommetarer

Detaljer

TMA4245 Statistikk Eksamen 9. desember 2013

TMA4245 Statistikk Eksamen 9. desember 2013 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag TMA4245 Statistikk Eksame 9. desember 2013 Oppgave 1 I kortspillet Blackjack får ma de høyeste geviste hvis de to første kortee ma

Detaljer

Løsningsforslag ST1101/ST6101 kontinuasjonseksamen 2018

Løsningsforslag ST1101/ST6101 kontinuasjonseksamen 2018 Løsigsforslag ST/ST6 kotiuasjoseksame Oppgave a Defier hedelsee R, B, B rød kule i første trekig, blå kule i adre trekig, blå kule i tredje trekig. Vi skal fie PR B B for to ulike situasjoer. Geerelt vet

Detaljer

EKSAMEN. Oppgavesettet består av 5 oppgaver, hvor vekten til hver oppgave er angitt i prosent i oppgaveteksten. Alle oppgavene skal besvares.

EKSAMEN. Oppgavesettet består av 5 oppgaver, hvor vekten til hver oppgave er angitt i prosent i oppgaveteksten. Alle oppgavene skal besvares. EKSAMEN Emekode: SFB12003 Eme: Metodekurs II: Samfusviteskapelig metode og avedt statistikk Dato: 2.6.2014 Eksamestid: kl. 09.00 til kl. 13.00 Hjelpemidler: Kalkulator Faglærer: Bjørar Karlse Kivedal Eksamesoppgave:

Detaljer

betegne begivenheten at det trekkes et billedkort i trekning j (for j=1,2,3), og komplementet til

betegne begivenheten at det trekkes et billedkort i trekning j (for j=1,2,3), og komplementet til 1 ECON1: EKSAMEN 17v SENSORVEILEDNING. Det abefales at de 9 deloppgavee merket med A, B, teller likt uasett variaso i vaskelighetsgrad. Svaree er gitt i

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4 ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 27. mars Bjørn H. Auestad Kp. 6: Hypotesetesting

Detaljer

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE Eme: Statistikk Gruppe(r): Alle ( 2. årskull) Eksamesoppgav Atall sider (ikl. e består av: forside): 5 Tillatte hjelpemidler: Emekode: LO070A Dato: 11.06.2004

Detaljer

Løsningsforslag ST2301 øving 3

Løsningsforslag ST2301 øving 3 Løsigsforslag ST2301 øvig 3 Kapittel 1 Exercise 11 Et utvalg på 100 idivider trekkes fra e populasjo med tilfeldig parrig. Det ble observert AA 63 idivider av geotype AA, Aa 27, og aa 10. Lag et 95 % kofidesitervall

Detaljer