ECON240 Statistikk og økonometri

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "ECON240 Statistikk og økonometri"

Transkript

1 ECON240 Statistikk og økoometri Arild Aakvik, Istitutt for økoomi 1 Mellomregig MKM Model: Y i = a i + bx i + e i MKM-estimator for b: b = = Xi Y i 1 Xi Yi Xi 1 ( X i ) 2 (Xi X)(Y i Ȳi) (Xi X) 2 hvor vi skriver = i=1. Nevere: (Xi X i ) 2 = (X i X i )(X i X i ) = X 2 i 2 X X i + X2 = Xi 2 2 X X i + X 2 = Xi 2 Xi Xi 2 Xi + = Xi 2 2 X i Xi Xi Xi + = Xi 2 Xi Xi Xi 1

2 Tellere: (Xi X)(Y i Ȳi) = X i Y i X i X X Yi + XȲ = Xi Yi X i Y i = Xi Yi X i Y i Xi Yi Xi Yi + 2

3 Hypotesetestig Table 1: Hypotesetestig om populasjosparametre Utvalgsparametre/pukestimat Ukjete populasjosparametre Gjeomsitt: Ȳ = Y i / Forvetig (pop.gj.sitt): E(Y ) = µ Utvalgsvarias: S 2 = Var(Y ˆ ) = Y i Ȳ Populasjosvarias: σ 2 = Var(Y ) 1 Adel: ρ Y = X i / Sasylighet (pop.adel): Pr(Y = y) Kostatledd a = Ȳ b X Heligskoeffisiet b = (X i X)(Y i Ȳi) (Xi X) 2 Kostatledd α Heligskoeffisiet β Korrelasjoskoeffisiet R X,Y Korrelasjoskoeffisiet ρ X,Y Residual: ˆɛ i (û i ) Feilledd: ɛ i (u i ).... Vi ka utføre hypotesetester om de ukjete populasjosparametree ved hjelp av kuskap om utvalgsfordeligee til puktestimatee for de ulike parametree. Dersom vi kjeer utvalgsfordeligee ka vi utforme testobservatorer (TS) som vi ka beytte i hypotesetestee. Testobservatores fordelig er avhegig av hva slags parametre vi tester, om utvalget vi heter data fra er stort eller lite ( 50), og om X er ormalfordelt / σ 2 kjet/ukjet. Hypotesetest om µ år er stor Vi ka å støtte oss på setralgreseteoremet som sier at X N(µ, σ 2 /). Gitt at H 0 er sa, og side X µ σ 2 = X µ σ er T S = X µ H0 σ N(0, 1) 3

4 Hypotesetest om µ år er lite Hvis σ 2 er kjet og X er ormalfordelt i populasjoe er X N(µ, σ 2 /). Gitt at H 0 er sa, er følgelig T S = X µ H0 σ N(0, 1) Hvis σ 2 er ukjet og X er ormalfordelt i populasjoe ka vi beytte S 2 si estimat for σ 2. I så fall er X N(µ, σ 2 /) studet s t fordelt med 1 frihetsgrader. studet s t fordelt med 1 frihets- Gitt at H 0 er sa, er følgelig T S = X µ H0 σ grader. Test om populasjosvariase Variase ( 1)S2 σ 2 er χ 2 fordelt med -1 frihetsgrader. Gitt at H 0 er sa, er følgelig T S = ( 1)S2 σ 2 χ( 1) dvs testobservatore er kji-kvadrat-fordelt med -1 frihetsgrader. Uderforstått H 0 : σ 2 = σ H0 mot σ 2 σ H0. Test om populasjosadel Forutsatt at π og (1 π), begge er > 5 gjelder at ρ N(π, π(1 π) ) og N(0, 1). Gitt at H 0 er sa, er følgelig ρ π π(1 π) T S = ρ π H 0 N(0, 1) π(1 π) Test om populasjoskorrelasjoskoeffisiet ρ R Se side Uder H 0 er følgede variabel 2 studet s t-fordelt med (-2) (1 R2 frihetsgrader. H 0 : ρ = 0 mot ρ 0. Gitt at H 0 er riktig er T S = R 2 (1 R 2 studet s t-fordelt med -2 frihetsgrader 4

5 Test om α og β Forutsatt at de klassiske atakelsee for bruk av MKM er oppfylt er og a α σ α N(0, 1) b β σ β N(0, 1) Som oftest er σ α og σ β ukjete of må estimeres ved hjelp av S 2 alpha R Se side Uder H 0 er følgede variabel 2 studet s t-fordelt med (1 R2 (-2) frihetsgrader. H 0 : ρ = 0 mot ρ 0. Gitt at H 0 er riktig er T S = R 2 (1 R 2 studet s t-fordelt med -2 frihetsgrader Oppgave For et represetativt utvalg på 61 pasieter som er hevist til hjertespesialist ved sykehus A viser gjeomsittlig vetetid (målt i uker) seg å være 6,2 med stadardavvik 3. I et aet utvalg på 121 pasieter hevist til sykehus B viser gjeomsittlig vetetid seg å være 8 med stadardavvik 2,5. Hypotesetestig La variabele X represetere vetetid. Vi har X A = 6, 2, s A = 3 s 2 A = 9 og A = 61, samt X B = 8, s B = 2, 5 s 2 B = 6, 25 og B = 121. Utfør e hypotesetest om gjeomsittlig vetetid er forskjellig ved de to sykehusee. Tohaletest: H 0 : µ A = µ B µ A µ B = 0 mot H A : µ A µ B µ A µ B 0. Her har vi tilstrekkelig mage observasjoer i hvert utvalg til at vi ka støtte oss til at setralgreseteoremet gjelder. Dette teoremet sier at utvalgsgjeomsittee fra hver populasjo er ormalfordelt med forvetig lik sie respektive populasjosgjeomsittet og varias lik sie respektive populasjosvariaser dividert på utvalgsstørrelse. I tillegg har vi lært at e lieær kombiasjo av to uavhegige ormalfordelte variable også er ormalfordelt. 5

6 La X A være gjeomsittlig vetetid for utvalget av pasieter hevist til sykehus A og X B gjeomsittlig vetetid i utvalget hevist til sykehus B. De to utvalgsgjeomsittee er forvetigsrette puktestimat for gjeomsittlig vetetid ved sykehus A (µ A ) og B (µ B ) heholdsvis. Side X A er N(µ A, σ 2 B / A) og X B er N(µ B, σ 2 B / B) er differase ( X A X B ) fordelt N(µ A µ B, σ 2 A / A + σ 2 B / B) og uder H 0 er T S = ( X A X B ) s 2 A a + s2 B B stadard ormalfordelt, dvs N(0, 1). For valgt sigifikasivå α = 0, 05 får vi følgede testkriterium for hypoteseteste: Forkast H 0 dersom T S > Z a/2 = 1, 96, avvet koklusjo hvis ikke. Vi fier T S = (6, 2 8) 9 + 6, = 1, 8 = 1, 8 = 4, , , , 4463 Følgelig er TS = 4,033 > 1,96. Vi forkaster H 0 og kokluderer med at gjeomsittlig vetetid ved de to sykehusee er forskjellig. Utfør e hypotesetest om variase i vetetid er forskjellig ved de to sykehusee. Dee hypoteseteste ka gjeomføres ved å ta utgagspukt i ullhypotese om at variase i vetetid er lik ved de to sykehusee: H 0 : σ 2 A = σ2 B mot H A : σ 2 A σ2 B. Vi fier e eget testobservator ved å ta utgagspukt i rate mellom utvalgsvariasee: s 2 A /s2 B. Det ka vises at dette forholdet uttrykker rate mellom to kjikvadratfordeliger. E slik rate er F-fordelt med ( A 1, B 1) frihetsgrader. T S = s 2 A /s2 B er følgelig F-fordelt med ( A 1, B 1) frihetsgrader. Dette er e to-haletest. For valgt sigifikasivå α = 0, 05 gir dette oss følgede testkriterium: Forkast H 0 dersom T S > F 0,025,60,120 = 1, 581, eller T S < F 0,975,60,120 = 1/F 0,025,60,120 = 0, 6325, og avvet edelig koklusjo hvis ikke. Vi fier TS = 32/2,52 = 9/6,25 = 1,44 som er > 0,6325 og < 1,581. Vi ka derfor ikke forkaste H 0 om at vetetide er lik ved de to sykehusee. 6

7 2 Hypotesetestig Vi starter med e ekel (bivariat) regresjo y = β 0 + β 1 x + u, og atar at feilleddet er ormalfordelt med forvetig lik 0 og varias lik σ 2 u N(0, σ 2 ). Side y i = β 0 + β 1 x i + u i = E(y x i ) + u i (1) har vi at y i har samme fordelig som u i, emlig ormalfordelt y N(β 0 + β 1 x, σ 2 ), me med ae forvetig og varias, side leddet E(y x i ) er med i ligig (1). Videre har vi at ˆβ 1 = i=1 (x i x)y i i=1 (x i x) 2 = β 1 + = β 1 + w i u i i=1 (x i x)u i i=1 (x i x) 2 hvor w i = (x i x) i=1 (x i x) 2, Side w i betraktes som e fast kostat, eller at resultatee gjelder betiget for alle mulige verdier av x-ee, vil sasylighetsfordelige til β 1 ha samme type fordelig som feilleddet u. Vi har også at ˆβ 1 N(β 1, Var( ˆβ 1 )), (2) 7

8 og at ˆβ 1 β 1 st.dev.( ˆβ 1 ) N(0, 1), (3) hvor vi bruker stadardavviket til ˆβ 1. At forvetige til testobservatore er ull er gaske opplagt, me hvorfor er variase lik 1? Vi har [ ] ˆβ1 β 1 Var(Z) = Var Var( ˆβ = 1 ) Vi må estimere har da at σ 2ˆβ1 1 Var( ˆβ 1 ) Var( ˆβ 1 β 1 ) = Var( ˆβ 1 ) Var( ˆβ 1 ) = 1. og bruker da stadardfeile (stadard error) til estimatore. Vi ˆβ 1 β 1 st.err.( ˆβ 1 ) t k 1. (4) Vi har altså at testobservatore følger e t-fordelig med k 1 frihetsgrader. t- fordelig er oe lavere og legre i hale e ormalfordelige. Det skal mer til å forkaste e ull-hypotese med t-fordelige e med ormalfordelige. Vi bruker altså Studet t-fordelige, og ikke ormalfordelige, år populasjosstadardavviket er ukjet og må estimeres med data. Det er sjeldet vi ka betrakte stadardavviktet som kjet. Vi har likevel to utak. 1) Vi ka betrakte vårt databaserte estimat for variase som sikker dersom utvalget er svært stort. 2) Dersom vi skal illustrere et matematisk resoemet eller diskutere idetifikasjo av e parameter, ute at vi diskuterer estimerig, betrakter vi ofte stadardavviket som kjet, og bruker da populasjosparametre. Type I feil Et sigifikasivå (α) agir sasylighete for feilaktig å forkaste ullhypotese (type I-feil). Dersom vi (hypotetisk sett) samler i 100 datasett i forbidelse med e problemstillig, så vil atall gager vi feilaktig forkaster (ikke beholder) ullhypotese år de faktisk er sa, agi sigifikasivået. Typisk vil vi akseptere at vi i 5 av 100 gager kokluderer feil, og at vi i 95 av 100 gager kokluderer riktig. E type I feil gjør vi dersom vi forkaster ullhypotese selv om dee er sa. Vi kokluderer dermed at vi har e sigifikat effekt år det riktige er at det ikke er oe effekt. Vi sakker da om e falsk positiv, dvs vi fier et positivt resultat me dee er ikke reell. 8

9 Type II feil Type II feil gjør vi år vi beholder ullhypotese år det riktige ville vært å forkaste dee. Vi kokluderer da feilaktig med at vi har e sigifikat effekt år vi korrekt sett ikke har oe effekt av e variabel. Vi kaller type II feil falsk egativ. Table 2: Type I og type II feil H 0 er sa H 0 er ikke sa Forkast H 0 Type I feil (falsk positiv) Korrekt utfall Forkast ikke H 0 Korrekt utfall Type II feil (falsk egativ) Forkast eller ikke-forkast H 0 Dersom vi fier e sigifikat effekt, sier vi at vi forkaster H 0, og dersom vi ikke fier e sigifikat effekt, sier vi at vi forkaster ikke H 0. Vi prøver med adre ord å ugå og bruke ordet beholde (ete H 0 eller H 1 ). Selv om vi ikke forkaster H 0 så betyr ikke det at ullhypotese ødvedigvis er sa eller korrekt. Kaskje vi ikke har ok data (power) eller at data ikke er gode ok til å forkaste H 0, selv om det skulle være e effekt. Det er mage forskere som meer at distigsjoe mellom sigifikat og ikkesigifikat er uaturlig, og at det er bedre å oppgi effektestimatet samme med p- verdi, for eksempel: Vi fier e effekt på 1,2 prosetpoeg (p-verdi=0.04). p-verdi (sigifikassasylighet) E p-verdi (sigifikassasylighet) er sasylighet for å observere resultatet/estimatet i utvalget gitt at ullhypotese er sa. Dersom p-verdie er veldig lite er det lav sasylighet for at ullhypotese gjelder, og vi forkaster da ullhypotese. Hva er sasylighete for at vi observerer effekte gitt at effekte er lik ull? Igje, dersom p-verdie er lite forkaster vi at effekte er lik ull (som vi atar uder H 0 ). Spørsmålet er hvor kompatible resultatee er med ullhypotese om at det ikke er e effekt i det hele tatt. P-verdie iformerer om sasylighete for at de observerte data gitt at ullhypotese er sa. Vi ka i utgagspuktet ikke vite eller slutte oss til om ullhypotese eller de alterative hypotese er sa, me vi ka ete forkaste eller ikke-forkaste ullhypotese (me det betyr ikke at vi vet med sikkerhet hva som er sat eller ikke). Ofte er det lite sasylig at effekte er øyaktig lik ull. Selv 9

10 om vi ikke fier e stor effekt, treger ikke effekte være lik ull, me de ka være lite. E p-verdi (sigifikassasylighete) er e sasylighet som ka brukes til å agi grese for år vi ka forkaste ullhypotese H 0. Dersom p-verdie ligger uder e gitt grese, f.eks. 0,05, så forkaster vi ullhypotese. Er p-verdie større i tallverdi e kritisk grese forkaster vi ikke ullhypotese om at det ikke er oe sammeheg mellom to variabler. La oss ata at vi er iteressert i å fie forskjelle i eksamesresultat med valig udervisigsform og emer med mappevurderig. Er det (ige) forskjell i de to ulike udervisigsformee? Hvis det er ige forskjell, hva er sasylighete for at vi skal observere e forskjellig i utfallsvariabele (karakter) i de to udervisigsformee i utvalget vi bruker til regresjosaalyse? Dersom vi fier e p-verdi=0,03, så betyr det at det er e 3% sjase for å fie e forskjell, som er like stor (eller større) e de du fier i di regresjosaalyse, gitt at ullhypotese er sa. Det ka med adre ord være riktig at effekte er lik ull, me sasyligheter for det er bare 3%, så mye tyder på at effekte ikke er lik ull. E p-verdi ka ses på som et mål på overraskelse. Jo midre p-verdie er, desto mer overraskede er resultatet dersom ullhypotese gjelder. Vi må presisere at selv om e effekt ikke er sigifikat forskjellig fra ull, så betyr ikke det at effekte er øyaktig lik ull. I mage tilfeller vil det være e lite effekt, selv om de ikke er sigifikat. Det går ikke a å besvise e ullhypotese. Nullhypotesetestig dreier seg om sasylighete for å observere dataee våre gitt at ullhypotese er sa. Vi må derfor akseptere at vi ikke ka akseptere ullhypote, me at vi ikke forkaster de, som ikke er e like bombastisk uttalelse. 10

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 0 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Oppgave Midtveiseksame a) X er e stokastisk variabel

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 5

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 5 ÅMA110 Sasylighetsregig med statistikk, våre 2010 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 12. april Bjør H. Auestad Kp. 6: Hypotesetestig del 4 1/ 59

Detaljer

Mer om utvalgsundersøkelser

Mer om utvalgsundersøkelser Mer om utvalgsudersøkelser I uderkapittel 3.6 i læreboka gir vi e kort iførig i takegage ved utvalgsudersøkelser. Vi gir her e grudigere framstillig av temaet. Populasjo og utvalg Ved e utvalgsudersøkelse

Detaljer

Econ 2130 uke 15 (HG) Poissonfordelingen og innføring i estimering

Econ 2130 uke 15 (HG) Poissonfordelingen og innføring i estimering Eco 130 uke 15 (HG) Poissofordelige og iførig i estimerig 1 Poissofordelige (i) Tilærmig til biomialfordelige. Regel. ( Poissotilærmelse ) Ata Y ~ bi(, p) E( Y ) = p og var( Y ) = p(1 p). Hvis er stor

Detaljer

Estimering og hypotesetesting. Estimering og hypotesetesting. Estimering og hypotesetesting. Kapittel 10. Ett- og toutvalgs hypotesetesting

Estimering og hypotesetesting. Estimering og hypotesetesting. Estimering og hypotesetesting. Kapittel 10. Ett- og toutvalgs hypotesetesting 3 Estimerig og hypotesetestig Kapittel 10 Ett- og toutvalgs hypotesetestig TMA445 V007: Eirik Mo Feome Bilkjørig Høyde til studeter Estimator ˆp = X, X atall ˆµ = X gjeomsittlig høyde. som syes de er flikere

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 4. Hypotesetesting, del 4

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 4. Hypotesetesting, del 4 ÅMA11 Sasylighetsregig med statistikk, våre 27 Kp. 6, del 4 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 19. mars Bjør H. Auestad Kp. 6: Hypotesetestig del 4 1/ 27 Bjør

Detaljer

TMA4245 Statistikk. Øving nummer b5. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag

TMA4245 Statistikk. Øving nummer b5. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b5 Oppgave 1 Eksame mai 2001, oppgave 1 av 4 Vi ser på kosetrasjoe av et giftstoff i havbue like utefor

Detaljer

11,7 12,4 12,8 12,9 13,3.

11,7 12,4 12,8 12,9 13,3. TMA4240 Statistikk Vår 2008 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b6 Oppgave 1 Eksame mai 2001, oppgave 1 av 4 Vi ser på kosetrasjoe av et giftstoff i havbue

Detaljer

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 12. desember 2008

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 12. desember 2008 Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL. desember 8 EKSAMEN I MATEMATIKK, Utsatt røve Modul 5 studieoeg Tid: 5 timer Ogavesettet er å sider (ikludert formelsamlig).

Detaljer

Hypotesetesting, del 5

Hypotesetesting, del 5 Oversikt, del 5 Kofidesitervall p-verdi Kofidesitervall E (tosidig test ka gjeomføres vha. av et kofidesitervall. For eksempel, dersom vi i målemodell 1 vil teste: H 0 : μ = μ 0 mot H 1 : μ μ 0, ka vi

Detaljer

TMA4245 Statistikk Eksamen 9. desember 2013

TMA4245 Statistikk Eksamen 9. desember 2013 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag TMA4245 Statistikk Eksame 9. desember 2013 Oppgave 1 I kortspillet Blackjack får ei de høgaste geviste derssom dei to første korta

Detaljer

n 2 +1) hvis n er et partall.

n 2 +1) hvis n er et partall. TMA445 Statistikk Vår 04 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer, blokk II Oppgave Mediae til et datasett, X, er de midterste verdie. Hvis vi har stokastiske

Detaljer

8 (inkludert forsiden og formelsamling) Tegne- og skrivesaker, kalkulator, formelsamling (se vedlagt).

8 (inkludert forsiden og formelsamling) Tegne- og skrivesaker, kalkulator, formelsamling (se vedlagt). Eksamesoppgave våre 011 Ordiær eksame Bokmål Fag: Matematikk Eksamesdato: 10.06.011 Studium/klasse: GLU 5-10 Emekode: MGK00 Eksamesform: Skriftlig Atall sider: 8 (ikludert forside og formelsamlig) Eksamestid:

Detaljer

Eksamen REA3028 S2, Våren 2011

Eksamen REA3028 S2, Våren 2011 Eksame REA08 S, Våre 0 Del Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave (8 poeg) a) Deriver fuksjoee ) f 5 f 6 5 ) g g ) h l 9 9 6 4 h l

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 5 Estimering. Målemodellen.

ÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 5 Estimering. Målemodellen. ÅMA0 Sasylighetsregig med statistikk, våre 0 Kp. 5 Estimerig. Målemodelle. Estimerig. Målemodelle. Ihold:. (Pukt)Estimerig i biomisk modell (kp. 5.). Målemodelle... (kp. 5.). (Pukt)Estimerig i målemodelle

Detaljer

Ukeoppgaver i BtG207 Statistikk, uke 4 : Binomisk fordeling. 1

Ukeoppgaver i BtG207 Statistikk, uke 4 : Binomisk fordeling. 1 Ukeoppgaver i BtG20 Statistikk, uke 4 : Biomisk fordelig. 1 Høgskole i Gjøvik Avdelig for tekologi, økoomi og ledelse. Statistikk Ukeoppgaver uke 4 Biomisk fordelig. Oppgave 1 La de stokastiske variable

Detaljer

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 20. mai 2008

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 20. mai 2008 Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL. mai 8 EKSAMEN I MATEMATIKK Modul 5 studieoeg Tid: 5 timer Ogavesettet er å sider (ikludert formelsamlig). Hjelemidler:

Detaljer

Påliteligheten til en stikkprøve

Påliteligheten til en stikkprøve Pålitelighete til e stikkprøve Om origiale... 1 Beskrivelse... 2 Oppgaver... 4 Løsigsforslag... 4 Didaktisk bakgru... 5 Om origiale "Zuverlässigkeit eier Stichprobe" på http://www.mathe-olie.at/galerie/wstat2/stichprobe/dee

Detaljer

Metoder for politiske meningsmålinger

Metoder for politiske meningsmålinger Metoder for politiske meigsmåliger AV FORSKER IB THOMSE STATISTISK SETRALBYRÅ Beregigsmetodee som brukes i de forskjellige politiske meigsmåliger har vært gjestad for mye diskusjo i dagspresse det siste

Detaljer

Oversikt over konfidensintervall i Econ 2130

Oversikt over konfidensintervall i Econ 2130 1 HG Revidert april 013 Oversikt over kofidesitervall i Eco 130 Merk at dee oversikte ikke er met å leses istedefor framstillige i Løvås, me som et supplemet. De ieholder tabeller med formler for kofidesitervaller

Detaljer

3MX 2007/8 - Kapittel 5: 8. januar 5. februar 2008

3MX 2007/8 - Kapittel 5: 8. januar 5. februar 2008 3MX 00/8 - Kapittel : 8. jauar. februar 008 Pla for skoleåret 00/008: Kapittel 6: 6/ /. Kapittel : / /3. Prøver på eller skoletime etter hvert kapittel. É heildagsprøve i hver termi. Repetisjo, prøver,

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 ÅMA110 asylighetsregig med statistikk våre 011 Kp. 5 Estimerig 1 Estimerig. Målemodelle. Ihold: 1. (ukt)estimerig i biomisk modell (kp. 5.). Målemodelle... (kp. 5.3) 3. (ukt)estimerig i målemodelle (kp.

Detaljer

OPPGAVE 4 LØSNINGSFORSLAG OPPGAVE 5 LØSNINGSFORSLAG UTVIKLING AV REKURSIV FORMEL FOR FIGURTALL SOM GIR ANDREGRADSFUNKSJONER

OPPGAVE 4 LØSNINGSFORSLAG OPPGAVE 5 LØSNINGSFORSLAG UTVIKLING AV REKURSIV FORMEL FOR FIGURTALL SOM GIR ANDREGRADSFUNKSJONER OPPGAVE 4 LØSNINGSFORSLAG Tallfølge i f) rektageltallee. Her er de eksplisitte formele R = ( +1) eller R = +. Dette er e adregradsfuksjo. I figurtallsammeheg forutsetter vi at de legste side er (øyaktig)

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. Noen viktige sannsynlighetsmodeller. Binomisk modell. Kp. 3 Diskrete tilfeldige variable

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. Noen viktige sannsynlighetsmodeller. Binomisk modell. Kp. 3 Diskrete tilfeldige variable ÅMA Saslighetsregig med statistikk, våre K. 3 Diskrete tilfeldige variable Noe viktige saslighetsmodeller Noe viktige saslighetsmodeller ( Sas.modell : å betr det klasse/te sas.fordelig.) Biomisk modell

Detaljer

Kommentarer til oppgaver;

Kommentarer til oppgaver; Kapittel - Algebra Versjo: 11.09.1 - Rettet feil i 0, 1 og 70 og lagt i litt om GeoGebra-bruk Kommetarer til oppgaver; 0, 05, 10, 13, 15, 5, 9, 37, 5,, 5, 59, 1, 70, 7, 78, 80,81 0 a) Trykkfeil i D-koloe

Detaljer

Eksempler fra slutten av forrige uke. Eksempler (styrke, dimensjonering,...) Eksempler fra slutten av forrige uke

Eksempler fra slutten av forrige uke. Eksempler (styrke, dimensjonering,...) Eksempler fra slutten av forrige uke Oversikt, del 5 Hypotesetestig, del 4 (oppsummerig fra Hypotesetestig, del 5 Kofidesitervall dimesjoerig Eksempler fra slutte av forrige uke Kofidesitervall p-verdi Eksempler Eksempler (styrke, dimesjoerig,...

Detaljer

Eksamen 20.05.2009. REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen 20.05.2009. REA3024 Matematikk R2. Nynorsk/Bokmål Eksame 20052009 REA3024 Matematikk R2 Nyorsk/Bokmål Nyorsk Eksamesiformasjo Eksamestid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Bruk av kjelder: Vedlegg: Framgagsmåte: Rettleiig om vurderiga: 5 timar:

Detaljer

H T. Amundsen INNHOLD

H T. Amundsen INNHOLD Itere otater STATISTISK SENTRALBYRÅ. oktober 1980 KORRELASJONSKOEFFISIENTEN - ENDA ENGANG Av H T. Amudse INNHOLD 1. Iledig *****..... * 0 1. Produktmametkorrelasjoskoeffisiete og sammehege med lieær regresjo.

Detaljer

Fagdag 2-3mx 24.09.07

Fagdag 2-3mx 24.09.07 Fagdag 2-3mx 24.09.07 Jeg beklager at jeg ikke har fuet oe ye morsomme spill vi ka studere, til gjegjeld skal dere slippe prøve/test dee gage. Istruks: Vi arbeider som valig med 3 persoer på hver gruppe.

Detaljer

Eksempeloppgave 2014. REA3028 Matematikk S2 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)

Eksempeloppgave 2014. REA3028 Matematikk S2 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler) Eksempeloppgave 2014 REA3028 Matematikk S2 Eksempel på eksame våre 2015 etter y ordig Ny eksamesordig Del 1: 3 timer (ute hjelpemidler) Del 2: 2 timer (med hjelpemidler) Mistekrav til digitale verktøy

Detaljer

Formler og regler i statistikk ifølge lærebok Gunnar Løvås: Statistikk for universiteter og høgskoler

Formler og regler i statistikk ifølge lærebok Gunnar Løvås: Statistikk for universiteter og høgskoler Formler og regler statstkk følge lærebok Guar Løvås: tatstkk for uversteter og høgskoler Kap. Hva er fakta om utvalget etralmål Meda: mdterste verd etter sorterg Modus: hyppgst forekommede verd Gjeomstt:

Detaljer

IO 77/45 29. november 1977 ESTIMERING AV ENGELDERIVERTE PA DATA MED MALEFEIL. Odd Skarstad 1) INNHOLD

IO 77/45 29. november 1977 ESTIMERING AV ENGELDERIVERTE PA DATA MED MALEFEIL. Odd Skarstad 1) INNHOLD IO 77/45 29. ovember 977 ESTIMERING V ENGELDERIVERTE P DT MED MLEFEIL av Odd Skarstad ) INNHOLD I. Data fra forbruksudersøkelse II. Estimerig ved målefeil. Iledig 2. Systematiske målefeil 2 3. Tilfeldige

Detaljer

LØSNING: Eksamen 17. des. 2015

LØSNING: Eksamen 17. des. 2015 LØSNING: Eksame 17. des. 2015 MAT100 Matematikk, 2015 Oppgave 1: økoomi a I optimum av T Rx er dt Rx 0 1 som gir d Ix Kx 0 2 dix dix dkx dkx 0 3 4 dvs. greseitekt gresekostad, q.e.d. 5 b Gresekostad ekstrakostade

Detaljer

To-utvalgstest (def 8.1) vs ettutvalgstest: Hypotesetesting, to utvalg (Kapitel 8) Longitudinell studie (oppfølgingsstudie) - eqn 8.1. Eksempel 8.

To-utvalgstest (def 8.1) vs ettutvalgstest: Hypotesetesting, to utvalg (Kapitel 8) Longitudinell studie (oppfølgingsstudie) - eqn 8.1. Eksempel 8. Hypotesetestig, to utvalg (Kapitel 8) Medisisk statistikk 009 http://folk.tu.o/slyderse/medstat/medstati_h09.html To-utvalgstest (def 8.) vs ettutvalgstest: To-utvalgstest: Sammelike de uderliggede parameter

Detaljer

Kp. 11 Enkel lineær regresjon (og korrelasjon) Kp. 11 Regresjonsanalyse; oversikt

Kp. 11 Enkel lineær regresjon (og korrelasjon) Kp. 11 Regresjonsanalyse; oversikt Bjørn H. Auestad Kp. 11: Regresjonsanalyse 1 / 57 Kp. 11 Regresjonsanalyse; oversikt 11.1 Introduction to Linear Regression 11.2 Simple Linear Regression 11.3 Least Squares and the Fitted Model 11.4 Properties

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK Mandag 12. desember 2011

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK Mandag 12. desember 2011 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK Mandag 12. desember 2011 Oppgave 1 Oljeleting a) Siden P(A

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag ..4 EKSAMEN Løsigsforslag Emekode: ITF75 Dato: 6. desember Eme: Matematikk for IT Eksamestid: kl 9. til kl. Hjelpemidler: To A4-ark med valgfritt ihold på begge sider. Kalkulator er ikke tillatt. Faglærer:

Detaljer

FORFATTER(E) Jan-W. Lippestad og Trond Harsvik OPPDRAGSGIVER(E) Rikstrygdeverket. Nanna Stender, Mari K. Rollag og Kristian Munthe

FORFATTER(E) Jan-W. Lippestad og Trond Harsvik OPPDRAGSGIVER(E) Rikstrygdeverket. Nanna Stender, Mari K. Rollag og Kristian Munthe SINTEF RAPPORT TITTEL SINTEF Uimed Postadresse: Boks 124, Blider 0314 Oslo Besøksadresse: Forskigsveie 1 Telefo: 22 06 73 00 Telefaks: 22 06 79 09 Foretaksregisteret: NO 948 007 029 MVA Evaluerig av hevisigsprosjektet

Detaljer

Notat 1: Grunnleggende statistikk og introduksjon til økonometri

Notat 1: Grunnleggende statistikk og introduksjon til økonometri Notat : Gruleggede statstkk og troduksjo tl økoometr Gruleggede statstkk Populasjo vs. utvalg Statstsk feres gjør bruk av formasjoe et utvalg tl å trekke koklusjoer (el. slutger) om populasjoe som utvalget

Detaljer

Løsningsforslag til øving 9 OPPGAVE 1 a)

Løsningsforslag til øving 9 OPPGAVE 1 a) Høgskole i Gjøvik vd for ek, øk og ledelse aemaikk 5 Løsigsforslag il øvig 9 OPPGVE ) Bereger egeverdiee: de I) ) ) ) Egeverdier: og ) ) Bereger egevekoree: vi ivi ii) vi ed λ : ) ) v Velger s som gir

Detaljer

2.1 Polynomdivisjon. Oppgave 2.10

2.1 Polynomdivisjon. Oppgave 2.10 . Polyomdivisjo Oppgave. ( 5 + ) : = + + ( + ):( ) 6 + 6 8 8 = + + c) ( + 5 ) : = + 6 6 d) + + + = + + = + + + 8+ ( ):( ) + + + Oppgave. ( + 5+ ):( ) 5 + + = + ( 5 ): 9 + + + = + + + 5 + 6 9 c) ( 8 66

Detaljer

Rente og pengepolitikk. 8. forelesning ECON 1310 21. september 2015

Rente og pengepolitikk. 8. forelesning ECON 1310 21. september 2015 Rete og pegepolitikk 8. forelesig ECON 1310 21. september 2015 1 Norge: lav og stabil iflasjo det operative målet for pegepolitikke, ær 2,5 proset i årlig rate. Iflasjosmålet er fleksibelt, dvs. at setralbake

Detaljer

Oppgave 1. T = 9 Hypotesetest for å teste om kolesterolnivået har endret seg etter dietten: T observert = 2.16 0

Oppgave 1. T = 9 Hypotesetest for å teste om kolesterolnivået har endret seg etter dietten: T observert = 2.16 0 Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 08. mai 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir

Detaljer

ARBEIDSHEFTE I MATEMATIKK

ARBEIDSHEFTE I MATEMATIKK ARBEIDSHEFTE I MATEMATIKK Temahefte r Hvorda du reger med poteser Detaljerte forklariger Av Matthias Loretze mattegriseforlag.com Opplsig: E potes er e forkortet skrivemåte for like faktorer. E potes består

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksame i: ECON30 Statistikk Exam: ECON30 Statistics UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamesdag: Tirsdag. jui 00 Sesur kugjøres: Tirsdag 5. jui, ca. 6.00 Date of exam: Tuesday, Jue, 00 Grades will

Detaljer

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 29. mai 2007

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 29. mai 2007 Høgskole Telemark Avdelg for estetske fag, folkekultur og lærerutdag BOKMÅL 9. ma 7 EKSAMEN I MATEMATIKK, Modul 5 studepoeg Td: 5 tmer Hjelpemdler: Kalkulator og vedlagt formelsamlg (bakerst oppgavesettet).

Detaljer

Rente og pengepolitikk 1. Innhold. Forelesningsnotat 9, februar 2015

Rente og pengepolitikk 1. Innhold. Forelesningsnotat 9, februar 2015 Forelesigsotat 9, februar 2015 Rete og pegepolitikk 1 Ihold Rete og pegepolitikk...1 Hvorda virker Norges Baks styrigsrete?...3 Pegemarkedet...3 Etterspørselskaale...4 Valutakurskaale...4 Forvetigskaale...5

Detaljer

Er neste datapar ved kalibrering en ekstremverdi som skal forkastes?

Er neste datapar ved kalibrering en ekstremverdi som skal forkastes? Er este datapar ved kalibrerig e ekstremverdi som skal forkastes? v/rue Øverlad, Traior Elsikkerhet AS 1. Iledig Dee artikkele utleder formel for usikkerhetsitervallet PI (Predictio Iterval) som omslutter

Detaljer

TMA4240 Statistikk Høst 2012

TMA4240 Statistikk Høst 2012 TMA424 Statistikk Høst 212 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving blokk II Oppgave 1 Oppgave 11.3 fra læreboka. Oppgave 2 Oppgave 11.19 fra læreboka. Oppgave

Detaljer

ERP-implementering: Shakedown-fasen

ERP-implementering: Shakedown-fasen ERP-implemeterig: Shakedow-fase «Hvilke faktorer asees som viktige i shakedow-fase ved implemeterig av ERP i orske virksomheter?» Frak Erik Strømlad Veiledere Maug Kyaw Sei Stig Nordheim Masteroppgave

Detaljer

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 14.12.2007

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 14.12.2007 Høgskole Telemark Avdelg for estetske fag, folkekultur og lærerutdag BOKMÅL 4..7 UTATT PRØVE I MATEMATIKK, Modul 5 studepoeg Td: 5 tmer Hjelpemdler: Kalkulator og vedlagt formelsamlg (bakerst oppgavesettet).

Detaljer

Rapport GPS prosjekt - Ryggeheimen sykehjem, Rygge

Rapport GPS prosjekt - Ryggeheimen sykehjem, Rygge Rapport GPS prosjekt - Ryggeheime sykehjem, Rygge Bruk av GPS på sykehjem Elisabeth Refses/ Siv Skaldstad Tidspla:1/3 10 1/10 10. Orgaiserig: Styrigsgruppe: Åse Nilsse, Ove Keeth Kvige, Elisabeth Breistei,

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 20. mars Bjørn H. Auestad Kp. 6: Hypotesetesting

Detaljer

Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte.

Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte. Eksame 20.05.2009 REA3028 Matematikk S2 Nyorsk/Bokmål Bokmål Eksamesiformasjo Eksamestid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Bruk av kilder: Vedlegg: Framgagsmåte: Veiledig om vurderige: 5 timer:

Detaljer

Kap. 10: Inferens om to populasjoner. Eksempel. ST0202 Statistikk for samfunnsvitere

Kap. 10: Inferens om to populasjoner. Eksempel. ST0202 Statistikk for samfunnsvitere Kap. 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to populasjoner med populasjonsgjennomsnitt henholdsvis μ 1 og μ. Vi trekker da ett utvalg fra hver populasjon. ST00 Statistikk for

Detaljer

Forelesning 10 Kjikvadrattesten

Forelesning 10 Kjikvadrattesten verdier Forelesning 10 Kjikvadrattesten To typer av statistisk generalisering: Statistisk hypotesetesting Statistiske hypoteser (H 0 og H 1 ) om populasjonen Finner forkastningsområdet for H 0 ut fra en

Detaljer

Dekkes av pensumsidene i kap. lesingsnotatene. Hypotesetesting er en systematisk fremgangsmåte

Dekkes av pensumsidene i kap. lesingsnotatene. Hypotesetesting er en systematisk fremgangsmåte Hypotesetesting. 10 og fore- Dekkes av pensumsidene i kap. lesingsnotatene. Hypotesetesting er en systematisk fremgangsmåte for å undersøke hypoteser (påstander) knyttet til parametre i sannsynlighetsfordelinger.

Detaljer

Universitetet i Oslo Institutt for geofag. Flomrisikoanalyse for Hamar og Lillestrøm. Helge Bakkehøi. Candidatus Scientiarum

Universitetet i Oslo Institutt for geofag. Flomrisikoanalyse for Hamar og Lillestrøm. Helge Bakkehøi. Candidatus Scientiarum Uiversitetet i Oslo Istitutt for geofag Flomrisikoaalse for Hamar og Lillestrøm Helge Bakkehøi Cadidatus Scietiarum 1. september 2003 ABSTRACT 2 Abstract This work focuses o the two tows most exposed

Detaljer

Befolkningens forståelse av faguttrykk i klimadebatten

Befolkningens forståelse av faguttrykk i klimadebatten Aalyse AS Bredalsmarke 15, 5006 Berge Aalyse AS Bredalsmarke 15, 5006 Berge www.resposaalyse.o www.resposaalyse.o Befolkiges forståelse av faguttrykk i klimadebatte Webomibus 16.-21. september 2010 Oppdragsgiver:

Detaljer

Leseforståelse og matematikk

Leseforståelse og matematikk Leseforståelse og matematikk av guri a. ortvedt To studier av sammehege mellom leseforståelse og løsig av tekstoppgaver viser at ekelte elever ka mislykkes i oppgaveløsige fordi de tolker språket i oppgavee

Detaljer

10.1 Enkel lineær regresjon Multippel regresjon

10.1 Enkel lineær regresjon Multippel regresjon Inferens for regresjon 10.1 Enkel lineær regresjon 11.1-11.2 Multippel regresjon 2012 W.H. Freeman and Company Denne uken: Enkel lineær regresjon Litt repetisjon fra kapittel 2 Statistisk modell for enkel

Detaljer

Forelesning 9 Kjikvadrattesten. Kjikvadrattest for bivariate tabeller (klassisk variant) Når kan vi forkaste H 0?

Forelesning 9 Kjikvadrattesten. Kjikvadrattest for bivariate tabeller (klassisk variant) Når kan vi forkaste H 0? Forelesning 9 Kjikvadrattesten Kjikvadrattesten er den mest benyttede metoden for å utføre statistiske generaliseringer fra bivariate tabeller. Kjikvadrattesten brukes til å teste nullhypotesen om at det

Detaljer

Oppgave 1. og t α/2,n 1 = 2.262, så er et 95% konfidensintervall for µ D (se kap 9.9 i læreboka): = ( 0.12, 3.32).

Oppgave 1. og t α/2,n 1 = 2.262, så er et 95% konfidensintervall for µ D (se kap 9.9 i læreboka): = ( 0.12, 3.32). Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 16. november 2009 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir

Detaljer

år i 1 2 3 4 5 6 7 8 9 alder x i 37 38 39 40 41 42 43 44 45 tid y i 45.54 41.38 42.50 38.80 41.26 37.20 38.19 38.05 37.45 i=1 (x i x) 2 = 60, 9

år i 1 2 3 4 5 6 7 8 9 alder x i 37 38 39 40 41 42 43 44 45 tid y i 45.54 41.38 42.50 38.80 41.26 37.20 38.19 38.05 37.45 i=1 (x i x) 2 = 60, 9 TMA424 Statistikk Vår 214 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 11, blokk II Oppgave 1 Matlabkoden linearreg.m, tilgjengelig fra emnets hjemmeside, utfører

Detaljer

B Bakgrunnsinformasjon om ROS-analysen.

B Bakgrunnsinformasjon om ROS-analysen. RI SI KO- O G SÅRBARH ET SANALYSE (RO S) A Hva som skal utredes Beredskapog ulykkesrisiko(ros) vurderesut fra sjekklistefra Direktoratetfor samfussikkerhetog beredskap.aalyse blir utført ved vurderigav

Detaljer

Eksempeloppgave 2014. REA3026 Matematikk S1 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)

Eksempeloppgave 2014. REA3026 Matematikk S1 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler) Eksempeloppgave 04 REA306 Matematikk S Eksempel på eksame våre 05 etter y ordig Ny eksamesordig Del : 3 timer (ute hjelpemidler) Del : timer (med hjelpemidler) Mistekrav til digitale verktøy på datamaski:

Detaljer

Relasjonen i kognitiv terapi ved psykosebehandling

Relasjonen i kognitiv terapi ved psykosebehandling Relasjoe i kogitiv terapi ved psykosebehadlig Psykolog Torkil Berge Voksepsykiatrisk avdelig Videre TIPS Nettverkskoferase 22. jauar 2013 Helhetlig og itegrert behadlig PASIENT FAMILIE NÆRMILJØ Symptommestrig

Detaljer

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 16. mai 2008

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 16. mai 2008 Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL 6. mai 008 EKSAMEN I MATEMATIKK Modul 5 studiepoeg Tid: 5 timer Oppgavesettet er på 8 sider (ikludert formelsamlig). Hjelpemidler:

Detaljer

Eksamensoppgave i TMA4245 Statistikk

Eksamensoppgave i TMA4245 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4245 Statistikk Faglig kontakt under eksamen: Håkon Tjelmeland Tlf: 48 22 18 96 Eksamensdato:??. august 2014 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. BtG207 EKSAMENSDATO: 11. juni 2007. KLASSE: HIS 05 08. TID: kl. 8.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 5 (innkl. forside)

Detaljer

Luktrisikovurdering fra legemiddelproduksjon på Fikkjebakke Screening

Luktrisikovurdering fra legemiddelproduksjon på Fikkjebakke Screening Luktrisikovurderig fra legemiddelproduksjo på Fikkjebakke Screeig Aquateam COWI AS Rapport r: 14-046 Prosjekt r: O-14062 Prosjektleder: Liv B. Heige Medarbeidere: Lie Diaa Blytt Karia Ødegård (Molab AS)

Detaljer

Formelsamling i matematikk og statistikk

Formelsamling i matematikk og statistikk Høgskole i Berge Formelsamlig i matematikk og statistikk for Igeiørutdaige FOA, FOA, FOA3, FOA7, FVA4 5.utgave Fuksjoer. Elemetære fuksjoer: a) l y = y = e a = b = log a b = lb l a b) l(ab) = l A + l B,

Detaljer

Utdanningsdirektoratet

Utdanningsdirektoratet Utdaigsdirektoratet Nav på rettssubjekt* Norges Toppidrettsgymas Berge Kommue* Berge Orgaisasjosummer * 991569030 Kommueummer * 1201 Fylkeskommue * Hordalad For orske skoler i utladet Lad/delstat/provis

Detaljer

6.2 Signifikanstester

6.2 Signifikanstester 6.2 Signifikanstester Konfidensintervaller er nyttige når vi ønsker å estimere en populasjonsparameter Signifikanstester er nyttige dersom vi ønsker å teste en hypotese om en parameter i en populasjon

Detaljer

FX-82ES. NY CASIO teknisk / vitenskapelig lommeregner med naturlig tallvindu.

FX-82ES. NY CASIO teknisk / vitenskapelig lommeregner med naturlig tallvindu. ytt NR. 005. årgag FX-8ES NY CASIO tekisk / viteskapelig lommereger med aturlig tallvidu. Det er å mer e 5 år side kalkulatore for alvor ble tatt i bruk i orsk matematikk-udervisig, og de viteskapelige

Detaljer

HØGSKOLEN I MOLDE Sensurveiledning Log300 Innføring i logistikk - Vår 2006

HØGSKOLEN I MOLDE Sensurveiledning Log300 Innføring i logistikk - Vår 2006 HØGSKOLEN I MOLDE Sesurveiledig Log300 Iførig i logistikk - Vår 2006 Dato: Tid: 13.06.06 09:00 13:00 Asvarlig faglærer: Jøra Gårde Hjelpemidler: Oppgave består av totalt 6 sider (5 sider + ormalfordeligstabell).

Detaljer

2. Bestem nullpunktene til g.

2. Bestem nullpunktene til g. Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL 0. desember 007 EKSAMEN I MATEMATIKK Modul 5 studiepoeg Tid: 5 timer Oppgavesettet er på 9 sider (ikludert formelsamlig).

Detaljer

Regresjon med GeoGebra

Regresjon med GeoGebra Praksis og Teori Askim videregående skole 14.08.14 1 Lærplanmål 2 Punkter og Lister 3 Regresjon 4 Teori 5 Nytt verktøy Læreplanmål i 2P Modellering gjere målingar i praktiske forsøk og formulere matematiske

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008 ÅMA0 Sasylighetsregig med statistikk, våre 008 ÅMA0 Sasylighetsregig med statistikk våre 008 Praktisk om kurset Foreleser og faglig asvarlig: Øystei Arild (IRIS, oystei.arild@iris.o) Bjør H. Auestad (kotor:

Detaljer

Sammenlikninger av gjennomsnitt. SOS1120 Kvantitativ metode. Kan besvare to spørsmål: Sammenlikning av to gjennomsnitt

Sammenlikninger av gjennomsnitt. SOS1120 Kvantitativ metode. Kan besvare to spørsmål: Sammenlikning av to gjennomsnitt SOS1120 Kvantitativ metode Forelesningsnotater 10. forelesning høsten 2005 Per Arne Tufte Sammenlikninger av gjennomsnitt Sammenlikner gjennomsnittet på avhengig variabel for ulike grupper av enheter Kan

Detaljer

Innsamling og modellering av data for analyse av militære operasjoner

Innsamling og modellering av data for analyse av militære operasjoner FFI-rapport 008/059 Isamlig og modellerig av data for aalyse av militære operasjoer Håko Ljøgodt Forsvarets forskigsistitutt (FFI) 9. august 008 FFI-rapport 008/059 068 P: ISBN 978-8-464-447-8 E: ISBN

Detaljer

> 6 7 ) = 1 Φ( 1) = 1 0.1587 = 0.8413 P (X < 7 X < 8) P (X < 8) < 7 6 1 ) < 8 6 1 ) = Φ(2) = 0.8413

> 6 7 ) = 1 Φ( 1) = 1 0.1587 = 0.8413 P (X < 7 X < 8) P (X < 8) < 7 6 1 ) < 8 6 1 ) = Φ(2) = 0.8413 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 Oppgave Sykkelruter a) P (Y > 6) P (Y > 6) P ( Y 7 > 6 7 ) Φ( ) 0.587 0.843 b) Hypoteser: H 0 : µ µ 2 H : µ < µ 2

Detaljer

konjugert Reaksjonslikning for syre-basereaksjonen mellom vann og ammoniakk: base konjugert syre Et proton er et hydrogenatom som

konjugert Reaksjonslikning for syre-basereaksjonen mellom vann og ammoniakk: base konjugert syre Et proton er et hydrogenatom som Syrer og r Det fies flere defiisjoer på hva r og r er. Vi skal bruke defiisjoe til Brøsted: E Brøsted er e proto door. E Brøsted er e proto akseptor. 1s 1 Et proto er et hydrogeatom som har mistet sitt

Detaljer

Løsningsforslag R2 Eksamen 04.06.2012. Nebuchadnezzar Matematikk.net Øistein Søvik

Løsningsforslag R2 Eksamen 04.06.2012. Nebuchadnezzar Matematikk.net Øistein Søvik Løsigsforslag R2 Eksame 6 Vår 04.06.202 Nebuchadezzar Matematikk.et Øistei Søvik Sammedrag De fleste forlagee som gir ut lærebøker til de videregåede skole, gir ut løsigsforslag til tidligere gitte eksameer.

Detaljer

Når du er i tvil om hva som bør gjøres! ETIKK FOR INGENIØRER OG TEKNOLOGER. Etikk som beslutnings- verktøy. Oppgaver til diskusjon

Når du er i tvil om hva som bør gjøres! ETIKK FOR INGENIØRER OG TEKNOLOGER. Etikk som beslutnings- verktøy. Oppgaver til diskusjon ETIKK FOR INGENIØRER OG TEKNOLOGER Når du er i tvil om hva som bør gjøres! Etikk som beslutigs- verktøy Nyttige verktøy for å hådtere arbeidshverdages dilemmaer Oppgaver til diskusjo Vi går fora vi har

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet. Eksamen i STK3100 Innføring i generaliserte lineære modeller Eksamensdag: Mandag 6. desember 2010 Tid for eksamen: 14.30 18.30 Oppgavesettet

Detaljer

TMA4240 Statistikk Høst 2009

TMA4240 Statistikk Høst 2009 TMA4240 Statistikk Høst 2009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b7 Oppgave 1 Automatisert laboratorium Eksamen november 2002, oppgave 3 av 3 I eit

Detaljer

UNIVERSITETET I OSLO. De forskningsintensive universitetenes rolle. UiOs innspill til Forskningsmeldingen 2009

UNIVERSITETET I OSLO. De forskningsintensive universitetenes rolle. UiOs innspill til Forskningsmeldingen 2009 UNIVERSITETET I OSLO Kuskapsdepartemetet Postboks 8119 Dep Postboks 1072, Blider 0032 Oslo 0316 OSLO Dato: 02.01.2009 Vår ref.: 2008/20593 Deres ref.: Telefo: 22 85 63 01 Telefaks: 22 85 44 42 E-post:

Detaljer

Utvidet løsningsforslag Eksamen i TMA4100 Matematikk 1, 16/12 2008

Utvidet løsningsforslag Eksamen i TMA4100 Matematikk 1, 16/12 2008 Utvidet løsigsforslag Eksame i TMA4 Matematikk, 6/ 8 Oppgave i) Vi gjør substitusjoe u = si θ og får π/ [ u si θ cos θ dθ = u du = E ae løsigsmetode er π/ si θ cos θ dθ = π/ ] si θ dθ = 4 = 4 ( ( ) ( ))

Detaljer

Dersom vi skriver denne reaksjonslikningen ved bruk av kjemiske tegn: side av likningen har vi ett hydrogen mens vi har to på høyre side.

Dersom vi skriver denne reaksjonslikningen ved bruk av kjemiske tegn: side av likningen har vi ett hydrogen mens vi har to på høyre side. Støkiometri (megdeforhold) Det er særs viktig i kjemie å vite om megdeforhold om stoffer. -E hodepie tablett er bra mot hodesmerter, ti passer dårlig. -E sukkerbit i kaffe fugerer, 100 er slitsomt. -100

Detaljer

EKSAMENSOPPGAVE. Faglig veileder: Kirsten Aarset, Bente Hellum og Jan Stubergh Gruppe(r): 1-elektro, 1-maskin, 3-almen Dato: 17 desember 2001

EKSAMENSOPPGAVE. Faglig veileder: Kirsten Aarset, Bente Hellum og Jan Stubergh Gruppe(r): 1-elektro, 1-maskin, 3-almen Dato: 17 desember 2001 Avdelig for igeiørutdaig EKSAMENSOPPGAVE Fag: Kjemi og Miljø Fagr FO 05 K Faglig veileder: Kirste Aarset, Bete Hellum og Ja Stubergh Gruppe(r): 1-elektro, 1-maski, -alme Dato: 17 desember 001 Eksamestid,

Detaljer

#include <stddisclaimer.h>

#include <stddisclaimer.h> Ihold Kapittel Sasylighet.3 Sasylighetsfuksjo : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :.4 Diskrete og kotiuerlige sasylighetsfuksjoer : : : : : : : : : : : : : : : : : :.6 Betiget

Detaljer

I forelesningen så vi litt på hvordan vi tegner grafer manuelt. Enkel bruk av GeoGebra er vist gjennom noen korte videoer i bolk 5c.

I forelesningen så vi litt på hvordan vi tegner grafer manuelt. Enkel bruk av GeoGebra er vist gjennom noen korte videoer i bolk 5c. NOTAT TIL FORELESNING OM FUNKSJONER, DEL Forelesige om uksjoer består av to deler, ørste del bygger på dette otatet Notatet bygger på læreboke og er oe mer utyllede e orelesige I bolk 5a så vi hvorda vi

Detaljer

Institutt for økonomi og administrasjon

Institutt for økonomi og administrasjon Fakultet for samfusfag Istitutt for økoomi og admiistraso Ivesterig og fiasierig Bokmål Dato: Madag. desember 3 Tid: 4 timer / kl. 9-3 Atall sider (ikl. forside): 5 + sider vedlegg Atall oppgaver: 4 Tillatte

Detaljer

SKADEFRI - oppvarmingsprogram med skadeforebyggende hensikt. Trenerforum

SKADEFRI - oppvarmingsprogram med skadeforebyggende hensikt. Trenerforum SKADEFRI - oppvarmigsprogram med skadeforebyggede hesikt Treerforum Sist oppdatert 21.10.2009 Oppsett for et 2 timers opplegg TEORI + iledede diskusjo (ca. 30-45 mi) PRAKSIS (ca. 75-90 mi) SPILLEKLAR et

Detaljer

Institutt for økonomi og administrasjon

Institutt for økonomi og administrasjon Fakultet for safusfag Istitutt for økooi og adiistraso Ivesterig og fiasierig Bokål Dato: Tirsdag. deseber 4 Tid: 4 tier / kl. 9-3 Atall sider (ikl. forside): 5 + 9 sider vedlegg Atall oppgaver: 4 Tillatte

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 ÅMA0 Sasylghetsregg med statstkk, våre 007 Kp. 5 Estmerg. Målemodelle. Estmerg. Målemodelle. Ihold:. (Pukt)Estmerg bomsk modell (kp. 5.). Målemodelle... (kp. 5.3) 3. (Pukt)Estmerg målemodelle (kp. 5.3)

Detaljer

MOT310 Statistiske metoder 1, høsten 2010 Løsninger til regneøving nr. 11 (s. 1) der

MOT310 Statistiske metoder 1, høsten 2010 Løsninger til regneøving nr. 11 (s. 1) der MOT310 Statistiske metoder 1, høsten 2010 Løsninger til regneøving nr. 11 (s. 1) Oppgave 13.1 Modell: Y ij = µ i + ε ij, der ε ij uavh. N(0, σ 2 ) Boka opererer her med spesialtilfellet der man har like

Detaljer

Regler i statistikk STAT 100

Regler i statistikk STAT 100 TORIL FJELDAAS RYGG - VÅREN 2010 Regler i statistikk STAT 100 Innhold side Sannsynlighetsregning 3 - Uttrykk 3 - Betinget sannsynlighet 4 - Regler for sannsynlighet 4 - Bayes teorem 4 - Uavhengige begivenheter

Detaljer

Eksamen 21.05.2013. REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen 21.05.2013. REA3024 Matematikk R2. Nynorsk/Bokmål Eksame 21.05.2013 REA3024 Matematikk R2 Nyorsk/Bokmål Nyorsk Eksamesiformasjo Eksamestid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: 5 timar: Del 1 skal leverast i etter 2 timar. Del 2 skal leverast

Detaljer