ÅMA110 Sannsynlighetsregning med statistikk, våren 2008 Kp. 6, del 5

Størrelse: px
Begynne med side:

Download "ÅMA110 Sannsynlighetsregning med statistikk, våren 2008 Kp. 6, del 5"

Transkript

1 ÅMA110 Sasylighetsregig med statistikk, våre 2008 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 26. mars Bjør H. Auestad Kp. 6: Hypotesetestig del 5 1/ 53 Oppsummerig, del 3 Bjør H. Auestad Kp. 6: Hypotesetestig del 5 2/ 53

2 Oppsummerig, del 3 Oppsummerig, del 3 Styrke, styrkefuksjo Tosidige tester Test for p i biomisk modell;. t-fordelig Bjør H. Auestad Kp. 6: Hypotesetestig del 5 3/ 53, Bjør H. Auestad Kp. 6: Hypotesetestig del 5 4/ 53

3 Oversikt, del 4, t-fordelig, t-test, t-itervall Test for forvetige, λt, i Poissomodell;. Kofidesitervall t-fordelig, t-test, t-itervall Test for forvetige, λt, i Poissomodell;. Kofidesitervall Bjør H. Auestad Kp. 6: Hypotesetestig del 5 5/ 53 t-fordelig, Rett på defiisjo: Utgagspuktet er målemodelle med ormalatakelse: X 1,...,X,u.i.f.tilf.var.derX i Nμ, σ 2. La σ 2 = = 1 1 i=1 X i X 2,og T = X μ Def. Studet s t-fordelig: Dersom X 1,...,X,er u.i.f. tilf. var. der X i er ormalfordelt med forvetig μ og varias σ 2, i =1,...,,såerT Studet s t-fordelt med 1 frihetsgrader: T t 1 Bjør H. Auestad Kp. 6: Hypotesetestig del 5 6/ 53

4 t-fordelig Obs: I de beskreve situasjoe har vi: X μ σ 2 N0, 1 og X μ t 1, Bjør H. Auestad Kp. 6: Hypotesetestig del 5 7/ 53 t-fordelig, Egeskaper til t-fordelige: x f1x f2x f15x t-fordelige er avhegig av atall frihetsgrader. De blir mer og mer lik N 0, 1-fordelige år atall frihetsgrader øker. symmetrisk omkrig 0 tygre haler e N 0, 1-fordelige t-tabell!! Bjør H. Auestad Kp. 6: Hypotesetestig del 5 8/ 53

5 t-fordelig, Fraktiler i t-fordelige: Def. t α,d Dersom T er Studet s t-fordelt med d frihetsgrader, defieres tallet t α,d ved at P T >t α,d =α. Tilsvarer z α i N 0, 1-fordelige Skisse av td-fordelig; arealet P T > t α,d =αer farget. Bjør H. Auestad Kp. 6: Hypotesetestig del 5 9/ 53 t-test, Situasjo der vi bruker t-test: Målemodelle m/ormalatakelse og ukjet varias, σ 2 : måliger: x 1,...,x ; betraktes som utfall av: X 1,...,X, u.i.f. tilfeldige variable EX i =μ og VarX i =σ 2, i =1,..., X i ormalfordelt og σ 2 ukjet. Obs. 1: X i ormalfordelt Bjør H. Auestad Kp. 6: Hypotesetestig del 5 10 / 53

6 t-test, Obs. 1: X i ormalfordelt Obs. 2: Dersom er stor, treger vi ikke bry oss med t-fordelig. Obs. 3: Målemodell 3 Bjør H. Auestad Kp. 6: Hypotesetestig del 5 11 / 53 t-test, Eksempel: 10 blodsukkeriholdmåliger: 4.1, 5.1, 4.3, 3.8, 3.7, 5.2, 4.5, 4.8, 3.6, 4.4 Øsker å teste H 0 : μ =4.0 mot H 1 : μ>4.0 Vi atar at: De =10måligee: x 1,...,x ; ka betraktes som utfall av: X 1,...,X, u.i.f. tilfeldige variable, der EX i =μ og VarX i =σ 2, i =1,...,, og der X i er ormalfordelt og σ 2 er ukjet. Variase,σ 2, estimeres med: σ 2 = = 1 1 i=1 X i X 2 Bjør H. Auestad Kp. 6: Hypotesetestig del 5 12 / 53

7 t-test, Vil teste: H 0 : μ =4 mot H 1 : μ>4 Uder H 0 er teststørrelse, ullfordelig T = X 4 10 t9 jf. def. av t-fordelig Forkaster H 0 dersom μ = X peker klart i retig av at H 1 er korrekt. Test sig.ivå α: Forkast H 0 dersom f9x T t α, t9 tetthet Bjør H. Auestad Kp. 6: Hypotesetestig del 5 13 / 53 t-test, Gjeomførig av test på 5% ivå: Sig.ivå, α =0.05 t 0.05,9 =1.83 Data: Gj.s. = 4.35, emp. varias = Utfall av: X 4 10 : =1.962 Side >t 0.05,9 =1.83, ka vi forkaste H 0. Dataee tyder på at virkelig blodsukkerihold, μ, er større e 4. Bjør H. Auestad Kp. 6: Hypotesetestig del 5 14 / 53

8 μ, målemodell, ormalatakelse, ukjet varias,, Oppsummerig, t-tester Målemodelle: måliger: x 1,...,x ; betraktes som utfall av: X 1,...,X, u.i.f. tilfeldige variable EX i =μ og VarX i =σ 2, i =1,..., X i ormalfordelt og σ 2 ukjet. Målemodell 3 Estimator for variase: = σ 2 = 1 1 i=1 Xi X 2 Bjør H. Auestad Kp. 6: Hypotesetestig del 5 15 / 53 μ, målemodell, ormalatakelse, ukjet varias,. t-test, esidig., Test sig.ivå α for: H 0 : μ = μ 0 mot H 1 : μ<μ 0 Forkast H 0 dersom X μ 0 t α, Skisse av t-fordelig og forkastigsområde. Test sig.ivå α for: H 0 : μ = μ 0 mot H 1 : μ>μ 0 Forkast H 0 dersom X μ 0 t α, Skisse av t-fordelig og forkastigsområde. Bjør H. Auestad Kp. 6: Hypotesetestig del 5 16 / 53

9 μ, målemodell, ormalatakelse, ukjet varias,. t-test, tosidig., Test sig.ivå α for: H 0 : μ = μ 0 mot H 1 : μ μ 0 Forkast H 0 dersom X μ 0 X μ 0 t α/2, 1, eller t α/2, Skisse av t-fordelig og forkastigsområde. Bjør H. Auestad Kp. 6: Hypotesetestig del 5 17 / 53 μ, målemodell, ormalatakelse, ukjet varias,. t-test, tosidig., Eksempel: Hardhet til et spesielt stål blir udersøkt; seks måliger i kg/mm 2 : 351, 322, 297, 291, 354, 322. Gjeomsitt: 322.8; estimert varias empirisk varias: Ma er iteressert i om hardhete er forskjelig fra 300 kg/mm 2. Tyder resultatee på at hardhete er ulik 300? Målemodell med ormalatakelse; ukjet varias. Estimator for variase: = σ 2 = 1 1 i=1 Xi X 2 Forvetige, μ: virkelig hardhet Vil teste: H 0 : μ = 300 mot H 1 : μ 300 Bjør H. Auestad Kp. 6: Hypotesetestig del 5 18 / 53

10 μ, målemodell, ormalatakelse, ukjet varias,. t-test, tosidig., Vil teste: H 0 : μ = 300 mot H 1 : μ 300 Uder H 0 er teststørrelse, ullfordelig T = X t 1 Forkaster H 0 dersom μ = X peker klart i retig av at H 1 er korrekt. Test sig.ivå α: Forkast H 0 dersom T t α/2, 1 eller T t α/2, Skisse av t5-fordelig. Bjør H. Auestad Kp. 6: Hypotesetestig del 5 19 / 53 μ, målemodell, ormalatakelse, ukjet varias,. t-test, tosidig., Gjeomførig av test på 5% ivå: Sig.ivå, α =0.05 α/2 =0.025; t 0.025,5 =2.57 Data: Utfall av: X : Side 2.13 t 0.025,5 =2.57 og 2.13 t 0.025,5 = 2.57, ka vi ikke forkaste H 0. Det er ikke grulag i dataee for å hevde at virkelig hardhet, μ, erulik300kg/mm 2. = Obs.: Jf. koklusjo med kjet varias: forkast H 0 ; z =1.96. Bjør H. Auestad Kp. 6: Hypotesetestig del 5 20 / 53

11 Oversikt, del 4, t-fordelig, t-test, t-itervall Test for forvetige, λt, i Poissomodell;. Kofidesitervall t-fordelig, t-test, t-itervall Test for forvetige, λt, i Poissomodell;. Kofidesitervall Bjør H. Auestad Kp. 6: Hypotesetestig del 5 21 / 53 t-itervall, Med målemodell 1 ormalatakelse og kjet varias: 1 α 100% kofidesitervall for μ er σ X z 2 α/2, X + z α/2 Dette er basert på 1. kjet verdi av σ 2 2. Z = X μ σ 2 σ 2 N0, 1 ormalatakelse Med målemodell 3 ormalatakelse og ukjet varias må vi basere oss på t-fordelige. Bjør H. Auestad Kp. 6: Hypotesetestig del 5 22 / 53

12 t-itervall, Med målemodell 3 ormalatakelse og ukjet varias: 1 α 100% kofidesitervall for μ er S X t 2 α/2, 1, X + t α/2, 1 Dette er basert på 1. σ 2 estimeres med σ 2 = = 1 1 i=1 2. Normalatakelse og 3. T = X μ t 1 X i X 2, Bjør H. Auestad Kp. 6: Hypotesetestig del 5 23 / 53 t-itervall,, Eksempel: 10 blodsukkeriholdmåliger: 4.1, 5.1, 4.3, 3.8, 3.7, 5.2, 4.5, 4.8, 3.6, 4.4 Øsker et 95% kofidesitervall for virkelig blodsukkerihold. Vi atar at: De =10måligee: x 1,...,x ; ka betraktes som utfall av: X 1,...,X, u.i.f. tilfeldige variable, der EX i =μ og VarX i =σ 2, i =1,...,, og der X i er ormalfordelt og σ 2 er ukjet. μ: virkelig blodsukkerihold Variase, σ 2, estimeres med: σ 2 = = 1 1 i=1 X i X 2 Bjør H. Auestad Kp. 6: Hypotesetestig del 5 24 / 53

13 t-itervall,, =10; 95% α =0.05 t α/2, 1 = t 0.025,9 =2.262 Et 95% kofidesitervall for virkelig blodsukkerihold, μ, er S gitt ved: X , X Isatt data Gj.s. = 4.35, emp. varias = , blir utreget itervall: , = 3.95, 4.75 Bjør H. Auestad Kp. 6: Hypotesetestig del 5 25 / 53 t-itervall, begruelse, Jf.: Geerell defiisjo av kofidesitervall: Situasjo: Data x 1,...,x ;utfallav:x 1,...,X ; u.i.f. tilfeldige variable Ukjet parameter i fordelige til X i ee: θ Dersom L og U L <U er to fuksjoer av X 1,...,X, som er slik at: 1 α = P L θ U, sier vi at det utregete itervallet l, u er et 1 α 100% kofidesitervall for θ. Bjør H. Auestad Kp. 6: Hypotesetestig del 5 26 / 53

14 t-itervall, begruelse, Obs. 1: Det utregete itervallet l, u: Framkommer år vi setter dataverdiee x 1,...,x i i fuksjoee L og U. Obs. 2: Evetuelt tilærmede itervall For t-itervallet er: L = X t α/2, 1 og U = X + t α/2, 1 Bjør H. Auestad Kp. 6: Hypotesetestig del 5 27 / 53 t-itervall, begruelse, X t α/2, 1 } {{ } L, X + t α/2, 1 }{{ } U er et 1 α 100% kofidesitervall for μ, fordi 1 α = P = P t α/2, 1 X μ t α/2, 1 X t α/2, 1 μ X + t }{{ α/2, 1 }}{{ } L U = P L μ U Bjør H. Auestad Kp. 6: Hypotesetestig del 5 28 / 53

15 Kofidesitervall,, Målemodell 1; 1 α 100% kofidesitervall for μ er σ X z 2 α/2, X + z σ 2 α/2 Målemodell 2; til. 1 α 100% kofidesitervall for μ er S X z 2 α/2, X + z α/2 Biomisk modell; til. 1 α 100% kofidesitervall for p er p1 p p1 p p z α/2, p + z α/2 Målemodell 3; 1 α 100% kofidesitervall for μ er S X t 2 α/2, 1, X + t α/2, 1 Bjør H. Auestad Kp. 6: Hypotesetestig del 5 29 / 53 Oversikt, del 4, t-fordelig, t-test, t-itervall Test for forvetige, λt, i Poissomodell;. Kofidesitervall t-fordelig, t-test, t-itervall Test for forvetige, λt, i Poissomodell;. Kofidesitervall Bjør H. Auestad Kp. 6: Hypotesetestig del 5 30 / 53

16 Test for forvetige, λt, i Poissomodell, lite, Eksempel: Overvåkig av dødsrate for fugler jf. fugleifluesa; For et bestemt va registreres det gjeomsittlig 2.5 døde fugler pr. døg uder ormale forhold. E dag registreres det 6 døde fugler. Gir dette grulag for å påstå at virkelig dødsrate har økt til over det ormale? Bjør H. Auestad Kp. 6: Hypotesetestig del 5 31 / 53 Test, Poissomodell,, Statistisk tekig: Vi betrakter resultatet 6 registrerte døde fugler i et døg som utfall av e tilfeldig variabel Y, der Y Poissoλt, λ: ukjet, t =1. Obs.: det er rimelig med Poissofordelig for Y! λ 1, er forvetet atall døde fugler ved det aktuelle vaet i løpet av et døg. Normalt har vi: λ ormalt =2.5. Vi vil teste H 0 : λ =2.5 mot H 1 : λ>2.5 Bjør H. Auestad Kp. 6: Hypotesetestig del 5 32 / 53

17 Test, Poissomodell,, Vi vil teste H 0 : λ =2.5mot H 1 : λ>2.5 Teststørrelse: Y ; ullfordelig: Y Poisso2.5: Dette beskriver hva som er tekelige utfall uder H 0 Store verdier av Y idikerer at H 1 er riktig. Bjør H. Auestad Kp. 6: Hypotesetestig del 5 33 / 53 Test, Poissomodell,, Store verdier av Y idikerer at H 1 er riktig. Derfor: Test: Forkast H 0 dersom Y k, der k kritisk verdi er slik at teste får ærmest mulig øsket sigifikasivå. Kritisk verdi, k, fies vha. Poissotabell λt =2.5 slik at sig.ivå = P forkaste H 0 H 0 riktig = P Y k λt =2.5 er ærmest mulig øsket sig.ivå Bjør H. Auestad Kp. 6: Hypotesetestig del 5 34 / 53

18 Test, Poissomodell,, Fra Poissotabell λt =2.5: y P Y = y Vi må prøve oss fram med forskjellige verdier av k. Dersom vi øsker sig.ivå ærmest mulig 0.05, ser vi at: P Y 9 = = P Y 8 = P Y =8+P Y 9 = = P Y 7 = = P Y 6 = = P Y 5 = = Dvs., med k = 6 fårvietestmed sig.ivå Bjør H. Auestad Kp. 6: Hypotesetestig del 5 35 / 53 Test, Poissomodell,, Gjeomførig/koklusjo: Data: utfall av Y : 6=k =6 Koklusjo: Forkast H 0 ; Test: Forkast H 0 dersom Y k Det er grulag for å påstå at virkelig dødsrate rate av registrerte døde fugler har økt til over det ormale. Skisser styrkefuksjoe til dee teste! Bjør H. Auestad Kp. 6: Hypotesetestig del 5 36 / 53

19 Oversikt, del 4, t-fordelig, t-test, t-itervall Test for forvetige, λt, i Poissomodell;. Kofidesitervall t-fordelig, t-test, t-itervall Test for forvetige, λt, i Poissomodell;. Kofidesitervall Bjør H. Auestad Kp. 6: Hypotesetestig del 5 37 / 53 Kofidesitervall, E tosidig test ka gjeomføres vha. av et kofidesitervall. For, dersom vi i målemodell 1 vil teste: H 0 : μ = μ 0 mot H 1 : μ μ 0, ka vi bruke: Test sig.ivå α: Forkast H 0 dersom X μ 0 σ 2 z α/2 eller Vi skal se at dette er det samme som: X μ 0 σ 2 z α/2 Forkast H 0 dersom μ 0 ikke er ikludert i kofidesitervallet for μ. Bjør H. Auestad Kp. 6: Hypotesetestig del 5 38 / 53

20 Kofidesitervall, Eksempel: Vi skal kjøpe smolt av e smoltoppdretter. Det hevdes at gjeomsittsvekte til smolte i merde er 80 gram. Vekt av i tilfeldig valgte smolt: gj.s.-vekt: gram. Vi er iteressert i om vekte gjeomsittsvekt for alle smolt i merde ka være ulik 80 gram. Tyder resultatee på at vekte ka er ulik 80 gram? Målemodell med ormalatakelse; kjet varias, σ 2 =10 2. Forvetige, μ: vektgjeomsittsvekt for alle smolt i merde Vil teste: H 0 : μ =80 mot H 1 : μ 80 Bjør H. Auestad Kp. 6: Hypotesetestig del 5 39 / 53 Kofidesitervall, Vil teste: H 0 : μ = 80 mot H 1 : μ 80 Test sig.ivå α =0.10: Forkast H 0 dersom X z 0.05 eller Er det samme som: Forkast H 0 dersom X z X 80 z eller X 80 + z Er det samme som: Behold H 0 dersom 80 z X 80 + z Bjør H. Auestad Kp. 6: Hypotesetestig del 5 40 / 53

21 Kofidesitervall, Behold H 0 dersom z X 80 + z Er det samme som: behold H 0 dersom X z X + z Dette siste betyr: behold H 0 dersom μ 0 =80 90% kofidesitervall for μ. Bjør H. Auestad Kp. 6: Hypotesetestig del 5 41 / 53 Kofidesitervall, Gjeomførig / koklusjo: 90% α =0.1 z α/2 = z 0.05 =1.645 Et 90% kofidesitervall for vekte, μ, er isatt data, gj.s. = 76.87: , = 71.4, 82.4 Dvs.: side μ 0 =80 ikke grulag for å hevde at μ , 82.4, beholdes H 0. Dataee gir Bjør H. Auestad Kp. 6: Hypotesetestig del 5 42 / 53

22 Kofidesitervall, Geerelt: La L, U være et ev. tilærmet 1001 α% kofidesitervall for parametere θ. Vi vil teste H 0 : θ = θ 0 mot H 1 : θ θ 0 Test: Forkast H 0 dersom θ 0 L, U. Teste har sigifikasivå α ev. tilærmet. Veldig god måte å gjeomføre tosidige tester på! Obs.: dersom dette blir brukt for esidig test får vi e ae sammeheg mellom itervallets kofidesgrad og sig.ivået til teste. Bjør H. Auestad Kp. 6: Hypotesetestig del 5 43 / 53 Kofidesitervall, Eksempel: Hardhet til et spesielt stål blir udersøkt; seks måliger i kg/mm 2 : 351, 322, 297, 291, 354, 322. Gjeomsitt: 322.8; estimert varias empirisk varias: Ma er iteressert i om hardhete er forskjelig fra 300 kg/mm 2. Tyder resultatee på at hardhete er ulik 300? Målemodell med ormalatakelse; ukjet varias. Estimator for variase: = σ 2 = 1 1 i=1 Xi X 2 Forvetige, μ: virkelig hardhet Vil teste: H 0 : μ = 300 mot H 1 : μ 300 Bjør H. Auestad Kp. 6: Hypotesetestig del 5 44 / 53

23 Kofidesitervall, Øsker å bruke 5% sigifikasivå. Gjeomfører test vha. kofidesitervall; dvs., teste er: Forkast H 0 dersom et 95% kofidesitervall for μ ikke ieholder 300. Et 95% kofidesitervall for μ er gitt ved: S X t ,5 6, X + t 0.025,5 6 Bjør H. Auestad Kp. 6: Hypotesetestig del 5 45 / 53 Kofidesitervall, Et 95% kofidesitervall for μ er gitt ved: S X t ,5 6, X + t 0.025,5 6 Isatt data Gj.s. = 322.8, emp. varias = 689.4, t 0.025,5 =2.571, blir utreget itervall: , = 295.2, Koklusjo: Behold H 0 side μ 0 = , side μ 0 = 300 er ieholdt i kofidesitervallet. Bjør H. Auestad Kp. 6: Hypotesetestig del 5 46 / 53

24 Kofidesitervall, Eksempel: Sammelige meigsmåliger Forrige meigsmålig: 28% oppslutig Dee meigsmålig: 31% oppslutig Er det edrig i virkelig oppslutig? Obs.: Sammeliger resultater fra to grupper; ikke stadardmetode i dette kurset. Bjør H. Auestad Kp. 6: Hypotesetestig del 5 47 / 53 Kofidesitervall, Modell: Forrige meigsmålig: X 1 B 1,p 1 Dee meigsmålig: X 2 B 2,p 2 X 1 og X 2 atas å være statistisk uavhegige. Vi vil teste H 0 : p 1 = p 2 mot H 1 : p 1 p 2 Vi vil teste H 0 : p 1 p 2 =0 mot H 1 : p 1 p 2 0 Det vil være best å lage et kofidesitervall for p 1 p 2,og bruke dette til teste. p 1 p 2 estimeres med: p 1 p 2 = X 1 1 X 2 2 Bjør H. Auestad Kp. 6: Hypotesetestig del 5 48 / 53

25 Kofidesitervall, p 1 = X 1 1, p 2 = X 2 2 E p 1 p 2 = E p1 E p2 = p1 p 2 Var p 1 p 2 = Var p1 + Var p2 = p 1 1 p p 21 p 2 2 p 1 og p 2 er begge tilærmet ormalfordelte og de uavhegige. Vi ka da slutte at også p 1 p 2 er tilærmet ormalfordelt. Bjør H. Auestad Kp. 6: Hypotesetestig del 5 49 / 53 Kofidesitervall, p 1 p 2 er tilærmet ormalfordelt. Altså: p 1 p 2 p 1 p 2 p1 1 p p 21 p 2 2 N0, 1, tilærmet Nevere stadardavviket til p 1 p 2 ka tilærmes med: p1 1 p 1 + p 21 p Bruker symbolet ŜD p 1 p 2 for dee. Vi har: p 1 p 2 p 1 p 2 ŜD p 1 p 2 N0, 1, tilærmet Bjør H. Auestad Kp. 6: Hypotesetestig del 5 50 / 53

26 Kofidesitervall, Vi har: Medfører: P Derfor: p 1 p 2 p 1 p 2 ŜD p 1 p 2 N0, 1, z α/2 p 1 p 2 p 1 p 2 ŜD p 1 p 2 {}}{ P p 1 p 2 z α/2 ŜD p 1 p 2 L p 1 p 2 p 1 p 2 + z α/2 ŜD p 1 p 2 }{{} U tilærmet z α/2 1 α 1 α Bjør H. Auestad Kp. 6: Hypotesetestig del 5 51 / 53 Kofidesitervall, Vi har altså at L, U er et tilærmet 1 α100% kofidesitervall for differase p 1 p 2. Data: 1 = 1120, 2 = 1050; α =0.05 α/2 =0.025 og z =1.96 Utfall av p 1 p 2 : = 0.03 Utfall av ŜD p p1 1 p 1 1 p 2 = + p 21 p 2 : = Derfor, kofidesitervall: , = 0.008, Bjør H. Auestad Kp. 6: Hypotesetestig del 5 52 / 53

27 Kofidesitervall, Derfor, kofidesitervall: , = 0.008, Koklusjo: Side 0 er ieholdt i itervallet ka vi ikke forkaste H 0. Det er ikke grulag for å påstå at virkelig oppslutig er edret. Bjør H. Auestad Kp. 6: Hypotesetestig del 5 53 / 53

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 4

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 4 ÅMA11 Sasylighetsregig med statistikk, våre 21 Kp. 6, del 4 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 22. mars Bjør H. Auestad Kp. 6: Hypotesetestig del 4 1/ 29 Bjør

Detaljer

Hypotesetesting, del 4

Hypotesetesting, del 4 Oversikt, del 4 t-fordelig t-test t-itervall Del 5 Kofidesitervall vs. test p-verdi t-fordelig Rett på defiisjo: Utgagspuktet er målemodelle med ormalatakelse: X 1,...,X,u.i.f.tilf.var.derX i Nμ, σ 2 ).La

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008 Kp. 6, del 5

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008 Kp. 6, del 5 ÅMA110 Sasylighetsregig med statistikk, våre 2008 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 3. april Bjør H. Auestad Kp. 6: Hypotesetestig del 5 1/ 56

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 5. Hypotesetesting, del 5

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 5. Hypotesetesting, del 5 ÅMA11 Sasylighetsregig med statistikk, våre 7 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 26. mars Bjør H. Auestad Kp. 6: Hypotesetestig del 5 1/ 59 Bjør

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 5

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 5 ÅMA110 Sasylighetsregig med statistikk, våre 2006 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 3. april Bjør H. Auestad Kp. 6: Hypotesetestig del 5 1 / 56

Detaljer

Rep.: generelle begrep og definisjoner Kp. 10.1, 10.2 og 10.3

Rep.: generelle begrep og definisjoner Kp. 10.1, 10.2 og 10.3 Kp. 1, oversikt ; oversikt, t- ; oversikt ; stor ; Hypoteseig; ett- og to-utvalg Rep.: geerelle begrep og defiisjoer Kp. 1.1, 1.2 og 1.3 Rep.: ett-utvalgser for μ (...), p Kp. 1 og 1.8 Nytt: ett-utvalgs

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 4. Hypotesetesting, del 4

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 4. Hypotesetesting, del 4 ÅMA11 Sasylighetsregig med statistikk, våre 27 Kp. 6, del 4 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 19. mars Bjør H. Auestad Kp. 6: Hypotesetestig del 4 1/ 27 Bjør

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 2

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 2 ÅMA11 Sasylighetsregig med statistikk, våre 27 Kp. 6, del 2 Bjør H. Auestad Istitutt for matematikk og aturviteskap 5. mars 21 Bjør H. Auestad Kp. 6: del 1/2 1/ 42 Bjør H. Auestad Kp. 6: del 1/2 2/ 42

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 5

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 5 ÅMA110 Sasylighetsregig med statistikk, våre 2010 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 12. april Bjør H. Auestad Kp. 6: Hypotesetestig del 4 1/ 59

Detaljer

2. Hypotesetesting i ulike sitausjoner: i. for forventingen, μ, i målemodellen med normalantakelse og kjent varians, σ 2.

2. Hypotesetesting i ulike sitausjoner: i. for forventingen, μ, i målemodellen med normalantakelse og kjent varians, σ 2. Oversikt 1. Hva er hypotesetestig? 2. i ulike sitausjoer: i. for forvetige, μ, med ormalatakelse og kjet varias, σ 2. ii. for forvetige, μ, med stor og ormaltilærmig (variase, σ 2, ukjet). iii. for suksessasylighete,

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 ÅMA Sasylighetsregig med statistikk, våre 27 Kp. 6 (kp. 6) Tre deler av faget/kurset:. Beskrivede statistikk 2. Sasylighetsteori, sasylighetsregig 3. Statistisk iferes estimerig kofidesitervall hypotesetestig

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 ÅMA110 Sasylighetsregig med statistikk, våre 2006 Kp. 6, del 2 Bjør H. Auestad Kp. 6: Hypotesetesig del 2 1/ 38 Bjør H. Auestad Kp. 6: Hypotesetesig del 2 2/ 38 Oversikt 1. Hva er hypotesetestig? 2. Hypotesetestig

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Oppsummering

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Oppsummering ÅMA110 Sasylighetsregig med statistikk, våre 2007 Oppsummerig Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 19. april Bjør H. Auestad Oppsummerig våre 2006 1 / 37 Oversikt

Detaljer

MOT310 Statistiske metoder 1, høsten 2011

MOT310 Statistiske metoder 1, høsten 2011 MOT310 Statistiske metoder 1, høste 2011 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 24. august, 2011 Bjør H. Auestad Itroduksjo og repetisjo 1 / 32 Repetisjo; 9.1,

Detaljer

Hypotesetesting, del 5

Hypotesetesting, del 5 Oversikt, del 5 Kofidesitervall p-verdi Kofidesitervall E (tosidig test ka gjeomføres vha. av et kofidesitervall. For eksempel, dersom vi i målemodell 1 vil teste: H 0 : μ = μ 0 mot H 1 : μ μ 0, ka vi

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4 ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 27. mars Bjørn H. Auestad Kp. 6: Hypotesetesting

Detaljer

Repetisjon; 9.1, 9.2, 9.3, 9.4, 9.5, og Repetisjon; 9.1, 9.2, 9.3, 9.4, 9.5, og 9.10

Repetisjon; 9.1, 9.2, 9.3, 9.4, 9.5, og Repetisjon; 9.1, 9.2, 9.3, 9.4, 9.5, og 9.10 Repetisjo; 9.1, 9.2, 9.3, 9.4, 9.5, og 9.10 og Geerell defiisjo av : Situasjo: Data x 1,...,x ;utfallav:x 1,...,X ; u.i.f. tilfeldige variable Ukjet parameter i fordelige til X i ee: θ Dersom L og U L

Detaljer

MOT310 Statistiske metoder 1, høsten 2012

MOT310 Statistiske metoder 1, høsten 2012 MOT310 Statistiske metoder 1, høste 2012 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 20. august, 2012 Bjør H. Auestad Itroduksjo og repetisjo 1 / 57 Iformasjo Litt om

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Estimering. Målemodellen. Konfidensintervall, innledning. Kp. 5 Estimering.

ÅMA110 Sannsynlighetsregning med statistikk, våren Estimering. Målemodellen. Konfidensintervall, innledning. Kp. 5 Estimering. ÅMA0 Sasylighetsregig med statistikk våre 006 Kp. 5 Estimerig Estimerig. Målemodelle. Ihold:. (Pukt)Estimerig i biomisk modell (kp. 5.). Målemodelle... (kp. 5.3) 3. (Pukt)Estimerig i målemodelle (kp. 5.3)

Detaljer

Oversikt, del 5. Vi har sett på styrkefunksjon for ensidige tester. Eksempler (styrke, dimensjonering,...) Eksempler fra slutten av forrige uke

Oversikt, del 5. Vi har sett på styrkefunksjon for ensidige tester. Eksempler (styrke, dimensjonering,...) Eksempler fra slutten av forrige uke Hypotesetestig, del 4 oppsummerig fra Hypotesetestig, del 5 Kofidesitervall dimesjoerig Oversikt, del 5 Eksempler fra slutte av forrige uke Kofidesitervall p-verdi Eksempler Eksempler styrke, dimesjoerig,...

Detaljer

Oppgave 1 Hardheten til en bestemt legering er undersøkt med åtte målinger og resultatene ble (i kg/mm 2 ) som i tabellen til høyre.

Oppgave 1 Hardheten til en bestemt legering er undersøkt med åtte målinger og resultatene ble (i kg/mm 2 ) som i tabellen til høyre. EKSAMEN I: ÅMA110 SANNSYNLIGHETSREGNING MED STATISTIKK VARIGHET: 4 TIMER DATO: 28. AUGUST 2010 BOKMÅL TILLATTE HJELPEMIDLER: KALKULATOR: HP30S, Casio FX82 eller TI-30 OPPGAVESETTET BESTÅR AV 3 OPPGAVER

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 5 Estimering. Målemodellen.

ÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 5 Estimering. Målemodellen. ÅMA0 Sasylighetsregig med statistikk, våre 0 Kp. 5 Estimerig. Målemodelle. Estimerig. Målemodelle. Ihold:. (Pukt)Estimerig i biomisk modell (kp. 5.). Målemodelle... (kp. 5.). (Pukt)Estimerig i målemodelle

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Estimering. Målemodellen. Sannsynlighetsregning med statistikk. Kp. 5 Estimering.

ÅMA110 Sannsynlighetsregning med statistikk, våren Estimering. Målemodellen. Sannsynlighetsregning med statistikk. Kp. 5 Estimering. ÅMA asylighetsregig med statistikk våre 008 Kp. 5 Estimerig Estimerig. Målemodelle. Ihold:. (ukt)estimerig i biomisk modell (kp. 5.). Målemodelle... (kp. 5.3) 3. (ukt)estimerig i målemodelle (kp. 5.3)

Detaljer

Kap. 9: Inferens om én populasjon. Egenskaper ved t-fordelingen. ST0202 Statistikk for samfunnsvitere. I Kapittel 8 brukte vi observatoren

Kap. 9: Inferens om én populasjon. Egenskaper ved t-fordelingen. ST0202 Statistikk for samfunnsvitere. I Kapittel 8 brukte vi observatoren 2 Kap. 9: Iferes om é populasjo I Kapittel 8 brukte vi observatore z = x μ σ/ for å trekke koklusjoer om μ. Dette krever kjet σ (urealistisk). ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro.

ÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro. ÅMA Sasylighetsregig med statistikk, våre Kp. 4 Kotiuerlige tilfeldige variable; Normalfordelig Kotiuerlige tilfeldige variable, itro. (eller: Kotiuerlige sasylighetsfordeliger) Vi har til å sett på diskrete

Detaljer

X = 1 5. X i, i=1. som vil være normalfordelt med forventningsverdi E( X) = µ og varians Var( X) = σ 2 /5. En rimelig estimator for variansen er

X = 1 5. X i, i=1. som vil være normalfordelt med forventningsverdi E( X) = µ og varians Var( X) = σ 2 /5. En rimelig estimator for variansen er Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalte oppgaver 11, blokk II Løsigsskisse Oppgave 1 a) E rimelig estimator for forvetigsverdie µ er gjeomsittet X = 1 X i, som

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 20. mars Bjørn H. Auestad Kp. 6: Hypotesetesting

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 20. mars Bjørn H. Auestad Kp. 6: Hypotesetesting

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren

ÅMA110 Sannsynlighetsregning med statistikk, våren ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 3. april Bjørn H. Auestad Kp. 6: Hypotesetesting

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro.

ÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro. ÅMA0 Sasylighetsregig med statistikk, våre 008 Kp. 4 Kotiuerlige tilfeldige variable; Normalfordelig Kotiuerlige tilfeldige variable, itro. (eller: Kotiuerlige sasylighetsfordeliger) Vi har til å sett

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 Høst 205 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer, blokk II Løsigsskisse Oppgave a) X bi(, p) fordi: Udersøker uavhegige delar av DNA-strukture. Fi for kvar del

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro.

ÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro. ÅMA Sasylighetsregig med statistikk, våre 6 Kp. 4 Kotiuerlige tilfeldige variable og ormaldelige Kotiuerlige tilfeldige variable, itro. (eller: Kotiuerlige sasylighetsdeliger) Vi har til å sett på diskrete

Detaljer

Eksempler fra slutten av forrige uke. Eksempler (styrke, dimensjonering,...) Eksempler fra slutten av forrige uke

Eksempler fra slutten av forrige uke. Eksempler (styrke, dimensjonering,...) Eksempler fra slutten av forrige uke Oversikt, del 5 Hypotesetestig, del 4 (oppsummerig fra Hypotesetestig, del 5 Kofidesitervall dimesjoerig Eksempler fra slutte av forrige uke Kofidesitervall p-verdi Eksempler Eksempler (styrke, dimesjoerig,...

Detaljer

Oppgaver fra boka: Med lik men ukjent varians antatt har vi fra pensum at. t n1 +n 2 2 under H 0 (12 1) (12 1)

Oppgaver fra boka: Med lik men ukjent varians antatt har vi fra pensum at. t n1 +n 2 2 under H 0 (12 1) (12 1) MOT30 Statistiske metoder, høste00 Løsiger til regeøvig r. 5 (s. ) Oppgaver fra boka: Oppgave 0.36 (0.0:8) Dekkslitasje X,..., X u.i.f. N(µ, σ ) og X,..., X u.i.f. N(µ, σ ) og alle variable er uavhegige.

Detaljer

Estimering 2. -Konfidensintervall

Estimering 2. -Konfidensintervall Estimerig 2 -Kofidesitervall Dekkes av kap. 9.4-9.5, 9.10, 9.12 og forelesigsotatee. Dersom forsøket gjetas mage gager vil (1 α)100% av itervallee [ ˆΘ L, ˆΘ U ] ieholde de ukjete parametere θ (som er

Detaljer

TMA4245 Statistikk Eksamen mai 2017

TMA4245 Statistikk Eksamen mai 2017 TMA445 Statistikk Eksame mai 07 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsskisse Oppgave a Når vi reger ut disse tre sasylighetee må ma huske på at de mulige verdiee

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalt øvig 11 Løsigsskisse Oppgave 1 a) E rimelig estimator for forvetigsverdie µ er gjeomsittet X = 1 X i, som vil være ormalfordelt

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 ÅMA0 Sasylighetsregig med statistikk, våre 007 Kp. 4 Kotiuerlige tilfeldige variable; Normalfordelig Kotiuerlige tilfeldige variable, itro. (eller: Kotiuerlige sasylighetsfordeliger) Vi har til å sett

Detaljer

Løsningsforslag Oppgave 1

Løsningsforslag Oppgave 1 Løsigsforslag Oppgave 1 a X i µ 0 σ X i µ 0 2 σ 2, i 1,..., er uavhegige og stadard N0, 1 fordelte. Da er, i 1,..., uavhegige og χ 2 -fordelte med e frihetsgrad. Da er summe χ 2 -fordelt med atall frihetsgrader

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK 5.august 2004

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK 5.august 2004 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 0 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK 5.august 2004 Oppgave Foruresig X er e stokastisk variabel som agir

Detaljer

Kapittel 8: Estimering

Kapittel 8: Estimering Kaittel 8: Estimerig Estimerig hadler kort sagt om hvorda å aslå verdie å arametre som,, og dersom disse er ukjete. like arametre sier oss oe om oulasjoe vi studerer (dvs om alle måliger av feomeet som

Detaljer

Statistikk og økonomi, våren 2017

Statistikk og økonomi, våren 2017 Statistikk og økoomi, våre 07 Obligatorisk oppgave 6 Løsigsforslag Oppgave E terig kastes 0 gager, og det registreres hvor mage 6-ere som oppås i løpet av disse 0 kastee. Vi ka kalle atall 6-ere i løpet

Detaljer

5 y y! e 5 = = y=0 P (Y < 5) = P (Y 4) = 0.44,

5 y y! e 5 = = y=0 P (Y < 5) = P (Y 4) = 0.44, Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalte oppgaver 9, blokk II Løsigsskisse Oppgave a) Vi lar her Y være atall fugler som kolliderer med vidmølla i løpet av de gitte

Detaljer

Introduksjon. Hypotesetesting / inferens (kap 3) Populasjon og utvalg. Populasjon og utvalg. Populasjonsvarians

Introduksjon. Hypotesetesting / inferens (kap 3) Populasjon og utvalg. Populasjon og utvalg. Populasjonsvarians Hypotesetestig / iferes (kap ) Itroduksjo Populasjo og utvalg Statistisk iferes Utvalgsfordelig (samplig distributio) Utvalgsfordelige til gjeomsittet Itroduksjo Vi øsker å få iformasjo om størrelsee i

Detaljer

Estimering og hypotesetesting. Estimering og hypotesetesting. Estimering og hypotesetesting. Kapittel 10. Ett- og toutvalgs hypotesetesting

Estimering og hypotesetesting. Estimering og hypotesetesting. Estimering og hypotesetesting. Kapittel 10. Ett- og toutvalgs hypotesetesting 3 Estimerig og hypotesetestig Kapittel 10 Ett- og toutvalgs hypotesetestig TMA4240 H2006: Eirik Mo Feome Bilkjørig Høyde til studeter Estimator ˆp = X, X atall ˆµ = X gjeomsittlig høyde. som syes de er

Detaljer

TMA4240 Statistikk Høst 2009

TMA4240 Statistikk Høst 2009 TMA440 Statistikk Høst 009 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b4 Løsigsskisse Oppgave Øsker å fie 99% kofidesitervall for µ µ år vi atar ormalfordeliger

Detaljer

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>. 1 ECON130: EKSAMEN 013 VÅR - UTSATT PRØVE TALLSVAR. Det abefales at de 9 deloppgavee merket med A, B, teller likt uasett variasjo i vaskelighetsgrad. Svaree er gitt i

Detaljer

H 1 : µ 1 µ 2 > 0. t = ( x 1 x 2 ) (µ 1 µ 2 ) s p. s 2 p = s2 1 (n 1 1) + s 2 2 (n 2 1) n 1 + n 2 2

H 1 : µ 1 µ 2 > 0. t = ( x 1 x 2 ) (µ 1 µ 2 ) s p. s 2 p = s2 1 (n 1 1) + s 2 2 (n 2 1) n 1 + n 2 2 TMA4245 Statistikk Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b4 Løsigsskisse Oppgave 1 Vi øsker å fie ut om et ytt serum ka stase leukemi. 5 mus får serumet, 4

Detaljer

Emnenavn: Metode 1, statistikk deleksamen. Eksamenstid: 4 timer. Faglærer: Bjørnar Karlsen Kivedal

Emnenavn: Metode 1, statistikk deleksamen. Eksamenstid: 4 timer. Faglærer: Bjørnar Karlsen Kivedal EKSAMEN Emekode: SFB10711 Emeav: Metode 1, statistikk deleksame Dato: 10. oktober 2018 Hjelpemidler: Godkjet kalkulator og vedlagt formelsamlig m/tabeller Eksamestid: 4 timer Faglærer: Bjørar Karlse Kivedal

Detaljer

LØSNINGSFORSLAG TILEKSAMEN I FAG TMA4240/TMA4245 STATISTIKK 10. august 2005

LØSNINGSFORSLAG TILEKSAMEN I FAG TMA4240/TMA4245 STATISTIKK 10. august 2005 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 8 LØSNINGSFORSLAG TILEKSAMEN I FAG TMA440/TMA445 STATISTIKK 0. august 005 Oppgave Smeltepuktsbestemmelse a) Vi jobber i dette

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 ÅMA0 Sasylighetsregig statistikk våre 0 Kp. 4 Kotiulige tilfeldige variable; Normalfordelig Kotiulige tilfeldige variable itro. (ell: Kotiulige sasylighetsfordelig Vi har til å sett på diskrete fordelig

Detaljer

Løsningsforsalg til første sett med obligatoriske oppgaver i STK1110 høsten 2015

Løsningsforsalg til første sett med obligatoriske oppgaver i STK1110 høsten 2015 Løsigsforsalg til første sett med obligatoriske oppgaver i STK1110 høste 2015 Oppgave 1 (a Et 100(1 α% kofidesitervall for forvetigsverdie µ er gitt ved formel (8.15 på side 403 i læreboka. For situasjoe

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdelig for tekologi Målform: Bokmål Eksamesdato: 19 des. 2014 Varighet/eksamestid: Emekode: 3 timer TALM1005 Emeav: Statistikk og Økoomi statistikkdele Klasser: Logistikk 1 Kjemi

Detaljer

Løsningsforsalg til første sett med obligatoriske oppgaver i STK1110 høsten 2018

Løsningsforsalg til første sett med obligatoriske oppgaver i STK1110 høsten 2018 Løsigsforsalg til første sett med obligatoriske oppgaver i STK1110 høste 2018 Oppgave 1 (a Et 100(1 α% kofidesitervall for forvetigsverdie µ er gitt ved formel (8.15 på side 403 i læreboka. For situasjoe

Detaljer

Konfidensintervall. Notat til STK1110. Ørnulf Borgan, Ingrid K. Glad og Anders Rygh Swensen Matematisk institutt, Universitetet i Oslo.

Konfidensintervall. Notat til STK1110. Ørnulf Borgan, Ingrid K. Glad og Anders Rygh Swensen Matematisk institutt, Universitetet i Oslo. Kofidesitervall Notat til STK1110 Ørulf Borga, Igrid K. Glad og Aders Rygh Swese Matematisk istitutt, Uiversitetet i Oslo August 2007 Formål E valig metode for å agi usikkerhete til et estimat er å berege

Detaljer

Kap. 9: Inferens om én populasjon

Kap. 9: Inferens om én populasjon 2 ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for matematiske fag Ka. 9: Iferes om é oulasjo Hvis σ er ukjet bytter vi ut σ med s i Ny observator blir t = x μ s/ z = x μ σ/ der s = Σx 2 (Σx)

Detaljer

Oppgaver fra boka: X 2 X n 1

Oppgaver fra boka: X 2 X n 1 MOT30 Statistiske metoder, høste 00 Løsiger til regeøvig r 3 (s ) Oppgaver fra boka: 94 (99:7) X,, X uif N(µ, σ ) og X,, X uif N(µ, σ ) og alle variable er uavhegige Atar videre at σ = σ = σ og ukjet Kodesitervall

Detaljer

KLMED8004 Medisinsk statistikk. Del I, høst Estimering. Tidligere sett på. Eksempel hypertensjon

KLMED8004 Medisinsk statistikk. Del I, høst Estimering. Tidligere sett på. Eksempel hypertensjon Tidligere sett på KLMED8004 Medisisk statistikk Del I, høst 008 Estimerig Hvorda kjete sasylighetsfordeliger (biomialfordelig, ormalfordelig) med kjete populasjosparametrer (forvetig, varias osv.) ka gi

Detaljer

TMA4240/4245 Statistikk 11. august 2012

TMA4240/4245 Statistikk 11. august 2012 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag TMA424/4245 Statistikk. august 22 Eksame - løsigsforslag Oppgave Vi har N Nµ,σ 2, µ 85 og X > 88. a X µ X > 88 σ > 88 µ Z > 88 85

Detaljer

) = P(Z > 0.555) = > ) = P(Z > 2.22) = 0.013

) = P(Z > 0.555) = > ) = P(Z > 2.22) = 0.013 TMA4240 Statistikk Vår 2008 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b5 Løsigsskisse Oppgave 1 a) X 1,...,X 16 er u.i.f. N(80,18 2 ). Setter Y = X. i) P(X 1 >

Detaljer

ECON240 Statistikk og økonometri

ECON240 Statistikk og økonometri ECON240 Statistikk og økoometri Arild Aakvik, Istitutt for økoomi 1 Mellomregig MKM Model: Y i = a i + bx i + e i MKM-estimator for b: b = = Xi Y i 1 Xi Yi Xi 1 ( X i ) 2 (Xi X)(Y i Ȳi) (Xi X) 2 hvor vi

Detaljer

TMA4240 Statistikk Eksamen desember 2015

TMA4240 Statistikk Eksamen desember 2015 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag TMA20 Statistikk Eksame desember 205 Løsigsskisse Oppgave a) De kumulative fordeligsfuksjoe til X, F (x) P (X x): F (x) P (X x) x

Detaljer

TMA4245 Statistikk Eksamen august 2015

TMA4245 Statistikk Eksamen august 2015 Eksame august 15 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsskisse Oppgave 1 a asylighetee blir og X > Z > 1 1 Z 1 Φ.3,.5 W > 5 X + Y > 5 b Forvetet samfuskostad blir

Detaljer

Oppgave 1. (i) Hva er sannsynligheten for at det øverste kortet i bunken er et JA-kort?

Oppgave 1. (i) Hva er sannsynligheten for at det øverste kortet i bunken er et JA-kort? ECON EKSAMEN 8 VÅR TALLSVAR Oppgave Vi har e kortstokk beståede av 6 kort. På av disse står det skrevet JA på forside mes det står NEI på forside av de adre kortee. Hvis ma får se kortet med bakside vedt

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdelig for tekologi Målform: Bokmål Eksamesdato: 5 jui 2015 Varighet/eksamestid: Emekode: 3 timer TALM1005 Emeav: Statistikk og Økoomi statistikkdele Klasser: Logistikk 1 Kjemi

Detaljer

Emnenavn: Eksamenstid: 4 timer. Faglærer: Hans Kristian Bekkevard

Emnenavn: Eksamenstid: 4 timer. Faglærer: Hans Kristian Bekkevard EKSAMEN Emekode: SFB107111 Emeav: Metode 1, statistikk deleksame Dato: 7. mai 2018 Hjelpemidler: Godkjet kalkulator og vedlagt formelsamlig m/tabeller Eksamestid: 4 timer Faglærer: Has Kristia Bekkevard

Detaljer

Kap. 9: Inferens om én populasjon

Kap. 9: Inferens om én populasjon 2 ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for matematiske fag Ka. 9: Iferes om é oulasjo Hvis σ er ukjet bytter vi ut σ med s i Ny observator blir t = x μ s/ z = x μ σ/ der s = Σx 2 (Σx)

Detaljer

Oversikt over konfidensintervall i Econ 2130

Oversikt over konfidensintervall i Econ 2130 1 HG Revidert april 011 Oversikt over kofidesitervall i Eco 130 Merk at dee oversikte ikke er met å leses istedefor framstillige i Løvås, me som et supplemet. Løvås ieholder mage verdifulle kommetarer

Detaljer

LØSNING, EKSAMEN I STATISTIKK, TMA4240, DESEMBER Anta at sann porøsitet er r. Måling med utstyret gir da X n(x; r, 0,03).

LØSNING, EKSAMEN I STATISTIKK, TMA4240, DESEMBER Anta at sann porøsitet er r. Måling med utstyret gir da X n(x; r, 0,03). LØSNING, EKSAMEN I STATISTIKK, TMA440, DESEMBER 006 OPPGAVE 1 Ata at sa porøsitet er r. Målig med utstyret gir da X (x; r, 0,03). a) ( ) X r P(X > r) P 0,03 > 0 P(Z > 0) 0,5. ( X r P(X r > 0,05) P 0,03

Detaljer

Estimering 1 -Punktestimering

Estimering 1 -Punktestimering Estimerig 1 -Puktestimerig Dekkes av kap. 8, 9.1-9.3 og 9.15/9.14. Vi har til å settpå e rekke forskjellige sasylighetsfordeliger og sett hvorda disse ka brukes til å modellere mage forskjellige typer

Detaljer

STK1100 våren 2017 Estimering

STK1100 våren 2017 Estimering STK1100 våre 017 Estimerig Svarer til sidee 331-339 i læreboka Ørulf Borga Matematisk istitutt Uiversitetet i Oslo 1 Politisk meigsmålig Spør et tilfeldig utvalg på 1000 persoer hva de ville ha stemt hvis

Detaljer

Estimering 1 -Punktestimering

Estimering 1 -Punktestimering Estimerig 1 -Puktestimerig Dekkes av kap. 8, 9.1-9.3 og 9.15/9.14. Vi har til å settpå e rekke forskjellige sasylighetsfordeliger og sett hvorda disse ka brukes til å modellere mage forskjellige typer

Detaljer

Kort repetisjon fra kapittel 4. Oppsummering kapittel ST0202 Statistikk for samfunnsvitere. Betinget sannsynlighet og trediagram

Kort repetisjon fra kapittel 4. Oppsummering kapittel ST0202 Statistikk for samfunnsvitere. Betinget sannsynlighet og trediagram 2 Kort reetisjo fra kaittel 4 Betiget sasylighet og trediagram Eksemel: Fra e oulasjo av idrettsfolk trekkes e erso tilfeldig og testes for doig. De iteressate hedelsee er D=ersoe er doet, A=teste er ositiv.

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 ÅMA110 asylighetsregig med statistikk våre 011 Kp. 5 Estimerig 1 Estimerig. Målemodelle. Ihold: 1. (ukt)estimerig i biomisk modell (kp. 5.). Målemodelle... (kp. 5.3) 3. (ukt)estimerig i målemodelle (kp.

Detaljer

Oversikt over konfidensintervall i Econ 2130

Oversikt over konfidensintervall i Econ 2130 HG April 00 Oversikt over kofidesitervall i Eco 30 Merk at dee oversikte ikke er met å leses istedefor framstillige i Løvås, me som et supplemet. Løvås ieholder mage verdifulle kommetarer og eksempler.

Detaljer

Estimering og hypotesetesting. Estimering og hypotesetesting. Estimering og hypotesetesting. Kapittel 10. Ett- og toutvalgs hypotesetesting

Estimering og hypotesetesting. Estimering og hypotesetesting. Estimering og hypotesetesting. Kapittel 10. Ett- og toutvalgs hypotesetesting 3 Estimerig og hypotesetestig Kapittel 10 Ett- og toutvalgs hypotesetestig TMA445 V007: Eirik Mo Feome Bilkjørig Høyde til studeter Estimator ˆp = X, X atall ˆµ = X gjeomsittlig høyde. som syes de er flikere

Detaljer

Mer om utvalgsundersøkelser

Mer om utvalgsundersøkelser Mer om utvalgsudersøkelser I uderkapittel 3.6 i læreboka gir vi e kort iførig i takegage ved utvalgsudersøkelser. Vi gir her e grudigere framstillig av temaet. Populasjo og utvalg Ved e utvalgsudersøkelse

Detaljer

Oppgave 1 a) Minste kvadraters metode tilpasser en linje til punktene ved å velge den linja som minimerer kvadratsummen. x i (y i α βx i ) = 0, SSE =

Oppgave 1 a) Minste kvadraters metode tilpasser en linje til punktene ved å velge den linja som minimerer kvadratsummen. x i (y i α βx i ) = 0, SSE = Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalte oppgaver 2, blokk II Løsigsskisse Oppgave a Miste kvadraters metode tilpasser e lije til puktee ved å velge de lija som

Detaljer

211.7% 2.2% 53.0% 160.5% 30.8% 46.8% 17.2% 11.3% 38.7% 0.8%

211.7% 2.2% 53.0% 160.5% 30.8% 46.8% 17.2% 11.3% 38.7% 0.8% Prøve-eksame II MET 1190 Statistikk Dato 31. mai 2019 kl 1100-1400 Alle svar skal begrues. Når besvarelse evalueres, blir det lagt vekt på at framgagsmåte og resultat preseteres så klart, presist og kortfattet

Detaljer

Forventningsverdi. MAT0100V Sannsynlighetsregning og kombinatorikk

Forventningsverdi. MAT0100V Sannsynlighetsregning og kombinatorikk MAT0100V Sasylighetsregig og kombiatorikk Forvetigsverdi Sasylighetsfordelige til e tilfeldig variabel X gir sasylighete for de ulike verdiee X ka ata Forvetig, varias og stadardavvik Tilærmig av biomiske

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 0 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Oppgave Midtveiseksame a) X er e stokastisk variabel

Detaljer

TMA4240 Statistikk 2014

TMA4240 Statistikk 2014 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer 2, blokk II Løsigsskisse Oppgave a µ populasjosgjeomsitt, dvs. eit gjeomsitt for alle bilae som køyrer på vegstrekige

Detaljer

TMA4245 Statistikk Vår 2015

TMA4245 Statistikk Vår 2015 TMA4245 Statistikk Vår 2015 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer 12, blokk II Oppgave 1 Kari har ylig kjøpt seg e y bil. Nå øsker hu å udersøke biles besiforbruk

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-aturviteskapelige fakultet Eksame i STK2120 Statistiske metoder og dataaalyse 2 Eksamesdag: Madag 6. jui 2011. Tid for eksame: 09.00 13.00. Oppgavesettet er på 5 sider.

Detaljer

EKSAMENSOPPGAVE. Mat-1060 Beregningsorientert programmering og statistikk

EKSAMENSOPPGAVE. Mat-1060 Beregningsorientert programmering og statistikk Fakultet for aturviteskap og tekologi EKSAMENSOPPGAVE Eksame i: (Kode og av) Dato: 05.1.017 Klokkeslett: 09:00-13:00 Sted: Åsgårdv 9 Mat-1060 Beregigsorietert programmerig og statistikk Tillatte hjelpemidler:

Detaljer

(Det tas forbehold om feil i løsningsforslaget.) Oppgave 1

(Det tas forbehold om feil i løsningsforslaget.) Oppgave 1 ÅMA1 Sannsylighetsregning og statistikk Løsningsforslag til eksamen vår 2011, s. 1 (Det tas forbehold om feil i løsningsforslaget.) Oppgave 1 a) Data: x 1, x 2, x 3, x 4, x 5 Gjennomsnitt: x = 1 5 (x 1

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 TMA4240 Statistikk Høst 2015 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer 12, blokk II I dee siste øvige fokuserer vi på lieær regresjo, der vi har kjete kovariater

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren

ÅMA110 Sannsynlighetsregning med statistikk, våren ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Oppsummering Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 24. april Bjørn H. Auestad Oppsummering våren

Detaljer

Løsningsforslag ST1101/ST6101 kontinuasjonseksamen 2018

Løsningsforslag ST1101/ST6101 kontinuasjonseksamen 2018 Løsigsforslag ST/ST6 kotiuasjoseksame Oppgave a Defier hedelsee R, B, B rød kule i første trekig, blå kule i adre trekig, blå kule i tredje trekig. Vi skal fie PR B B for to ulike situasjoer. Geerelt vet

Detaljer

Løsningsforslag ST2301 øving 3

Løsningsforslag ST2301 øving 3 Løsigsforslag ST2301 øvig 3 Kapittel 1 Exercise 11 Et utvalg på 100 idivider trekkes fra e populasjo med tilfeldig parrig. Det ble observert AA 63 idivider av geotype AA, Aa 27, og aa 10. Lag et 95 % kofidesitervall

Detaljer

ST1201 Statistiske metoder

ST1201 Statistiske metoder ST20 Statistiske metoder Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsforslag - Eksame desember 2005 Oppgave a Ma beyttet radomisert blokkdesig. I situasjoe har ma k =

Detaljer

TMA4245 Statistikk Eksamen 9. desember 2013

TMA4245 Statistikk Eksamen 9. desember 2013 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag TMA4245 Statistikk Eksame 9. desember 2013 Oppgave 1 I kortspillet Blackjack får ma de høyeste geviste hvis de to første kortee ma

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksame i: ECON130 Statistikk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamesdag: 6.05.017 Sesur kugøres: 16.06.017 Tid for eksame: kl. 14:30 17:30 Oppgavesettet er på 6 sider Tillatte helpemidler: Alle

Detaljer

Econ 2130 uke 15 (HG) Poissonfordelingen og innføring i estimering

Econ 2130 uke 15 (HG) Poissonfordelingen og innføring i estimering Eco 130 uke 15 (HG) Poissofordelige og iførig i estimerig 1 Poissofordelige (i) Tilærmig til biomialfordelige. Regel. ( Poissotilærmelse ) Ata Y ~ bi(, p) E( Y ) = p og var( Y ) = p(1 p). Hvis er stor

Detaljer

Econ 2130 Forelesning uke 11 (HG)

Econ 2130 Forelesning uke 11 (HG) Eco 130 Forelesig uke 11 (HG) Mer om ormalfordelige og setralgreseteoremet Uke 1 1 Fra forrige gag ~ betyr er fordelt som. ~ N( µσ, ) E( ) = µ, og var( ) = σ Normalfordelige er symmetrisk om μ og kotiuerlig

Detaljer

Introduksjon. Hypotesetesting / inferens (kap 3) Populasjon og utvalg. Populasjon og utvalg. Populasjonsvarians

Introduksjon. Hypotesetesting / inferens (kap 3) Populasjon og utvalg. Populasjon og utvalg. Populasjonsvarians Hypotesetestig / iferes (kap ) Itroduksjo Populasjo og utvalg Statistisk iferes Utvalgsfordelig (samplig distributio) Utvalgsfordelige til gjeomsittet «The hardest thig to teach i ay itroductory statistics

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalt øvig 8 Løsigsskisse Oppgave 1 a) Simuler 1000 datasett i MATLAB. Hvert datasett skal bestå av 100 utfall fra e ormalfordelig

Detaljer

Forelesning 4 og 5 Transformasjon, Weibull-, lognormal, beta-, kji-kvadrat -, t-, F- fordeling

Forelesning 4 og 5 Transformasjon, Weibull-, lognormal, beta-, kji-kvadrat -, t-, F- fordeling STAT (V6) Statistikk Metoder Yushu.Li@uib.o Forelesig 4 og 5 Trasformasjo, Weibull-, logormal, beta-, kji-kvadrat -, t-, F- fordelig. Oppsummerig til Forelesig og..) Momet (momet about 0) og setral momet

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 21. april Bjørn H. Auestad Oppsummering våren

Detaljer

Oversikt over konfidensintervall i Econ 2130

Oversikt over konfidensintervall i Econ 2130 1 HG Revidert april 014 Oversikt over kofidesitervall i Eco 130 Merk at dee oversikte ikke er met å leses istedefor framstillige i Løvås, me som et supplemet. De ieholder tabeller med formler for kofidesitervaller

Detaljer