ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 5

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 5"

Transkript

1 ÅMA110 Sasylighetsregig med statistikk, våre 2010 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 12. april Bjør H. Auestad Kp. 6: Hypotesetestig del 4 1/ 59 Bjør H. Auestad Kp. 6: Hypotesetestig del 4 2/ 59

2 Oversikt, del 5 Kofidesitervall p-verdi Bjør H. Auestad Kp. 6: Hypotesetestig del 4 3/ 59 Kofidesitervall E (tosidig test ka gjeomføres vha. av et kofidesitervall. For eksempel, dersom vi i målemodell 1 vil teste: H 0 : μ = μ 0 mot H 1 : μ μ 0, ka vi bruke: Test (sig.ivå α: Forkast H 0 dersom X μ 0 σ 2 z α/2 eller X μ 0 σ 2 z α/2 Vi skal se at dette er det samme som: Forkast H 0 dersom μ 0 ikke er ikludert i kofidesitervallet for μ. Bjør H. Auestad Kp. 6: Hypotesetestig del 4 4/ 59

3 Kofidesitervall Eksempel: Vi skal kjøpe smolt av e smoltoppdretter. Det hevdes at gjeomsittsvekte til smolte i merde er 80 gram. Vekt av i tilfeldig valgte smolt: gj.s.-vekt: gram. Vi er iteressert i om vekte (gjeomsittsvekt for alle smolt i merde kaværeulik80gram. Tyder resultatee på at vekte ka er ulik 80 gram? Målemodell med ormalatakelse; kjet varias, σ 2 =10 2. Forvetige, μ: vekt(gjeomsittsvekt for alle smolt i merde Vil teste: H 0 : μ =80 mot H 1 : μ 80 Bjør H. Auestad Kp. 6: Hypotesetestig del 4 5/ 59 Kofidesitervall Vil teste: H 0 : μ = 80 mot H 1 : μ 80 Test (sig.ivå α =0.10: Forkast H 0 dersom X z 0.05 eller X z 0.05 Er det samme som: Forkast H 0 dersom 10 X 80 z eller X 80 + z Er det samme som: Behold H 0 dersom 80 z X 80 + z Bjør H. Auestad Kp. 6: Hypotesetestig del 4 6/ 59

4 Kofidesitervall Behold H 0 dersom z X 80 + z Er det samme som: behold H 0 dersom X z X + z Dette siste betyr: behold H 0 dersom μ 0 =80 90% kofidesitervall for μ. Bjør H. Auestad Kp. 6: Hypotesetestig del 4 7/ 59 Kofidesitervall Gjeomførig / koklusjo: 90% α =0.1 z α/2 = z 0.05 =1.645 Et 90% kofidesitervall for vekte, μ, er (isatt data, gj.s. = 76.87: ( ( , = 71.4, 82.4 Dvs.: side μ 0 =80 gir ikke grulag for å hevde at μ 80. ( 71.4, 82.4, beholdes H 0. Dataee Bjør H. Auestad Kp. 6: Hypotesetestig del 4 8/ 59

5 Kofidesitervall Geerelt: La (L, U være et (ev. tilærmet 100(1 α% kofidesitervall for parametere θ. Vi vil teste H 0 : θ = θ 0 mot H 1 : θ θ 0 Test: Forkast H 0 dersom θ 0 (L, U. Teste har sigifikasivå α (ev. tilærmet. Veldig god måte å gjeomføre (tosidige tester på! Obs.: dersom dette blir brukt for esidig test får vi e ae sammeheg mellom itervallets kofidesgrad og sig.ivået til teste. Bjør H. Auestad Kp. 6: Hypotesetestig del 4 9/ 59 Kofidesitervall Eksempel: Hardhet til et spesielt stål blir udersøkt; seks måliger (i kg/mm 2 : 351, 322, 297, 291, 354, 322. Gjeomsitt: 322.8; estimert varias (empirisk varias: Ma er iteressert i om hardhete er forskjelig fra 300 kg/mm 2. Tyder resultatee på at hardhete er ulik 300? Målemodell med ormalatakelse; ukjet varias. Estimator for variase: = σ 2 = 1 ( 1 i=1 Xi X 2 Forvetige, μ: virkelig hardhet Vil teste: H 0 : μ = 300 mot H 1 : μ 300 Bjør H. Auestad Kp. 6: Hypotesetestig del 4 10 / 59

6 Kofidesitervall Øsker å bruke 5% sigifikasivå. Gjeomfører test vha. kofidesitervall; dvs., teste er: Forkast H 0 dersom et 95% kofidesitervall for μ ikke ieholder 300. Et 95% kofidesitervall for μ er gitt ved: S (X t ,5 6, X + t 0.025,5 6 Bjør H. Auestad Kp. 6: Hypotesetestig del 4 11 / 59 Kofidesitervall Et 95% kofidesitervall for μ er gitt ved: S (X t ,5 6, X + t 0.025,5 6 Isatt data (Gj.s. = 322.8, emp. varias = 689.4, t 0.025,5 =2.571, blir utreget itervall: ( ( , = 295.2, Koklusjo: Behold H 0 side μ 0 = 300 (295.2, side μ 0 = 300 er ieholdt i kofidesitervallet. Bjør H. Auestad Kp. 6: Hypotesetestig del 4 12 / 59

7 Kofidesitervall Eksempel: Sammelige meigsmåliger Forrige meigsmålig: 28% oppslutig Dee meigsmålig: 31% oppslutig Er det edrig i virkelig oppslutig? Obs.: Sammeliger resultater fra to grupper; ikke stadardmetode i dette kurset. Bjør H. Auestad Kp. 6: Hypotesetestig del 4 13 / 59 Kofidesitervall Modell: Forrige meigsmålig: X 1 B( 1,p 1 Dee meigsmålig: X 2 B( 2,p 2 X 1 og X 2 atas å være statistisk uavhegige. Vi vil teste H 0 : p 1 = p 2 mot H 1 : p 1 p 2 Vi vil teste H 0 : p 1 p 2 =0 mot H 1 : p 1 p 2 0 Det vil være best å lage et kofidesitervall for p 1 p 2,og bruke dette til teste. p 1 p 2 estimeres med: p 1 p 2 = X 1 X 2 1 Bjør H. Auestad Kp. 6: Hypotesetestig del 4 14 / 59 2

8 Kofidesitervall p 1 = X 1 1, p 2 = X 2 2 E ( p 1 p 2 = E ( p1 E ( p2 = p1 p 2 Var ( p 1 p 2 = Var ( p1 + Var ( p2 = p 1 (1 p p 2(1 p 2 2 p 1 og p 2 er begge tilærmet ormalfordelte og de uavhegige. Vi ka da slutte at også p 1 p 2 er tilærmet ormalfordelt. Bjør H. Auestad Kp. 6: Hypotesetestig del 4 15 / 59 Kofidesitervall p 1 p 2 er tilærmet ormalfordelt. Altså: p 1 p 2 (p 1 p 2 p1 (1 p p 2(1 p 2 2 N(0, 1, tilærmet Nevere (stadardavviket til p 1 p 2 ka tilærmes med: p1 (1 p 1 + p 2(1 p Bruker symbolet ŜD( p 1 p 2 for dee. Vi har: p 1 p 2 (p 1 p 2 N(0, 1, ŜD( p 1 p 2 tilærmet Bjør H. Auestad Kp. 6: Hypotesetestig del 4 16 / 59

9 Kofidesitervall Vi har: p 1 p 2 (p 1 p 2 ŜD( p 1 p 2 N(0, 1, tilærmet Medfører: ( P z α/2 p 1 p 2 (p 1 p 2 z α/2 1 α ŜD( p 1 p 2 Derfor: ( { }} { P p 1 p 2 z α/2 ŜD( p 1 p 2 L p 1 p 2 p 1 p 2 + z α/2 ŜD( p 1 p 2 } {{ } U 1 α Bjør H. Auestad Kp. 6: Hypotesetestig del 4 17 / 59 Kofidesitervall Vi har altså at (L, U er et tilærmet (1 α100% kofidesitervall for differase p 1 p 2. Data: 1 = 1120, 2 = 1050; α =0.05 α/2 =0.025 og z =1.96 Utfall av p 1 p 2 : = 0.03 Utfall av ŜD( p p1 (1 p 1 1 p 2 = + p 2(1 p 2 : ( ( = Derfor, kofidesitervall: ( ( , = 0.008, Bjør H. Auestad Kp. 6: Hypotesetestig del 4 18 / 59

10 Kofidesitervall Derfor, kofidesitervall: ( ( , = 0.008, Koklusjo: Side 0 er ieholdt i itervallet ka vi ikke forkaste H 0. Det er ikke grulag for å påstå at virkelig oppslutig er edret. Bjør H. Auestad Kp. 6: Hypotesetestig del 4 19 / 59 Kofidesitervall Hva er problemet med å gjeomføre esidige tester på dee måte? Det er ikke oe problem dersom vi er øye!! Illustrer med eksempelet med smoltdata: Bjør H. Auestad Kp. 6: Hypotesetestig del 4 20 / 59

11 Kofidesitervall Eksempel: Vi skal kjøpe smolt av e smoltoppdretter. Det hevdes at gjeomsittsvekte til smolte i merde er (mist 80gram. Vekt av i tilfeldig valgte smolt: gj.s.-vekt: gram. Vi er iteressert i om vekte (gjeomsittsvekt for alle smolt i merde er midre e 80 gram. Tyder resultatee på at vekte er midre e 80 gram? Målemodell med ormalatakelse; kjet varias, σ 2 =10 2. Forvetige, μ: vekt(gjeomsittsvekt for alle smolt i merde Vil teste: H 0 : μ =80 mot H 1 : μ<80 Bjør H. Auestad Kp. 6: Hypotesetestig del 4 21 / 59 Kofidesitervall Vil teste: H 0 : μ = 80 mot H 1 : μ<80 Ata at vi øsker å bruke sig.ivå α =0.10, og at vi vil bruke kofidesitervall for å gjeomføre teste. 90% kofidesitervall for μ: ( 10 2 X z 0.05 } {{ 9 } L 10 2, X + z 0.05 } {{ 9 } U Dersom hele itervallet er edfor (til vestre for μ 0 =80, idikerer dette at H 1 er riktig. Mao., Teste er: Forkast H 0 dersom U<μ 0 =80. Sig.ivå til dee teste? Bjør H. Auestad Kp. 6: Hypotesetestig del 4 22 / 59

12 Kofidesitervall Forkast H 0 dersom U<μ 0 =80. Dette er det samme som: Forkast H 0 dersom: U = X + z < 80 X < z 0.05 Dvs. E slik måte å gjeomføre teste på svarer til e test med sigifikasivå på 5% (α/2. Bjør H. Auestad Kp. 6: Hypotesetestig del 4 23 / 59 Oversikt, del 5 p-verdi Eksempler Eksempler (styrke,,... Bjør H. Auestad Kp. 6: Hypotesetestig del 4 24 / 59

13 p-verdi Tester ka gjeomføres vha. p-verdi. Svært mye brukt. (Kombiasjo av p-verdi og kofidesitervall er ideell! Obs: Vi sakker ikke om suksessasylighete i e biomisk modell. Itroduserer vha. eksempel: Bjør H. Auestad Kp. 6: Hypotesetestig del 4 25 / 59 p-verdi Eksempel: Vi har gjort 20 kast med et pegestykke; 5 gav kro. Vi er iteressert i p = P (kro. Vi betrakter resultatet (5 kro av 20 kast som utfall av e tilfeldig variabel Y, der Y B(, p, =20, p: ukjet. Vil teste H 0 : p =0.5 mot H 1 : p<0.5; Øsker å bruke sigifikasivå Bjør H. Auestad Kp. 6: Hypotesetestig del 4 26 / 59

14 p-verdi Vi vil teste H 0 : p =0.5 mot H 1 : p<0.5 Teststørrelse: Y ; ullfordelig: Y B(20, 0.5: Dette beskriver hva som er tekelige utfall uder H 0 Små verdier av Y idikerer at H 1 er riktig. Rødt: sasylighete for å få 5 eller et utfall som i eda sterkere grad peker i retig av at H 1 er riktig. Bjør H. Auestad Kp. 6: Hypotesetestig del 4 27 / 59 p-verdi H 0 : p =0.5 mot H 1 : p<0.5 Nullfordelig: Y B(20, 0.5: B(20, 0.5-fordelig; p-verdi farget. p-verdie for resultatet er sasylighete som svarer til rødt areal. Dvs.: Sasylighete i ullfordelige for å få 5 eller midre. Lite p idikerer at H 1 er riktig. ( Lite sasylig å få et slikt resultat som vi har fått, dersom H 0 skal forutettes å være sa. Bjør H. Auestad Kp. 6: Hypotesetestig del 4 28 / 59

15 p-verdi Fra biomisk tabell ( =20,p =0.5: y P (Y y Beregig av p-verdi: Her: p-verdi = P ( Y 5 p = 0.5 Her: p-verdi = P ( Y 5 p =0.5 = Bjør H. Auestad Kp. 6: Hypotesetestig del 4 29 / B(20, 0.5-fordelig; p-verdi farget. p-verdi Tosidig test, biomisk, lite Gjeomførig/koklusjo: Side p-verdie er midre e 0.05, forkastes H 0. Obs.1: Dette er øyaktig det samme som å gjeomføre e test med kritiske verdier på 5% sigifikasivå. Bjør H. Auestad Kp. 6: Hypotesetestig del 4 30 / 59

16 p-verdi Geerelt: Dersom p-verdie er lavere e fastlagt sigifikasivå, forkastes H 0. (Da har teststørrelse verdi i forkastigsområdet. Geerell defiisjo av p-verdi: Def.: p-verdie til et resultat er sasylighete bereget uder H 0 for å få det observerte resultatet eller et som i eda sterkere grad peker i retig av at H 1 er riktig. Bjør H. Auestad Kp. 6: Hypotesetestig del 4 31 / 59 p-verdi Eksempel: Vi skal kjøpe smolt av e smoltoppdretter. Det hevdes at gjeomsittsvekte til smolte i merde er (mist 80gram. Vekt av i tilfeldig valgte smolt: gj.s.-vekt: gram. Vi er iteressert i om vekte (gjeomsittsvekt for alle smolt i merde er midre e 80 gram. Tyder resultatee på at vekte er midre e 80 gram? Målemodell med ormalatakelse; kjet varias, σ 2 =10 2. Forvetige, μ: vekt(gjeomsittsvekt for alle smolt i merde Vil teste: H 0 : μ =80 mot H 1 : μ<80 Bjør H. Auestad Kp. 6: Hypotesetestig del 4 32 / 59

17 p-verdi Vil teste: H 0 : μ =80 mot H 1 : μ<80 Øsker å bruke sig.ivå α =0.10 Teststørrelse og ullfordelig: Z = X /9 N(0, Data, utfall av teststørrelse: /9 = Null-fordelig; p-verdi fargelagt. Bjør H. Auestad Kp. 6: Hypotesetestig del 4 33 / 59 p-verdi Teststørrelse og ullfordelig: Z = X /9 N(0, 1 Data, utfall av teststørrelse: /9 = Null-fordelig; p-verdi fargelagt. H 1 : μ<80; små verdier av Z tyder på at H 1 er riktig. Derfor: p-verdi = P ( Z< 0.94 H 0 riktig = >α=0.1 Dvs.: Behold H 0. Det er klart at: p-verdi <α=0.1 er øyaktig det samme som: Z< z α = z 0.1 = Bjør H. Auestad Kp. 6: Hypotesetestig del 4 34 / 59

18 p-verdi Eksempel: Vi vil udersøke et tilsettigsstoff si ivirkig på herdetide til betog. Normal betog herder på 120 timer ved e gitt temperatur. Med tilsettigsstoffet ble 40 blokker laget og herdetide registrert: gjeomsitt = timer; emp.stadardavvik = Tyder resultatee på at virkelig herdetid m/tils.stoff er aerledes e for ormal betog? Målemodell med ormaltilærmig; dataee x 1,...,x 40 utfalll av =40u.i.f. tilf.var. X 1,...,X 40. Forvetige, μ = E(X i : virkelig herdetid m/tils.stoff Vil teste: H 0 : μ = 120 mot H 1 : μ 120 Bjør H. Auestad Kp. 6: Hypotesetestig del 4 35 / 59 p-verdi H 0 : μ = 120 mot H 1 : μ 120 Øsker å bruke sig.ivå α =0.05 Teststørrelse og ullfordelig: Z = X 120 /40 N(0, 1, til Data, utfall av teststørrelse: /40 = Null-fordelig; p-verdi fargelagt. Bjør H. Auestad Kp. 6: Hypotesetestig del 4 36 / 59

19 p-verdi Teststørrelse og ullfordelig: Z = X 120 /40 N(0, 1, til. Data, utfall av teststørrelse: /40 = Null-fordelig; p-verdi fargelagt. H 1 : μ 120; Z-utfalll lagt fra 0 (positive eller egative tyder på at H 1 er riktig. Derfor: p-verdi = P ( Z< 2.2 H 0 riktig + P ( Z>2.2 H 0 riktig =2 P ( Z< 2.2 H 0 riktig = = <α=0.05 Dvs.: Forkast H 0. Bjør H. Auestad Kp. 6: Hypotesetestig del 4 37 / 59 p-verdi p-verdi = P ( Z< 2.2 H0 riktig +P ( Z> 2.2 H0 riktig =2 P ( Z< 2.2 H 0 riktig = = <α=0.05 Det er klart at: p-verdi <α= Null-fordelig; p-verdi fargelagt. er øyaktig det samme som: Z< z α/2 = z = 1.96 eller Z>z α/2. Bjør H. Auestad Kp. 6: Hypotesetestig del 4 38 / 59

20 Oversikt, del 5 p-verdi Eksempler Eksempler (styrke,,... Bjør H. Auestad Kp. 6: Hypotesetestig del 4 39 / 59 Eksempel; styrke, Styrke Vi har sett på styrkefuksjo for esidige tester. Nå: Styrkefuksjo for tosidige tester. Først litt repetisjo! Bjør H. Auestad Kp. 6: Hypotesetestig del 4 40 / 59

21 Eksempel; styrke, Repetisjo av: Geerell defiisjo av styrke/styrkefuksjo Situasjo og modell fastlagt; test ag. parametere θ Følgede er også fastlagt: H 0 og H 1 Teststørrelse, sig.ivå og forkastigsområde / kritisk verdi Def.: Styrkefuksjoe, γ, er defiert ved: γ(θ =P (forkaste H 0 θ. For e bestemt verdi θ 1 (slik at H 1 er riktig, kalles sasylighete γ(θ 1 for styrke i alterativet θ 1. Bjør H. Auestad Kp. 6: Hypotesetestig del 4 41 / 59 Eksempel; styrke, Eksempel: Herdetider til betog. Forvetige, μ = E(X i : virkelig herdetid m/tils.stoff Vil teste : H 0 : μ = 120 mot H 1 : μ 120 Teststørrelse: Z = X 120, Nullfordelig: N (0, 1, til. Test (tilærmet sig.ivå α =0.05: Forkast H 0 dersom Z z } {{ } 1.96 eller Z z } {{ } 1.96 Bjør H. Auestad Kp. 6: Hypotesetestig del 4 42 / N (0, 1 tetthet

22 Eksempel; styrke, Styrkefuksjo til dee teste; Betrakt μ 1 slik at H 1 er riktig: γ(μ 1 = P (forkaste H 0 μ = μ 1 = P (Z z μ = μ 1 +P (Z z μ = μ 1 Vi ser på et av leddee om gage, først P (Z z μ = μ 1 Bjør H. Auestad Kp. 6: Hypotesetestig del 4 43 / 59 Eksempel; styrke, P (Z z μ = μ 1 ( X 120 = P ( X μ1 = P ( P (Z : teststørrelse z μ = μ 1 z μ 1 Z z μ μ = μ 1, der Z N(0, 1 Bjør H. Auestad Kp. 6: Hypotesetestig del 4 44 / 59

23 Eksempel; styrke, Det adre leddet, P (Z z μ = μ 1 : P (Z z μ = μ 1 ( X 120 = P ( X μ1 = P ( P ( = 1 P (Z : teststørrelse z μ = μ1 z μ 1 Z z μ 1 Z z μ μ = μ 1, der Z N(0, 1 Bjør H. Auestad Kp. 6: Hypotesetestig del 4 45 / 59 Eksempel; styrke, Berege styrke: γ(μ 1 = P (forkaste H 0 μ = μ 1 = P (Z z μ = μ 1 +P (Z z μ = μ 1 P ( Z z μ 1 +1 P ( Z z μ 1 ( =40, :18.7 2, z =1.96 Uttrykkee på siste lije ka vi berege vha., N (0, 1-tabelle: γ(115 P (Z P (Z 3.65 = γ(125 P (Z P (Z 0.27 = Bjør H. Auestad Kp. 6: Hypotesetestig del 4 46 / 59

24 Eksempel; styrke, Plott av styrkefuksjoe: γ(μ 1 P ( Z z μ 1 ( =40, :18.7 2, z =1.96 ( +1 P Z z μ γ(μ 1 mot μ 1 (på x-akse. Bjør H. Auestad Kp. 6: Hypotesetestig del 4 47 / 59 Eksempel; styrke, Viskalsepåproblemet: Hvor mage data (måliger må vi ha for å få e gitt øsket styrke? Dimesjoerig av forsøk Svært viktig fordi ihetig av data ka være resurskrevede. Tar utgagspukt i eksempel med utprøvig av y medisi. Bjør H. Auestad Kp. 6: Hypotesetestig del 4 48 / 59

25 Eksempel; styrke, Eksempel: E y medisi for e bestemt sykdom skal prøves ut. Gammel medisi for dee sykdomme helbreder i 60% av tilfellee (fastslått etter lag tids erfarig. Forsøk for å prøve ut de ye: 20 tilfeldig valgte idivid med sykdomme får medisie og det blir registrert at 14 blir helbredet; 14 av 20 er 70%. Tyder dette resultatet på at de ye er bedre e de gamle? Bjør H. Auestad Kp. 6: Hypotesetestig del 4 49 / 59 Eksempel; styrke, Vi betrakter resultatet (14 av 20 helbredet som utfall av e tilfeldig variabel Y, der Y B(, p, =20, p: ukjet. Vi vil teste H 0 : p =0.6 mot H 1 : p>0.6 Teststørrelse: Y ; ullfordelig: Y B(20, Test (sig.ivå ca. 0.05: Forkast H 0 dersom Y Y B(20, 0.6-fordelig Bjør H. Auestad Kp. 6: Hypotesetestig del 4 50 / 59

26 Eksempel; styrke, Styrkefuksjo til dee teste; Betrakt p 1 slik at H 1 er riktig (p 1 > 0.6: γ(p 1 = P (forkaste H 0 p = p 1 = P ( Y 16 p = p 1 =1 P ( Y 15 p = p1 Ka bereges vha. biomiske tabeller. p 1 ( γ(p 1 ( Bjør H. Auestad Kp. 6: Hypotesetestig del 4 51 / 59 Eksempel; styrke, Hvor mye forbedres styrke dersom vi hadde hatt = 200 idivid med i utprøvige? Test med ormaltilærmig (til. 5% sig.ivå: Forkast H 0 dersom p ( z 0.05 =1.645 Bjør H. Auestad Kp. 6: Hypotesetestig del 4 52 / 59

27 Eksempel; styrke, Styrkefuksjo: γ(p 1 = P (forkaste H 0 p = p 1 ( p 0.6 = P 0.6( z 0.05 p = p 1 Obs: år p = p 1,er p p 1 p 1 (1 p N(0, 1, tilærmet Bjør H. Auestad Kp. 6: Hypotesetestig del 4 53 / 59 Eksempel; styrke, Styrkefuksjo: γ(p 1 = ( p 0.6 P z 0.05 p = p 1 0.6( = ( 0.6(1 0.6 P p z p = p 1 ( p p1 = P p 1 (1 p ( 1 P Z z 0.05 z ( ( p 1 p 1 (1 p p 1 p 1 (1 p 1 200, p = p 1 der Z N(0, 1 Bjør H. Auestad Kp. 6: Hypotesetestig del 4 54 / 59

28 Eksempel; styrke, Beregiger, for p 1 =0.7: ( γ(0.7 1 P Z ( ( = 1 P (Z 1.33 = = (Med =20var styrke i alterativet p 1 =0.7. Bjør H. Auestad Kp. 6: Hypotesetestig del 4 55 / 59 Eksempel; styrke, Dimesjoerig; Eksempel på problemstillig: Hvor mage pasieter måtte vi hatt med i forsøket for å få styrke mist 0.9 i alterativet p 1 =0.8? Test med ormaltilærmig (til. 5% sig.ivå: Forkast H 0 dersom p (1 0.6 z 0.05 =1.645 Bjør H. Auestad Kp. 6: Hypotesetestig del 4 56 / 59

29 Eksempel; styrke, Styrke: ( p p1 γ(p 1 = P p 1 (1 p 1 ( P Z 0.6(1 0.6 z p 1 p 1 (1 p 1 0.6(1 0.6 z 0.05 p 1 (1 p p 1, p = p 1 der Z N(0, 1 Bjør H. Auestad Kp. 6: Hypotesetestig del 4 57 / 59 Eksempel; styrke, Styrke for p 1 =0.8 lik 0.9: γ( ( γ(0.8 P Z 0.6(1 0.6 z (1 0.8 =0.9, dersom 0.6(1 0.6 z ( = z 0.1 = N (0, 1 tetthet Bjør H. Auestad Kp. 6: Hypotesetestig del 4 58 / 59

30 Eksempel; styrke, 0.6(1 0.6 z ( ( = z ( (1 0.8 = z ( (1 0.8 = z 0.1 z =6.59 = (1 0.8 Bjør H. Auestad Kp. 6: Hypotesetestig del 4 59 / 59

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 5. Hypotesetesting, del 5

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 5. Hypotesetesting, del 5 ÅMA11 Sasylighetsregig med statistikk, våre 7 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 26. mars Bjør H. Auestad Kp. 6: Hypotesetestig del 5 1/ 59 Bjør

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008 Kp. 6, del 5

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008 Kp. 6, del 5 ÅMA110 Sasylighetsregig med statistikk, våre 2008 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 3. april Bjør H. Auestad Kp. 6: Hypotesetestig del 5 1/ 56

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 5

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 5 ÅMA110 Sasylighetsregig med statistikk, våre 2006 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 3. april Bjør H. Auestad Kp. 6: Hypotesetestig del 5 1 / 56

Detaljer

Hypotesetesting, del 5

Hypotesetesting, del 5 Oversikt, del 5 Kofidesitervall p-verdi Kofidesitervall E (tosidig test ka gjeomføres vha. av et kofidesitervall. For eksempel, dersom vi i målemodell 1 vil teste: H 0 : μ = μ 0 mot H 1 : μ μ 0, ka vi

Detaljer

Eksempler fra slutten av forrige uke. Eksempler (styrke, dimensjonering,...) Eksempler fra slutten av forrige uke

Eksempler fra slutten av forrige uke. Eksempler (styrke, dimensjonering,...) Eksempler fra slutten av forrige uke Oversikt, del 5 Hypotesetestig, del 4 (oppsummerig fra Hypotesetestig, del 5 Kofidesitervall dimesjoerig Eksempler fra slutte av forrige uke Kofidesitervall p-verdi Eksempler Eksempler (styrke, dimesjoerig,...

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 4. Hypotesetesting, del 4

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 4. Hypotesetesting, del 4 ÅMA11 Sasylighetsregig med statistikk, våre 27 Kp. 6, del 4 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 19. mars Bjør H. Auestad Kp. 6: Hypotesetestig del 4 1/ 27 Bjør

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008 Kp. 6, del 5

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008 Kp. 6, del 5 ÅMA110 Sasylighetsregig med statistikk, våre 2008 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 26. mars Bjør H. Auestad Kp. 6: Hypotesetestig del 5 1/ 53

Detaljer

Oversikt, del 5. Vi har sett på styrkefunksjon for ensidige tester. Eksempler (styrke, dimensjonering,...) Eksempler fra slutten av forrige uke

Oversikt, del 5. Vi har sett på styrkefunksjon for ensidige tester. Eksempler (styrke, dimensjonering,...) Eksempler fra slutten av forrige uke Hypotesetestig, del 4 oppsummerig fra Hypotesetestig, del 5 Kofidesitervall dimesjoerig Oversikt, del 5 Eksempler fra slutte av forrige uke Kofidesitervall p-verdi Eksempler Eksempler styrke, dimesjoerig,...

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 4

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 4 ÅMA11 Sasylighetsregig med statistikk, våre 21 Kp. 6, del 4 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 22. mars Bjør H. Auestad Kp. 6: Hypotesetestig del 4 1/ 29 Bjør

Detaljer

Rep.: generelle begrep og definisjoner Kp. 10.1, 10.2 og 10.3

Rep.: generelle begrep og definisjoner Kp. 10.1, 10.2 og 10.3 Kp. 1, oversikt ; oversikt, t- ; oversikt ; stor ; Hypoteseig; ett- og to-utvalg Rep.: geerelle begrep og defiisjoer Kp. 1.1, 1.2 og 1.3 Rep.: ett-utvalgser for μ (...), p Kp. 1 og 1.8 Nytt: ett-utvalgs

Detaljer

Hypotesetesting, del 4

Hypotesetesting, del 4 Oversikt, del 4 t-fordelig t-test t-itervall Del 5 Kofidesitervall vs. test p-verdi t-fordelig Rett på defiisjo: Utgagspuktet er målemodelle med ormalatakelse: X 1,...,X,u.i.f.tilf.var.derX i Nμ, σ 2 ).La

Detaljer

Mer om utvalgsundersøkelser

Mer om utvalgsundersøkelser Mer om utvalgsudersøkelser I uderkapittel 3.6 i læreboka gir vi e kort iførig i takegage ved utvalgsudersøkelser. Vi gir her e grudigere framstillig av temaet. Populasjo og utvalg Ved e utvalgsudersøkelse

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 2

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 2 ÅMA11 Sasylighetsregig med statistikk, våre 27 Kp. 6, del 2 Bjør H. Auestad Istitutt for matematikk og aturviteskap 5. mars 21 Bjør H. Auestad Kp. 6: del 1/2 1/ 42 Bjør H. Auestad Kp. 6: del 1/2 2/ 42

Detaljer

Estimering og hypotesetesting. Estimering og hypotesetesting. Estimering og hypotesetesting. Kapittel 10. Ett- og toutvalgs hypotesetesting

Estimering og hypotesetesting. Estimering og hypotesetesting. Estimering og hypotesetesting. Kapittel 10. Ett- og toutvalgs hypotesetesting 3 Estimerig og hypotesetestig Kapittel 10 Ett- og toutvalgs hypotesetestig TMA445 V007: Eirik Mo Feome Bilkjørig Høyde til studeter Estimator ˆp = X, X atall ˆµ = X gjeomsittlig høyde. som syes de er flikere

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 0 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Oppgave Midtveiseksame a) X er e stokastisk variabel

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 ÅMA110 Sasylighetsregig med statistikk, våre 2006 Kp. 6, del 2 Bjør H. Auestad Kp. 6: Hypotesetesig del 2 1/ 38 Bjør H. Auestad Kp. 6: Hypotesetesig del 2 2/ 38 Oversikt 1. Hva er hypotesetestig? 2. Hypotesetestig

Detaljer

2. Hypotesetesting i ulike sitausjoner: i. for forventingen, μ, i målemodellen med normalantakelse og kjent varians, σ 2.

2. Hypotesetesting i ulike sitausjoner: i. for forventingen, μ, i målemodellen med normalantakelse og kjent varians, σ 2. Oversikt 1. Hva er hypotesetestig? 2. i ulike sitausjoer: i. for forvetige, μ, med ormalatakelse og kjet varias, σ 2. ii. for forvetige, μ, med stor og ormaltilærmig (variase, σ 2, ukjet). iii. for suksessasylighete,

Detaljer

MOT310 Statistiske metoder 1, høsten 2011

MOT310 Statistiske metoder 1, høsten 2011 MOT310 Statistiske metoder 1, høste 2011 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 24. august, 2011 Bjør H. Auestad Itroduksjo og repetisjo 1 / 32 Repetisjo; 9.1,

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 ÅMA Sasylighetsregig med statistikk, våre 27 Kp. 6 (kp. 6) Tre deler av faget/kurset:. Beskrivede statistikk 2. Sasylighetsteori, sasylighetsregig 3. Statistisk iferes estimerig kofidesitervall hypotesetestig

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Oppsummering

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Oppsummering ÅMA110 Sasylighetsregig med statistikk, våre 2007 Oppsummerig Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 19. april Bjør H. Auestad Oppsummerig våre 2006 1 / 37 Oversikt

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 5 Estimering. Målemodellen.

ÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 5 Estimering. Målemodellen. ÅMA0 Sasylighetsregig med statistikk, våre 0 Kp. 5 Estimerig. Målemodelle. Estimerig. Målemodelle. Ihold:. (Pukt)Estimerig i biomisk modell (kp. 5.). Målemodelle... (kp. 5.). (Pukt)Estimerig i målemodelle

Detaljer

Introduksjon. Hypotesetesting / inferens (kap 3) Populasjon og utvalg. Populasjon og utvalg. Populasjonsvarians

Introduksjon. Hypotesetesting / inferens (kap 3) Populasjon og utvalg. Populasjon og utvalg. Populasjonsvarians Hypotesetestig / iferes (kap ) Itroduksjo Populasjo og utvalg Statistisk iferes Utvalgsfordelig (samplig distributio) Utvalgsfordelige til gjeomsittet Itroduksjo Vi øsker å få iformasjo om størrelsee i

Detaljer

Kapittel 8: Estimering

Kapittel 8: Estimering Kaittel 8: Estimerig Estimerig hadler kort sagt om hvorda å aslå verdie å arametre som,, og dersom disse er ukjete. like arametre sier oss oe om oulasjoe vi studerer (dvs om alle måliger av feomeet som

Detaljer

Statistikk og økonomi, våren 2017

Statistikk og økonomi, våren 2017 Statistikk og økoomi, våre 07 Obligatorisk oppgave 6 Løsigsforslag Oppgave E terig kastes 0 gager, og det registreres hvor mage 6-ere som oppås i løpet av disse 0 kastee. Vi ka kalle atall 6-ere i løpet

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4 ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 27. mars Bjørn H. Auestad Kp. 6: Hypotesetesting

Detaljer

MOT310 Statistiske metoder 1, høsten 2012

MOT310 Statistiske metoder 1, høsten 2012 MOT310 Statistiske metoder 1, høste 2012 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 20. august, 2012 Bjør H. Auestad Itroduksjo og repetisjo 1 / 57 Iformasjo Litt om

Detaljer

ECON240 Statistikk og økonometri

ECON240 Statistikk og økonometri ECON240 Statistikk og økoometri Arild Aakvik, Istitutt for økoomi 1 Mellomregig MKM Model: Y i = a i + bx i + e i MKM-estimator for b: b = = Xi Y i 1 Xi Yi Xi 1 ( X i ) 2 (Xi X)(Y i Ȳi) (Xi X) 2 hvor vi

Detaljer

Oppgave 1. (i) Hva er sannsynligheten for at det øverste kortet i bunken er et JA-kort?

Oppgave 1. (i) Hva er sannsynligheten for at det øverste kortet i bunken er et JA-kort? ECON EKSAMEN 8 VÅR TALLSVAR Oppgave Vi har e kortstokk beståede av 6 kort. På av disse står det skrevet JA på forside mes det står NEI på forside av de adre kortee. Hvis ma får se kortet med bakside vedt

Detaljer

X = 1 5. X i, i=1. som vil være normalfordelt med forventningsverdi E( X) = µ og varians Var( X) = σ 2 /5. En rimelig estimator for variansen er

X = 1 5. X i, i=1. som vil være normalfordelt med forventningsverdi E( X) = µ og varians Var( X) = σ 2 /5. En rimelig estimator for variansen er Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalte oppgaver 11, blokk II Løsigsskisse Oppgave 1 a) E rimelig estimator for forvetigsverdie µ er gjeomsittet X = 1 X i, som

Detaljer

Estimering 2. -Konfidensintervall

Estimering 2. -Konfidensintervall Estimerig 2 -Kofidesitervall Dekkes av kap. 9.4-9.5, 9.10, 9.12 og forelesigsotatee. Dersom forsøket gjetas mage gager vil (1 α)100% av itervallee [ ˆΘ L, ˆΘ U ] ieholde de ukjete parametere θ (som er

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 20. mars Bjørn H. Auestad Kp. 6: Hypotesetesting

Detaljer

Oppgave 1 Hardheten til en bestemt legering er undersøkt med åtte målinger og resultatene ble (i kg/mm 2 ) som i tabellen til høyre.

Oppgave 1 Hardheten til en bestemt legering er undersøkt med åtte målinger og resultatene ble (i kg/mm 2 ) som i tabellen til høyre. EKSAMEN I: ÅMA110 SANNSYNLIGHETSREGNING MED STATISTIKK VARIGHET: 4 TIMER DATO: 28. AUGUST 2010 BOKMÅL TILLATTE HJELPEMIDLER: KALKULATOR: HP30S, Casio FX82 eller TI-30 OPPGAVESETTET BESTÅR AV 3 OPPGAVER

Detaljer

8 (inkludert forsiden og formelsamling) Tegne- og skrivesaker, kalkulator, formelsamling (se vedlagt).

8 (inkludert forsiden og formelsamling) Tegne- og skrivesaker, kalkulator, formelsamling (se vedlagt). Eksamesoppgave våre 011 Ordiær eksame Bokmål Fag: Matematikk Eksamesdato: 10.06.011 Studium/klasse: GLU 5-10 Emekode: MGK00 Eksamesform: Skriftlig Atall sider: 8 (ikludert forside og formelsamlig) Eksamestid:

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 20. mars Bjørn H. Auestad Kp. 6: Hypotesetesting

Detaljer

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 12. desember 2008

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 12. desember 2008 Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL. desember 8 EKSAMEN I MATEMATIKK, Utsatt røve Modul 5 studieoeg Tid: 5 timer Ogavesettet er å sider (ikludert formelsamlig).

Detaljer

Estimering og hypotesetesting. Estimering og hypotesetesting. Estimering og hypotesetesting. Kapittel 10. Ett- og toutvalgs hypotesetesting

Estimering og hypotesetesting. Estimering og hypotesetesting. Estimering og hypotesetesting. Kapittel 10. Ett- og toutvalgs hypotesetesting 3 Estimerig og hypotesetestig Kapittel 10 Ett- og toutvalgs hypotesetestig TMA4240 H2006: Eirik Mo Feome Bilkjørig Høyde til studeter Estimator ˆp = X, X atall ˆµ = X gjeomsittlig høyde. som syes de er

Detaljer

Oppgaver fra boka: X 2 X n 1

Oppgaver fra boka: X 2 X n 1 MOT30 Statistiske metoder, høste 00 Løsiger til regeøvig r 3 (s ) Oppgaver fra boka: 94 (99:7) X,, X uif N(µ, σ ) og X,, X uif N(µ, σ ) og alle variable er uavhegige Atar videre at σ = σ = σ og ukjet Kodesitervall

Detaljer

H 1 : µ 1 µ 2 > 0. t = ( x 1 x 2 ) (µ 1 µ 2 ) s p. s 2 p = s2 1 (n 1 1) + s 2 2 (n 2 1) n 1 + n 2 2

H 1 : µ 1 µ 2 > 0. t = ( x 1 x 2 ) (µ 1 µ 2 ) s p. s 2 p = s2 1 (n 1 1) + s 2 2 (n 2 1) n 1 + n 2 2 TMA4245 Statistikk Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b4 Løsigsskisse Oppgave 1 Vi øsker å fie ut om et ytt serum ka stase leukemi. 5 mus får serumet, 4

Detaljer

LØSNINGSFORSLAG TILEKSAMEN I FAG TMA4240/TMA4245 STATISTIKK 10. august 2005

LØSNINGSFORSLAG TILEKSAMEN I FAG TMA4240/TMA4245 STATISTIKK 10. august 2005 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 8 LØSNINGSFORSLAG TILEKSAMEN I FAG TMA440/TMA445 STATISTIKK 0. august 005 Oppgave Smeltepuktsbestemmelse a) Vi jobber i dette

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 ÅMA110 asylighetsregig med statistikk våre 011 Kp. 5 Estimerig 1 Estimerig. Målemodelle. Ihold: 1. (ukt)estimerig i biomisk modell (kp. 5.). Målemodelle... (kp. 5.3) 3. (ukt)estimerig i målemodelle (kp.

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 Høst 205 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer, blokk II Løsigsskisse Oppgave a) X bi(, p) fordi: Udersøker uavhegige delar av DNA-strukture. Fi for kvar del

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. Noen viktige sannsynlighetsmodeller. Binomisk modell. Kp. 3 Diskrete tilfeldige variable

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. Noen viktige sannsynlighetsmodeller. Binomisk modell. Kp. 3 Diskrete tilfeldige variable ÅMA Saslighetsregig med statistikk, våre K. 3 Diskrete tilfeldige variable Noe viktige saslighetsmodeller Noe viktige saslighetsmodeller ( Sas.modell : å betr det klasse/te sas.fordelig.) Biomisk modell

Detaljer

TMA4245 Statistikk Eksamen mai 2017

TMA4245 Statistikk Eksamen mai 2017 TMA445 Statistikk Eksame mai 07 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsskisse Oppgave a Når vi reger ut disse tre sasylighetee må ma huske på at de mulige verdiee

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalt øvig 11 Løsigsskisse Oppgave 1 a) E rimelig estimator for forvetigsverdie µ er gjeomsittet X = 1 X i, som vil være ormalfordelt

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro.

ÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro. ÅMA Sasylighetsregig med statistikk, våre 6 Kp. 4 Kotiuerlige tilfeldige variable og ormaldelige Kotiuerlige tilfeldige variable, itro. (eller: Kotiuerlige sasylighetsdeliger) Vi har til å sett på diskrete

Detaljer

Påliteligheten til en stikkprøve

Påliteligheten til en stikkprøve Pålitelighete til e stikkprøve Om origiale... 1 Beskrivelse... 2 Oppgaver... 4 Løsigsforslag... 4 Didaktisk bakgru... 5 Om origiale "Zuverlässigkeit eier Stichprobe" på http://www.mathe-olie.at/galerie/wstat2/stichprobe/dee

Detaljer

STK1100 våren 2017 Estimering

STK1100 våren 2017 Estimering STK1100 våre 017 Estimerig Svarer til sidee 331-339 i læreboka Ørulf Borga Matematisk istitutt Uiversitetet i Oslo 1 Politisk meigsmålig Spør et tilfeldig utvalg på 1000 persoer hva de ville ha stemt hvis

Detaljer

Konfidensintervall. Notat til STK1110. Ørnulf Borgan, Ingrid K. Glad og Anders Rygh Swensen Matematisk institutt, Universitetet i Oslo.

Konfidensintervall. Notat til STK1110. Ørnulf Borgan, Ingrid K. Glad og Anders Rygh Swensen Matematisk institutt, Universitetet i Oslo. Kofidesitervall Notat til STK1110 Ørulf Borga, Igrid K. Glad og Aders Rygh Swese Matematisk istitutt, Uiversitetet i Oslo August 2007 Formål E valig metode for å agi usikkerhete til et estimat er å berege

Detaljer

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 20. mai 2008

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 20. mai 2008 Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL. mai 8 EKSAMEN I MATEMATIKK Modul 5 studieoeg Tid: 5 timer Ogavesettet er å sider (ikludert formelsamlig). Hjelemidler:

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK 5.august 2004

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK 5.august 2004 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 0 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK 5.august 2004 Oppgave Foruresig X er e stokastisk variabel som agir

Detaljer

) = P(Z > 0.555) = > ) = P(Z > 2.22) = 0.013

) = P(Z > 0.555) = > ) = P(Z > 2.22) = 0.013 TMA4240 Statistikk Vår 2008 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b5 Løsigsskisse Oppgave 1 a) X 1,...,X 16 er u.i.f. N(80,18 2 ). Setter Y = X. i) P(X 1 >

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro.

ÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro. ÅMA0 Sasylighetsregig med statistikk, våre 008 Kp. 4 Kotiuerlige tilfeldige variable; Normalfordelig Kotiuerlige tilfeldige variable, itro. (eller: Kotiuerlige sasylighetsfordeliger) Vi har til å sett

Detaljer

KLMED8004 Medisinsk statistikk. Del I, høst Estimering. Tidligere sett på. Eksempel hypertensjon

KLMED8004 Medisinsk statistikk. Del I, høst Estimering. Tidligere sett på. Eksempel hypertensjon Tidligere sett på KLMED8004 Medisisk statistikk Del I, høst 008 Estimerig Hvorda kjete sasylighetsfordeliger (biomialfordelig, ormalfordelig) med kjete populasjosparametrer (forvetig, varias osv.) ka gi

Detaljer

Forelesning 4 og 5 Transformasjon, Weibull-, lognormal, beta-, kji-kvadrat -, t-, F- fordeling

Forelesning 4 og 5 Transformasjon, Weibull-, lognormal, beta-, kji-kvadrat -, t-, F- fordeling STAT (V6) Statistikk Metoder Yushu.Li@uib.o Forelesig 4 og 5 Trasformasjo, Weibull-, logormal, beta-, kji-kvadrat -, t-, F- fordelig. Oppsummerig til Forelesig og..) Momet (momet about 0) og setral momet

Detaljer

TMA4245 Statistikk. Øving nummer b5. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag

TMA4245 Statistikk. Øving nummer b5. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b5 Oppgave 1 Eksame mai 2001, oppgave 1 av 4 Vi ser på kosetrasjoe av et giftstoff i havbue like utefor

Detaljer

n 2 +1) hvis n er et partall.

n 2 +1) hvis n er et partall. TMA445 Statistikk Vår 04 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer, blokk II Oppgave Mediae til et datasett, X, er de midterste verdie. Hvis vi har stokastiske

Detaljer

TMA4245 Statistikk Vår 2015

TMA4245 Statistikk Vår 2015 TMA4245 Statistikk Vår 2015 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer 12, blokk II Oppgave 1 Kari har ylig kjøpt seg e y bil. Nå øsker hu å udersøke biles besiforbruk

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 TMA4240 Statistikk Høst 2015 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer 12, blokk II I dee siste øvige fokuserer vi på lieær regresjo, der vi har kjete kovariater

Detaljer

Kap. 9: Inferens om én populasjon

Kap. 9: Inferens om én populasjon 2 ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for matematiske fag Ka. 9: Iferes om é oulasjo Hvis σ er ukjet bytter vi ut σ med s i Ny observator blir t = x μ s/ z = x μ σ/ der s = Σx 2 (Σx)

Detaljer

Løsningsforsalg til første sett med obligatoriske oppgaver i STK1110 høsten 2015

Løsningsforsalg til første sett med obligatoriske oppgaver i STK1110 høsten 2015 Løsigsforsalg til første sett med obligatoriske oppgaver i STK1110 høste 2015 Oppgave 1 (a Et 100(1 α% kofidesitervall for forvetigsverdie µ er gitt ved formel (8.15 på side 403 i læreboka. For situasjoe

Detaljer

Econ 2130 uke 15 (HG) Poissonfordelingen og innføring i estimering

Econ 2130 uke 15 (HG) Poissonfordelingen og innføring i estimering Eco 130 uke 15 (HG) Poissofordelige og iførig i estimerig 1 Poissofordelige (i) Tilærmig til biomialfordelige. Regel. ( Poissotilærmelse ) Ata Y ~ bi(, p) E( Y ) = p og var( Y ) = p(1 p). Hvis er stor

Detaljer

Forventningsverdi. MAT0100V Sannsynlighetsregning og kombinatorikk

Forventningsverdi. MAT0100V Sannsynlighetsregning og kombinatorikk MAT0100V Sasylighetsregig og kombiatorikk Forvetigsverdi Sasylighetsfordelige til e tilfeldig variabel X gir sasylighete for de ulike verdiee X ka ata Forvetig, varias og stadardavvik Tilærmig av biomiske

Detaljer

Kap. 9: Inferens om én populasjon

Kap. 9: Inferens om én populasjon 2 ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for matematiske fag Ka. 9: Iferes om é oulasjo Hvis σ er ukjet bytter vi ut σ med s i Ny observator blir t = x μ s/ z = x μ σ/ der s = Σx 2 (Σx)

Detaljer

Løsningsforslag ST2301 øving 3

Løsningsforslag ST2301 øving 3 Løsigsforslag ST2301 øvig 3 Kapittel 1 Exercise 11 Et utvalg på 100 idivider trekkes fra e populasjo med tilfeldig parrig. Det ble observert AA 63 idivider av geotype AA, Aa 27, og aa 10. Lag et 95 % kofidesitervall

Detaljer

Kort repetisjon fra kapittel 4. Oppsummering kapittel ST0202 Statistikk for samfunnsvitere. Betinget sannsynlighet og trediagram

Kort repetisjon fra kapittel 4. Oppsummering kapittel ST0202 Statistikk for samfunnsvitere. Betinget sannsynlighet og trediagram 2 Kort reetisjo fra kaittel 4 Betiget sasylighet og trediagram Eksemel: Fra e oulasjo av idrettsfolk trekkes e erso tilfeldig og testes for doig. De iteressate hedelsee er D=ersoe er doet, A=teste er ositiv.

Detaljer

Estimering 1 -Punktestimering

Estimering 1 -Punktestimering Estimerig 1 -Puktestimerig Dekkes av kap. 8, 9.1-9.3 og 9.15/9.14. Vi har til å settpå e rekke forskjellige sasylighetsfordeliger og sett hvorda disse ka brukes til å modellere mage forskjellige typer

Detaljer

Eksamen REA3028 S2, Våren 2011

Eksamen REA3028 S2, Våren 2011 Eksame REA08 S, Våre 0 Del Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave (8 poeg) a) Deriver fuksjoee ) f 5 f 6 5 ) g g ) h l 9 9 6 4 h l

Detaljer

Estimering 1 -Punktestimering

Estimering 1 -Punktestimering Estimerig 1 -Puktestimerig Dekkes av kap. 8, 9.1-9.3 og 9.15/9.14. Vi har til å settpå e rekke forskjellige sasylighetsfordeliger og sett hvorda disse ka brukes til å modellere mage forskjellige typer

Detaljer

Econ 2130 Forelesning uke 11 (HG)

Econ 2130 Forelesning uke 11 (HG) Eco 130 Forelesig uke 11 (HG) Mer om ormalfordelige og setralgreseteoremet Uke 1 1 Fra forrige gag ~ betyr er fordelt som. ~ N( µσ, ) E( ) = µ, og var( ) = σ Normalfordelige er symmetrisk om μ og kotiuerlig

Detaljer

Løsningsforslag til eksamen i STK desember 2010

Løsningsforslag til eksamen i STK desember 2010 Løsigsforslag til eksame i STK0 0. desember 200 Løsigsforslaget har med flere detaljer e det vil bli krevd til eksame. Oppgave a Det er tilpasset e multippel lieær regresjosmodell av forme β 0 + β x i

Detaljer

LØSNING, EKSAMEN I STATISTIKK, TMA4240, DESEMBER Anta at sann porøsitet er r. Måling med utstyret gir da X n(x; r, 0,03).

LØSNING, EKSAMEN I STATISTIKK, TMA4240, DESEMBER Anta at sann porøsitet er r. Måling med utstyret gir da X n(x; r, 0,03). LØSNING, EKSAMEN I STATISTIKK, TMA440, DESEMBER 006 OPPGAVE 1 Ata at sa porøsitet er r. Målig med utstyret gir da X (x; r, 0,03). a) ( ) X r P(X > r) P 0,03 > 0 P(Z > 0) 0,5. ( X r P(X r > 0,05) P 0,03

Detaljer

TMA4245 Statistikk Eksamen 9. desember 2013

TMA4245 Statistikk Eksamen 9. desember 2013 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag TMA4245 Statistikk Eksame 9. desember 2013 Oppgave 1 I kortspillet Blackjack får ma de høyeste geviste hvis de to første kortee ma

Detaljer

11,7 12,4 12,8 12,9 13,3.

11,7 12,4 12,8 12,9 13,3. TMA4240 Statistikk Vår 2008 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b6 Oppgave 1 Eksame mai 2001, oppgave 1 av 4 Vi ser på kosetrasjoe av et giftstoff i havbue

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalt øvig 8 Løsigsskisse Oppgave 1 a) Simuler 1000 datasett i MATLAB. Hvert datasett skal bestå av 100 utfall fra e ormalfordelig

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdelig for tekologi Målform: Bokmål Eksamesdato: 19 des. 2014 Varighet/eksamestid: Emekode: 3 timer TALM1005 Emeav: Statistikk og Økoomi statistikkdele Klasser: Logistikk 1 Kjemi

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-aturviteskapelige fakultet Eksame i STK2120 Statistiske metoder og dataaalyse 2 Eksamesdag: Madag 6. jui 2011. Tid for eksame: 09.00 13.00. Oppgavesettet er på 5 sider.

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdelig for tekologi Målform: Bokmål Eksamesdato: 5 jui 2015 Varighet/eksamestid: Emekode: 3 timer TALM1005 Emeav: Statistikk og Økoomi statistikkdele Klasser: Logistikk 1 Kjemi

Detaljer

Dekkes av pensumsidene i kap. lesingsnotatene. Hypotesetesting er en systematisk fremgangsmåte

Dekkes av pensumsidene i kap. lesingsnotatene. Hypotesetesting er en systematisk fremgangsmåte Hypotesetesting. 10 og fore- Dekkes av pensumsidene i kap. lesingsnotatene. Hypotesetesting er en systematisk fremgangsmåte for å undersøke hypoteser (påstander) knyttet til parametre i sannsynlighetsfordelinger.

Detaljer

Eksamen REA3028 S2, Våren 2012

Eksamen REA3028 S2, Våren 2012 Eksame REA08 S, Våre 0 Del Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave (4 poeg) a) Deriver fuksjoee ) f f ) g e 4 4 4 g e e 4 g e e g e

Detaljer

Oversikt over konfidensintervall i Econ 2130

Oversikt over konfidensintervall i Econ 2130 1 HG Revidert april 011 Oversikt over kofidesitervall i Eco 130 Merk at dee oversikte ikke er met å leses istedefor framstillige i Løvås, me som et supplemet. Løvås ieholder mage verdifulle kommetarer

Detaljer

Forelesning Moment og Momentgenererende funksjoner

Forelesning Moment og Momentgenererende funksjoner ushu.li@uib.o Forelesig + 3 Momet og Mometgeererede fuksjoer 1. Oppsummerig til Forelesig 1 1.1) Fuksjoe av S.V: hvis variabele er e fuksjo (trasformasjo) av S.V. : g( ), da er også e S.V.: til ethvert

Detaljer

Løsningsforslag for andre obligatoriske oppgave i STK1100 Våren 2007 Av Ingunn Fride Tvete og Ørnulf Borgan

Løsningsforslag for andre obligatoriske oppgave i STK1100 Våren 2007 Av Ingunn Fride Tvete og Ørnulf Borgan Løsigsforslag for adre obligatoriske oppgave i STK11 Våre 27 Av Igu Fride Tvete (ift@math..uio.o) og Ørulf Borga (borga@math.uio.o). NB! Feil ka forekomme. NB! Sed gjere e mail hvis du fier e feil! Oppgave

Detaljer

Ukeoppgaver i BtG207 Statistikk, uke 4 : Binomisk fordeling. 1

Ukeoppgaver i BtG207 Statistikk, uke 4 : Binomisk fordeling. 1 Ukeoppgaver i BtG20 Statistikk, uke 4 : Biomisk fordelig. 1 Høgskole i Gjøvik Avdelig for tekologi, økoomi og ledelse. Statistikk Ukeoppgaver uke 4 Biomisk fordelig. Oppgave 1 La de stokastiske variable

Detaljer

EKSAMEN I TMA4245 Statistikk

EKSAMEN I TMA4245 Statistikk Noregs tekisk aturvitskaplege uiversitet Istitutt for matematiske fag Side 1 av 5 Fagleg kotakt uder eksame: Turid Follestad (98 06 68 80/73 59 35 37) Hugo Hammer (45 21 01 84/73 59 77 74) Eirik Mo (41

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UIVERSITETET I OSLO Det matematisk-aturviteskapelige fakultet Eksame i: ST 105 - Iførig i pålitelighetsaalyse Eksamesdag: 8. desember 1992 Tid til eksame: 0900-1500 Tillatte hjelpemidler: Rottma: "Matematische

Detaljer

ST1201 Statistiske metoder

ST1201 Statistiske metoder ST Statistiske metoder Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsforslag - Eksame desember Oppgave a) Dette er e ANOVA-tabell for k-utvalg med k 4 og j 6 for j,,3,4.

Detaljer

Lineær regresjonsanalyse (13.4)

Lineær regresjonsanalyse (13.4) 2 Kap. 13: Lieær korrelasjos- og regresjosaalyse ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for matematiske fag Kap. 13.1-13.3: Lieær korrelasjosaalyse. Disse avsitt er ikke pesum, me de lieære

Detaljer

Formler og regler i statistikk ifølge lærebok Gunnar Løvås: Statistikk for universiteter og høgskoler

Formler og regler i statistikk ifølge lærebok Gunnar Løvås: Statistikk for universiteter og høgskoler Formler og regler statstkk følge lærebok Guar Løvås: tatstkk for uversteter og høgskoler Kap. Hva er fakta om utvalget etralmål Meda: mdterste verd etter sorterg Modus: hyppgst forekommede verd Gjeomstt:

Detaljer

Oversikt over konfidensintervall i Econ 2130

Oversikt over konfidensintervall i Econ 2130 HG April 00 Oversikt over kofidesitervall i Eco 30 Merk at dee oversikte ikke er met å leses istedefor framstillige i Løvås, me som et supplemet. Løvås ieholder mage verdifulle kommetarer og eksempler.

Detaljer

Eksamen REA3028 S2, Våren 2010

Eksamen REA3028 S2, Våren 2010 Eksame REA308 S, Våre 010 Del 1 Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave 1 (6 poeg) a) Deriver fuksjoee: 1) f x x lx f x x lx x x f

Detaljer

Kapittel 7: Noen viktige sannsynlighetsfordelinger

Kapittel 7: Noen viktige sannsynlighetsfordelinger Kapittel 7: Noe viktige sasylighetsfordeliger I mage situasjoer ka feomeet vi ser på beskrives med e bestemt type sasylighetsfordelig (e sasylighetsfordelig gitt ved e bestemt formel. Vi skal se på oe

Detaljer

3MX 2007/8 - Kapittel 5: 8. januar 5. februar 2008

3MX 2007/8 - Kapittel 5: 8. januar 5. februar 2008 3MX 00/8 - Kapittel : 8. jauar. februar 008 Pla for skoleåret 00/008: Kapittel 6: 6/ /. Kapittel : / /3. Prøver på eller skoletime etter hvert kapittel. É heildagsprøve i hver termi. Repetisjo, prøver,

Detaljer

«Uncertainty of the Uncertainty» Del 4 av 6

«Uncertainty of the Uncertainty» Del 4 av 6 «Ucertaity of the Ucertaity» Del 4 av 6 v/rue Øverlad, Traior Elsikkerhet AS Iledig Dette er del fire i artikkelserie om «Ucertaity of the Ucertaity». I dag skal jeg vise deg utledige av formele: σ m s,

Detaljer

TMA4240 Statistikk Eksamen desember 2015

TMA4240 Statistikk Eksamen desember 2015 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag TMA20 Statistikk Eksame desember 205 Løsigsskisse Oppgave a) De kumulative fordeligsfuksjoe til X, F (x) P (X x): F (x) P (X x) x

Detaljer

Metoder for politiske meningsmålinger

Metoder for politiske meningsmålinger Metoder for politiske meigsmåliger AV FORSKER IB THOMSE STATISTISK SETRALBYRÅ Beregigsmetodee som brukes i de forskjellige politiske meigsmåliger har vært gjestad for mye diskusjo i dagspresse det siste

Detaljer

Modeller og parametre. STK Punktestimering - Kap 7. Eksempel støtfangere. Statistisk inferens. Binomisk fordeling. p X (x) = p x (1 p) n x

Modeller og parametre. STK Punktestimering - Kap 7. Eksempel støtfangere. Statistisk inferens. Binomisk fordeling. p X (x) = p x (1 p) n x STK1100 - Puktestimerig - Kap 7 Geir Storvik Modeller og parametre Biomisk fordelig ( ) p X (x) = p x (1 p) x x Parameter: p Normalfordelig f X (x) = 1 2πσ e 1 2σ 2 (x µ) 2 11. april 2016 Parametre: µ,

Detaljer

H14 - Hjemmeeksamen i statistikk/ped sensurveiledning

H14 - Hjemmeeksamen i statistikk/ped sensurveiledning H14 - Hjemmeeksame i statistikk/ped3008 - sesurveiledig (teller 1/3 av edelig karakter) Dee oppgave bestr av tre deler: i del 1 skal du svare p 5 teorispørsml, i del 2 skal du gjeomføre oe sigifikastester

Detaljer

Kapittel 7: Noen viktige sannsynlighetsfordelinger

Kapittel 7: Noen viktige sannsynlighetsfordelinger Kapittel 7: Noe viktige sasylighetsfordeliger I mage situasjoer ka feomeet vi ser på beskrives med e bestemt type sasylighetsfordelig e sasylighetsfordelig gitt ved e bestemt formel. Vi skal se på oe av

Detaljer

Kp. 13. Enveis ANOVA

Kp. 13. Enveis ANOVA -tabell Bjørn H. Auestad Kp. 13: Én-faktor eksperiment 1 / 13 Kp. 13: Én-faktor -tabell 13.1 Analysis-of-Variance Technique 13.2 The Strategy of Experimental Design 13.3 One-Way Analysis of Variance: Completely

Detaljer

Oversikt over konfidensintervall i Econ 2130

Oversikt over konfidensintervall i Econ 2130 1 HG Revidert april 014 Oversikt over kofidesitervall i Eco 130 Merk at dee oversikte ikke er met å leses istedefor framstillige i Løvås, me som et supplemet. De ieholder tabeller med formler for kofidesitervaller

Detaljer