ÅMA110 Sannsynlighetsregning med statistikk, våren Noen viktige sannsynlighetsmodeller. Binomisk modell. Kp. 3 Diskrete tilfeldige variable

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. Noen viktige sannsynlighetsmodeller. Binomisk modell. Kp. 3 Diskrete tilfeldige variable"

Transkript

1 ÅMA Saslighetsregig med statistikk, våre K. 3 Diskrete tilfeldige variable Noe viktige saslighetsmodeller Noe viktige saslighetsmodeller ( Sas.modell : å betr det klasse/te sas.fordelig.) Biomisk modell (k. 3.6) Hergeometrisk modell (k. 3.7) Geometrisk modell (otater) Poisso-modell (k. 3.8) (Seiere skal vi se å viktige kotiuerlige saslighetsmodeller.) Biomisk modell Situasjo der biomisk modell vil kue asse: X atall gager e bestemt begivehet itreffer i løet av et fastlagt atall forsøk. (Dette skal resiseres seiere...) 3

2 Biomisk modell Situasjo der biomisk modell vil kue asse: X atall gager e bestemt begivehet itreffer i løet av et fastlagt atall forsøk. Eks.: atall kro i kast med et egestkke atall seksere i 5 kast med e terig atall togevister med e rekke i LOTTO hver uke i ett år 4 Biomisk modell X atall gager e bestemt begivehet itreffer i løet av et fastlagt atall forsøk. atall suksesser i delforsøk Delforsøkee må tilfredstille:. uavhegige resultat i ulike delforsøk. resultatet er ete suksess eller fiasko 3. P( suksess ) er kostat i alle delforsøkee Def.: Når disse kravee er tilfredsstilt kaller vi de delforsøkee for e biomisk forsøksrekke. 5 Biomisk modell Defiisjo: Når X atall suksesser i e biomisk forsøksrekke, sier vi at X er biomisk fordelt (, ) der P( suksess ) (kalles suksessaslighete). Skrivemåte: X ~ B(, ) 6

3 Biomisk modell Dersom: X ~ B(, ) X ka ata verdiee,,,..., sasligheter og forvetig og varias gitt ved formel: P ( X ) ( ), for,,, K, E ( X) ( X) ( ) Var (obs: forutsetigee om biomisk forsøksrekke medfører resultatee over.) 7 Biomisk modell Eks.: X atall seksere i fem terigkast ~ B( 5, /6 ) E( X) Var( X) ( ) 5 Forvetet : E( X) Var ( X) ( ) ( ) SD X 8 Biomisk modell Eks.: X atall seksere i fem terigkast ~ B( 5, /6 ) Berege sasligheter: P( X ) ( ) P( fem seksere ) P( mist P ( X 5) e sekser ) P ( X ) P( X )

4 Biomisk modell Eks.: X atall seksere i fem terigkast ~ B( 5, /6 ) Biomisk modell Eks.: LOTTO. Y ~ B( 5, ); / P 5 5 ( Y ) ( ),,,, K, 5,,8,6,4,, Biomisk modell Biomisk modell er svært me brukt. Tisk roblemstillig ka være fra medisisk FoU. Eks.: E behadligsmetode/medisi testes å asieter (som alle har e bestemt lidelse). Dersom vi vet at (f.eks. av erfarig) 7% blir helbredet med slik behadlig, hva er fordelige til atall helbredede blat de testidividee? (Tek ev. vs. gammel metode.) 4

5 Biomisk modell Eks.: asieter; 7% blir helbredet med slik behadlig; fordelige til atall helbredede blat de testidividee? La Yat. helbredede blat de. Resultatee for de asietee utgjør (ev. tilærmelsesvis) e biomisk forsøksrekke.. Ulike asieter blir helbredet uavhegig av hveradre (rimelig atakelse). Helbredet (suksess) eller ikke (fiasko) i alle delforsøk 3. P(helbredet).7 for e tilfeldig asiet 3 Biomisk modell Eks.: asieter; 7% blir helbredet med slik behadlig; fordelige til atall helbredede blat de testidividee? La Yat. helbredede blat de. Vi har da at Y ~ B(,.7 ) (biomisk fordelt med og.7).,3,5,,5,,5, atall helbredede 4 Biomisk modell Eks.: asieter; 7% blir helbredet med slik behadlig; fordelige til atall helbredede blat de testidividee? La Yat. helbredede blat de. Vi har da at Y ~ B(,.7 ) (biomisk fordelt med og.7).,3,5 (Obs: Når behadlige er, gjeomført, får vi e,5 observasjo av Y et av tallee fra, til. Seiere i kurset vil det være e,5 viktig tekemåte å teke å et, slikt data som et utfall av Y.) atall helbredede 5 5

6 Biomisk modell Eks.: Yatz hva er saslighete for å få to treere i et kast med fem teriger? - mist to treere? - fem treere? 6 Biomisk modell Begruelse (bevis) for formele for saslighetee. 7 Biomisk modell, fordelig Betrakter et eksemel: Xat. mt i kast med egestkke. P(X ) P(K K L K ) (- ) P(K )P(K ) LP(K ), fordi K 'ee er uavhegige i Formel: P(X ) ( ) (- ) P( X ) ( ) 8 6

7 7 9 Biomisk modell, fordelig (- ) ) ( ) P(X Formel: (- ) (- ) ) P(M ) )P(K P(K ) P(K ) P(M )P(K ) M K P(K ) K M P(K ) K K P(M ) P(X L L L L M L L ( ) ) ( X P Biomisk modell, fordelig som formelsier., (- ) ) P(X sekveser; derfor mulige fies Det (- ) ) K K M P(M sekves : mulig e for Sas. ) : P(X L ( ) ) ( X P Biomisk modell, fordelig,,...,, (- ) ) P(X : at iser vi og delforsøk, til ka ekelt geeraliseres Dette -

8 Biomisk modell Sasligheter ka bereges. vha. formel, eller. vha. tabeller over biomiske sasligheter (som er lagt ut å ettstedet). Obs.: Gjør dere kjet med tabeller til fordeligee som blir gjeomgått! Biomisk modell, tabeller 3 Biomisk modell, tabeller 4 8

9 Biomisk modell, tabeller 5 Biomisk modell, tabeller 6 Biomisk modell, forvetig og varias; utlediger Vi har slått fast at dersom X ~ B(, ), så: E ( X) ( X) ( ) Var Dette skal vi begrue (bevise)! 7 9

10 Biomisk modell, forvetig og varias; utlediger Vi ka skrive : X I + I + L+ I, der, I j, dersom fiasko i delforsøk r. dersom suksess i delforsøk r. j j, j,,..., Hver I j har fordelige : i P(I j i) - Og alle I j 'ee er uavhegige. Begge deler følger av forutsetigee om biomisk forsøksrekke. 8 Biomisk modell, forvetig og varias; utlediger Da får vi: E(I ) ( ) +, j i P(I ji) - og side : X I + I + L+ I, får vi : E( X ) E( I + I + L+ I ) E( I ) + E( I ) + L+ E( I ) + + L+ 9 Biomisk modell, forvetig og varias; utlediger Videre, får vi: E(I j ) ( ) +, i P(I j i) - som gir : Var(I ) E(I j j ) { E(I j )} ( ), 3

11 Biomisk modell, forvetig og varias; utlediger Og da: side : X I + I + L+ I, og I 'ee er uavhegige j får vi : Var( X ) Var( I + I + L+ I ) Var( I ) + Var( I ) + L+ Var( I ) ( ) + ( ) + L+ ( ) ( ) Var(I j ) ( ) 3 Noe viktige saslighetsmodeller Biomisk modell (k. 3.6) Hergeometrisk modell (k. 3.7) Geometrisk modell (otater) Poisso-modell (k. 3.8) (Seiere skal vi se å viktige kotiuerlige saslighetsmodeller.) 3 Hergeometrisk modell Hergeometrisk modell / hergeometrisk fordelig Eks.: Vi har fem kuler, tre svarte og to røde i e boks og skal trekke to tilfeldig. La Xat. svarte blat de to uttruke. Ka biomisk modell brukes for X? 33

12 Hergeometrisk modell Eks.: Vi har fem kuler, tre svarte og to røde i e boks og skal trekke to tildeldig. La Xat. svarte blat de to uttruke. Ka biomisk modell brukes for X? Hver trekig: delforsøk, delforsøk, og suksess svart kule trukket fiasko rød kule trukket P(svart å første kule) 3/5 P(svart å adre kule)?? 34 Hergeometrisk modell Eks.: P(svart å første kule) 3/5 P(svart å adre kule) 3/5, de også (!) Obs. ubetiget saslighet; betiget å hva som skjer i første trekig vil vi få adre resultat. Dette viser at resultatee i slike delforsøk ikke er uavhegige! Dvs.: biomisk modell ka ikke brukes. 35 Hergeometrisk modell Vi ka ekelt fie fordelige til X i eksemelet: P(X ) P( e svart, e rød ) /

13 Hergeometrisk modell Tilsvarede for de adre mulige verdiee: P(X ) P( ige svart, to røde ) / P(X ) P( to svarte, ige røde ) / P(X) Hergeometrisk modell Geerelt: Vi trekker stkker fra e oulasjo å N objekt; hvert objekt ka kategoriseres som defekt eller ikke-defekt ; det er M defekte blat de N N-M (ikke-defekte) M (defekte) Y atall defekte i utvalget 38 Hergeometrisk modell Geerelt: Vi trekker stkker fra e oulasjo å N objekt; hvert objekt ka kategoriseres som defekt eller ikke-defekt ; det er M defekte blat de N N-M (ikke-defekte) M (defekte) Y atall defekte i utvalget Vi sier da at Y er hergeometrisk fordelt, (N,M,) 39 3

14 Hergeometrisk modell Def.: Når Y er hergeometrisk fordelt, (N,M,), er saslighetsfordelige gitt ved: P(Y ) P( akkurat defekte i utvalget ) M N m, for,,,..., N N-M (ikke-defekte) - N M M (defekte) M ( P(Y ), dersom > M. ) 4 Hergeometrisk modell Eks.: Meigsmålig. N3.3 mill. stemmeberettigede Matall for e bestemt sak. blat de N utvalgsstørrelse (omkrig ) N-M (ikke-defekte) M (defekte) Yatall for i utvalget, er hergeometrisk fordelt, (N,M,). 4 Hergeometrisk modell Forvetig og varias Setig: Dersom Y er hergeometrisk fordelt, (N,M,), så: M E(Y) N N-M (ikke-defekte) M (defekte) M M N Var(Y) N N N 4 4

15 Hergeometrisk modell Eks.: Meigsmålig; N3.3 mill.; Ata at M. mill. (6.6%) er for e bestemt sak. blat de N, og ata at utvalgsstørrelse Forvetet atall som er for i utvalget M. E(Y) N 3.3 ( 6.6% av utvalget å ) 43 Hergeometrisk modell Tilærmig til biomisk fordelig - eklere å berege biomiske sasligheter Dersom er lite i forhold til N, er det tilærmet uavhegighet mellom resultatee i ulike trekiger/ delforsøk. 44 Hergeometrisk modell Tilærmig til biomisk fordelig - eklere å berege biomiske sasligheter Dersom er lite i forhold til N, er det tilærmet uavhegighet mellom resultatee i ulike trekiger/ delforsøk. Da ka vi se å resultatee av uttrekige som tilærmet e biomisk forsøksrekke, og Xatall defekte blat de i utvalget er tilærmet biomisk fordelt (, ), med M/N. 45 5

16 Hergeometrisk modell Tilærmig til biomisk fordelig Xatall defekte blat de i utvalget er tilærmet biomisk fordelt (, ), med M/N. Eks.: X~herg.(N5,M3,) P(X)..6.3 P(Y) Y~B(,.6 ) M N Hergeometrisk modell Tilærmig til biomisk fordelig Xatall defekte blat de i utvalget er tilærmet biomisk fordelt (, ), med M/N. Eks.: X~herg.(N5,M3,) P(X)..6.3 P(Y) Y~B(,.6 ) P(V) V~herg.(N5,M3,) 3 M N Hergeometrisk modell Altså: istedefor å berege sasligheter fra: herg.(n5,m3,), ka vi bruke tilærmigee fra: Y~B(,.6 ) P(Y) P(V)

17 Hergeometrisk modell Altså: istedefor å berege sasligheter fra: herg.(n5,m3,), ka vi bruke tilærmigee fra: Y~B(,.6 ) Tilærmigee er gode dersom <. N. P(Y) P(V) Noe viktige saslighetsmodeller Biomisk modell (k. 3.6) Hergeometrisk modell (k. 3.7) Geometrisk modell (otater) Poisso-modell (k. 3.8) (Seiere skal vi se å viktige kotiuerlige saslighetsmodeller.) 5 Geometrisk modell Situasjo: Utgagsuktet er e biomisk forsøksrekke; uedelig. Delforsøkee må tilfredstille:. uavhegige resultat i ulike delforsøk. resultatet er ete suksess eller fiasko 3. P( suksess ) er kostat i alle delforsøkee Hvor mage delforsøk til første suksess? 5 7

18 Geometrisk modell Eks.: Yatall kast med terig til sekser første gag Y ka ata:,, 3,... Terigkastee er delforsøkee (seksersuksess); tilfredsstiller krav til biomisk forsøksrekke. Da: Y atall delforsøk til første suksess 5 Geometrisk modell Def.: Dersom Y er atall delforsøk til første suksess i e biomisk forsøksrekke, så sier vi at Y er geometrisk fordelt med suksessaslighet, der P(suksess). Vi skriver: Y ~ geom.() (Ma sier ofte at dette er e vetetidsfordelig.) 53 Geometrisk modell Def.: Dersom Y er atall delforsøk til første suksess i e biomisk forsøksrekke, så sier vi at Y er geometrisk fordelt med suksessas-lighet, der P(suksess). Vi skriver: Y ~ geom.() Saslighetsfordelig: P(Y ) P(S ) P(Y ) P(F S ) P(Y 3) P(F F S ) uavhegige delforsøk 3 P(F )P(S ) (- ) uavhegige delforsøk P(F )P(F )P(S ) (- )

19 Geometrisk modell Def.: Dersom Y er atall delforsøk til første suksess i e biomisk forsøksrekke, så sier vi at Y er geometrisk fordelt med suksessas-lighet, der P(suksess). Vi skriver: Y ~ geom.() Saslighetsfordelig, geerelt: P(Y ) (- ) -,,, 3,... E(Y) og Var(Y) 55 Geometrisk modell Obs.: P(Y ) (- ) -,,, 3,... E(Y) P(Y ) (- ) - L 56 Geometrisk modell Eks.: Vi tier e rekke i LOTTO hver uke framover. La Xatall uker til vi får 7 riktige første gag. Da: X~geom.(), der / Forvetet atall uker til vi får 7 riktige første gag E(X) 57 9

20 Geometrisk modell Eks.: Vi tier e rekke i LOTTO hver uke framover. La Xatall uker til vi får 7 riktige første gag. Da: X~geom.(), der / Forvetet atall uker til vi får 7 riktige første gag E(X) / uker (!) 58 Geometrisk modell Eks.: La Yatall terigkast til vi får sekser første gag. Da: Y~geom.(), /6. Hva er saslighete for å få første sekser ie kast? 59 Geometrisk modell Eks.: Vi er iteressert i P(Y ). Ser geerelt å P(Y ): P(Y ) P(mist e sekser ie kast) - P(ige sekser i løet av kast) - (- ),,,3,... 6

21 Geometrisk modell Eks.: Vi er iteressert i P(Y Ser geerelt å P(Y ). ): P(Y ) P(mist e sekser ie kast) - P(ige sekser i løet av kast) - (- ),,,3,... P(Y ) - (- ) Geometrisk modell Eks.: Diagram over P(Y ) år Yat. kast til første sekser. (Vi kaller P(Y ) for de kumulative fordeligsfuksjoe til Y.) Sas. for første sekser ie... P(Y<),667,356 3,43 4,577 5,598 6,665 7,79 8,7674 9,86,8385,8654,8878 P(Y ) - (- ) 6,,8,6,4,, Atall kast til første sekser 6 Noe viktige saslighetsmodeller Biomisk modell (k. 3.6) Hergeometrisk modell (k. 3.7) Geometrisk modell (otater) Poisso-modell (k. 3.8) 63

22 Poissomodell (k. 3.8) Situasjoer der Poissofordelig ka være e god beskrivelse: Xatall forekomster av e bestemt begivehet i et tidsrom (f.eks. atall ulkker r. måed) eller Xatall forekomster av et bestemt objekt i et bestemt volum eller areal (f.eks. atall bakterier i e varøve) 64 Poissomodell Eks.: La Y atall telefosamtaler i til setralbordet i løet av ett miutt. Y ka ata:,,, Poissomodell Eks.: La Y atall telefosamtaler i til setralbordet i løet av ett miutt. Y ka ata:,,,... Med hvilke sasligheter??... P(Y)?? 66

23 Poissomodell Eks.: La Y atall telefosamtaler i til setralbordet i løet av ett miutt. Y ka ata:,,,... I slike situasjoer er det ofte rimelig å ata. at atall forekomster i disjukte itervall er statistisk uavhegig av hveradre,. at forvetet atall forekomster r. ehet er kostat, og 3. at saslighete for to eller flere forekomster i samme itervall, går mot ull år itervallegde går mot ull 67 Poissomodell Dersom forutsetigee er tilfredsstilt, så ka vi utlede matematisk at saslighetee for Y er gitt ved: For,,, 3,... P(Y ) ( λt)! e λt Her er λt forvetet atall i (t i eksemelet) t miutt 68 Poissomodell Eks.: Dersom vi ka forvete 8 ikommede samtaler r. miutt, har vi: For,,, 3,...,3,7,7 3,86 4,573 5,96 6, 7,396 8,396 9,4,993,7,48 3,96 4,69 5,9 6,45 7, 8,9 9,4,,, P(Y ) () 8 8 e!,5,,5 Poissofordelig, m/forv. 8,

24 Poissomodell Obs.: De beskreve atakelsee + diff.ligiger ++ gir saslighetee. (tids)itervall vs. areal vs. volum gir realistiske saslighetsmodeller i situasjoer der atakelsee helt eller tilærmelsesvis er tilfredsstilt 7 Poissomodell Eks.: Ata at Yatall samtaler til e setral, er Poissofordelt med forvetig.5 samtaler r. miutt. P( ige samtaler i ett miutt )? P( to eller flere i ett miutt )? P( akkurat tre i løet av to miutt )? 7 Poissomodell Eks.: Ata at Yatall samtaler til e setral, er Poissofordelt med forvetig.5 samtaler r. miutt. P(ige i ett miutt) P(Y ).5 e!.5 e.5. ( λt) λt P(Y ) e! 7 4

25 Poissomodell Eks.: Ata at Yatall samtaler til e setral, er Poissofordelt med forvetig.5 samtaler r. miutt. P(ige i ett miutt) P(Y ).5 e!.5 e.5. P(to eller flere i ett miutt) P(Y ) - P(Y ) - { P(Y ) + P(Y ) }.5.5 ( λt) λt -{. + e }.45 P(Y ) e!! 73 Poissomodell Eks.: Ata at Yatall samtaler til e setral, er Poissofordelt med forvetig.5 samtaler r. miutt. Poissofordelig med forvetig.5: Poissofordelig, m/forv..5,4,35,3,5,,5,,5, Poissomodell Eks.: Ata at Yatall samtaler til e setral, er Poissofordelt med forvetig.5 samtaler r. miutt. Dersom Xatall samtaler i to miutt, så vil vi ha at: X er Poissofordelt med forvetig.5 3 P(akkurat tre i to miutt) P(X 3) 3 3 e 3! 3.4 λ.5 og t : λt.5 3 ( λt) λt P(Y ) e! 75 5

26 Poissomodell Resultat: Dersom Y er Poissofordelt med arameter λt, har vi at: E(Y) λt og For,,, 3,... P(Y ) ( λt) λt e! Var(Y) λt Skrivemåte : Y ~ Poiss. ( λt ) 76 Poissomodell Obs.: Når E(Y) Y ~ Poiss. ( λt ), P(Y ) ( λt )! så e -λt L λt For,,, 3,... P(Y ) ( λt) λt e! 77 Poissomodell Berege sasligheter ) med formel ) bruk av tabell (tilgjegelig å ettstedet) 78 6

27 Poissomodell, tabell 79 Poissomodell, tabell 8 Poissomodell Eksemler:. Atall utrkiger er uke ved brastasjo. Atall stormer er år 8 7

ÅMA110 Sannsynlighetsregning med statistikk, våren Noen viktige sannsynlighetsmodeller. Noen viktige sannsynlighetsmodeller

ÅMA110 Sannsynlighetsregning med statistikk, våren Noen viktige sannsynlighetsmodeller. Noen viktige sannsynlighetsmodeller ÅMA0 Sannsnlighetsregning med statistikk, våren 008 Kp. 3 Diskrete tilfeldige variable Noen viktige sannsnlighetsmodeller Noen viktige sannsnlighetsmodeller Binomisk modell (kp. 3.6) Hpergeometrisk modell

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 ÅMA0 Sannsynlighetsregning med statistikk, våren 0 Kp. 3 Diskrete tilfeldige variable Noen viktige sannsynlighetsmodeller Noen viktige sannsynlighetsmodeller ( Sanns.modell : nå betyr det klasse/type sanns.fordeling.

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Noen viktige sannsynlighetsmodeller. Binomisk modell. Kp. 3 Diskrete tilfeldige variable

ÅMA110 Sannsynlighetsregning med statistikk, våren Noen viktige sannsynlighetsmodeller. Binomisk modell. Kp. 3 Diskrete tilfeldige variable ÅMA Sannsynlighetsregning med statistikk, våren 006. 3 Diskrete tilfeldige variable Noen viktige sannsynlighetsmodeller Noen viktige sannsynlighetsmodeller (k. 3.6 Hyergeometrisk modell (k. 3.7 Geometrisk

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro.

ÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro. ÅMA Sasylighetsregig med statistikk, våre 6 Kp. 4 Kotiuerlige tilfeldige variable og ormaldelige Kotiuerlige tilfeldige variable, itro. (eller: Kotiuerlige sasylighetsdeliger) Vi har til å sett på diskrete

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 3 Diskrete tilfeldige variable. Diskrete tilfeldige variable, varians (kp. 3.

ÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 3 Diskrete tilfeldige variable. Diskrete tilfeldige variable, varians (kp. 3. ÅMA Sannsynlighetsregning med statistikk, våren 8 Kp. Diskrete tilfeldige variable Kp. Diskrete tilfeldige variable Har sett på (tidligere: begrep/definisjoner; tilfeldig (stokastisk variabel sannsynlighetsfordeling

Detaljer

Hypergeometrisk modell

Hypergeometrisk modell Hpergeometrisk modell Tilnærming til binomisk fordeling - enklere å beregne binomiske sannsnligheter Dersom n er liten i forhold til N, er det tilnærmet uavhengighet mellom resultatene i ulike trekninger/

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro.

ÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro. ÅMA0 Sasylighetsregig med statistikk, våre 008 Kp. 4 Kotiuerlige tilfeldige variable; Normalfordelig Kotiuerlige tilfeldige variable, itro. (eller: Kotiuerlige sasylighetsfordeliger) Vi har til å sett

Detaljer

Kapittel 7: Noen viktige sannsynlighetsfordelinger

Kapittel 7: Noen viktige sannsynlighetsfordelinger Kapittel 7: Noe viktige sasylighetsfordeliger I mage situasjoer ka feomeet vi ser på beskrives med e bestemt type sasylighetsfordelig e sasylighetsfordelig gitt ved e bestemt formel. Vi skal se på oe av

Detaljer

Ukeoppgaver i BtG207 Statistikk, uke 4 : Binomisk fordeling. 1

Ukeoppgaver i BtG207 Statistikk, uke 4 : Binomisk fordeling. 1 Ukeoppgaver i BtG20 Statistikk, uke 4 : Biomisk fordelig. 1 Høgskole i Gjøvik Avdelig for tekologi, økoomi og ledelse. Statistikk Ukeoppgaver uke 4 Biomisk fordelig. Oppgave 1 La de stokastiske variable

Detaljer

Kapittel 7: Noen viktige sannsynlighetsfordelinger

Kapittel 7: Noen viktige sannsynlighetsfordelinger Kapittel 7: Noe viktige sasylighetsfordeliger I mage situasjoer ka feomeet vi ser på beskrives med e bestemt type sasylighetsfordelig (e sasylighetsfordelig gitt ved e bestemt formel. Vi skal se på oe

Detaljer

Econ 2130 uke 15 (HG) Poissonfordelingen og innføring i estimering

Econ 2130 uke 15 (HG) Poissonfordelingen og innføring i estimering Eco 130 uke 15 (HG) Poissofordelige og iførig i estimerig 1 Poissofordelige (i) Tilærmig til biomialfordelige. Regel. ( Poissotilærmelse ) Ata Y ~ bi(, p) E( Y ) = p og var( Y ) = p(1 p). Hvis er stor

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 5

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 5 ÅMA110 Sasylighetsregig med statistikk, våre 2010 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 12. april Bjør H. Auestad Kp. 6: Hypotesetestig del 4 1/ 59

Detaljer

Forelesning Moment og Momentgenererende funksjoner

Forelesning Moment og Momentgenererende funksjoner ushu.li@uib.o Forelesig + 3 Momet og Mometgeererede fuksjoer 1. Oppsummerig til Forelesig 1 1.1) Fuksjoe av S.V: hvis variabele er e fuksjo (trasformasjo) av S.V. : g( ), da er også e S.V.: til ethvert

Detaljer

Econ 2130 Forelesning uke 11 (HG)

Econ 2130 Forelesning uke 11 (HG) Eco 130 Forelesig uke 11 (HG) Mer om ormalfordelige og setralgreseteoremet Uke 1 1 Fra forrige gag ~ betyr er fordelt som. ~ N( µσ, ) E( ) = µ, og var( ) = σ Normalfordelige er symmetrisk om μ og kotiuerlig

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 5

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 5 ÅMA110 Sasylighetsregig med statistikk, våre 2006 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 3. april Bjør H. Auestad Kp. 6: Hypotesetestig del 5 1 / 56

Detaljer

Kapittel 5: Tilfeldige variable, forventning og varians.

Kapittel 5: Tilfeldige variable, forventning og varians. Kapittel 5: Tilfeldige variable, forvetig og varias. Tilfeldige variable Tilfeldige variable kalles også stokastiske variable. Defiisjo: E tilfeldig variabel er e variabel som får si umeriske verdi bestemt

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 5 Estimering. Målemodellen.

ÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 5 Estimering. Målemodellen. ÅMA0 Sasylighetsregig med statistikk, våre 0 Kp. 5 Estimerig. Målemodelle. Estimerig. Målemodelle. Ihold:. (Pukt)Estimerig i biomisk modell (kp. 5.). Målemodelle... (kp. 5.). (Pukt)Estimerig i målemodelle

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008 Kp. 6, del 5

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008 Kp. 6, del 5 ÅMA110 Sasylighetsregig med statistikk, våre 2008 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 3. april Bjør H. Auestad Kp. 6: Hypotesetestig del 5 1/ 56

Detaljer

Mer om utvalgsundersøkelser

Mer om utvalgsundersøkelser Mer om utvalgsudersøkelser I uderkapittel 3.6 i læreboka gir vi e kort iførig i takegage ved utvalgsudersøkelser. Vi gir her e grudigere framstillig av temaet. Populasjo og utvalg Ved e utvalgsudersøkelse

Detaljer

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 20. mai 2008

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 20. mai 2008 Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL. mai 8 EKSAMEN I MATEMATIKK Modul 5 studieoeg Tid: 5 timer Ogavesettet er å sider (ikludert formelsamlig). Hjelemidler:

Detaljer

Oppgave 1 Hardheten til en bestemt legering er undersøkt med åtte målinger og resultatene ble (i kg/mm 2 ) som i tabellen til høyre.

Oppgave 1 Hardheten til en bestemt legering er undersøkt med åtte målinger og resultatene ble (i kg/mm 2 ) som i tabellen til høyre. EKSAMEN I: ÅMA110 SANNSYNLIGHETSREGNING MED STATISTIKK VARIGHET: 4 TIMER DATO: 28. AUGUST 2010 BOKMÅL TILLATTE HJELPEMIDLER: KALKULATOR: HP30S, Casio FX82 eller TI-30 OPPGAVESETTET BESTÅR AV 3 OPPGAVER

Detaljer

Oppgave 1. (i) Hva er sannsynligheten for at det øverste kortet i bunken er et JA-kort?

Oppgave 1. (i) Hva er sannsynligheten for at det øverste kortet i bunken er et JA-kort? ECON EKSAMEN 8 VÅR TALLSVAR Oppgave Vi har e kortstokk beståede av 6 kort. På av disse står det skrevet JA på forside mes det står NEI på forside av de adre kortee. Hvis ma får se kortet med bakside vedt

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008 Kp. 6, del 5

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008 Kp. 6, del 5 ÅMA110 Sasylighetsregig med statistikk, våre 2008 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 26. mars Bjør H. Auestad Kp. 6: Hypotesetestig del 5 1/ 53

Detaljer

STK1100: Kombinatorikk

STK1100: Kombinatorikk 1100: ombiatorikk auar 2009 Ørulf orga Matematisk istitutt Uiversitetet i Oslo 1 Uiform sasylighetsmodell: t stokastisk forsøk har N utfall Det er de mulige utfallee for forsøket i atar at de N utfallee

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 5. Hypotesetesting, del 5

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 5. Hypotesetesting, del 5 ÅMA11 Sasylighetsregig med statistikk, våre 7 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 26. mars Bjør H. Auestad Kp. 6: Hypotesetestig del 5 1/ 59 Bjør

Detaljer

MOT310 Statistiske metoder 1, høsten 2011

MOT310 Statistiske metoder 1, høsten 2011 MOT310 Statistiske metoder 1, høste 2011 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 24. august, 2011 Bjør H. Auestad Itroduksjo og repetisjo 1 / 32 Repetisjo; 9.1,

Detaljer

Ulike typer utvalg. MAT0100V Sannsynlighetsregning og kombinatorikk. Ordnet utvalg uten tilbakelegging. Ordnet utvalg med tilbakelegging.

Ulike typer utvalg. MAT0100V Sannsynlighetsregning og kombinatorikk. Ordnet utvalg uten tilbakelegging. Ordnet utvalg med tilbakelegging. MAT0100V Sasylighetsregig og kombiatorikk Ordet utvalg med og ute tilbakeleggig (repetisjo) Uordet utvalg ute tilbakeleggig (repetisjo) Tilfeldige variabler og sasylighetsfordeliger Hypergeometrisk fordelig

Detaljer

Introduksjon. Hypotesetesting / inferens (kap 3) Populasjon og utvalg. Populasjon og utvalg. Populasjonsvarians

Introduksjon. Hypotesetesting / inferens (kap 3) Populasjon og utvalg. Populasjon og utvalg. Populasjonsvarians Hypotesetestig / iferes (kap ) Itroduksjo Populasjo og utvalg Statistisk iferes Utvalgsfordelig (samplig distributio) Utvalgsfordelige til gjeomsittet Itroduksjo Vi øsker å få iformasjo om størrelsee i

Detaljer

Kapittel 8: Estimering

Kapittel 8: Estimering Kaittel 8: Estimerig Estimerig hadler kort sagt om hvorda å aslå verdie å arametre som,, og dersom disse er ukjete. like arametre sier oss oe om oulasjoe vi studerer (dvs om alle måliger av feomeet som

Detaljer

TMA4240 Statistikk Eksamen desember 2015

TMA4240 Statistikk Eksamen desember 2015 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag TMA20 Statistikk Eksame desember 205 Løsigsskisse Oppgave a) De kumulative fordeligsfuksjoe til X, F (x) P (X x): F (x) P (X x) x

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 4. Hypotesetesting, del 4

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 4. Hypotesetesting, del 4 ÅMA11 Sasylighetsregig med statistikk, våre 27 Kp. 6, del 4 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 19. mars Bjør H. Auestad Kp. 6: Hypotesetestig del 4 1/ 27 Bjør

Detaljer

Konfidensintervall. Notat til STK1110. Ørnulf Borgan, Ingrid K. Glad og Anders Rygh Swensen Matematisk institutt, Universitetet i Oslo.

Konfidensintervall. Notat til STK1110. Ørnulf Borgan, Ingrid K. Glad og Anders Rygh Swensen Matematisk institutt, Universitetet i Oslo. Kofidesitervall Notat til STK1110 Ørulf Borga, Igrid K. Glad og Aders Rygh Swese Matematisk istitutt, Uiversitetet i Oslo August 2007 Formål E valig metode for å agi usikkerhete til et estimat er å berege

Detaljer

Eksempler fra slutten av forrige uke. Eksempler (styrke, dimensjonering,...) Eksempler fra slutten av forrige uke

Eksempler fra slutten av forrige uke. Eksempler (styrke, dimensjonering,...) Eksempler fra slutten av forrige uke Oversikt, del 5 Hypotesetestig, del 4 (oppsummerig fra Hypotesetestig, del 5 Kofidesitervall dimesjoerig Eksempler fra slutte av forrige uke Kofidesitervall p-verdi Eksempler Eksempler (styrke, dimesjoerig,...

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 0 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Oppgave Midtveiseksame a) X er e stokastisk variabel

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 4

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 4 ÅMA11 Sasylighetsregig med statistikk, våre 21 Kp. 6, del 4 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 22. mars Bjør H. Auestad Kp. 6: Hypotesetestig del 4 1/ 29 Bjør

Detaljer

Hypotesetesting, del 4

Hypotesetesting, del 4 Oversikt, del 4 t-fordelig t-test t-itervall Del 5 Kofidesitervall vs. test p-verdi t-fordelig Rett på defiisjo: Utgagspuktet er målemodelle med ormalatakelse: X 1,...,X,u.i.f.tilf.var.derX i Nμ, σ 2 ).La

Detaljer

LØSNING, EKSAMEN I STATISTIKK, TMA4240, DESEMBER Anta at sann porøsitet er r. Måling med utstyret gir da X n(x; r, 0,03).

LØSNING, EKSAMEN I STATISTIKK, TMA4240, DESEMBER Anta at sann porøsitet er r. Måling med utstyret gir da X n(x; r, 0,03). LØSNING, EKSAMEN I STATISTIKK, TMA440, DESEMBER 006 OPPGAVE 1 Ata at sa porøsitet er r. Målig med utstyret gir da X (x; r, 0,03). a) ( ) X r P(X > r) P 0,03 > 0 P(Z > 0) 0,5. ( X r P(X r > 0,05) P 0,03

Detaljer

KLMED8004 Medisinsk statistikk. Del I, høst Estimering. Tidligere sett på. Eksempel hypertensjon

KLMED8004 Medisinsk statistikk. Del I, høst Estimering. Tidligere sett på. Eksempel hypertensjon Tidligere sett på KLMED8004 Medisisk statistikk Del I, høst 008 Estimerig Hvorda kjete sasylighetsfordeliger (biomialfordelig, ormalfordelig) med kjete populasjosparametrer (forvetig, varias osv.) ka gi

Detaljer

STK1100: Kombinatorikk og sannsynlighet

STK1100: Kombinatorikk og sannsynlighet ST1100: ombiatorikk og sasylighet Jauar 201 Ørulf Borga/Geir Storvik Matematisk istitutt Uiversitetet i Oslo 1 Uiform sasylighetsmodell: Et stokastisk forsøk har N utfall Det er de mulige utfallee for

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 ÅMA110 Sasylighetsregig med statistikk, våre 2006 Kp. 6, del 2 Bjør H. Auestad Kp. 6: Hypotesetesig del 2 1/ 38 Bjør H. Auestad Kp. 6: Hypotesetesig del 2 2/ 38 Oversikt 1. Hva er hypotesetestig? 2. Hypotesetestig

Detaljer

Kap. 9: Inferens om én populasjon

Kap. 9: Inferens om én populasjon 2 ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for matematiske fag Ka. 9: Iferes om é oulasjo Hvis σ er ukjet bytter vi ut σ med s i Ny observator blir t = x μ s/ z = x μ σ/ der s = Σx 2 (Σx)

Detaljer

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 12. desember 2008

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 12. desember 2008 Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL. desember 8 EKSAMEN I MATEMATIKK, Utsatt røve Modul 5 studieoeg Tid: 5 timer Ogavesettet er å sider (ikludert formelsamlig).

Detaljer

Kap. 9: Inferens om én populasjon

Kap. 9: Inferens om én populasjon 2 ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for matematiske fag Ka. 9: Iferes om é oulasjo Hvis σ er ukjet bytter vi ut σ med s i Ny observator blir t = x μ s/ z = x μ σ/ der s = Σx 2 (Σx)

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 2

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 2 ÅMA11 Sasylighetsregig med statistikk, våre 27 Kp. 6, del 2 Bjør H. Auestad Istitutt for matematikk og aturviteskap 5. mars 21 Bjør H. Auestad Kp. 6: del 1/2 1/ 42 Bjør H. Auestad Kp. 6: del 1/2 2/ 42

Detaljer

Kort repetisjon fra kapittel 4. Oppsummering kapittel ST0202 Statistikk for samfunnsvitere. Betinget sannsynlighet og trediagram

Kort repetisjon fra kapittel 4. Oppsummering kapittel ST0202 Statistikk for samfunnsvitere. Betinget sannsynlighet og trediagram 2 Kort reetisjo fra kaittel 4 Betiget sasylighet og trediagram Eksemel: Fra e oulasjo av idrettsfolk trekkes e erso tilfeldig og testes for doig. De iteressate hedelsee er D=ersoe er doet, A=teste er ositiv.

Detaljer

Statistikk og økonomi, våren 2017

Statistikk og økonomi, våren 2017 Statistikk og økoomi, våre 07 Obligatorisk oppgave 6 Løsigsforslag Oppgave E terig kastes 0 gager, og det registreres hvor mage 6-ere som oppås i løpet av disse 0 kastee. Vi ka kalle atall 6-ere i løpet

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Oppsummering

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Oppsummering ÅMA110 Sasylighetsregig med statistikk, våre 2007 Oppsummerig Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 19. april Bjør H. Auestad Oppsummerig våre 2006 1 / 37 Oversikt

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdelig for tekologi Målform: Bokmål Eksamesdato: 19 des. 2014 Varighet/eksamestid: Emekode: 3 timer TALM1005 Emeav: Statistikk og Økoomi statistikkdele Klasser: Logistikk 1 Kjemi

Detaljer

Forelesning 4 og 5 Transformasjon, Weibull-, lognormal, beta-, kji-kvadrat -, t-, F- fordeling

Forelesning 4 og 5 Transformasjon, Weibull-, lognormal, beta-, kji-kvadrat -, t-, F- fordeling STAT (V6) Statistikk Metoder Yushu.Li@uib.o Forelesig 4 og 5 Trasformasjo, Weibull-, logormal, beta-, kji-kvadrat -, t-, F- fordelig. Oppsummerig til Forelesig og..) Momet (momet about 0) og setral momet

Detaljer

2. Hypotesetesting i ulike sitausjoner: i. for forventingen, μ, i målemodellen med normalantakelse og kjent varians, σ 2.

2. Hypotesetesting i ulike sitausjoner: i. for forventingen, μ, i målemodellen med normalantakelse og kjent varians, σ 2. Oversikt 1. Hva er hypotesetestig? 2. i ulike sitausjoer: i. for forvetige, μ, med ormalatakelse og kjet varias, σ 2. ii. for forvetige, μ, med stor og ormaltilærmig (variase, σ 2, ukjet). iii. for suksessasylighete,

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 Høst 205 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer, blokk II Løsigsskisse Oppgave a) X bi(, p) fordi: Udersøker uavhegige delar av DNA-strukture. Fi for kvar del

Detaljer

Oversikt, del 5. Vi har sett på styrkefunksjon for ensidige tester. Eksempler (styrke, dimensjonering,...) Eksempler fra slutten av forrige uke

Oversikt, del 5. Vi har sett på styrkefunksjon for ensidige tester. Eksempler (styrke, dimensjonering,...) Eksempler fra slutten av forrige uke Hypotesetestig, del 4 oppsummerig fra Hypotesetestig, del 5 Kofidesitervall dimesjoerig Oversikt, del 5 Eksempler fra slutte av forrige uke Kofidesitervall p-verdi Eksempler Eksempler styrke, dimesjoerig,...

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 ÅMA Sasylighetsregig med statistikk, våre 27 Kp. 6 (kp. 6) Tre deler av faget/kurset:. Beskrivede statistikk 2. Sasylighetsteori, sasylighetsregig 3. Statistisk iferes estimerig kofidesitervall hypotesetestig

Detaljer

) = P(Z > 0.555) = > ) = P(Z > 2.22) = 0.013

) = P(Z > 0.555) = > ) = P(Z > 2.22) = 0.013 TMA4240 Statistikk Vår 2008 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b5 Løsigsskisse Oppgave 1 a) X 1,...,X 16 er u.i.f. N(80,18 2 ). Setter Y = X. i) P(X 1 >

Detaljer

TMA4245 Statistikk Eksamen mai 2017

TMA4245 Statistikk Eksamen mai 2017 TMA445 Statistikk Eksame mai 07 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsskisse Oppgave a Når vi reger ut disse tre sasylighetee må ma huske på at de mulige verdiee

Detaljer

X = 1 5. X i, i=1. som vil være normalfordelt med forventningsverdi E( X) = µ og varians Var( X) = σ 2 /5. En rimelig estimator for variansen er

X = 1 5. X i, i=1. som vil være normalfordelt med forventningsverdi E( X) = µ og varians Var( X) = σ 2 /5. En rimelig estimator for variansen er Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalte oppgaver 11, blokk II Løsigsskisse Oppgave 1 a) E rimelig estimator for forvetigsverdie µ er gjeomsittet X = 1 X i, som

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdelig for tekologi Målform: Bokmål Eksamesdato: 5 jui 2015 Varighet/eksamestid: Emekode: 3 timer TALM1005 Emeav: Statistikk og Økoomi statistikkdele Klasser: Logistikk 1 Kjemi

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 ÅMA110 asylighetsregig med statistikk våre 011 Kp. 5 Estimerig 1 Estimerig. Målemodelle. Ihold: 1. (ukt)estimerig i biomisk modell (kp. 5.). Målemodelle... (kp. 5.3) 3. (ukt)estimerig i målemodelle (kp.

Detaljer

Løsningsforslag for andre obligatoriske oppgave i STK1100 Våren 2007 Av Ingunn Fride Tvete og Ørnulf Borgan

Løsningsforslag for andre obligatoriske oppgave i STK1100 Våren 2007 Av Ingunn Fride Tvete og Ørnulf Borgan Løsigsforslag for adre obligatoriske oppgave i STK11 Våre 27 Av Igu Fride Tvete (ift@math..uio.o) og Ørulf Borga (borga@math.uio.o). NB! Feil ka forekomme. NB! Sed gjere e mail hvis du fier e feil! Oppgave

Detaljer

LØSNINGSFORSLAG TILEKSAMEN I FAG TMA4240/TMA4245 STATISTIKK 10. august 2005

LØSNINGSFORSLAG TILEKSAMEN I FAG TMA4240/TMA4245 STATISTIKK 10. august 2005 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 8 LØSNINGSFORSLAG TILEKSAMEN I FAG TMA440/TMA445 STATISTIKK 0. august 005 Oppgave Smeltepuktsbestemmelse a) Vi jobber i dette

Detaljer

Rep.: generelle begrep og definisjoner Kp. 10.1, 10.2 og 10.3

Rep.: generelle begrep og definisjoner Kp. 10.1, 10.2 og 10.3 Kp. 1, oversikt ; oversikt, t- ; oversikt ; stor ; Hypoteseig; ett- og to-utvalg Rep.: geerelle begrep og defiisjoer Kp. 1.1, 1.2 og 1.3 Rep.: ett-utvalgser for μ (...), p Kp. 1 og 1.8 Nytt: ett-utvalgs

Detaljer

Forventningsverdi. MAT0100V Sannsynlighetsregning og kombinatorikk

Forventningsverdi. MAT0100V Sannsynlighetsregning og kombinatorikk MAT0100V Sasylighetsregig og kombiatorikk Forvetigsverdi Sasylighetsfordelige til e tilfeldig variabel X gir sasylighete for de ulike verdiee X ka ata Forvetig, varias og stadardavvik Tilærmig av biomiske

Detaljer

H 1 : µ 1 µ 2 > 0. t = ( x 1 x 2 ) (µ 1 µ 2 ) s p. s 2 p = s2 1 (n 1 1) + s 2 2 (n 2 1) n 1 + n 2 2

H 1 : µ 1 µ 2 > 0. t = ( x 1 x 2 ) (µ 1 µ 2 ) s p. s 2 p = s2 1 (n 1 1) + s 2 2 (n 2 1) n 1 + n 2 2 TMA4245 Statistikk Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b4 Løsigsskisse Oppgave 1 Vi øsker å fie ut om et ytt serum ka stase leukemi. 5 mus får serumet, 4

Detaljer

Hypotesetesting, del 5

Hypotesetesting, del 5 Oversikt, del 5 Kofidesitervall p-verdi Kofidesitervall E (tosidig test ka gjeomføres vha. av et kofidesitervall. For eksempel, dersom vi i målemodell 1 vil teste: H 0 : μ = μ 0 mot H 1 : μ μ 0, ka vi

Detaljer

Påliteligheten til en stikkprøve

Påliteligheten til en stikkprøve Pålitelighete til e stikkprøve Om origiale... 1 Beskrivelse... 2 Oppgaver... 4 Løsigsforslag... 4 Didaktisk bakgru... 5 Om origiale "Zuverlässigkeit eier Stichprobe" på http://www.mathe-olie.at/galerie/wstat2/stichprobe/dee

Detaljer

8 (inkludert forsiden og formelsamling) Tegne- og skrivesaker, kalkulator, formelsamling (se vedlagt).

8 (inkludert forsiden og formelsamling) Tegne- og skrivesaker, kalkulator, formelsamling (se vedlagt). Eksamesoppgave våre 011 Ordiær eksame Bokmål Fag: Matematikk Eksamesdato: 10.06.011 Studium/klasse: GLU 5-10 Emekode: MGK00 Eksamesform: Skriftlig Atall sider: 8 (ikludert forside og formelsamlig) Eksamestid:

Detaljer

STK1100 våren 2017 Estimering

STK1100 våren 2017 Estimering STK1100 våre 017 Estimerig Svarer til sidee 331-339 i læreboka Ørulf Borga Matematisk istitutt Uiversitetet i Oslo 1 Politisk meigsmålig Spør et tilfeldig utvalg på 1000 persoer hva de ville ha stemt hvis

Detaljer

3MX 2007/8 - Kapittel 5: 8. januar 5. februar 2008

3MX 2007/8 - Kapittel 5: 8. januar 5. februar 2008 3MX 00/8 - Kapittel : 8. jauar. februar 008 Pla for skoleåret 00/008: Kapittel 6: 6/ /. Kapittel : / /3. Prøver på eller skoletime etter hvert kapittel. É heildagsprøve i hver termi. Repetisjo, prøver,

Detaljer

TMA4245 Statistikk Vår 2015

TMA4245 Statistikk Vår 2015 TMA4245 Statistikk Vår 2015 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer 12, blokk II Oppgave 1 Kari har ylig kjøpt seg e y bil. Nå øsker hu å udersøke biles besiforbruk

Detaljer

Estimering 2. -Konfidensintervall

Estimering 2. -Konfidensintervall Estimerig 2 -Kofidesitervall Dekkes av kap. 9.4-9.5, 9.10, 9.12 og forelesigsotatee. Dersom forsøket gjetas mage gager vil (1 α)100% av itervallee [ ˆΘ L, ˆΘ U ] ieholde de ukjete parametere θ (som er

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-aturviteskapelige fakultet Eksame i: STK11 Sasylighetsregig og statistisk modellerig. LØSNINGSFORSLAG Eksamesdag: Fredag 9. jui 217. Tid for eksame: 9. 13.. Oppgavesettet

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalt øvig 11 Løsigsskisse Oppgave 1 a) E rimelig estimator for forvetigsverdie µ er gjeomsittet X = 1 X i, som vil være ormalfordelt

Detaljer

Oversikt over konfidensintervall i Econ 2130

Oversikt over konfidensintervall i Econ 2130 1 HG Revidert april 011 Oversikt over kofidesitervall i Eco 130 Merk at dee oversikte ikke er met å leses istedefor framstillige i Løvås, me som et supplemet. Løvås ieholder mage verdifulle kommetarer

Detaljer

Oversikt over konfidensintervall i Econ 2130

Oversikt over konfidensintervall i Econ 2130 HG April 00 Oversikt over kofidesitervall i Eco 30 Merk at dee oversikte ikke er met å leses istedefor framstillige i Løvås, me som et supplemet. Løvås ieholder mage verdifulle kommetarer og eksempler.

Detaljer

Ulike typer utvalg. MAT0100V Sannsynlighetsregning og kombinatorikk. Ordnet utvalg uten tilbakelegging 29 (29 1) (29 2) (29 3) =

Ulike typer utvalg. MAT0100V Sannsynlighetsregning og kombinatorikk. Ordnet utvalg uten tilbakelegging 29 (29 1) (29 2) (29 3) = MAT000V Sasylighetsregig og kombiatorikk Urdede utvalg ute tilbakeleggig Pascals talltrekat og biomialkoeffisietee Ørulf Borga Matematisk istitutt Uiversitetet i Oslo Ulike typer utvalg Eksempel 6.: Vi

Detaljer

Vi skal hovedsakelig ikke bestemme summen men om rekken konvergerer. det vil si om summen til rekken er et bestemt tall

Vi skal hovedsakelig ikke bestemme summen men om rekken konvergerer. det vil si om summen til rekken er et bestemt tall Kapittel 8 Oppsummerig-Rekker Rekker er summe til edelig eller uedelig mage ledd i e tallfølge. Potesrekker ka beyttes til å uttrykke vaskelige fuksjoer om et pukt. Ma ka skreddesy potesfuksjoer ved hjelp

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag ..4 EKSAMEN Løsigsforslag Emekode: ITF75 Dato: 6. desember Eme: Matematikk for IT Eksamestid: kl 9. til kl. Hjelpemidler: To A4-ark med valgfritt ihold på begge sider. Kalkulator er ikke tillatt. Faglærer:

Detaljer

Metoder for politiske meningsmålinger

Metoder for politiske meningsmålinger Metoder for politiske meigsmåliger AV FORSKER IB THOMSE STATISTISK SETRALBYRÅ Beregigsmetodee som brukes i de forskjellige politiske meigsmåliger har vært gjestad for mye diskusjo i dagspresse det siste

Detaljer

Signifikante sifre = alle sikre pluss ett siffer til

Signifikante sifre = alle sikre pluss ett siffer til Sigifikate siffer og stadardavvik behadles i kap. Disse to emee skal vi ta for oss i dag. Kofidesgreser behadles i kap 4. Dette skal vi ta for oss i osdag. Presetasjo av aalysedata ka gjøres på følgede

Detaljer

ECON240 Statistikk og økonometri

ECON240 Statistikk og økonometri ECON240 Statistikk og økoometri Arild Aakvik, Istitutt for økoomi 1 Mellomregig MKM Model: Y i = a i + bx i + e i MKM-estimator for b: b = = Xi Y i 1 Xi Yi Xi 1 ( X i ) 2 (Xi X)(Y i Ȳi) (Xi X) 2 hvor vi

Detaljer

Kapittel 5: Diskrete sannsynsfordelingar TMA4245 Statistikk. 5.2 Diskret uniform fordeling NTNU NTNU NTNU

Kapittel 5: Diskrete sannsynsfordelingar TMA4245 Statistikk. 5.2 Diskret uniform fordeling NTNU NTNU NTNU Kapittel 5: Disrete sasysfordeligar TMA4245 Statisti Rep.: Forvetig, varias og ovarias Forvetig (tygdeput, geeraliserig av empiris gjeomsitt): < P x µ = E(X) = R xf(x) (Xdisret) : xf(x)dx (Xotiuerlig)

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UIVERSITETET I OSLO Det matematisk-aturviteskapelige fakultet Eksame i: ST 105 - Iførig i pålitelighetsaalyse Eksamesdag: 8. desember 1992 Tid til eksame: 0900-1500 Tillatte hjelpemidler: Rottma: "Matematische

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK 5.august 2004

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK 5.august 2004 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 0 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK 5.august 2004 Oppgave Foruresig X er e stokastisk variabel som agir

Detaljer

Kommentarer til oppgaver;

Kommentarer til oppgaver; Kapittel - Algebra Versjo: 11.09.1 - Rettet feil i 0, 1 og 70 og lagt i litt om GeoGebra-bruk Kommetarer til oppgaver; 0, 05, 10, 13, 15, 5, 9, 37, 5,, 5, 59, 1, 70, 7, 78, 80,81 0 a) Trykkfeil i D-koloe

Detaljer

Estimering og hypotesetesting. Estimering og hypotesetesting. Estimering og hypotesetesting. Kapittel 10. Ett- og toutvalgs hypotesetesting

Estimering og hypotesetesting. Estimering og hypotesetesting. Estimering og hypotesetesting. Kapittel 10. Ett- og toutvalgs hypotesetesting 3 Estimerig og hypotesetestig Kapittel 10 Ett- og toutvalgs hypotesetestig TMA445 V007: Eirik Mo Feome Bilkjørig Høyde til studeter Estimator ˆp = X, X atall ˆµ = X gjeomsittlig høyde. som syes de er flikere

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 TMA4240 Statistikk Høst 2015 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer 12, blokk II I dee siste øvige fokuserer vi på lieær regresjo, der vi har kjete kovariater

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalt øvig 8 Løsigsskisse Oppgave 1 a) Simuler 1000 datasett i MATLAB. Hvert datasett skal bestå av 100 utfall fra e ormalfordelig

Detaljer

Eksempeloppgave 2014. REA3028 Matematikk S2 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)

Eksempeloppgave 2014. REA3028 Matematikk S2 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler) Eksempeloppgave 2014 REA3028 Matematikk S2 Eksempel på eksame våre 2015 etter y ordig Ny eksamesordig Del 1: 3 timer (ute hjelpemidler) Del 2: 2 timer (med hjelpemidler) Mistekrav til digitale verktøy

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA440 Statistikk H00 9.8: To uvalg (siste del) 9.9: Parvise observasjoer 9.0-9.: Adelser 9.: Varias Mette Lagaas Foreleses oag 0.oktober, 00 Norske hoppdommere og Jae Ahoe Jae Ahoe er e fisk skihopper,

Detaljer

Totalt Antall kandidater oppmeldt 1513 Antall møtt til eksamen 1421 Antall bestått 1128 Antall stryk 247 Antall avbrutt 46 % stryk og avbrutt 21%

Totalt Antall kandidater oppmeldt 1513 Antall møtt til eksamen 1421 Antall bestått 1128 Antall stryk 247 Antall avbrutt 46 % stryk og avbrutt 21% TMA4100 Høste 2007 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Kommetarer til eksame Dette dokumetet er e oppsummerig av erfarigee fra sesure av eksame i TMA4100 Matematikk

Detaljer

2T kapittel 3 Modellering og bevis Utvalgte løsninger oppgavesamlingen

2T kapittel 3 Modellering og bevis Utvalgte løsninger oppgavesamlingen T kapittel 3 Modellerig og bevis Utvalgte løsiger oppgavesamlige 301 a Sitthøyde i 1910 blir 170,0 171, 4 170,7. I 1970 blir de 177,1 179, 4 178,3. b Med som atall år etter 1900 og y som sitthøyde i cetimeter

Detaljer

f(x)dx = F(x) = f(u)du. 1 (4u + 1) du = 3 0 for x < 0, 2 + for x [0,1], 1 for x > 1. = 1 F 4 = P ( X > 1 2 X > 1 ) 4 X > 1 ) =

f(x)dx = F(x) = f(u)du. 1 (4u + 1) du = 3 0 for x < 0, 2 + for x [0,1], 1 for x > 1. = 1 F 4 = P ( X > 1 2 X > 1 ) 4 X > 1 ) = TMA Statistikk Norges tekisk-aturviteskapelige uiversitet Istitutt for ateatiske fag Løsigsforslag - Eksae deseber 9 Oppgave a Besteer k ved å kreve fxdx =, fxdx = De kuulative fordeligsfuksjoe Fx er gitt

Detaljer

2.1 Polynomdivisjon. Oppgave 2.10

2.1 Polynomdivisjon. Oppgave 2.10 . Polyomdivisjo Oppgave. ( 5 + ) : = + + ( + ):( ) 6 + 6 8 8 = + + c) ( + 5 ) : = + 6 6 d) + + + = + + = + + + 8+ ( ):( ) + + + Oppgave. ( + 5+ ):( ) 5 + + = + ( 5 ): 9 + + + = + + + 5 + 6 9 c) ( 8 66

Detaljer

n 2 +1) hvis n er et partall.

n 2 +1) hvis n er et partall. TMA445 Statistikk Vår 04 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer, blokk II Oppgave Mediae til et datasett, X, er de midterste verdie. Hvis vi har stokastiske

Detaljer

FØLGER, REKKER OG GJENNOMSNITT

FØLGER, REKKER OG GJENNOMSNITT FØLGER, REKKER OG GJENNOMSNITT Espe B. Lagelad realfagshjoret.wordpress.com espebl@hotmail.com 9.mars 06 Iledig E tallfølge er e serie med tall som kommer etter hveradre i e bestemt rekkefølge. Kvadrattallee

Detaljer

Eksamen INF3350/INF4350 H2006 Løsningsforslag

Eksamen INF3350/INF4350 H2006 Løsningsforslag Eksame INF3350/INF4350 H2006 Løsigsforslag Oppgave. Score (eller bit score) S' er e statistisk idikator på hvor sigifikat e match er. Høyere bit score svarer til høyere sigifikas. Idikatore er uavhegig

Detaljer

Betinget sannsynlighet

Betinget sannsynlighet Betinget sannsynlighet Multiplikasjonsloven for sannsynligheter (s. 49 i bok): P( AB ) = P( A B ) P(B) Veldig viktig verktøy for å finne sannsynligheter for snitt. (Bevises ved rett fram manipulering av

Detaljer

Statistikk 1 kapittel 5

Statistikk 1 kapittel 5 Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2016 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel med en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like

Detaljer

Estimering 1 -Punktestimering

Estimering 1 -Punktestimering Estimerig 1 -Puktestimerig Dekkes av kap. 8, 9.1-9.3 og 9.15/9.14. Vi har til å settpå e rekke forskjellige sasylighetsfordeliger og sett hvorda disse ka brukes til å modellere mage forskjellige typer

Detaljer

Econ 2130 Forelesning uke 10 (HG) Geometrisk og normal fordeling

Econ 2130 Forelesning uke 10 (HG) Geometrisk og normal fordeling Econ 2130 Forelesning uke 10 (HG) Geometrisk og normal fordeling 1 Geometrisk fordeling Binomisk forsøks-serie En serie likeartete forsøk med to mulige utfall, S og F, i hvert. (Modell) forutsetninger

Detaljer