STK1100: Kombinatorikk

Størrelse: px
Begynne med side:

Download "STK1100: Kombinatorikk"

Transkript

1 1100: ombiatorikk auar 2009 Ørulf orga Matematisk istitutt Uiversitetet i Oslo 1 Uiform sasylighetsmodell: t stokastisk forsøk har N utfall Det er de mulige utfallee for forsøket i atar at de N utfallee er like sasylige Da har hvert utfall sasylighet 1/N begivehet består av utfall Det er de gustige utfallee for begivehete asylighete for begivehete er P( ) N atall gustige utfall atall mulige utfall 2 For å bruke e uiform sasylighetsmodell må vi fie atall mulige og atall gustig utfall ekle situasjoer som kast med to teriger ka vi skrive opp alle mulige utfall og alle utfall som er gustige for de begivehete vi er iteressert i otto er det over millioer mulige vierrekker i må være veldig tålmodige for å skrive opp alle disse! (1,6) (2,6) (3,6) (,6) (,6) (6,6) (1,) (2,) (3,) (,) (,) (6,) (1,) (2,) (3,) (,) (,) (6,) (1,3) (2,3) (3,3) (,3) (,3) (6,3) (1,2) (2,2) (3,2) (,2) (,2) (6,2) (1,1) (2,1) (3,1) (,1) (,1) (6,1) "um sju øye" i må derfor kue berege atall mulige vierrekker ute å skrive dem opp ombiatorikk er avet på de dele av matematikke som gir oss løsige på dette og likede problemer 3 Multiplikasjossetige ksempel 1: På e mey er det: - forretter - 10 hovedretter - desserter På hvor mage ka vi sette samme et måltid med é forrett, é hovedrett og é dessert? Måltidet ka settes samme på Ovefor har vi tre "forsøk": (i) valg av forrett (ii) valg av hovedrett (iii) valg av dessert Geerelt har vi multiplikasjossetige: i har k forsøk. det første forsøket er det 1 mulige utfall, i det adre forsøket er det 2 mulige utfall,, i siste forsøket er det k mulige utfall. Da er det til samme 1 2 k mulige utfall 6 1

2 ksempel 2: t bilummer består av to bokstaver og siffer Hvor mage bilummere ka vi lage? valg 9 valg 10 valg forskjellige bilummer 7 Ulike typer utvalg i skriver bokstavee i alfabetet på hver si lapp og legger de 29 lappee i e eske i trekker så fire lapper, é etter é. i sier at vi trekker et utvalg på fire bokstaver Hvis vi legger e lapp tilbake før vi trekker de este, trekker vi med Hvis vi ikke legger lappe tilbake, trekker vi ute Hvis rekkefølge bokstavee trekkes i har betydig, trekker vi et ordet utvalg Hvis rekkefølge ikke har betydig, trekker vi et uordet utvalg 8 Ordet utvalg med Uordet utvalg med Ordet utvalg ute Uordet utvalg ute 9 Ordet utvalg med e på bokstaveksempelet Hver gag vi trekker er det 29 bokstaver å velge mellom i ka velge de fire bokstavee på forskjellige år vi tar hesy til rekkefølge 10 Geerelt har vi e megde med elemeter i velger k elemeter fra megde med 123 k gager k ksempel 3: På e tippekupog er det gitt 12 kamper For hver kamp skal e tippe H, U eller Hvor mage forskjellige tipperekker ka vi lage? forskjellige tipperekker ordede utvalg

3 Ordet utvalg ute e igje på bokstaveksempelet. Første gag er det 29 bokstaver å velge mellom dre gag er det 29-1 bokstaver å velge mellom redje gag er det 29-2 bokstaver å velge mellom Fjerde gag er det 29-3 bokstaver å velge mellom i ka velge de fire bokstavee på 29 (29 1) (29 2) (29 3) 7002 forskjellige år vi tar hesy til rekkefølge 13 Geerelt har vi e megde med elemeter i velger k elemeter fra megde ute Pk, ( 1) ( 2) ( k + 1) k faktorer ordede utvalg (eller permutasjoer) 1 ksempel : adslagstreere i lagre for me har sju løpere å velge mellom til O-stafette for me over x10 km På hvor mage ka ha sette opp stafettlaget år vi tar hesy til hvem som skal gå de ulike etappee? reere ka sette opp stafettlaget på i har fortsatt e megde med elemeter, og vi velger k elemeter fra megde ute Når k velger vi alle elemetee. Da svarer et ordet utvalg til e bestemt rekkefølge (eller permutasjo) av de elemetee Det er! ( 1) slike rekkefølger 1 16 ksempel : i ser på eksempelet med stafettlaget. reere har bestemt seg for hvilke fire løpere som skal gå stafette Hvor mage lagoppstilliger ka ha da velge mellom? reere ka velge mellom! lagoppstilliger 17 ksempel 6: e klasse er det elever Hva er sasylighete for at mist to har samme fødselsdag? i reger først ut sasylighete for at ige har samme fødselsdag tall mulige ordede utvalg: 36 tall gustige ordede utvalg: P(ige samme fødselsdag) P(mist to samme fødselsdag)

4 Uordet utvalg ute i ser på stafetteksempelet På hvor mage ka treere velge ut de som skal gå stafette (blat de 7) år vi ikke bryr oss om hvem som skal gå de ulike etappee? a x være atall ha ka gjøre det på Merk at x er atall uordede utvalg av løpere blat 7 år utvelgige skjer ute i vil bestemme x ved å fie atall ordede utvalg på to 19 tall ordede utvalg av løpere blat 7 løpere er (jf. eksempel ) Fra ett uordet utvalg ka lage! ordede utvalg (jf. eksempel ) i ka derfor lage Dermed er x! x! Dette gir x 3! ordede utvalg reere ka velge ut de som skal gå stafette på 3 år vi ikke bryr oss om hvem som skal gå de ulike etappee 20 Geerelt har vi e megde med elemeter i velger k elemeter fra megde ute ( k ) uordede utvalg ( 1) ( 2) ( k + 1) k! N! For uordet utvalg spiller det ige rolle om vi velger ett elemet om gage, eller om vi velger alle på e gag 21 Merk at ( k ) ( 1) ( k + 1) ( k) ( k 1) 2 1 k! ( k)!! r! ( k)! Formele gjelder også for r 0 og r side vi setter 0! 1 kelte gager skriver vi (f.eks. lommeregere) ( ) ( ) k, i stedet for k k kalles biomialkoeffisieter (side de igår i biomialformele) 22 ksempel 8: klasse har 2 elever Fire elever skal velges til e festkomité Hvor mage ka det gjøres på? De elevee ka velges på 2 ( ) ksempel 9: Når du tipper é lottorekke, krysser du av sju tall fra 1 til 3 Hvor mage lottorekker fis det? Det fis 3 ( 7 ) forskjellige lottorekker

5 ksempel 10: pokerspiller får delt ut fem kort Hva er sasylighete for at spillere bare får hjerter? tall mulige å dele ut fem kort på: ( ) tall av disse som gir bare hjerter: ( ) P(bare hjerter)

Ulike typer utvalg. MAT0100V Sannsynlighetsregning og kombinatorikk. Ordnet utvalg uten tilbakelegging 29 (29 1) (29 2) (29 3) =

Ulike typer utvalg. MAT0100V Sannsynlighetsregning og kombinatorikk. Ordnet utvalg uten tilbakelegging 29 (29 1) (29 2) (29 3) = MAT000V Sasylighetsregig og kombiatorikk Urdede utvalg ute tilbakeleggig Pascals talltrekat og biomialkoeffisietee Ørulf Borga Matematisk istitutt Uiversitetet i Oslo Ulike typer utvalg Eksempel 6.: Vi

Detaljer

Kombinatorikk. MAT0100V Sannsynlighetsregning og kombinatorikk. Multiplikasjonssetningen

Kombinatorikk. MAT0100V Sannsynlighetsregning og kombinatorikk. Multiplikasjonssetningen MAT000V Sasylighetsegig og kombiatoikk Kombiatoikk Odede utvalg med og ute tilbakeleggig Uodede utvalg ute tilbakeleggig Pascals talltekat og biomialkoeffisietee Øulf Boga Matematisk istitutt Uivesitetet

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. Noen viktige sannsynlighetsmodeller. Binomisk modell. Kp. 3 Diskrete tilfeldige variable

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. Noen viktige sannsynlighetsmodeller. Binomisk modell. Kp. 3 Diskrete tilfeldige variable ÅMA Saslighetsregig med statistikk, våre K. 3 Diskrete tilfeldige variable Noe viktige saslighetsmodeller Noe viktige saslighetsmodeller ( Sas.modell : å betr det klasse/te sas.fordelig.) Biomisk modell

Detaljer

Mer om utvalgsundersøkelser

Mer om utvalgsundersøkelser Mer om utvalgsudersøkelser I uderkapittel 3.6 i læreboka gir vi e kort iførig i takegage ved utvalgsudersøkelser. Vi gir her e grudigere framstillig av temaet. Populasjo og utvalg Ved e utvalgsudersøkelse

Detaljer

Påliteligheten til en stikkprøve

Påliteligheten til en stikkprøve Pålitelighete til e stikkprøve Om origiale... 1 Beskrivelse... 2 Oppgaver... 4 Løsigsforslag... 4 Didaktisk bakgru... 5 Om origiale "Zuverlässigkeit eier Stichprobe" på http://www.mathe-olie.at/galerie/wstat2/stichprobe/dee

Detaljer

Ukeoppgaver i BtG207 Statistikk, uke 4 : Binomisk fordeling. 1

Ukeoppgaver i BtG207 Statistikk, uke 4 : Binomisk fordeling. 1 Ukeoppgaver i BtG20 Statistikk, uke 4 : Biomisk fordelig. 1 Høgskole i Gjøvik Avdelig for tekologi, økoomi og ledelse. Statistikk Ukeoppgaver uke 4 Biomisk fordelig. Oppgave 1 La de stokastiske variable

Detaljer

3MX 2007/8 - Kapittel 5: 8. januar 5. februar 2008

3MX 2007/8 - Kapittel 5: 8. januar 5. februar 2008 3MX 00/8 - Kapittel : 8. jauar. februar 008 Pla for skoleåret 00/008: Kapittel 6: 6/ /. Kapittel : / /3. Prøver på eller skoletime etter hvert kapittel. É heildagsprøve i hver termi. Repetisjo, prøver,

Detaljer

8 (inkludert forsiden og formelsamling) Tegne- og skrivesaker, kalkulator, formelsamling (se vedlagt).

8 (inkludert forsiden og formelsamling) Tegne- og skrivesaker, kalkulator, formelsamling (se vedlagt). Eksamesoppgave våre 011 Ordiær eksame Bokmål Fag: Matematikk Eksamesdato: 10.06.011 Studium/klasse: GLU 5-10 Emekode: MGK00 Eksamesform: Skriftlig Atall sider: 8 (ikludert forside og formelsamlig) Eksamestid:

Detaljer

Kommentarer til oppgaver;

Kommentarer til oppgaver; Kapittel - Algebra Versjo: 11.09.1 - Rettet feil i 0, 1 og 70 og lagt i litt om GeoGebra-bruk Kommetarer til oppgaver; 0, 05, 10, 13, 15, 5, 9, 37, 5,, 5, 59, 1, 70, 7, 78, 80,81 0 a) Trykkfeil i D-koloe

Detaljer

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 20. mai 2008

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 20. mai 2008 Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL. mai 8 EKSAMEN I MATEMATIKK Modul 5 studieoeg Tid: 5 timer Ogavesettet er å sider (ikludert formelsamlig). Hjelemidler:

Detaljer

Estimering 1 -Punktestimering

Estimering 1 -Punktestimering Estimerig 1 -Puktestimerig Dekkes av kap. 8, 9.1-9.3 og 9.15/9.14. Vi har til å settpå e rekke forskjellige sasylighetsfordeliger og sett hvorda disse ka brukes til å modellere mage forskjellige typer

Detaljer

ARBEIDSHEFTE I MATEMATIKK

ARBEIDSHEFTE I MATEMATIKK ARBEIDSHEFTE I MATEMATIKK Temahefte r Hvorda du reger med poteser Detaljerte forklariger Av Matthias Loretze mattegriseforlag.com Opplsig: E potes er e forkortet skrivemåte for like faktorer. E potes består

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 5

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 5 ÅMA110 Sasylighetsregig med statistikk, våre 2010 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 12. april Bjør H. Auestad Kp. 6: Hypotesetestig del 4 1/ 59

Detaljer

Eksempeloppgave 2014. REA3028 Matematikk S2 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)

Eksempeloppgave 2014. REA3028 Matematikk S2 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler) Eksempeloppgave 2014 REA3028 Matematikk S2 Eksempel på eksame våre 2015 etter y ordig Ny eksamesordig Del 1: 3 timer (ute hjelpemidler) Del 2: 2 timer (med hjelpemidler) Mistekrav til digitale verktøy

Detaljer

Signifikante sifre = alle sikre pluss ett siffer til

Signifikante sifre = alle sikre pluss ett siffer til Sigifikate siffer og stadardavvik behadles i kap. Disse to emee skal vi ta for oss i dag. Kofidesgreser behadles i kap 4. Dette skal vi ta for oss i osdag. Presetasjo av aalysedata ka gjøres på følgede

Detaljer

FX-82ES. NY CASIO teknisk / vitenskapelig lommeregner med naturlig tallvindu.

FX-82ES. NY CASIO teknisk / vitenskapelig lommeregner med naturlig tallvindu. ytt NR. 005. årgag FX-8ES NY CASIO tekisk / viteskapelig lommereger med aturlig tallvidu. Det er å mer e 5 år side kalkulatore for alvor ble tatt i bruk i orsk matematikk-udervisig, og de viteskapelige

Detaljer

Fagdag 2-3mx 24.09.07

Fagdag 2-3mx 24.09.07 Fagdag 2-3mx 24.09.07 Jeg beklager at jeg ikke har fuet oe ye morsomme spill vi ka studere, til gjegjeld skal dere slippe prøve/test dee gage. Istruks: Vi arbeider som valig med 3 persoer på hver gruppe.

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag ..4 EKSAMEN Løsigsforslag Emekode: ITF75 Dato: 6. desember Eme: Matematikk for IT Eksamestid: kl 9. til kl. Hjelpemidler: To A4-ark med valgfritt ihold på begge sider. Kalkulator er ikke tillatt. Faglærer:

Detaljer

Eksamen REA3028 S2, Våren 2011

Eksamen REA3028 S2, Våren 2011 Eksame REA08 S, Våre 0 Del Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave (8 poeg) a) Deriver fuksjoee ) f 5 f 6 5 ) g g ) h l 9 9 6 4 h l

Detaljer

2.1 Polynomdivisjon. Oppgave 2.10

2.1 Polynomdivisjon. Oppgave 2.10 . Polyomdivisjo Oppgave. ( 5 + ) : = + + ( + ):( ) 6 + 6 8 8 = + + c) ( + 5 ) : = + 6 6 d) + + + = + + = + + + 8+ ( ):( ) + + + Oppgave. ( + 5+ ):( ) 5 + + = + ( 5 ): 9 + + + = + + + 5 + 6 9 c) ( 8 66

Detaljer

Metoder for politiske meningsmålinger

Metoder for politiske meningsmålinger Metoder for politiske meigsmåliger AV FORSKER IB THOMSE STATISTISK SETRALBYRÅ Beregigsmetodee som brukes i de forskjellige politiske meigsmåliger har vært gjestad for mye diskusjo i dagspresse det siste

Detaljer

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 12. desember 2008

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 12. desember 2008 Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL. desember 8 EKSAMEN I MATEMATIKK, Utsatt røve Modul 5 studieoeg Tid: 5 timer Ogavesettet er å sider (ikludert formelsamlig).

Detaljer

Eksamen 21.05.2013. REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen 21.05.2013. REA3024 Matematikk R2. Nynorsk/Bokmål Eksame 21.05.2013 REA3024 Matematikk R2 Nyorsk/Bokmål Nyorsk Eksamesiformasjo Eksamestid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: 5 timar: Del 1 skal leverast i etter 2 timar. Del 2 skal leverast

Detaljer

E K S A M E N : FAG: Matematikk 1 MA-154 LÆRER: MORTEN BREKKE. Klasse(r): Alle Dato: 1. des 11 Eksamenstid, fra-til: 0900-1400

E K S A M E N : FAG: Matematikk 1 MA-154 LÆRER: MORTEN BREKKE. Klasse(r): Alle Dato: 1. des 11 Eksamenstid, fra-til: 0900-1400 UNIVERSITETET I AGDER Grimstad E K S A M E N : FAG: Matematikk MA-54 LÆRER: MORTEN BREKKE Klasse(r): Alle Dato:. des Eksamestid, fra-til: 0900-400 Eksamesoppgave består av følgede iklusive forside Atall

Detaljer

Løsning eksamen R1 våren 2010

Løsning eksamen R1 våren 2010 Løsig eksame R våre 00 Oppgave a) ) f ( ) l f ( ) ' l l l l f ( ) (l ) ) g( ) 4e g( ) 4 e ( ) 4 e ( ) g( ) 4( ) e b) ( ) 4 4 6 P ) P() 4 4 6 8 6 8 6 0 Divisjo med ( ) går opp. 4 4 6 : ( ) 8 4 4 8 6 8 6

Detaljer

CONSTANT FINESS SUNFLEX SMARTBOX

CONSTANT FINESS SUNFLEX SMARTBOX Luex terrassemarkiser. Moterig- og bruksavisig CONSTNT FINESS SUNFLEX SMRTBOX 4 5 6 7 8 Markises hovedkompoeter og mål Kombikosoll og plasserig rmklokker og justerig Parallelljusterig Motordrift og programmerig

Detaljer

S1 kapittel 7 Sannsynlighet Løsninger til oppgavene i boka

S1 kapittel 7 Sannsynlighet Løsninger til oppgavene i boka S1 kapittel 7 Sannsynlighet Løsninger til oppgavene i oka 7.1 a c d 4 1 P (sum antall øyne lir 5) = = 36 9 6 1 P (sum antall øyne lir minst 10) = = 36 6 6 1 P (sum antall øyne lir høyst 4) = = 36 6 11

Detaljer

2. Bestem nullpunktene til g.

2. Bestem nullpunktene til g. Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL 0. desember 007 EKSAMEN I MATEMATIKK Modul 5 studiepoeg Tid: 5 timer Oppgavesettet er på 9 sider (ikludert formelsamlig).

Detaljer

Eksempeloppgave 2014. REA3026 Matematikk S1 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)

Eksempeloppgave 2014. REA3026 Matematikk S1 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler) Eksempeloppgave 04 REA306 Matematikk S Eksempel på eksame våre 05 etter y ordig Ny eksamesordig Del : 3 timer (ute hjelpemidler) Del : timer (med hjelpemidler) Mistekrav til digitale verktøy på datamaski:

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 0 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Oppgave Midtveiseksame a) X er e stokastisk variabel

Detaljer

Eksamen 20.05.2009. REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen 20.05.2009. REA3024 Matematikk R2. Nynorsk/Bokmål Eksame 20052009 REA3024 Matematikk R2 Nyorsk/Bokmål Nyorsk Eksamesiformasjo Eksamestid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Bruk av kjelder: Vedlegg: Framgagsmåte: Rettleiig om vurderiga: 5 timar:

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 4. Hypotesetesting, del 4

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 4. Hypotesetesting, del 4 ÅMA11 Sasylighetsregig med statistikk, våre 27 Kp. 6, del 4 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 19. mars Bjør H. Auestad Kp. 6: Hypotesetestig del 4 1/ 27 Bjør

Detaljer

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 16. mai 2008

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 16. mai 2008 Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL 6. mai 008 EKSAMEN I MATEMATIKK Modul 5 studiepoeg Tid: 5 timer Oppgavesettet er på 8 sider (ikludert formelsamlig). Hjelpemidler:

Detaljer

Kap. 9: Inferens om én populasjon

Kap. 9: Inferens om én populasjon 2 ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for matematiske fag Ka. 9: Iferes om é oulasjo Hvis σ er ukjet bytter vi ut σ med s i Ny observator blir t = x μ s/ z = x μ σ/ der s = Σx 2 (Σx)

Detaljer

Utvidet løsningsforslag Eksamen i TMA4100 Matematikk 1, 16/12 2008

Utvidet løsningsforslag Eksamen i TMA4100 Matematikk 1, 16/12 2008 Utvidet løsigsforslag Eksame i TMA4 Matematikk, 6/ 8 Oppgave i) Vi gjør substitusjoe u = si θ og får π/ [ u si θ cos θ dθ = u du = E ae løsigsmetode er π/ si θ cos θ dθ = π/ ] si θ dθ = 4 = 4 ( ( ) ( ))

Detaljer

OPPGAVE 4 LØSNINGSFORSLAG OPPGAVE 5 LØSNINGSFORSLAG UTVIKLING AV REKURSIV FORMEL FOR FIGURTALL SOM GIR ANDREGRADSFUNKSJONER

OPPGAVE 4 LØSNINGSFORSLAG OPPGAVE 5 LØSNINGSFORSLAG UTVIKLING AV REKURSIV FORMEL FOR FIGURTALL SOM GIR ANDREGRADSFUNKSJONER OPPGAVE 4 LØSNINGSFORSLAG Tallfølge i f) rektageltallee. Her er de eksplisitte formele R = ( +1) eller R = +. Dette er e adregradsfuksjo. I figurtallsammeheg forutsetter vi at de legste side er (øyaktig)

Detaljer

Econ 2130 uke 15 (HG) Poissonfordelingen og innføring i estimering

Econ 2130 uke 15 (HG) Poissonfordelingen og innføring i estimering Eco 130 uke 15 (HG) Poissofordelige og iførig i estimerig 1 Poissofordelige (i) Tilærmig til biomialfordelige. Regel. ( Poissotilærmelse ) Ata Y ~ bi(, p) E( Y ) = p og var( Y ) = p(1 p). Hvis er stor

Detaljer

Rapport Brukertilfredshet blant pårørende til beboere ved sykehjem i Oslo kommune 2009

Rapport Brukertilfredshet blant pårørende til beboere ved sykehjem i Oslo kommune 2009 Rapport Brukertilfredshet blat pårørede til beboere ved sykehjem i Oslo kommue Resultater fra e spørreudersøkelse blat pårørede til sykehjemsbeboere februar 2010 Forord Brukerudersøkelser er ett av tre

Detaljer

Leseforståelse og matematikk

Leseforståelse og matematikk Leseforståelse og matematikk av guri a. ortvedt To studier av sammehege mellom leseforståelse og løsig av tekstoppgaver viser at ekelte elever ka mislykkes i oppgaveløsige fordi de tolker språket i oppgavee

Detaljer

Undervisningsopplegg for ungdomstrinnet om statistikk og sannsynlighet

Undervisningsopplegg for ungdomstrinnet om statistikk og sannsynlighet Undervisningsopplegg for ungdomstrinnet om statistikk og sannsynlighet Kilde: www.clipart.com 1 Statistikk, sannsynlighet og kombinatorikk. Lærerens ark Hva sier læreplanen? Statistikk, sannsynlighet og

Detaljer

Luktrisikovurdering fra legemiddelproduksjon på Fikkjebakke Screening

Luktrisikovurdering fra legemiddelproduksjon på Fikkjebakke Screening Luktrisikovurderig fra legemiddelproduksjo på Fikkjebakke Screeig Aquateam COWI AS Rapport r: 14-046 Prosjekt r: O-14062 Prosjektleder: Liv B. Heige Medarbeidere: Lie Diaa Blytt Karia Ødegård (Molab AS)

Detaljer

Prøveeksamen 2. Elektronikk 24. mars 2010

Prøveeksamen 2. Elektronikk 24. mars 2010 Prøveeksame 2 Elektroikk 24. mars 21 OPPGAVE 1 E 8 bit D/A-omformer har et utspeigsområde fra til 8 V V 1LSB, der V 1LSB er de aaloge speige som svarer til det mist sigifikate bit (LSB). a) Hvor stor er

Detaljer

LØSNING: Eksamen 28. mai 2015

LØSNING: Eksamen 28. mai 2015 LØSNING: Eksame 28. mai 2015 MAT110 Statistikk 1, vår 2015 Oppgave 1: revisjo ) a) Situasjoe som beskrives i oppgave ka modelleres med e ure. I dee ure er fordelige kjet, M atall bilag med feil og N 100

Detaljer

Kap. 9: Inferens om én populasjon

Kap. 9: Inferens om én populasjon 2 ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for matematiske fag Ka. 9: Iferes om é oulasjo Hvis σ er ukjet bytter vi ut σ med s i Ny observator blir t = x μ s/ z = x μ σ/ der s = Σx 2 (Σx)

Detaljer

EKSAMENSOPPGAVE. Faglig veileder: Kirsten Aarset, Bente Hellum og Jan Stubergh Gruppe(r): 1-elektro, 1-maskin, 3-almen Dato: 17 desember 2001

EKSAMENSOPPGAVE. Faglig veileder: Kirsten Aarset, Bente Hellum og Jan Stubergh Gruppe(r): 1-elektro, 1-maskin, 3-almen Dato: 17 desember 2001 Avdelig for igeiørutdaig EKSAMENSOPPGAVE Fag: Kjemi og Miljø Fagr FO 05 K Faglig veileder: Kirste Aarset, Bete Hellum og Ja Stubergh Gruppe(r): 1-elektro, 1-maski, -alme Dato: 17 desember 001 Eksamestid,

Detaljer

TMA4245 Statistikk Eksamen 9. desember 2013

TMA4245 Statistikk Eksamen 9. desember 2013 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag TMA4245 Statistikk Eksame 9. desember 2013 Oppgave 1 I kortspillet Blackjack får ma de høyeste geviste hvis de to første kortee ma

Detaljer

Dersom vi skriver denne reaksjonslikningen ved bruk av kjemiske tegn: side av likningen har vi ett hydrogen mens vi har to på høyre side.

Dersom vi skriver denne reaksjonslikningen ved bruk av kjemiske tegn: side av likningen har vi ett hydrogen mens vi har to på høyre side. Støkiometri (megdeforhold) Det er særs viktig i kjemie å vite om megdeforhold om stoffer. -E hodepie tablett er bra mot hodesmerter, ti passer dårlig. -E sukkerbit i kaffe fugerer, 100 er slitsomt. -100

Detaljer

S2 kapittel 1 Rekker Utvalgte løsninger oppgavesamlingen

S2 kapittel 1 Rekker Utvalgte løsninger oppgavesamlingen Utvlgte løsiger oppgvesmlige S kpittel Rekker Utvlgte løsiger oppgvesmlige 0 Vi k prøve med differsemetode Differsee mellom leddee utover er 4,6,8, så det er rimelig t differse mellom femte og fjerde ledd

Detaljer

LØSNING, EKSAMEN I STATISTIKK, TMA4240, DESEMBER Anta at sann porøsitet er r. Måling med utstyret gir da X n(x; r, 0,03).

LØSNING, EKSAMEN I STATISTIKK, TMA4240, DESEMBER Anta at sann porøsitet er r. Måling med utstyret gir da X n(x; r, 0,03). LØSNING, EKSAMEN I STATISTIKK, TMA440, DESEMBER 006 OPPGAVE 1 Ata at sa porøsitet er r. Målig med utstyret gir da X (x; r, 0,03). a) ( ) X r P(X > r) P 0,03 > 0 P(Z > 0) 0,5. ( X r P(X r > 0,05) P 0,03

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 ÅMA110 asylighetsregig med statistikk våre 011 Kp. 5 Estimerig 1 Estimerig. Målemodelle. Ihold: 1. (ukt)estimerig i biomisk modell (kp. 5.). Målemodelle... (kp. 5.3) 3. (ukt)estimerig i målemodelle (kp.

Detaljer

LØSNING: Eksamen 17. des. 2015

LØSNING: Eksamen 17. des. 2015 LØSNING: Eksame 17. des. 2015 MAT100 Matematikk, 2015 Oppgave 1: økoomi a I optimum av T Rx er dt Rx 0 1 som gir d Ix Kx 0 2 dix dix dkx dkx 0 3 4 dvs. greseitekt gresekostad, q.e.d. 5 b Gresekostad ekstrakostade

Detaljer

Oblig 2 - MAT1120. Fredrik Meyer 26. oktober 2009 = A = P1 1 A 1 P 1 A 1 A 2 = P 1. A k+1. A k P k

Oblig 2 - MAT1120. Fredrik Meyer 26. oktober 2009 = A = P1 1 A 1 P 1 A 1 A 2 = P 1. A k+1. A k P k Oblig 2 - MAT20 Fredri Meyer 26 otober 2009 Matrisee A i er defiert sli der P er e rotasjosmatrise som defierer i oppgave 2: A A 2 A + = A = P A P = P A P Oppgave Matrisee A i+ og A i er similære det fies

Detaljer

Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte.

Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte. Eksame 20.05.2009 REA3028 Matematikk S2 Nyorsk/Bokmål Bokmål Eksamesiformasjo Eksamestid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Bruk av kilder: Vedlegg: Framgagsmåte: Veiledig om vurderige: 5 timer:

Detaljer

Notater til forelesning i Sannsynlighetsregning SK 101 Matematikk i grunnskolen I

Notater til forelesning i Sannsynlighetsregning SK 101 Matematikk i grunnskolen I Notater til forelesning i Sannsynlighetsregning SK 101 Matematikk i grunnskolen I 4 Kombinatorikk Vi må lære tellemetoder når valgtrær, som vi brukte tidligere, blir for store og vanskelig å håndtere.

Detaljer

«Uncertainty of the Uncertainty» Del 4 av 6

«Uncertainty of the Uncertainty» Del 4 av 6 «Ucertaity of the Ucertaity» Del 4 av 6 v/rue Øverlad, Traior Elsikkerhet AS Iledig Dette er del fire i artikkelserie om «Ucertaity of the Ucertaity». I dag skal jeg vise deg utledige av formele: σ m s,

Detaljer

Kraftforsyningsberedskap. Roger Steen Seniorrådgiver Beredskapsseksjonen NVE, rost@nve.no

Kraftforsyningsberedskap. Roger Steen Seniorrådgiver Beredskapsseksjonen NVE, rost@nve.no Kraftforsyigsberedskap Roger Stee Seiorrådgiver Beredskapsseksjoe NVE, rost@ve.o Beredskapsasvar Olje- og eergidepartemetet har det overordede asvaret for ladets kraftforsyig. Det operative asvaret for

Detaljer

10.5 Mer kombinatorikk

10.5 Mer kombinatorikk bestemt person skal utvikle en hjertesykdom er 70 %. Har du noen forslag på hvilket grunnlag en slik sannsynlighet kan settes opp? 10.5 Mer kombinatorikk Den måten å nærme seg løsningen på kombinatoriske

Detaljer

Del1. b) 1) Gittrekka 2 4 6 8 Finnleddnummer20 ogsummenavde20førsteleddene.

Del1. b) 1) Gittrekka 2 4 6 8 Finnleddnummer20 ogsummenavde20førsteleddene. Del1 Oppgave 1 a) Deriver fuksjoee: 1) fx ( ) x 2 1 x 2 1 2) g x x 2 2 e x b) 1) Gittrekka 2 4 6 8 Fileddummer20 ogsummeavde20førsteleddee. 1 1 2) Gitt de uedelige rekka 2 1 2 4 Avgjør om rekka kovergerer.

Detaljer

Eksempler fra slutten av forrige uke. Eksempler (styrke, dimensjonering,...) Eksempler fra slutten av forrige uke

Eksempler fra slutten av forrige uke. Eksempler (styrke, dimensjonering,...) Eksempler fra slutten av forrige uke Oversikt, del 5 Hypotesetestig, del 4 (oppsummerig fra Hypotesetestig, del 5 Kofidesitervall dimesjoerig Eksempler fra slutte av forrige uke Kofidesitervall p-verdi Eksempler Eksempler (styrke, dimesjoerig,...

Detaljer

Forskjellige typer utvalg

Forskjellige typer utvalg Forskjellige typer utvalg Det skal deles ut tre pakker til en gruppe på seks. Pakkene inneholder en TV, en PC og en mobiltelefon. På hvor mange måter kan pakkene deles ut? Utdelingen skal være tilfeldig

Detaljer

10.4 Sannsynligheter ved flere i utvalget (kombinatorikk)

10.4 Sannsynligheter ved flere i utvalget (kombinatorikk) 10. er ved flere i utvalget (kombinatorikk) Så langt i framstillingen har vi diskutert den språklige siden, den matematiske tolkningen av sannsynlighetsbegrepet og presentert ulike modeller som kan anvendes

Detaljer

Løsningsforslag til øving 9 OPPGAVE 1 a)

Løsningsforslag til øving 9 OPPGAVE 1 a) Høgskole i Gjøvik vd for ek, øk og ledelse aemaikk 5 Løsigsforslag il øvig 9 OPPGVE ) Bereger egeverdiee: de I) ) ) ) Egeverdier: og ) ) Bereger egevekoree: vi ivi ii) vi ed λ : ) ) v Velger s som gir

Detaljer

Eksamen R2, Våren 2013

Eksamen R2, Våren 2013 Eksame R2, Våre 2013 Oppgave 1 (4 poeg) Deriver fuksjoee a) f x 3cos x b) gx x 6si 7 2x c) hx 3e si3x Oppgave 2 (4 poeg) Bestem itegralet a) variabelskifte 2x dx x 4 2 ved å bruke b) delbrøkoppspaltig

Detaljer

DEL 1. Uten hjelpemidler 500+ er x

DEL 1. Uten hjelpemidler 500+ er x DEL 1 Ute hjelpemidler Oppgave 1 (18 poeg) 500 = + 8 er a) Vis at de deriverte til fuksjoe ( ) O O ( ) = 500+ 16 b) Deriver fuksjoee 1) f( ) = l( ) ) g( ) = e c) Vi har gitt polyomfuksjoe f( ) = 1 + 15

Detaljer

Fotball krysser grenser (konfirmanter Ålgård og Gjesdal)

Fotball krysser grenser (konfirmanter Ålgård og Gjesdal) 1 Fotball krysser greser (kofirmater Ålgård og Gjesdal) Øsker du e ide til et praktisk rettet prosjekt/aksjo der kofirmater ka bidra til de fattige dele av verde? Her har du et ferdig opplegg for hvorda

Detaljer

S1 kapittel 7 Sannsynlighet Løsninger til oppgavene i boka

S1 kapittel 7 Sannsynlighet Løsninger til oppgavene i boka S1 kapittel 7 Sannsynlighet Løsninger til oppgavene i oka 7.1 a c d 4 1 P (sum antall øyne lir 5) = = 6 9 6 1 P (sum antall øyne lir minst 10) = = 6 6 6 1 P(sum antall øyne lir høyst 4) = = 6 6 11 P(minst

Detaljer

n 2 +1) hvis n er et partall.

n 2 +1) hvis n er et partall. TMA445 Statistikk Vår 04 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer, blokk II Oppgave Mediae til et datasett, X, er de midterste verdie. Hvis vi har stokastiske

Detaljer

B Bakgrunnsinformasjon om ROS-analysen.

B Bakgrunnsinformasjon om ROS-analysen. RI SI KO- O G SÅRBARH ET SANALYSE (RO S) A Hva som skal utredes Beredskapog ulykkesrisiko(ros) vurderesut fra sjekklistefra Direktoratetfor samfussikkerhetog beredskap.aalyse blir utført ved vurderigav

Detaljer

Oppgaver i Sannsynlighetsregning og kombinatorikk MAT0100V våren 2015

Oppgaver i Sannsynlighetsregning og kombinatorikk MAT0100V våren 2015 Oppgaver i Sannsynlighetsregning og kombinatorikk MAT0100V våren 2015 Ørnulf Borgan Matematisk institutt Universitetet i Oslo Oppgave 1 Et forsøk er deterministisk hvis vi kan forutsi resultatet. Hvis

Detaljer

I forelesningen så vi litt på hvordan vi tegner grafer manuelt. Enkel bruk av GeoGebra er vist gjennom noen korte videoer i bolk 5c.

I forelesningen så vi litt på hvordan vi tegner grafer manuelt. Enkel bruk av GeoGebra er vist gjennom noen korte videoer i bolk 5c. NOTAT TIL FORELESNING OM FUNKSJONER, DEL Forelesige om uksjoer består av to deler, ørste del bygger på dette otatet Notatet bygger på læreboke og er oe mer utyllede e orelesige I bolk 5a så vi hvorda vi

Detaljer

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 29. mai 2007

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 29. mai 2007 Høgskole Telemark Avdelg for estetske fag, folkekultur og lærerutdag BOKMÅL 9. ma 7 EKSAMEN I MATEMATIKK, Modul 5 studepoeg Td: 5 tmer Hjelpemdler: Kalkulator og vedlagt formelsamlg (bakerst oppgavesettet).

Detaljer

Innføring i medisinsk statistikk

Innføring i medisinsk statistikk Stoastis forsø el. esperimet Iførig i medisis statisti KLH3 - Høst 9 Kapittel. Stoastis variabel og Disret sasylighetsfordelig Et ret teis begrep for e prosess der hesite er å framsaffe data om hedelser

Detaljer

H T. Amundsen INNHOLD

H T. Amundsen INNHOLD Itere otater STATISTISK SENTRALBYRÅ. oktober 1980 KORRELASJONSKOEFFISIENTEN - ENDA ENGANG Av H T. Amudse INNHOLD 1. Iledig *****..... * 0 1. Produktmametkorrelasjoskoeffisiete og sammehege med lieær regresjo.

Detaljer

Forsvarets personell - litt statistikk -

Forsvarets personell - litt statistikk - Forsvarets persoell - litt statistikk - Frak Brudtlad Steder Sjefsforsker Oslo Militære Samfud 8.11.21 Forsvarets viktigste ressurs Bilder: Forsvarets mediearkiv Geerell omtale i Forsvaret, media og taler

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 2

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 2 ÅMA11 Sasylighetsregig med statistikk, våre 27 Kp. 6, del 2 Bjør H. Auestad Istitutt for matematikk og aturviteskap 5. mars 21 Bjør H. Auestad Kp. 6: del 1/2 1/ 42 Bjør H. Auestad Kp. 6: del 1/2 2/ 42

Detaljer

Forelesning Elkraftteknikk 1, 17.08.2004 Oppdatert 23.08.2004 Skrevet av Ole-Morten Midtgård. HØGSKOLEN I AGDER Fakultet for teknologi

Forelesning Elkraftteknikk 1, 17.08.2004 Oppdatert 23.08.2004 Skrevet av Ole-Morten Midtgård. HØGSKOLEN I AGDER Fakultet for teknologi Forelesig Elkrafttekikk, 7.08.004 Oppdatert 3.08.004 Skreet a Ole-Morte Midtgård HØGSKOEN I AGDER Fakultet for tekologi Komplekse tall og isere Komplekse tall er sært yttige i aalyse a elkraftsystemer.

Detaljer

«Best Fit»-linje med usikkerhetsintervall (CI)

«Best Fit»-linje med usikkerhetsintervall (CI) «Best Fit»-lije med usikkerhetsitervall (CI) v/rue Øverlad, Traior Elsikkerhet AS 1. Iledig Dee artikkele utleder formel for usikkerhetsitervallet CI (Cofidece Iterval) som omslutter e «Best Fit»-lije.

Detaljer

Kapittel 9. Sannsynlighetsregning

Kapittel 9. Sannsynlighetsregning Kapittel 9. Sannsynlighetsregning Sannsynlighet handler om å finne ut hvor ofte noe vil skje i en prosess som kan gjentas mange ganger. Kapitlet handler blant annet om dette: Hva er sannsynlighet. Beregne

Detaljer

Om Grafiske Bruker-Grensesnitt (GUI) Hvordan gjør vi det, to typer av vinduer? GUI (Graphical User Interface)-programmering

Om Grafiske Bruker-Grensesnitt (GUI) Hvordan gjør vi det, to typer av vinduer? GUI (Graphical User Interface)-programmering Uke9. mars 2005 rafisk brukergresesitt med Swig og awt Litt Modell Utsy - Kotroll Del I Stei jessig Ist for Iformatikk Uiv. i Oslo UI (raphical User Iterface)-programmerig I dag Hvorda få laget et vidu

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 Høst 205 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer, blokk II Løsigsskisse Oppgave a) X bi(, p) fordi: Udersøker uavhegige delar av DNA-strukture. Fi for kvar del

Detaljer

Løsningsforslag til eksamen i STK desember 2010

Løsningsforslag til eksamen i STK desember 2010 Løsigsforslag til eksame i STK0 0. desember 200 Løsigsforslaget har med flere detaljer e det vil bli krevd til eksame. Oppgave a Det er tilpasset e multippel lieær regresjosmodell av forme β 0 + β x i

Detaljer

Årsplan i norsk - 2. klasse 2015-2016

Årsplan i norsk - 2. klasse 2015-2016 Årspla i orsk - 2. klasse 2015-2016 Atall timer pr uke: 8 timer Lærere: Elise Gjerpe Solberg og Gro Åkerlud Læreverk: Tuba Luba C og D hefter Arbeidsbok: «Jeg ka» og «ABC2 Elle» av Ae Lise Gjerdrum Nettsted:

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 5 Estimering. Målemodellen.

ÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 5 Estimering. Målemodellen. ÅMA0 Sasylighetsregig med statistikk, våre 0 Kp. 5 Estimerig. Målemodelle. Estimerig. Målemodelle. Ihold:. (Pukt)Estimerig i biomisk modell (kp. 5.). Målemodelle... (kp. 5.). (Pukt)Estimerig i målemodelle

Detaljer

3.1 Betinget sannsynlighet

3.1 Betinget sannsynlighet 3. Betinget sannsynlighet Oppgave 3.0 På en skole er det 20 elever på vg2. 72 elever har valgt matematikkfaget R og 34 elever har valgt kjemi Blant de 72 som har valgt R, er det 28 som har valgt kjemi

Detaljer

Sannsynlighetsregning

Sannsynlighetsregning Sannsynlighetsregning Læreplan. Forsøk og simuleringer. Sannsynlighet 3.3 Sum av sannsynligheter 5.4 Multiplikasjonsprinsippet 9.5 Uavhengige hendinger 0. Avhengige hendinger 5 Symboler, formler og eksempler

Detaljer

-drøfte verdivalg og aktuelle temaer i samfunnet lokalt og globalt: sosialt og økologisk ansvar, teknologiske utfordringer, fredsarbeid og demokrati

-drøfte verdivalg og aktuelle temaer i samfunnet lokalt og globalt: sosialt og økologisk ansvar, teknologiske utfordringer, fredsarbeid og demokrati Fagpla i KRLE. Plae er veiledede, det ka bli edriger uderveis. 9.tri UKE TEMA ARBEIDSMÅTER OG INNHOLD 34-37 Meesker ettigheter, fredsarbei d og demokrati. -drøfte etiske spørsmål kyttet til meeskeverd

Detaljer

Formler og regler i statistikk ifølge lærebok Gunnar Løvås: Statistikk for universiteter og høgskoler

Formler og regler i statistikk ifølge lærebok Gunnar Løvås: Statistikk for universiteter og høgskoler Formler og regler statstkk følge lærebok Guar Løvås: tatstkk for uversteter og høgskoler Kap. Hva er fakta om utvalget etralmål Meda: mdterste verd etter sorterg Modus: hyppgst forekommede verd Gjeomstt:

Detaljer

KAPITTEL 6. STØRRELSER OG TALL I GRESK MATEMATIKK

KAPITTEL 6. STØRRELSER OG TALL I GRESK MATEMATIKK KAPITTEL 6. STØRRELSER OG TALL I GRESK MATEMATIKK Gekee kjete de atulige tallee og de kjete til fohold - dvs det vi i dag vil ofatte som bøke. E guleggede ofatig va at to lijestykke måtte ha et felles

Detaljer

Institutt for økonomi og administrasjon

Institutt for økonomi og administrasjon Fakultet for samfusfag Istitutt for økoomi og admiistraso Ivesterig og fiasierig Bokmål Dato: Madag. desember 3 Tid: 4 timer / kl. 9-3 Atall sider (ikl. forside): 5 + sider vedlegg Atall oppgaver: 4 Tillatte

Detaljer

Hypotesetesting, del 5

Hypotesetesting, del 5 Oversikt, del 5 Kofidesitervall p-verdi Kofidesitervall E (tosidig test ka gjeomføres vha. av et kofidesitervall. For eksempel, dersom vi i målemodell 1 vil teste: H 0 : μ = μ 0 mot H 1 : μ μ 0, ka vi

Detaljer

1. Egenverdiproblemet.

1. Egenverdiproblemet. Forelesigsotater i matematikk Egeerdier og egeektorer Side Egeerdiproblemet De gruleggede problemstillige Fra de gruleggede matriseregige husker du sikkert at år e ektor multipliseres med e kadratisk matrise

Detaljer

6 Sannsynlighetsregning

6 Sannsynlighetsregning 6 Sannsynlighetsregning Det anbefales å lese orienteringsstoffet om kombinatorikk som følger etter oppgave 34. 1 a) Sett opp alle mulige kombinasjoner for et kast med to terninger. b) Regn ut sannsynlighetene

Detaljer

Forebygging av kne- og ankelskader hos barn og unge

Forebygging av kne- og ankelskader hos barn og unge Forebyggig av ke- og akelskader hos bar og uge Odd-Egil Olse Fysioterapeut dr. sciet., spesialist i rehabiliterig MNFF Målet med time 1) Forstå bakgru for forebyggede treigsprogrammer 2) Kue demostrere

Detaljer

Eksamen 26.05.2010. REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen 26.05.2010. REA3024 Matematikk R2. Nynorsk/Bokmål Eksame 6.05.010 REA304 Matematikk R Nyorsk/Bokmål Nyorsk Eksamesiformasjo Eksamestid: Hjelpemiddel på del 1: Hjelpemiddel på del : Vedlegg: Framgagsmåte: Rettleiig om vurderiga: 5 timar: Del 1 skal leverast

Detaljer

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 14.12.2007

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 14.12.2007 Høgskole Telemark Avdelg for estetske fag, folkekultur og lærerutdag BOKMÅL 4..7 UTATT PRØVE I MATEMATIKK, Modul 5 studepoeg Td: 5 tmer Hjelpemdler: Kalkulator og vedlagt formelsamlg (bakerst oppgavesettet).

Detaljer

Rapport mai 2013 MØBEL- OG INTERIØRBRANSJENE 2012

Rapport mai 2013 MØBEL- OG INTERIØRBRANSJENE 2012 apport mai 013 ØBE- G ITEIØBSJEE 01 1 3 IHD 01 Iledig 01 Iledig 0 øbelhadele 03 Boligtekstilbrasje 0 Servise- og kjøkkeutstyrbrasje 05 Belysigsutstyr 06 Butikkhadele med iredigsartikler 07 Spesialbutikker

Detaljer

Rapport GPS prosjekt - Ryggeheimen sykehjem, Rygge

Rapport GPS prosjekt - Ryggeheimen sykehjem, Rygge Rapport GPS prosjekt - Ryggeheime sykehjem, Rygge Bruk av GPS på sykehjem Elisabeth Refses/ Siv Skaldstad Tidspla:1/3 10 1/10 10. Orgaiserig: Styrigsgruppe: Åse Nilsse, Ove Keeth Kvige, Elisabeth Breistei,

Detaljer

Kengurukonkurransen 2010

Kengurukonkurransen 2010 Kengurukonkurransen 2010 «Et sprang inn i matematikken» ECOLIER (4. 5. trinn) Hefte for læreren Kengurukonkurransen 2010 Velkommen til Kengurukonkurransen! I år arrangeres den for sjette gang i Norge.

Detaljer

Fagdag 5-08.01.09. 2) Du skal fylle ut en tippekupong. På hvor mange måter kan dette gjøres?

Fagdag 5-08.01.09. 2) Du skal fylle ut en tippekupong. På hvor mange måter kan dette gjøres? Fagdag Plan Fagdag - 08.01.0 1,2 time: Repetisjon kapittel 3 - Sannsynlighet Oppgaver Teori (lesestoff) 3, time: Arbeide med.1 og.2: 16, 17, 18, 1 3, time: Ekstra vurdering før terminoppgjør Repetisjon

Detaljer

HØGSKOLEN I MOLDE Sensurveiledning Log300 Innføring i logistikk - Vår 2006

HØGSKOLEN I MOLDE Sensurveiledning Log300 Innføring i logistikk - Vår 2006 HØGSKOLEN I MOLDE Sesurveiledig Log300 Iførig i logistikk - Vår 2006 Dato: Tid: 13.06.06 09:00 13:00 Asvarlig faglærer: Jøra Gårde Hjelpemidler: Oppgave består av totalt 6 sider (5 sider + ormalfordeligstabell).

Detaljer