STK1100: Kombinatorikk

Størrelse: px
Begynne med side:

Download "STK1100: Kombinatorikk"

Transkript

1 1100: ombiatorikk auar 2009 Ørulf orga Matematisk istitutt Uiversitetet i Oslo 1 Uiform sasylighetsmodell: t stokastisk forsøk har N utfall Det er de mulige utfallee for forsøket i atar at de N utfallee er like sasylige Da har hvert utfall sasylighet 1/N begivehet består av utfall Det er de gustige utfallee for begivehete asylighete for begivehete er P( ) N atall gustige utfall atall mulige utfall 2 For å bruke e uiform sasylighetsmodell må vi fie atall mulige og atall gustig utfall ekle situasjoer som kast med to teriger ka vi skrive opp alle mulige utfall og alle utfall som er gustige for de begivehete vi er iteressert i otto er det over millioer mulige vierrekker i må være veldig tålmodige for å skrive opp alle disse! (1,6) (2,6) (3,6) (,6) (,6) (6,6) (1,) (2,) (3,) (,) (,) (6,) (1,) (2,) (3,) (,) (,) (6,) (1,3) (2,3) (3,3) (,3) (,3) (6,3) (1,2) (2,2) (3,2) (,2) (,2) (6,2) (1,1) (2,1) (3,1) (,1) (,1) (6,1) "um sju øye" i må derfor kue berege atall mulige vierrekker ute å skrive dem opp ombiatorikk er avet på de dele av matematikke som gir oss løsige på dette og likede problemer 3 Multiplikasjossetige ksempel 1: På e mey er det: - forretter - 10 hovedretter - desserter På hvor mage ka vi sette samme et måltid med é forrett, é hovedrett og é dessert? Måltidet ka settes samme på Ovefor har vi tre "forsøk": (i) valg av forrett (ii) valg av hovedrett (iii) valg av dessert Geerelt har vi multiplikasjossetige: i har k forsøk. det første forsøket er det 1 mulige utfall, i det adre forsøket er det 2 mulige utfall,, i siste forsøket er det k mulige utfall. Da er det til samme 1 2 k mulige utfall 6 1

2 ksempel 2: t bilummer består av to bokstaver og siffer Hvor mage bilummere ka vi lage? valg 9 valg 10 valg forskjellige bilummer 7 Ulike typer utvalg i skriver bokstavee i alfabetet på hver si lapp og legger de 29 lappee i e eske i trekker så fire lapper, é etter é. i sier at vi trekker et utvalg på fire bokstaver Hvis vi legger e lapp tilbake før vi trekker de este, trekker vi med Hvis vi ikke legger lappe tilbake, trekker vi ute Hvis rekkefølge bokstavee trekkes i har betydig, trekker vi et ordet utvalg Hvis rekkefølge ikke har betydig, trekker vi et uordet utvalg 8 Ordet utvalg med Uordet utvalg med Ordet utvalg ute Uordet utvalg ute 9 Ordet utvalg med e på bokstaveksempelet Hver gag vi trekker er det 29 bokstaver å velge mellom i ka velge de fire bokstavee på forskjellige år vi tar hesy til rekkefølge 10 Geerelt har vi e megde med elemeter i velger k elemeter fra megde med 123 k gager k ksempel 3: På e tippekupog er det gitt 12 kamper For hver kamp skal e tippe H, U eller Hvor mage forskjellige tipperekker ka vi lage? forskjellige tipperekker ordede utvalg

3 Ordet utvalg ute e igje på bokstaveksempelet. Første gag er det 29 bokstaver å velge mellom dre gag er det 29-1 bokstaver å velge mellom redje gag er det 29-2 bokstaver å velge mellom Fjerde gag er det 29-3 bokstaver å velge mellom i ka velge de fire bokstavee på 29 (29 1) (29 2) (29 3) 7002 forskjellige år vi tar hesy til rekkefølge 13 Geerelt har vi e megde med elemeter i velger k elemeter fra megde ute Pk, ( 1) ( 2) ( k + 1) k faktorer ordede utvalg (eller permutasjoer) 1 ksempel : adslagstreere i lagre for me har sju løpere å velge mellom til O-stafette for me over x10 km På hvor mage ka ha sette opp stafettlaget år vi tar hesy til hvem som skal gå de ulike etappee? reere ka sette opp stafettlaget på i har fortsatt e megde med elemeter, og vi velger k elemeter fra megde ute Når k velger vi alle elemetee. Da svarer et ordet utvalg til e bestemt rekkefølge (eller permutasjo) av de elemetee Det er! ( 1) slike rekkefølger 1 16 ksempel : i ser på eksempelet med stafettlaget. reere har bestemt seg for hvilke fire løpere som skal gå stafette Hvor mage lagoppstilliger ka ha da velge mellom? reere ka velge mellom! lagoppstilliger 17 ksempel 6: e klasse er det elever Hva er sasylighete for at mist to har samme fødselsdag? i reger først ut sasylighete for at ige har samme fødselsdag tall mulige ordede utvalg: 36 tall gustige ordede utvalg: P(ige samme fødselsdag) P(mist to samme fødselsdag)

4 Uordet utvalg ute i ser på stafetteksempelet På hvor mage ka treere velge ut de som skal gå stafette (blat de 7) år vi ikke bryr oss om hvem som skal gå de ulike etappee? a x være atall ha ka gjøre det på Merk at x er atall uordede utvalg av løpere blat 7 år utvelgige skjer ute i vil bestemme x ved å fie atall ordede utvalg på to 19 tall ordede utvalg av løpere blat 7 løpere er (jf. eksempel ) Fra ett uordet utvalg ka lage! ordede utvalg (jf. eksempel ) i ka derfor lage Dermed er x! x! Dette gir x 3! ordede utvalg reere ka velge ut de som skal gå stafette på 3 år vi ikke bryr oss om hvem som skal gå de ulike etappee 20 Geerelt har vi e megde med elemeter i velger k elemeter fra megde ute ( k ) uordede utvalg ( 1) ( 2) ( k + 1) k! N! For uordet utvalg spiller det ige rolle om vi velger ett elemet om gage, eller om vi velger alle på e gag 21 Merk at ( k ) ( 1) ( k + 1) ( k) ( k 1) 2 1 k! ( k)!! r! ( k)! Formele gjelder også for r 0 og r side vi setter 0! 1 kelte gager skriver vi (f.eks. lommeregere) ( ) ( ) k, i stedet for k k kalles biomialkoeffisieter (side de igår i biomialformele) 22 ksempel 8: klasse har 2 elever Fire elever skal velges til e festkomité Hvor mage ka det gjøres på? De elevee ka velges på 2 ( ) ksempel 9: Når du tipper é lottorekke, krysser du av sju tall fra 1 til 3 Hvor mage lottorekker fis det? Det fis 3 ( 7 ) forskjellige lottorekker

5 ksempel 10: pokerspiller får delt ut fem kort Hva er sasylighete for at spillere bare får hjerter? tall mulige å dele ut fem kort på: ( ) tall av disse som gir bare hjerter: ( ) P(bare hjerter)

STK1100: Kombinatorikk og sannsynlighet

STK1100: Kombinatorikk og sannsynlighet ST1100: ombiatorikk og sasylighet Jauar 201 Ørulf Borga/Geir Storvik Matematisk istitutt Uiversitetet i Oslo 1 Uiform sasylighetsmodell: Et stokastisk forsøk har N utfall Det er de mulige utfallee for

Detaljer

Ulike typer utvalg. MAT0100V Sannsynlighetsregning og kombinatorikk. Ordnet utvalg uten tilbakelegging. Ordnet utvalg med tilbakelegging.

Ulike typer utvalg. MAT0100V Sannsynlighetsregning og kombinatorikk. Ordnet utvalg uten tilbakelegging. Ordnet utvalg med tilbakelegging. MAT0100V Sasylighetsregig og kombiatorikk Ordet utvalg med og ute tilbakeleggig (repetisjo) Uordet utvalg ute tilbakeleggig (repetisjo) Tilfeldige variabler og sasylighetsfordeliger Hypergeometrisk fordelig

Detaljer

Ulike typer utvalg. MAT0100V Sannsynlighetsregning og kombinatorikk. Ordnet utvalg uten tilbakelegging 29 (29 1) (29 2) (29 3) =

Ulike typer utvalg. MAT0100V Sannsynlighetsregning og kombinatorikk. Ordnet utvalg uten tilbakelegging 29 (29 1) (29 2) (29 3) = MAT000V Sasylighetsregig og kombiatorikk Urdede utvalg ute tilbakeleggig Pascals talltrekat og biomialkoeffisietee Ørulf Borga Matematisk istitutt Uiversitetet i Oslo Ulike typer utvalg Eksempel 6.: Vi

Detaljer

STK1100 våren 2017 Kombinatorikk

STK1100 våren 2017 Kombinatorikk STK1100 våren 2017 Kombinatorikk Svarer til avsnitt 2.3 i læreboka Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Uniform sannsynlighetsmodell Et stokastisk forsøk har N utfall. Det er de mulige

Detaljer

STK1100 våren Kombinatorikk = = Uniform sannsynlighetsmodell. Et stokastisk forsøk har N utfall. Det er de mulige utfallene for forsøket.

STK1100 våren Kombinatorikk = = Uniform sannsynlighetsmodell. Et stokastisk forsøk har N utfall. Det er de mulige utfallene for forsøket. ST1100 våren 2017 ombinatorikk Uniform sannsynlighetsmodell Et stokastisk forsøk har N utfall. Det er de mulige utfallene for forsøket. Vi antar at de N utfallene er like sannsynlige. Svarer til avsnitt

Detaljer

Kombinatorikk. MAT0100V Sannsynlighetsregning og kombinatorikk. Multiplikasjonssetningen

Kombinatorikk. MAT0100V Sannsynlighetsregning og kombinatorikk. Multiplikasjonssetningen MAT000V Sasylighetsegig og kombiatoikk Kombiatoikk Odede utvalg med og ute tilbakeleggig Uodede utvalg ute tilbakeleggig Pascals talltekat og biomialkoeffisietee Øulf Boga Matematisk istitutt Uivesitetet

Detaljer

Total sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk = Vi kan skrive en hendelse B som en disjunkt

Total sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk = Vi kan skrive en hendelse B som en disjunkt MAT000V Sannsynlighetsregning og kombinatorikk Total sannsynlighet Vi kan skrive en hendelse B som en disjunkt union av A B og A B Total sannsynlighet og Bayes' setning Kombinatorikk Ordnede utvalg med

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. Noen viktige sannsynlighetsmodeller. Binomisk modell. Kp. 3 Diskrete tilfeldige variable

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. Noen viktige sannsynlighetsmodeller. Binomisk modell. Kp. 3 Diskrete tilfeldige variable ÅMA Saslighetsregig med statistikk, våre K. 3 Diskrete tilfeldige variable Noe viktige saslighetsmodeller Noe viktige saslighetsmodeller ( Sas.modell : å betr det klasse/te sas.fordelig.) Biomisk modell

Detaljer

Mer om utvalgsundersøkelser

Mer om utvalgsundersøkelser Mer om utvalgsudersøkelser I uderkapittel 3.6 i læreboka gir vi e kort iførig i takegage ved utvalgsudersøkelser. Vi gir her e grudigere framstillig av temaet. Populasjo og utvalg Ved e utvalgsudersøkelse

Detaljer

Påliteligheten til en stikkprøve

Påliteligheten til en stikkprøve Pålitelighete til e stikkprøve Om origiale... 1 Beskrivelse... 2 Oppgaver... 4 Løsigsforslag... 4 Didaktisk bakgru... 5 Om origiale "Zuverlässigkeit eier Stichprobe" på http://www.mathe-olie.at/galerie/wstat2/stichprobe/dee

Detaljer

Ukeoppgaver i BtG207 Statistikk, uke 4 : Binomisk fordeling. 1

Ukeoppgaver i BtG207 Statistikk, uke 4 : Binomisk fordeling. 1 Ukeoppgaver i BtG20 Statistikk, uke 4 : Biomisk fordelig. 1 Høgskole i Gjøvik Avdelig for tekologi, økoomi og ledelse. Statistikk Ukeoppgaver uke 4 Biomisk fordelig. Oppgave 1 La de stokastiske variable

Detaljer

Kapittel 9: Mer kombinatorikk

Kapittel 9: Mer kombinatorikk MAT00 Disret Matemati Forelesig : Mer ombiatori Roger Atose Istitutt for iformati, Uiversitetet i Oslo Kapittel 9: Mer ombiatori 5. april 009 (Sist oppdatert: 009-04-5 00:06) MAT00 Disret Matemati 5. april

Detaljer

Konfidensintervall. Notat til STK1110. Ørnulf Borgan, Ingrid K. Glad og Anders Rygh Swensen Matematisk institutt, Universitetet i Oslo.

Konfidensintervall. Notat til STK1110. Ørnulf Borgan, Ingrid K. Glad og Anders Rygh Swensen Matematisk institutt, Universitetet i Oslo. Kofidesitervall Notat til STK1110 Ørulf Borga, Igrid K. Glad og Aders Rygh Swese Matematisk istitutt, Uiversitetet i Oslo August 2007 Formål E valig metode for å agi usikkerhete til et estimat er å berege

Detaljer

Eksamen REA3028 S2, Våren 2012

Eksamen REA3028 S2, Våren 2012 Eksame REA08 S, Våre 0 Del Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave (4 poeg) a) Deriver fuksjoee ) f f ) g e 4 4 4 g e e 4 g e e g e

Detaljer

Kombinatorikk. MAT1030 Diskret matematikk Forelesning 20: Kombinatorikk. Repetisjon. Repetisjon

Kombinatorikk. MAT1030 Diskret matematikk Forelesning 20: Kombinatorikk. Repetisjon. Repetisjon Kombiatori MAT Disret matemati orelesig : Kombiatori Roger Atose Matematis Istitutt, Uiversitetet i Oslo 7. april 8 Kombiatori er studiet av opptelliger, ombiasjoer og permutasjoer. Vi fier svar på spørsmål

Detaljer

3MX 2007/8 - Kapittel 5: 8. januar 5. februar 2008

3MX 2007/8 - Kapittel 5: 8. januar 5. februar 2008 3MX 00/8 - Kapittel : 8. jauar. februar 008 Pla for skoleåret 00/008: Kapittel 6: 6/ /. Kapittel : / /3. Prøver på eller skoletime etter hvert kapittel. É heildagsprøve i hver termi. Repetisjo, prøver,

Detaljer

Kapittel 7: Noen viktige sannsynlighetsfordelinger

Kapittel 7: Noen viktige sannsynlighetsfordelinger Kapittel 7: Noe viktige sasylighetsfordeliger I mage situasjoer ka feomeet vi ser på beskrives med e bestemt type sasylighetsfordelig e sasylighetsfordelig gitt ved e bestemt formel. Vi skal se på oe av

Detaljer

MAT0100V Sannsynlighetsregning og kombinatorikk

MAT0100V Sannsynlighetsregning og kombinatorikk MAT000V Sannsynlighetsregning og kombinatorikk Uordnet utvalg uten tilbakelegging (repetisjon) Tilfeldige variabler og sannsynlighetsfordelinger Hypergeometrisk fordeling Binomisk fordeling Ørnulf Borgan

Detaljer

8 (inkludert forsiden og formelsamling) Tegne- og skrivesaker, kalkulator, formelsamling (se vedlagt).

8 (inkludert forsiden og formelsamling) Tegne- og skrivesaker, kalkulator, formelsamling (se vedlagt). Eksamesoppgave våre 011 Ordiær eksame Bokmål Fag: Matematikk Eksamesdato: 10.06.011 Studium/klasse: GLU 5-10 Emekode: MGK00 Eksamesform: Skriftlig Atall sider: 8 (ikludert forside og formelsamlig) Eksamestid:

Detaljer

Forventningsverdi. MAT0100V Sannsynlighetsregning og kombinatorikk

Forventningsverdi. MAT0100V Sannsynlighetsregning og kombinatorikk MAT0100V Sasylighetsregig og kombiatorikk Forvetigsverdi Sasylighetsfordelige til e tilfeldig variabel X gir sasylighete for de ulike verdiee X ka ata Forvetig, varias og stadardavvik Tilærmig av biomiske

Detaljer

Statistikk og økonomi, våren 2017

Statistikk og økonomi, våren 2017 Statistikk og økoomi, våre 07 Obligatorisk oppgave 6 Løsigsforslag Oppgave E terig kastes 0 gager, og det registreres hvor mage 6-ere som oppås i løpet av disse 0 kastee. Vi ka kalle atall 6-ere i løpet

Detaljer

Differensligninger Forelesningsnotat i Diskret matematikk Differensligninger

Differensligninger Forelesningsnotat i Diskret matematikk Differensligninger Differesligiger Forelesigsotat i Diskret matematikk 017 Differesligiger I kapittel lærte vi om følger og rekker. Vi studerte både aritmetiske og geometriske følger og rekker. Noe følger og rekker er imidlertid

Detaljer

Avsnitt 8.1 i læreboka Differensligninger

Avsnitt 8.1 i læreboka Differensligninger Diskret Matematikk Fredag 6. ovember 015 Avsitt 8.1 i læreboka Differesligiger I kapittel lærte vi om følger og rekker. Vi studerte både aritmetiske og geometriske følger og rekker. Noe følger og rekker

Detaljer

Econ 2130 Forelesning uke 11 (HG)

Econ 2130 Forelesning uke 11 (HG) Eco 130 Forelesig uke 11 (HG) Mer om ormalfordelige og setralgreseteoremet Uke 1 1 Fra forrige gag ~ betyr er fordelt som. ~ N( µσ, ) E( ) = µ, og var( ) = σ Normalfordelige er symmetrisk om μ og kotiuerlig

Detaljer

Oppgave 1. (i) Hva er sannsynligheten for at det øverste kortet i bunken er et JA-kort?

Oppgave 1. (i) Hva er sannsynligheten for at det øverste kortet i bunken er et JA-kort? ECON EKSAMEN 8 VÅR TALLSVAR Oppgave Vi har e kortstokk beståede av 6 kort. På av disse står det skrevet JA på forside mes det står NEI på forside av de adre kortee. Hvis ma får se kortet med bakside vedt

Detaljer

Notat kombinatorikk og sannsynlighetregning

Notat kombinatorikk og sannsynlighetregning Notat kombinatorikk og sannsynlighetregning av Peer Andersen Peer Andersen 2010 1 SANNSYNLIGHETSREGNING MED FLERE TRINN Sannsynlighetsregning med et trinn kan være situasjoner der vi spør hva sjansen er

Detaljer

STK1100 våren 2017 Estimering

STK1100 våren 2017 Estimering STK1100 våre 017 Estimerig Svarer til sidee 331-339 i læreboka Ørulf Borga Matematisk istitutt Uiversitetet i Oslo 1 Politisk meigsmålig Spør et tilfeldig utvalg på 1000 persoer hva de ville ha stemt hvis

Detaljer

TMA4240 Statistikk Eksamen desember 2015

TMA4240 Statistikk Eksamen desember 2015 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag TMA20 Statistikk Eksame desember 205 Løsigsskisse Oppgave a) De kumulative fordeligsfuksjoe til X, F (x) P (X x): F (x) P (X x) x

Detaljer

Kapittel 10 fra læreboka Grafer

Kapittel 10 fra læreboka Grafer Forelesigsotat i Diskret matematikk torsdag 6. oktober 017 Kapittel 10 fra læreboka Grafer (utdrag) E graf er e samlig pukter (oder) og kater mellom puktee (eg. odes, vertex, edge). E graf kalles rettet

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro.

ÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro. ÅMA Sasylighetsregig med statistikk, våre 6 Kp. 4 Kotiuerlige tilfeldige variable og ormaldelige Kotiuerlige tilfeldige variable, itro. (eller: Kotiuerlige sasylighetsdeliger) Vi har til å sett på diskrete

Detaljer

Kapittel 7: Noen viktige sannsynlighetsfordelinger

Kapittel 7: Noen viktige sannsynlighetsfordelinger Kapittel 7: Noe viktige sasylighetsfordeliger I mage situasjoer ka feomeet vi ser på beskrives med e bestemt type sasylighetsfordelig (e sasylighetsfordelig gitt ved e bestemt formel. Vi skal se på oe

Detaljer

Kommentarer til oppgaver;

Kommentarer til oppgaver; Kapittel - Algebra Versjo: 11.09.1 - Rettet feil i 0, 1 og 70 og lagt i litt om GeoGebra-bruk Kommetarer til oppgaver; 0, 05, 10, 13, 15, 5, 9, 37, 5,, 5, 59, 1, 70, 7, 78, 80,81 0 a) Trykkfeil i D-koloe

Detaljer

Estimering 1 -Punktestimering

Estimering 1 -Punktestimering Estimerig 1 -Puktestimerig Dekkes av kap. 8, 9.1-9.3 og 9.15/9.14. Vi har til å settpå e rekke forskjellige sasylighetsfordeliger og sett hvorda disse ka brukes til å modellere mage forskjellige typer

Detaljer

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 20. mai 2008

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 20. mai 2008 Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL. mai 8 EKSAMEN I MATEMATIKK Modul 5 studieoeg Tid: 5 timer Ogavesettet er å sider (ikludert formelsamlig). Hjelemidler:

Detaljer

Estimering 1 -Punktestimering

Estimering 1 -Punktestimering Estimerig 1 -Puktestimerig Dekkes av kap. 8, 9.1-9.3 og 9.15/9.14. Vi har til å settpå e rekke forskjellige sasylighetsfordeliger og sett hvorda disse ka brukes til å modellere mage forskjellige typer

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro.

ÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro. ÅMA0 Sasylighetsregig med statistikk, våre 008 Kp. 4 Kotiuerlige tilfeldige variable; Normalfordelig Kotiuerlige tilfeldige variable, itro. (eller: Kotiuerlige sasylighetsfordeliger) Vi har til å sett

Detaljer

ARBEIDSHEFTE I MATEMATIKK

ARBEIDSHEFTE I MATEMATIKK ARBEIDSHEFTE I MATEMATIKK Temahefte r Hvorda du reger med poteser Detaljerte forklariger Av Matthias Loretze mattegriseforlag.com Opplsig: E potes er e forkortet skrivemåte for like faktorer. E potes består

Detaljer

Kapittel 8: Estimering

Kapittel 8: Estimering Kaittel 8: Estimerig Estimerig hadler kort sagt om hvorda å aslå verdie å arametre som,, og dersom disse er ukjete. like arametre sier oss oe om oulasjoe vi studerer (dvs om alle måliger av feomeet som

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 5

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 5 ÅMA110 Sasylighetsregig med statistikk, våre 2010 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 12. april Bjør H. Auestad Kp. 6: Hypotesetestig del 4 1/ 59

Detaljer

Eksempeloppgave 2014. REA3028 Matematikk S2 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)

Eksempeloppgave 2014. REA3028 Matematikk S2 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler) Eksempeloppgave 2014 REA3028 Matematikk S2 Eksempel på eksame våre 2015 etter y ordig Ny eksamesordig Del 1: 3 timer (ute hjelpemidler) Del 2: 2 timer (med hjelpemidler) Mistekrav til digitale verktøy

Detaljer

Løsningsforslag til eksamen

Løsningsforslag til eksamen 7. jauar 6 Løsigsforslag til eksame Emekode: ITF75 Dato: 5. desember 5 Eme: Matematikk for IT Eksamestid: kl 9. til kl. Hjelpemidler: To A4-ark med valgfritt ihold på begge sider. Kalkulator er ikke tillatt.

Detaljer

Signifikante sifre = alle sikre pluss ett siffer til

Signifikante sifre = alle sikre pluss ett siffer til Sigifikate siffer og stadardavvik behadles i kap. Disse to emee skal vi ta for oss i dag. Kofidesgreser behadles i kap 4. Dette skal vi ta for oss i osdag. Presetasjo av aalysedata ka gjøres på følgede

Detaljer

Introduksjon. Hypotesetesting / inferens (kap 3) Populasjon og utvalg. Populasjon og utvalg. Populasjonsvarians

Introduksjon. Hypotesetesting / inferens (kap 3) Populasjon og utvalg. Populasjon og utvalg. Populasjonsvarians Hypotesetestig / iferes (kap ) Itroduksjo Populasjo og utvalg Statistisk iferes Utvalgsfordelig (samplig distributio) Utvalgsfordelige til gjeomsittet Itroduksjo Vi øsker å få iformasjo om størrelsee i

Detaljer

FØLGER, REKKER OG GJENNOMSNITT

FØLGER, REKKER OG GJENNOMSNITT FØLGER, REKKER OG GJENNOMSNITT Espe B. Lagelad realfagshjoret.wordpress.com espebl@hotmail.com 9.mars 06 Iledig E tallfølge er e serie med tall som kommer etter hveradre i e bestemt rekkefølge. Kvadrattallee

Detaljer

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 12. desember 2008

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 12. desember 2008 Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL. desember 8 EKSAMEN I MATEMATIKK, Utsatt røve Modul 5 studieoeg Tid: 5 timer Ogavesettet er å sider (ikludert formelsamlig).

Detaljer

Fagdag 2-3mx 24.09.07

Fagdag 2-3mx 24.09.07 Fagdag 2-3mx 24.09.07 Jeg beklager at jeg ikke har fuet oe ye morsomme spill vi ka studere, til gjegjeld skal dere slippe prøve/test dee gage. Istruks: Vi arbeider som valig med 3 persoer på hver gruppe.

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag 7. jauar 7 EKSAMEN Løsigsforslag Emekode: ITF75 Dato: 4. desember 6 Hjelpemidler: - To A4-ark med valgfritt ihold på begge sider. Emeav: Matematikk for IT Eksamestid: 9. 3. Faglærer: Christia F Heide Kalkulator

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag ..4 EKSAMEN Løsigsforslag Emekode: ITF75 Dato: 6. desember Eme: Matematikk for IT Eksamestid: kl 9. til kl. Hjelpemidler: To A4-ark med valgfritt ihold på begge sider. Kalkulator er ikke tillatt. Faglærer:

Detaljer

Forelesning Moment og Momentgenererende funksjoner

Forelesning Moment og Momentgenererende funksjoner ushu.li@uib.o Forelesig + 3 Momet og Mometgeererede fuksjoer 1. Oppsummerig til Forelesig 1 1.1) Fuksjoe av S.V: hvis variabele er e fuksjo (trasformasjo) av S.V. : g( ), da er også e S.V.: til ethvert

Detaljer

FX-82ES. NY CASIO teknisk / vitenskapelig lommeregner med naturlig tallvindu.

FX-82ES. NY CASIO teknisk / vitenskapelig lommeregner med naturlig tallvindu. ytt NR. 005. årgag FX-8ES NY CASIO tekisk / viteskapelig lommereger med aturlig tallvidu. Det er å mer e 5 år side kalkulatore for alvor ble tatt i bruk i orsk matematikk-udervisig, og de viteskapelige

Detaljer

2.1 Polynomdivisjon. Oppgave 2.10

2.1 Polynomdivisjon. Oppgave 2.10 . Polyomdivisjo Oppgave. ( 5 + ) : = + + ( + ):( ) 6 + 6 8 8 = + + c) ( + 5 ) : = + 6 6 d) + + + = + + = + + + 8+ ( ):( ) + + + Oppgave. ( + 5+ ):( ) 5 + + = + ( 5 ): 9 + + + = + + + 5 + 6 9 c) ( 8 66

Detaljer

Totalt Antall kandidater oppmeldt 1513 Antall møtt til eksamen 1421 Antall bestått 1128 Antall stryk 247 Antall avbrutt 46 % stryk og avbrutt 21%

Totalt Antall kandidater oppmeldt 1513 Antall møtt til eksamen 1421 Antall bestått 1128 Antall stryk 247 Antall avbrutt 46 % stryk og avbrutt 21% TMA4100 Høste 2007 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Kommetarer til eksame Dette dokumetet er e oppsummerig av erfarigee fra sesure av eksame i TMA4100 Matematikk

Detaljer

Løsningsforslag for andre obligatoriske oppgave i STK1100 Våren 2007 Av Ingunn Fride Tvete og Ørnulf Borgan

Løsningsforslag for andre obligatoriske oppgave i STK1100 Våren 2007 Av Ingunn Fride Tvete og Ørnulf Borgan Løsigsforslag for adre obligatoriske oppgave i STK11 Våre 27 Av Igu Fride Tvete (ift@math..uio.o) og Ørulf Borga (borga@math.uio.o). NB! Feil ka forekomme. NB! Sed gjere e mail hvis du fier e feil! Oppgave

Detaljer

Eksamen REA3028 S2, Våren 2011

Eksamen REA3028 S2, Våren 2011 Eksame REA08 S, Våre 0 Del Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave (8 poeg) a) Deriver fuksjoee ) f 5 f 6 5 ) g g ) h l 9 9 6 4 h l

Detaljer

Undervisningsopplegg for ungdomstrinnet om statistikk og sannsynlighet

Undervisningsopplegg for ungdomstrinnet om statistikk og sannsynlighet Undervisningsopplegg for ungdomstrinnet om statistikk og sannsynlighet Kilde: www.clipart.com 1 Statistikk, sannsynlighet og kombinatorikk. Lærerens ark Hva sier læreplanen? Statistikk, sannsynlighet og

Detaljer

Eksamen 21.05.2013. REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen 21.05.2013. REA3024 Matematikk R2. Nynorsk/Bokmål Eksame 21.05.2013 REA3024 Matematikk R2 Nyorsk/Bokmål Nyorsk Eksamesiformasjo Eksamestid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: 5 timar: Del 1 skal leverast i etter 2 timar. Del 2 skal leverast

Detaljer

S2 kapittel 1 Rekker Løsninger til kapitteltesten i læreboka

S2 kapittel 1 Rekker Løsninger til kapitteltesten i læreboka S kapittel Rekker Løsiger til kapittelteste i læreboka A a Det femte og sjette eiffeltallet ser slik ut: b De fire første leddee er det bare å telle opp:,5,9,4 For å komme til este ledd, legger vi til,

Detaljer

S1 kapittel 7 Sannsynlighet Løsninger til oppgavene i boka

S1 kapittel 7 Sannsynlighet Løsninger til oppgavene i boka S1 kapittel 7 Sannsynlighet Løsninger til oppgavene i oka 7.1 a c d 4 1 P (sum antall øyne lir 5) = = 36 9 6 1 P (sum antall øyne lir minst 10) = = 36 6 6 1 P (sum antall øyne lir høyst 4) = = 36 6 11

Detaljer

E K S A M E N : FAG: Matematikk 1 MA-154 LÆRER: MORTEN BREKKE. Klasse(r): Alle Dato: 1. des 11 Eksamenstid, fra-til: 0900-1400

E K S A M E N : FAG: Matematikk 1 MA-154 LÆRER: MORTEN BREKKE. Klasse(r): Alle Dato: 1. des 11 Eksamenstid, fra-til: 0900-1400 UNIVERSITETET I AGDER Grimstad E K S A M E N : FAG: Matematikk MA-54 LÆRER: MORTEN BREKKE Klasse(r): Alle Dato:. des Eksamestid, fra-til: 0900-400 Eksamesoppgave består av følgede iklusive forside Atall

Detaljer

Metoder for politiske meningsmålinger

Metoder for politiske meningsmålinger Metoder for politiske meigsmåliger AV FORSKER IB THOMSE STATISTISK SETRALBYRÅ Beregigsmetodee som brukes i de forskjellige politiske meigsmåliger har vært gjestad for mye diskusjo i dagspresse det siste

Detaljer

Eksempeloppgave 2014. REA3026 Matematikk S1 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)

Eksempeloppgave 2014. REA3026 Matematikk S1 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler) Eksempeloppgave 04 REA306 Matematikk S Eksempel på eksame våre 05 etter y ordig Ny eksamesordig Del : 3 timer (ute hjelpemidler) Del : timer (med hjelpemidler) Mistekrav til digitale verktøy på datamaski:

Detaljer

2. Bestem nullpunktene til g.

2. Bestem nullpunktene til g. Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL 0. desember 007 EKSAMEN I MATEMATIKK Modul 5 studiepoeg Tid: 5 timer Oppgavesettet er på 9 sider (ikludert formelsamlig).

Detaljer

Løsningsforslag: Deloppgave om heuristiske søkemetoder

Løsningsforslag: Deloppgave om heuristiske søkemetoder Løsigsforslag: Deloppgave om heuristiske søkemetoder 6. mai 00 Iledig Vi skal betrakte det såkalte grafdeligsproblemet (graph partitioig problem). Problemet ka ekelt formuleres som følger: Gitt e graf

Detaljer

CONSTANT FINESS SUNFLEX SMARTBOX

CONSTANT FINESS SUNFLEX SMARTBOX Luex terrassemarkiser. Moterig- og bruksavisig CONSTNT FINESS SUNFLEX SMRTBOX 4 5 6 7 8 Markises hovedkompoeter og mål Kombikosoll og plasserig rmklokker og justerig Parallelljusterig Motordrift og programmerig

Detaljer

Løsning eksamen R1 våren 2010

Løsning eksamen R1 våren 2010 Løsig eksame R våre 00 Oppgave a) ) f ( ) l f ( ) ' l l l l f ( ) (l ) ) g( ) 4e g( ) 4 e ( ) 4 e ( ) g( ) 4( ) e b) ( ) 4 4 6 P ) P() 4 4 6 8 6 8 6 0 Divisjo med ( ) går opp. 4 4 6 : ( ) 8 4 4 8 6 8 6

Detaljer

Løsningsforslag. Oppgavesettet består av 9 oppgaver med i alt 21 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye.

Løsningsforslag. Oppgavesettet består av 9 oppgaver med i alt 21 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye. .. Løsigsforslag Emekode: ITF7 Dato:. desember Eme: Matematikk for IT Eksamestid: kl. til kl. Hjelpemidler: To A4-ark med valgfritt ihold på begge sider. Faglærer: Christia F Heide Eksamesoppgave: Oppgavesettet

Detaljer

S2 kapittel 1 Rekker Løsninger til innlæringsoppgavene

S2 kapittel 1 Rekker Løsninger til innlæringsoppgavene Løsiger til ilærigsoppgavee kapittel Rekker Løsiger til ilærigsoppgavee a Vi ser at differase mellom hvert ledd er 4, så vi får det este leddet ved å legge til 4 Det este leddet blir altså 6 + 4 = 0 b

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 0 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Oppgave Midtveiseksame a) X er e stokastisk variabel

Detaljer

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 16. mai 2008

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 16. mai 2008 Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL 6. mai 008 EKSAMEN I MATEMATIKK Modul 5 studiepoeg Tid: 5 timer Oppgavesettet er på 8 sider (ikludert formelsamlig). Hjelpemidler:

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 5. Hypotesetesting, del 5

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 5. Hypotesetesting, del 5 ÅMA11 Sasylighetsregig med statistikk, våre 7 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 26. mars Bjør H. Auestad Kp. 6: Hypotesetestig del 5 1/ 59 Bjør

Detaljer

Kap. 9: Inferens om én populasjon

Kap. 9: Inferens om én populasjon 2 ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for matematiske fag Ka. 9: Iferes om é oulasjo Hvis σ er ukjet bytter vi ut σ med s i Ny observator blir t = x μ s/ z = x μ σ/ der s = Σx 2 (Σx)

Detaljer

Eksamen 20.05.2009. REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen 20.05.2009. REA3024 Matematikk R2. Nynorsk/Bokmål Eksame 20052009 REA3024 Matematikk R2 Nyorsk/Bokmål Nyorsk Eksamesiformasjo Eksamestid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Bruk av kjelder: Vedlegg: Framgagsmåte: Rettleiig om vurderiga: 5 timar:

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008 Kp. 6, del 5

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008 Kp. 6, del 5 ÅMA110 Sasylighetsregig med statistikk, våre 2008 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 3. april Bjør H. Auestad Kp. 6: Hypotesetestig del 5 1/ 56

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 5

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 5 ÅMA110 Sasylighetsregig med statistikk, våre 2006 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 3. april Bjør H. Auestad Kp. 6: Hypotesetestig del 5 1 / 56

Detaljer

H 1 : µ 1 µ 2 > 0. t = ( x 1 x 2 ) (µ 1 µ 2 ) s p. s 2 p = s2 1 (n 1 1) + s 2 2 (n 2 1) n 1 + n 2 2

H 1 : µ 1 µ 2 > 0. t = ( x 1 x 2 ) (µ 1 µ 2 ) s p. s 2 p = s2 1 (n 1 1) + s 2 2 (n 2 1) n 1 + n 2 2 TMA4245 Statistikk Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b4 Løsigsskisse Oppgave 1 Vi øsker å fie ut om et ytt serum ka stase leukemi. 5 mus får serumet, 4

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 4. Hypotesetesting, del 4

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 4. Hypotesetesting, del 4 ÅMA11 Sasylighetsregig med statistikk, våre 27 Kp. 6, del 4 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 19. mars Bjør H. Auestad Kp. 6: Hypotesetestig del 4 1/ 27 Bjør

Detaljer

OPPGAVE 4 LØSNINGSFORSLAG OPPGAVE 5 LØSNINGSFORSLAG UTVIKLING AV REKURSIV FORMEL FOR FIGURTALL SOM GIR ANDREGRADSFUNKSJONER

OPPGAVE 4 LØSNINGSFORSLAG OPPGAVE 5 LØSNINGSFORSLAG UTVIKLING AV REKURSIV FORMEL FOR FIGURTALL SOM GIR ANDREGRADSFUNKSJONER OPPGAVE 4 LØSNINGSFORSLAG Tallfølge i f) rektageltallee. Her er de eksplisitte formele R = ( +1) eller R = +. Dette er e adregradsfuksjo. I figurtallsammeheg forutsetter vi at de legste side er (øyaktig)

Detaljer

OM TAYLOR POLYNOMER. f x K f a x K a. f ' a = lim x/ a. f ' a z

OM TAYLOR POLYNOMER. f x K f a x K a. f ' a = lim x/ a. f ' a z OM TAYLOR POLYNOMER I dette otatet, som utfyller avsitt 6. i Gullikses bok, skal vi se på Taylor polyomer og illustrere hvorfor disse er yttige. Det å berege Taylor polyomer for håd er i prisippet ikke

Detaljer

Utvidet løsningsforslag Eksamen i TMA4100 Matematikk 1, 16/12 2008

Utvidet løsningsforslag Eksamen i TMA4100 Matematikk 1, 16/12 2008 Utvidet løsigsforslag Eksame i TMA4 Matematikk, 6/ 8 Oppgave i) Vi gjør substitusjoe u = si θ og får π/ [ u si θ cos θ dθ = u du = E ae løsigsmetode er π/ si θ cos θ dθ = π/ ] si θ dθ = 4 = 4 ( ( ) ( ))

Detaljer

Eksamen INF3350/INF4350 H2006 Løsningsforslag

Eksamen INF3350/INF4350 H2006 Løsningsforslag Eksame INF3350/INF4350 H2006 Løsigsforslag Oppgave. Score (eller bit score) S' er e statistisk idikator på hvor sigifikat e match er. Høyere bit score svarer til høyere sigifikas. Idikatore er uavhegig

Detaljer

2T kapittel 3 Modellering og bevis Utvalgte løsninger oppgavesamlingen

2T kapittel 3 Modellering og bevis Utvalgte løsninger oppgavesamlingen T kapittel 3 Modellerig og bevis Utvalgte løsiger oppgavesamlige 301 a Sitthøyde i 1910 blir 170,0 171, 4 170,7. I 1970 blir de 177,1 179, 4 178,3. b Med som atall år etter 1900 og y som sitthøyde i cetimeter

Detaljer

Econ 2130 uke 15 (HG) Poissonfordelingen og innføring i estimering

Econ 2130 uke 15 (HG) Poissonfordelingen og innføring i estimering Eco 130 uke 15 (HG) Poissofordelige og iførig i estimerig 1 Poissofordelige (i) Tilærmig til biomialfordelige. Regel. ( Poissotilærmelse ) Ata Y ~ bi(, p) E( Y ) = p og var( Y ) = p(1 p). Hvis er stor

Detaljer

KLMED8004 Medisinsk statistikk. Del I, høst Estimering. Tidligere sett på. Eksempel hypertensjon

KLMED8004 Medisinsk statistikk. Del I, høst Estimering. Tidligere sett på. Eksempel hypertensjon Tidligere sett på KLMED8004 Medisisk statistikk Del I, høst 008 Estimerig Hvorda kjete sasylighetsfordeliger (biomialfordelig, ormalfordelig) med kjete populasjosparametrer (forvetig, varias osv.) ka gi

Detaljer

Bokmål OPPGAVE 1. a) Deriver funksjonene: b) Finn integralene ved regning: c) Løs likningen ved regning, og oppgi svaret som eksakte verdier: + =

Bokmål OPPGAVE 1. a) Deriver funksjonene: b) Finn integralene ved regning: c) Løs likningen ved regning, og oppgi svaret som eksakte verdier: + = OPPGAVE a) Deriver fuksjoee: ) f ( x) = 3six+ cosx ) gx ( ) = six cosx b) Fi itegralee ved regig: ) ) e 3e x d x l xd x Tips: l xdx= l xdx c) Løs likige ved regig, og oppgi svaret som eksakte verdier:

Detaljer

Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte.

Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte. Eksame 20052009 REA3024 Matematikk R2 Nyorsk/Bokmål Bokmål Eksamesiformasjo Eksamestid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Bruk av kilder: Vedlegg: Framgagsmåte: Veiledig om vurderige: 5 timer:

Detaljer

Tallsystemer. Læringsmål. Posisjonstallsystemer. Potensregning en kort repetisjon 123 = = 7B 16. Forstå posisjonstallsystemer

Tallsystemer. Læringsmål. Posisjonstallsystemer. Potensregning en kort repetisjon 123 = = 7B 16. Forstå posisjonstallsystemer Forstå posisjostallsystemer Lærigsmål Tallsystemer Kue biærtall og heksadesimale tall Kue kovertere mellom ulike tallsystemer: Ti 3 = = 7B 6 (Kapittel 6 + 7.-7.3) Kue ekel regig med biærtall addisjo multiplikasjo

Detaljer

LØSNING: Eksamen 28. mai 2015

LØSNING: Eksamen 28. mai 2015 LØSNING: Eksame 28. mai 2015 MAT110 Statistikk 1, vår 2015 Oppgave 1: revisjo ) a) Situasjoe som beskrives i oppgave ka modelleres med e ure. I dee ure er fordelige kjet, M atall bilag med feil og N 100

Detaljer

Matematikk for IT. Oblig 7 løsningsforslag. 16. oktober

Matematikk for IT. Oblig 7 løsningsforslag. 16. oktober Matematikk for IT Oblig 7 løsigsforslag. oktober 7..8 a) Vi skal dae kodeord som består av sifree,,,, 7. odeordet er gldig dersom det ieholder et like atall (partall) -ere. Dee løses på samme måte som..:

Detaljer

Prøveeksamen 2. Elektronikk 24. mars 2010

Prøveeksamen 2. Elektronikk 24. mars 2010 Prøveeksame 2 Elektroikk 24. mars 21 OPPGAVE 1 E 8 bit D/A-omformer har et utspeigsområde fra til 8 V V 1LSB, der V 1LSB er de aaloge speige som svarer til det mist sigifikate bit (LSB). a) Hvor stor er

Detaljer

Kap. 9: Inferens om én populasjon

Kap. 9: Inferens om én populasjon 2 ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for matematiske fag Ka. 9: Iferes om é oulasjo Hvis σ er ukjet bytter vi ut σ med s i Ny observator blir t = x μ s/ z = x μ σ/ der s = Σx 2 (Σx)

Detaljer

Luktrisikovurdering fra legemiddelproduksjon på Fikkjebakke Screening

Luktrisikovurdering fra legemiddelproduksjon på Fikkjebakke Screening Luktrisikovurderig fra legemiddelproduksjo på Fikkjebakke Screeig Aquateam COWI AS Rapport r: 14-046 Prosjekt r: O-14062 Prosjektleder: Liv B. Heige Medarbeidere: Lie Diaa Blytt Karia Ødegård (Molab AS)

Detaljer

MOT310 Statistiske metoder 1, høsten 2011

MOT310 Statistiske metoder 1, høsten 2011 MOT310 Statistiske metoder 1, høste 2011 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 24. august, 2011 Bjør H. Auestad Itroduksjo og repetisjo 1 / 32 Repetisjo; 9.1,

Detaljer

EKSAMENSOPPGAVE. Faglig veileder: Kirsten Aarset, Bente Hellum og Jan Stubergh Gruppe(r): 1-elektro, 1-maskin, 3-almen Dato: 17 desember 2001

EKSAMENSOPPGAVE. Faglig veileder: Kirsten Aarset, Bente Hellum og Jan Stubergh Gruppe(r): 1-elektro, 1-maskin, 3-almen Dato: 17 desember 2001 Avdelig for igeiørutdaig EKSAMENSOPPGAVE Fag: Kjemi og Miljø Fagr FO 05 K Faglig veileder: Kirste Aarset, Bete Hellum og Ja Stubergh Gruppe(r): 1-elektro, 1-maski, -alme Dato: 17 desember 001 Eksamestid,

Detaljer

Løsningsforslag. Oppgavesettet består av 16 oppgaver. Ved sensur vil alle oppgaver telle like mye med unntak av oppgave 6 som teller som to oppgaver.

Løsningsforslag. Oppgavesettet består av 16 oppgaver. Ved sensur vil alle oppgaver telle like mye med unntak av oppgave 6 som teller som to oppgaver. . mai 5 Løsigsforslag Emekode: ITF75 Dato: 5. desember 4 Eme: Matematikk for IT Eksamestid: kl 9. til kl 3. Hjelpemidler: To A4-ark med valgfritt ihold på begge sider. Kalkulator er ikke tillatt. Faglærer:

Detaljer

TMA4245 Statistikk Eksamen 9. desember 2013

TMA4245 Statistikk Eksamen 9. desember 2013 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag TMA4245 Statistikk Eksame 9. desember 2013 Oppgave 1 I kortspillet Blackjack får ma de høyeste geviste hvis de to første kortee ma

Detaljer

LØSNING, EKSAMEN I STATISTIKK, TMA4240, DESEMBER Anta at sann porøsitet er r. Måling med utstyret gir da X n(x; r, 0,03).

LØSNING, EKSAMEN I STATISTIKK, TMA4240, DESEMBER Anta at sann porøsitet er r. Måling med utstyret gir da X n(x; r, 0,03). LØSNING, EKSAMEN I STATISTIKK, TMA440, DESEMBER 006 OPPGAVE 1 Ata at sa porøsitet er r. Målig med utstyret gir da X (x; r, 0,03). a) ( ) X r P(X > r) P 0,03 > 0 P(Z > 0) 0,5. ( X r P(X r > 0,05) P 0,03

Detaljer

Dersom vi skriver denne reaksjonslikningen ved bruk av kjemiske tegn: side av likningen har vi ett hydrogen mens vi har to på høyre side.

Dersom vi skriver denne reaksjonslikningen ved bruk av kjemiske tegn: side av likningen har vi ett hydrogen mens vi har to på høyre side. Støkiometri (megdeforhold) Det er særs viktig i kjemie å vite om megdeforhold om stoffer. -E hodepie tablett er bra mot hodesmerter, ti passer dårlig. -E sukkerbit i kaffe fugerer, 100 er slitsomt. -100

Detaljer

S2 kapittel 1 Rekker Utvalgte løsninger oppgavesamlingen

S2 kapittel 1 Rekker Utvalgte løsninger oppgavesamlingen Utvlgte løsiger oppgvesmlige S kpittel Rekker Utvlgte løsiger oppgvesmlige 0 Vi k prøve med differsemetode Differsee mellom leddee utover er 4,6,8, så det er rimelig t differse mellom femte og fjerde ledd

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 ÅMA110 asylighetsregig med statistikk våre 011 Kp. 5 Estimerig 1 Estimerig. Målemodelle. Ihold: 1. (ukt)estimerig i biomisk modell (kp. 5.). Målemodelle... (kp. 5.3) 3. (ukt)estimerig i målemodelle (kp.

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag TMA400 Matematikk Høst 04 Løsigsforslag Øvig 3 Review Exercises, side 454 Vi starter med å tege e figur av e skål med va: z A(z)

Detaljer