Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 16. mai 2008

Størrelse: px
Begynne med side:

Download "Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 16. mai 2008"

Transkript

1 Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL 6. mai 008 EKSAMEN I MATEMATIKK Modul 5 studiepoeg Tid: 5 timer Oppgavesettet er på 8 sider (ikludert formelsamlig). Hjelpemidler: Kalkulator og vedlagt formelsamlig (bakerst i oppgavesettet). Kotroller at du har fått alle arkee. Les oppgavetekstee øye. Bruk ege ark på hver oppgave. Begru alle svar. Alle delspørsmål teller like mye. Oppgave På figure edefor er det teget i e parabel og e rett lije. Figure viser også et skravert areal, avgreset av parabele og de rette lija. a) Fi fuksjosuttrykkee for de rette lija og parabele. b) Bereg arealet av det skraverte området. c) Fies det aegradsfuksjoer som har vedepukter? Forklar.

2 Oppgave Fuksjoe f er gitt ved f ( ) =, R. + a) Fi ullpuktee til f. b) Fi alle asymptoter til f. c) Deriver fuksjoe og vis at f har miimum år =. d) Vis at 4 3 f ( ) =. 4 Oppgave 3 Ved et fallskjermhopp er vi ødt til å ta hesy til luftmotstade for å få e rimelig beskrivelse av hastighete ved ulike tidspukter. Vi skal her ata at hastighete ved et fallskjermhopp starter på 50 km/t, som vi teker oss er hastighete i de frie dele av fallet. 0,t Etter at skjerme er utløst er hastighete ved tid t gitt ved fuksjoe v ( t) = 35e + 5 (km/t). (Tallee her gjelder ikke geerelt. E modell er aturligvis helt avhegig av fallskjermes utformig, og det ka være vesetlige forskjeller. Dessute gjør vi oe forekliger slik at vi får relativt pee tall.) a) Er det mulig å oppå hastighete 0 km/t? b) Vi skal ata at hoppere ikke ka ha hastighet større e 0 km/t i det ha lader. Reg ut hvor lag tid det tar før dee hastighete er oppådd. c) Hvor høyt over bakke må fallskjermhoppere miimum være i det ha løser ut skjerme dersom ha ikke skal ha hastighet større e 0 km/t i det ha lader? (Bruk det du reget ut i pukt b). Oppgave 4 a) På fødselsdage si setter Per hvert år i 5000 kroer på sparekotoe. Reta er hele tide 7 %. Hvor mye har Per på sparekotoe etter 0 år? b) Per har også et lå med tilbakebetaligstid på 0 år. Det første avdraget er på 0000, deretter reduseres avdraget med 850 kroer per år i de 0 åree. Hvor mye har Per betalt til samme i avdrag på dee tide? (Vi skal bare bry oss om disse avdragee i dee oppgave, ikke oe aet).

3 Oppgave 5 l( a) Bruk delvis itegrasjo til å fie det ubestemte itegralet 3 ) d (Hit: de ee valgte fuksjoe bør ok være ) b) Nedefor ser du kurve som represeterer løsigsmegde til ligige 3 3 y = 4 : Bruk implisitt derivasjo til å fie ligige for tagete til kurve i puktet (0,). c) Løs ligige si() = cos() Oppgave 6 Vi skal studere fuksjoe f cos( y), y) =, hvor D f er gitt ved 0 og - y. l( ) ( Grafe til dee fuksjoe ser slik ut: 3

4 Det rektagulære området som er teget i er defiisjosområdet. a) Vis ved regig at puktet,0 er et stasjoært pukt. b) Av grafe ser vi at f har maksimum for det stasjoære puktet. Vis at f,0 = + l() c) f har sitt miimum på rade av defiisjosområdet (av symmetrigruer har de miimum på to steder). Fi dee miimumsverdie. Oppgave 7 a) Forklar kort hva e differesialligig er. La y() være vekta av avlige på et jordstykke dersom vi bruker kilo gjødsel. Naturligvis er det e øvre grese for hvor stor avlig vi ka få på et jordstykke, i dette tilfellet skal vi ata at dee grese er 6 to. Videre ka vi ata at vekstrate til y er % av differese (6 y). Dersom vi ikke bruker gjødsel produserer jordstykket 4 to. Dersom vi bruker mer e 50 kg gjødsel vil vi skade avlige. b) Sett opp e differesialligig som modellerer opplysigee i oppgavetekste, og løs de. c) Hvor stor blir avlige dersom vi bruker 00 kg gjødsel? d) Teg e skisse av grafe til y (det skal bare være e skisse, ikke bruk lag tid på å tege dee). 4

5 Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig Formelsamlig for Matematikk, Modul Geerelt FORMEL FOR LØSNINGENE TIL ANNENGRADSLIGNINGEN: Ligige a b c + + = 0 har løsiger gitt ved b ± b 4ac =. a KONTINUERLIG FUNKSJON: f er kotiuerlig i c dersom lim f ( ) = f ( c) c INVERS FUNKSJON: g er ivers til f dersom g( f ( )) =. De iverse skrives ofte f ( ). Rekker GEOMETRISK REKKE: dersom < <, og da er + k 3 = L + =. Rekke er koverget k = 0 + k 3 = L = lim =. k = 0 ( a + a ) ARITMETISK REKKE: a + a + a3 + + a = ( a + a) ( a a + a) (Alterativ form: a + a + a3 + L + a = ) a Derivasjo L, hvor = a a + a a PRODUKTREGELEN: Hvis f ( ) = g( ) h( ), så er f ( ) = g ( ) h( ) + g( ) h ( ) KJERNEREGELEN: Hvis f ( ) = g( u( )), så er f ( ) = g ( u) u ( ) KVOTIENTREGELEN: Hvis u( ) u ( ) v( ) u( ) v ( ) f ( ) =, så er f ( ) = v( ) v( ) r POTENSREGELEN: Hvis f ( ) = a, så er r ( ) =, hvor a R f r, r er rasjoal. 5

6 DERIVASJON AV EKSPONENTIALFUNKSJONER: Hvis f ( ) = a, så er f ( ) = a l a hvor a > 0. (spesialtilfelle: ( e ) = e, side l e = ). DERIVASJON AV LOGARITMER: Hvis f ( ) = l, så er f ( ) = /, hvor 0. DERIVASJON AV TRIGONOMETRISKE FUNKSJONER: (si ) = cos og (cos ) = si. f PARTIELT DERIVERTE: For e fuksjo f (, y ) skriver vi eller f (, ) y for de partielt deriverte med hesy på. Tilsvarede for derivasjo med hesy på y. Aederivertteste Hvis f ( c) = 0 og f ( c) < 0, så er ( c, f ( c )) et lokalt maksimumspukt, og f ( c ) e lokal maksimumsverdi. Hvis f ( c) = 0 og f ( c) > 0, så er ( c, f ( c )) et lokalt miimumspukt, og f ( c ) e lokal miimumsverdi. Vedepukt Dersom ( a, b ) er et pukt på grafe til e fuksjo f, kalles ( a, b ) et vedepukt dersom f ( a) = 0. Ofte agis bare a for å markere et vedepukt (sier ma at fuksjoe har vedepukt for = a er det uderforstått at ( a, f ( a )) er vedepuktet). L Hôpitals regel L HÔPITALS REGEL FOR 0/0 : f ( ) f ( ) Forutsatt at g ( 0 ) 0, har vi at lim = lim. Regele ka brukes til å bestemme 0 g( ) 0 g ( ) f ( ) 0 grese i tilfeller hvor vi får lim = " ". 0 g ( ) 0 L HÔPITALS REGEL FOR / : Dersom lim f ( ) = lim g( ) =, da er 0 0 eksisterer, eller er ±. f ( ) f ( ) lim = lim, forutsatt at g( ) g ( ) 0 0 f ( ) g lim 0 ( ) Regeregler for logaritmer l a = l a l a e = a l( ab) = l a + l b l( a / b) = l a l b 6

7 Itegrasjo DELVIS INTEGRASJON: uv = u v d + uv d INTEGRASJON VED SUBSTITUSJON = Dersom f ( ) = g( u) u ( ) er f ( ) d g( u) u ( ) du = G ( ) + C hvor G er e atiderivert til g. Ved beregig av bestemte itegraler: b f ( ) = a u( b) u( a) g( u) du DELBRØKSOPPSPALTNING A E rasjoal fuksjo skrives som e sum av fuksjoer på forme hvor A og a er + a kostater. Vi får A/( + a) d = A l + a + C. Et eksempel viser prisippet. Vi vil skrive som e sum av brøker med førstegradspolyomer i evere. Vi har at = ( )( + ), og skriver A A = + +, hvor A og A er kostater. For å bestemme A gager vi med på begge sider, og ser på: A = A + ( ) + + Når = er det siste leddet på høyreside 0, og A er lik vestreside, som da er ½. Kostate A bestemmes på tilsvarede måte. SPESIELLE INTEGRALER + d = l + C + d = + C e d e C = + l d = l + C Fuksjoer i flere variable TANGENTPLAN Dersom f (, y ) er e partielt deriverbar fuksjo, er tagetplaet for grafe til f i puktet ( a, b ) gitt ved z = f ( a, b)( a) + f ( a, b)( y b) + f ( a, b). y STASJONÆRT PUNKT Dersom f (, ) 0 0 y0 = og f y ( 0, y0) = 0, kalles ( 0, y 0) et stasjoært pukt. 7

8 Løsiger av differesialligiger at Ligiger på forme y = ay, har løsig y = ke at b Ligiger på forme y = ay + b, a 0, har løsig y = ce der c er e vilkårlig a kostat. B A Ligiger på forme y = ay + by + c, a 0 har løsig y = A + ( B _ A) at + ke der k er e vilkårlig kostat. I tillegg kommer de kostate løsige y = A. Noe gager er det mer aturlig å skrive e slik ligig på forme dy a( y A)( y B) dt =, hvor 0 E typisk situasjo hvor e slik ligig opptrer, er år vi forsøker å modellere et feome hvor de relative veksthastighete er proporsjoal med det vi kaller de ledige kapasitete. At de relative veksthastighete er proporsjoal med de ledige y kapasitete uttrykkes ved = a( B y), hvor B er de såkalte bærekapasitete. y 8

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 22. mai EKSAMEN I MATEMATIKK 2 Modul 1 15 studiepoeng, fjernundervisning

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 22. mai EKSAMEN I MATEMATIKK 2 Modul 1 15 studiepoeng, fjernundervisning Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL mai 007 EKSAMEN I MATEMATIKK Modul 5 studiepoeg, fjerudervisig Tid: 5 timer Oppgavesettet er på 9 sider (ikludert formelsamlig)

Detaljer

2. Bestem nullpunktene til g.

2. Bestem nullpunktene til g. Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL 0. desember 007 EKSAMEN I MATEMATIKK Modul 5 studiepoeg Tid: 5 timer Oppgavesettet er på 9 sider (ikludert formelsamlig).

Detaljer

Eksamen REA3028 S2, Våren 2011

Eksamen REA3028 S2, Våren 2011 Eksame REA08 S, Våre 0 Del Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave (8 poeg) a) Deriver fuksjoee ) f 5 f 6 5 ) g g ) h l 9 9 6 4 h l

Detaljer

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 12. desember 2008

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 12. desember 2008 Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL. desember 8 EKSAMEN I MATEMATIKK, Utsatt røve Modul 5 studieoeg Tid: 5 timer Ogavesettet er å sider (ikludert formelsamlig).

Detaljer

Utvidet løsningsforslag Eksamen i TMA4100 Matematikk 1, 16/12 2008

Utvidet løsningsforslag Eksamen i TMA4100 Matematikk 1, 16/12 2008 Utvidet løsigsforslag Eksame i TMA4 Matematikk, 6/ 8 Oppgave i) Vi gjør substitusjoe u = si θ og får π/ [ u si θ cos θ dθ = u du = E ae løsigsmetode er π/ si θ cos θ dθ = π/ ] si θ dθ = 4 = 4 ( ( ) ( ))

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag ..4 EKSAMEN Løsigsforslag Emekode: ITF75 Dato: 6. desember Eme: Matematikk for IT Eksamestid: kl 9. til kl. Hjelpemidler: To A4-ark med valgfritt ihold på begge sider. Kalkulator er ikke tillatt. Faglærer:

Detaljer

Eksamen 20.05.2009. REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen 20.05.2009. REA3024 Matematikk R2. Nynorsk/Bokmål Eksame 20052009 REA3024 Matematikk R2 Nyorsk/Bokmål Nyorsk Eksamesiformasjo Eksamestid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Bruk av kjelder: Vedlegg: Framgagsmåte: Rettleiig om vurderiga: 5 timar:

Detaljer

Eksempeloppgave 2014. REA3026 Matematikk S1 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)

Eksempeloppgave 2014. REA3026 Matematikk S1 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler) Eksempeloppgave 04 REA306 Matematikk S Eksempel på eksame våre 05 etter y ordig Ny eksamesordig Del : 3 timer (ute hjelpemidler) Del : timer (med hjelpemidler) Mistekrav til digitale verktøy på datamaski:

Detaljer

Eksamen 21.05.2013. REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen 21.05.2013. REA3024 Matematikk R2. Nynorsk/Bokmål Eksame 21.05.2013 REA3024 Matematikk R2 Nyorsk/Bokmål Nyorsk Eksamesiformasjo Eksamestid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: 5 timar: Del 1 skal leverast i etter 2 timar. Del 2 skal leverast

Detaljer

E K S A M E N : FAG: Matematikk 1 MA-154 LÆRER: MORTEN BREKKE. Klasse(r): Alle Dato: 1. des 11 Eksamenstid, fra-til: 0900-1400

E K S A M E N : FAG: Matematikk 1 MA-154 LÆRER: MORTEN BREKKE. Klasse(r): Alle Dato: 1. des 11 Eksamenstid, fra-til: 0900-1400 UNIVERSITETET I AGDER Grimstad E K S A M E N : FAG: Matematikk MA-54 LÆRER: MORTEN BREKKE Klasse(r): Alle Dato:. des Eksamestid, fra-til: 0900-400 Eksamesoppgave består av følgede iklusive forside Atall

Detaljer

Eksamen REA3028 S2, Våren 2012

Eksamen REA3028 S2, Våren 2012 Eksame REA08 S, Våre 0 Del Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave (4 poeg) a) Deriver fuksjoee ) f f ) g e 4 4 4 g e e 4 g e e g e

Detaljer

Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte.

Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte. Eksame 20052009 REA3024 Matematikk R2 Nyorsk/Bokmål Bokmål Eksamesiformasjo Eksamestid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Bruk av kilder: Vedlegg: Framgagsmåte: Veiledig om vurderige: 5 timer:

Detaljer

Vi skal hovedsakelig ikke bestemme summen men om rekken konvergerer. det vil si om summen til rekken er et bestemt tall

Vi skal hovedsakelig ikke bestemme summen men om rekken konvergerer. det vil si om summen til rekken er et bestemt tall Kapittel 8 Oppsummerig-Rekker Rekker er summe til edelig eller uedelig mage ledd i e tallfølge. Potesrekker ka beyttes til å uttrykke vaskelige fuksjoer om et pukt. Ma ka skreddesy potesfuksjoer ved hjelp

Detaljer

DEL 1. Uten hjelpemidler 500+ er x

DEL 1. Uten hjelpemidler 500+ er x DEL 1 Ute hjelpemidler Oppgave 1 (18 poeg) 500 = + 8 er a) Vis at de deriverte til fuksjoe ( ) O O ( ) = 500+ 16 b) Deriver fuksjoee 1) f( ) = l( ) ) g( ) = e c) Vi har gitt polyomfuksjoe f( ) = 1 + 15

Detaljer

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 20. mai 2008

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 20. mai 2008 Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL. mai 8 EKSAMEN I MATEMATIKK Modul 5 studieoeg Tid: 5 timer Ogavesettet er å sider (ikludert formelsamlig). Hjelemidler:

Detaljer

Eksempeloppgave 2014. REA3028 Matematikk S2 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)

Eksempeloppgave 2014. REA3028 Matematikk S2 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler) Eksempeloppgave 2014 REA3028 Matematikk S2 Eksempel på eksame våre 2015 etter y ordig Ny eksamesordig Del 1: 3 timer (ute hjelpemidler) Del 2: 2 timer (med hjelpemidler) Mistekrav til digitale verktøy

Detaljer

Løsningsforslag Eksamen MAT112 vår 2011

Løsningsforslag Eksamen MAT112 vår 2011 Løsigsforslag Eksame MAT vår OPPGAVE Gitt følge {a } defiert rekursivt ved a = 5, a + = a + 6, =,,, 3,.... (a) Vis (for eksempel ved iduksjo) at {a } er stregt avtagede og edtil begreset. (b) Avgjør om

Detaljer

Løsningsforslag R2 Eksamen 04.06.2012. Nebuchadnezzar Matematikk.net Øistein Søvik

Løsningsforslag R2 Eksamen 04.06.2012. Nebuchadnezzar Matematikk.net Øistein Søvik Løsigsforslag R2 Eksame 6 Vår 04.06.202 Nebuchadezzar Matematikk.et Øistei Søvik Sammedrag De fleste forlagee som gir ut lærebøker til de videregåede skole, gir ut løsigsforslag til tidligere gitte eksameer.

Detaljer

Kommentarer til oppgaver;

Kommentarer til oppgaver; Kapittel - Algebra Versjo: 11.09.1 - Rettet feil i 0, 1 og 70 og lagt i litt om GeoGebra-bruk Kommetarer til oppgaver; 0, 05, 10, 13, 15, 5, 9, 37, 5,, 5, 59, 1, 70, 7, 78, 80,81 0 a) Trykkfeil i D-koloe

Detaljer

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE Eme: Diskret matematikk Gruppe(r): Eksamesoppgave består av: Atall sider (ikl forside): 5 Emekode: FO 9A Dato: 69 Atall oppgaver: Fagasvarlig: Ulf Uttersrud

Detaljer

Ukeoppgaver i BtG207 Statistikk, uke 4 : Binomisk fordeling. 1

Ukeoppgaver i BtG207 Statistikk, uke 4 : Binomisk fordeling. 1 Ukeoppgaver i BtG20 Statistikk, uke 4 : Biomisk fordelig. 1 Høgskole i Gjøvik Avdelig for tekologi, økoomi og ledelse. Statistikk Ukeoppgaver uke 4 Biomisk fordelig. Oppgave 1 La de stokastiske variable

Detaljer

Løsning eksamen R1 våren 2010

Løsning eksamen R1 våren 2010 Løsig eksame R våre 00 Oppgave a) ) f ( ) l f ( ) ' l l l l f ( ) (l ) ) g( ) 4e g( ) 4 e ( ) 4 e ( ) g( ) 4( ) e b) ( ) 4 4 6 P ) P() 4 4 6 8 6 8 6 0 Divisjo med ( ) går opp. 4 4 6 : ( ) 8 4 4 8 6 8 6

Detaljer

Forkurs, Avdeling for Ingeniørutdanning

Forkurs, Avdeling for Ingeniørutdanning Eksamen i FO99A Matematikk Ordinær Eksamen Dato 8. mai 8 Tidspunkt 9. - 14. Antall oppgaver 4 Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 Deriver følgende

Detaljer

Eksamen REA3028 S2, Våren 2010

Eksamen REA3028 S2, Våren 2010 Eksame REA308 S, Våre 010 Del 1 Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave 1 (6 poeg) a) Deriver fuksjoee: 1) f x x lx f x x lx x x f

Detaljer

Eksamen R2, Våren 2013

Eksamen R2, Våren 2013 Eksame R2, Våre 2013 Oppgave 1 (4 poeg) Deriver fuksjoee a) f x 3cos x b) gx x 6si 7 2x c) hx 3e si3x Oppgave 2 (4 poeg) Bestem itegralet a) variabelskifte 2x dx x 4 2 ved å bruke b) delbrøkoppspaltig

Detaljer

8 + 2 n n 4. 3n 4 7 = 8 3.

8 + 2 n n 4. 3n 4 7 = 8 3. Seksjo 4. Oppgave (). Fi greseverdiee: 8 a) 4 + 4 7 b) 4 +7 5 c) + 7 4 ( ) d) 5 4 44 + 5 4 e) 5 + si() e +6 5 Løsig. Vi vil bruke samme metode som i Eksempel 4..5 fra boke i disse oppgavee. Når vi skal

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro.

ÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro. ÅMA Sasylighetsregig med statistikk, våre 6 Kp. 4 Kotiuerlige tilfeldige variable og ormaldelige Kotiuerlige tilfeldige variable, itro. (eller: Kotiuerlige sasylighetsdeliger) Vi har til å sett på diskrete

Detaljer

TMA4100: Repetisjon før midtsemesterprøven

TMA4100: Repetisjon før midtsemesterprøven TMA4100: Repetisjon før midtsemesterprøven 10.10.09 Lars Sydnes sydnes@math.ntnu.no Institutt for matematiske fag October 1, 2009 L.S. (NTNU) TMA4100: Oversikt October 1, 2009 1 / 20 Kapittel 1: Funksjoner.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-aturviteskapelige fakultet Eksame i MAT00 Matematikk I Eksamesdag: Fredag 4 jui 00 Tid for eksame: 0900 00 Oppgavesettet er på sider Vedlegg: Tillatte hjelpemidler:

Detaljer

Avsnitt 8.1 i læreboka Differensligninger

Avsnitt 8.1 i læreboka Differensligninger Diskret Matematikk Fredag 6. ovember 015 Avsitt 8.1 i læreboka Differesligiger I kapittel lærte vi om følger og rekker. Vi studerte både aritmetiske og geometriske følger og rekker. Noe følger og rekker

Detaljer

Repetisjon i Matematikk 1: Derivasjon 2,

Repetisjon i Matematikk 1: Derivasjon 2, Repetisjon i Matematikk 1: Derivasjon 2, 201. 1 Høgskolen i Gjøvik Avdeling TØL Repetisjonsoppgaver MATEMATIKK 1 REA1141 og REA1141F Derivasjon 2, 201. Oppgave 1 Denne oppgaven har forholdsvis enkle derivasjoner,

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: John Haugan: Formler og tabeller. Rottmanns formelsamling (tillatt som overgangsordning)

EKSAMEN. TILLATTE HJELPEMIDLER: John Haugan: Formler og tabeller. Rottmanns formelsamling (tillatt som overgangsordning) KANDIDATNUMMER: EKSAMEN FAGNAVN: Matematikk FAGNUMMER: REA4 EKSAMENSDATO: 6. desember 24 SENSURFRIST: 6. januar 25 KLASSE:. klassene, ingenørutdanning. TID: kl. 9. 3.. FAGLÆRER: Hans Petter Hornæs ANTALL

Detaljer

Matematikk 1 (TMA4100)

Matematikk 1 (TMA4100) Matematikk 1 (TMA4100) Forelesning 6: Derivasjon Eirik Hoel Høiseth Stipendiat IMF NTNU 22. august, 2012 Stigningstallet i et punkt Stigningstallet i et punkt Vi vender nå tilbake til problemet med å finne

Detaljer

EKSAMEN. Ingeniørstudenter som tar opp igjen eksa- men (6stp.).

EKSAMEN. Ingeniørstudenter som tar opp igjen eksa- men (6stp.). KANDIDATNUMMER: EKSAMEN FAGNAVN: Matematikk FAGNUMMER: F74A EKSAMENSDATO: 6. desember 24 SENSURFRIST: 6. januar 25 Ingeniørstudenter som tar opp igjen eksa- KLASSE: men 6stp.). TID: kl. 9. 4.. FAGLÆRER:

Detaljer

IR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer

IR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer Eksamen 8. desember 16 Eksamenstid 4 timer IR151 Matematikk 1 Bokmål Hvis du blir ferdig med oppgavene under del 1 før kl. 11., så kan og bør du starte på del uten bruk av hjelpemidler. Du kan bare bruke

Detaljer

Del1. b) 1) Gittrekka 2 4 6 8 Finnleddnummer20 ogsummenavde20førsteleddene.

Del1. b) 1) Gittrekka 2 4 6 8 Finnleddnummer20 ogsummenavde20førsteleddene. Del1 Oppgave 1 a) Deriver fuksjoee: 1) fx ( ) x 2 1 x 2 1 2) g x x 2 2 e x b) 1) Gittrekka 2 4 6 8 Fileddummer20 ogsummeavde20førsteleddee. 1 1 2) Gitt de uedelige rekka 2 1 2 4 Avgjør om rekka kovergerer.

Detaljer

EKSAME SOPPGAVE MAT-0001 (BOKMÅL)

EKSAME SOPPGAVE MAT-0001 (BOKMÅL) EKSAME SOPPGAVE MAT-0001 (BOKMÅL) Eksamen i : Mat-0001 Brukerkurs i matematikk. Dato : Tirsdag 21. februar 2012. Tid : 09.00-13.00. Sted: : Adm. bygget, B154. Tillatte hjelpemidler : Alle trykte og skrevne.

Detaljer

Derivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 2. september 2011

Derivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 2. september 2011 Derivasjon Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 2. september 20 Kapittel 3.7. Derivasjon av inverse funksjoner 3 Derivasjon av inverse til deriverbare funksjoner

Detaljer

EKSAMEN. Hans Petter Hornæs og Britt Rystad

EKSAMEN. Hans Petter Hornæs og Britt Rystad KANDIDATNUMMER: EKSAMEN FAGNAVN: Matematikk. FAGNUMMER: F74A EKSAMENSDATO: Mandag. august 2 SENSURFRIST:. september 2 KLASSE:. klassene, ingenørutdanning. TID: kl. 9. 4.. FAGLÆRER: Hans Petter Hornæs og

Detaljer

Eksamen i FO929A Matematikk Underveiseksamen Dato 14. desember 2006 Tidspunkt Antall oppgaver 4. Løsningsforslag

Eksamen i FO929A Matematikk Underveiseksamen Dato 14. desember 2006 Tidspunkt Antall oppgaver 4. Løsningsforslag Eksamen i FO99A Matematikk Underveiseksamen Dato. desember 6 Tidspunkt 9. -. Antall oppgaver Vedlegg Tillatte hjelpemidler Ingen Godkjent kalkulator Godkjent formelsamling Oppgave Vi løser likningene ved

Detaljer

Eksamen 26.05.2010. REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen 26.05.2010. REA3024 Matematikk R2. Nynorsk/Bokmål Eksame 6.05.010 REA304 Matematikk R Nyorsk/Bokmål Nyorsk Eksamesiformasjo Eksamestid: Hjelpemiddel på del 1: Hjelpemiddel på del : Vedlegg: Framgagsmåte: Rettleiig om vurderiga: 5 timar: Del 1 skal leverast

Detaljer

Løsningsforslag til underveiseksamen i MAT 1100

Løsningsforslag til underveiseksamen i MAT 1100 Løsningsforslag til underveiseksamen i MAT 00 Dato: Tirsdag /0, 00 Tid: Kl. 9.00-.00 Vedlegg: Formelsamling Tillatte hjelpemidler: Ingen Oppgavesettet er på sider Eksamen består av 0 spørsmål. De 0 første

Detaljer

Eksamen i FO929A Matematikk Underveiseksamen Dato 30. mars 2007 Tidspunkt Antall oppgaver 4 Sirkelskive i radianer.

Eksamen i FO929A Matematikk Underveiseksamen Dato 30. mars 2007 Tidspunkt Antall oppgaver 4 Sirkelskive i radianer. Eksamen i FO99A Matematikk Underveiseksamen Dato 30. mars 007 Tidspunkt 09.00-14.00 Antall oppgaver 4 Vedlegg Tillatte hjelpemidler Sirkelskive i radianer Godkjent kalkulator Godkjent formelsamling Oppgave

Detaljer

Kulas posisjon etter 0, 1, 2, 3 og 4 sekund

Kulas posisjon etter 0, 1, 2, 3 og 4 sekund Total rullelegde i løpet av ett sekud: L Total rullelegde i løpet av to sekud: 4 L Total rullelegde i løpet av tre sekud: 9 L Total rullelegde i løpet av fire sekud: 6 L SYSTEM HER? Kulas posisjo etter

Detaljer

LØSNING: Eksamen 17. des. 2015

LØSNING: Eksamen 17. des. 2015 LØSNING: Eksame 17. des. 2015 MAT100 Matematikk, 2015 Oppgave 1: økoomi a I optimum av T Rx er dt Rx 0 1 som gir d Ix Kx 0 2 dix dix dkx dkx 0 3 4 dvs. greseitekt gresekostad, q.e.d. 5 b Gresekostad ekstrakostade

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Forelesning 11 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 11 Transcendentale funksjoner Vi begynner nå på temaet transcendentale funksjoner. I dagens forelesning

Detaljer

Fasit til utvalgte oppgaver MAT1110, uka 18/5-21/5

Fasit til utvalgte oppgaver MAT1110, uka 18/5-21/5 Fasit til utvalgte oppgaver MAT0, uka 8/5-2/5 Øyvid Rya (oyvidry@i.uio.o) May 28, 200 Oppgave 2.4. Rekke er betiget koverget, side + divergerer, mes de altererede rekke kovergerer etter teste for altererede

Detaljer

Eksempelsett R2, 2008

Eksempelsett R2, 2008 Eksempelsett R, 008 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave a) Deriver funksjonen f x x cosx f x cosx x s x f x cosx 6x sinx

Detaljer

Del 1. 3) Øker eller minker den momentane veksthastigheten når x = 1? ( )

Del 1. 3) Øker eller minker den momentane veksthastigheten når x = 1? ( ) Del Oppgave a) Deriver funksjonen f( x) = x cos( x) b) Deriver funksjonen ( ) ( 4 x f x = e + ) c) Gitt funksjonen f( x) = x 4x + x+ ) Ligger grafen over eller under x-aksen når x =? ) Stiger eller synker

Detaljer

EKSAMEN BOKMÅL STEMMER. DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember :00-13: FAGKODE: IR Matematikk 1

EKSAMEN BOKMÅL STEMMER. DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember :00-13: FAGKODE: IR Matematikk 1 EKSAMEN BOKMÅL DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember 15 9:-13: FAGKODE: FAGNAVN: IR151 Matematikk 1 HJELPEMIDLER: Del 1: kl 9.-11. Ingen Del : kl 11.-13. Lommeregner Lærebok etter fritt valg Matematisk

Detaljer

LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101)

LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA0/MA60) Fredag 2. desember 202 Tid: 09:00 3:00 Hjelpemidler: Kode

Detaljer

Deriver funksjonene. Gjør greie for hvilke derivasjonsregler du bruker.

Deriver funksjonene. Gjør greie for hvilke derivasjonsregler du bruker. Heldagsprøve i matematikk, 1. desember 006 Forkurs for Ingeniørutdanningen ved HiO, 006/07 Antall oppgaver: Antall timer: 5 timer fra klokken 0900 til klokken 100. Hjelpemidler: Kalkulator og Formelsamling

Detaljer

2.1 Polynomdivisjon. Oppgave 2.10

2.1 Polynomdivisjon. Oppgave 2.10 . Polyomdivisjo Oppgave. ( 5 + ) : = + + ( + ):( ) 6 + 6 8 8 = + + c) ( + 5 ) : = + 6 6 d) + + + = + + = + + + 8+ ( ):( ) + + + Oppgave. ( + 5+ ):( ) 5 + + = + ( 5 ): 9 + + + = + + + 5 + 6 9 c) ( 8 66

Detaljer

Del1. c) Nedenforerdetgitttoutsagn.Skrivavutsagneneibesvarelsen.Iboksenmellom utsagneneskaldusetteinnettavsymbolene, eller.

Del1. c) Nedenforerdetgitttoutsagn.Skrivavutsagneneibesvarelsen.Iboksenmellom utsagneneskaldusetteinnettavsymbolene, eller. Del1 Oppgave 1 a) Deriver fuksjoee 1) ) f ( ) l g ( ) 4e b) Vi har polyomfuksjoe P ( ) 4 4 16. 1) Reg ut P (). Bruk polyomdivisjo til å faktorisere uttrykket P( ) i førstegradsfaktorer. ) Løsulikhete P

Detaljer

Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 2009

Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 2009 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 009 Oppgave 1 Funksjonen g er definert ved g(x)

Detaljer

Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte.

Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte. Eksame 20.05.2009 REA3028 Matematikk S2 Nyorsk/Bokmål Bokmål Eksamesiformasjo Eksamestid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Bruk av kilder: Vedlegg: Framgagsmåte: Veiledig om vurderige: 5 timer:

Detaljer

Løsningsforslag Eksamen M001 Våren 2002

Løsningsforslag Eksamen M001 Våren 2002 Løsningsforslag Eksamen M Våren Oppgave f(x) = (x )e x Bruker produktregelen i derivasjonen f (x) = e x + (x ) (e x ) For å derivere e x velges kjernen u = x, og vi får (e x ) = e u. f (x) = e x + (x )

Detaljer

være en rasjonal funksjon med grad p < grad q. La oss skrive p(x) (x a)q(x) = A

være en rasjonal funksjon med grad p < grad q. La oss skrive p(x) (x a)q(x) = A MA 4: Analyse Uke 46, http://homehiano/ aasvaldl/ma4 H Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag Oppgave 73: Først skal vi delbrøkoppspalte (se Eksempel 5 side 558 i boka) 3t

Detaljer

FØLGER, REKKER OG GJENNOMSNITT

FØLGER, REKKER OG GJENNOMSNITT FØLGER, REKKER OG GJENNOMSNITT Espe B. Lagelad realfagshjoret.wordpress.com espebl@hotmail.com 9.mars 06 Iledig E tallfølge er e serie med tall som kommer etter hveradre i e bestemt rekkefølge. Kvadrattallee

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro.

ÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro. ÅMA0 Sasylighetsregig med statistikk, våre 008 Kp. 4 Kotiuerlige tilfeldige variable; Normalfordelig Kotiuerlige tilfeldige variable, itro. (eller: Kotiuerlige sasylighetsfordeliger) Vi har til å sett

Detaljer

Faktor. Eksamen høst 2005 SØK 1001- Innføring i matematikk for økonomer Besvarelse nr 1: -en eksamensavis utgitt av Pareto

Faktor. Eksamen høst 2005 SØK 1001- Innføring i matematikk for økonomer Besvarelse nr 1: -en eksamensavis utgitt av Pareto Faktor -en eksamensavis utgitt av Pareto Eksamen høst 005 SØK 00- Innføring i matematikk for økonomer Besvarelse nr : OBS!! Dette er en eksamensbevarelse, og ikke en fasit. Besvarelsene er uten endringer

Detaljer

Løsningsforslag Eksamen M100 Våren 2002

Løsningsforslag Eksamen M100 Våren 2002 Løsningsforslag Eksamen M00 Våren 00 Oppgave Evaluerer grensen cos( ) 0 ( sin( ) ) 0 6 0 6 5 0 sin( ) 0 sin( ) = Har brukt l Hôpitals regel (derivert teller og nevner hver for seg) i første og tredje overgang.

Detaljer

Eksempeloppgave 2008. REA3024 Matematikk R2. Bokmål

Eksempeloppgave 2008. REA3024 Matematikk R2. Bokmål Eksempeloppgave 008 REA04 Matematikk R Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del : Hjelpemidler på Del : Bruk av kilder: Vedlegg: Framgangsmåte: Veiledning om vurderingen: 5 timer:

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag 7 desember EKSAMEN Løsningsorslag Emnekode: ITD5 Dato: 6 desember Hjelpemidler: Emne: Matematikk ørste deleksamen Eksamenstid: 9 Faglærer: To A-ark med valgritt innhold på begge sider Formelhete Kalkulator

Detaljer

Løsningsforslag. 3 x + 1 + e. g(x) = 1 + x4 x 2

Løsningsforslag. 3 x + 1 + e. g(x) = 1 + x4 x 2 Prøve i FO929A - Matematikk Dato: 1. juni 2012 Målform: Bokmål Antall oppgaver: 5 (20 deloppgaver) Antall sider: 2 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver

Detaljer

Fremdriftplan. I går. I dag. 2.5 Uendelige grenser og vertikale asymptoter 2.6 Kontinuitet

Fremdriftplan. I går. I dag. 2.5 Uendelige grenser og vertikale asymptoter 2.6 Kontinuitet 1 Fremdriftplan I går 2.5 Uendelige grenser og vertikale asymptoter 2.6 Kontinuitet I dag 2.7 Tangenter og derivasjon 3.1 Den deriverte til en funksjon 3.2 Derivasjonsregler 3.3 Den deriverte som endringsrate

Detaljer

Kapittel 2. Antiderivering. 2.1 Derivasjon

Kapittel 2. Antiderivering. 2.1 Derivasjon Kapittel 2 Antiderivering I dette og neste kapittel skal vi bli kjent med noen typer difflikninger og lære hvordan disse kan løses. Til dette trenger vi derivering og antiderivering. 2.1 Derivasjon I Kapittel

Detaljer

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 29. mai 2007

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 29. mai 2007 Høgskole Telemark Avdelg for estetske fag, folkekultur og lærerutdag BOKMÅL 9. ma 7 EKSAMEN I MATEMATIKK, Modul 5 studepoeg Td: 5 tmer Hjelpemdler: Kalkulator og vedlagt formelsamlg (bakerst oppgavesettet).

Detaljer

Eksamensoppgave i MA1101/MA6101 Grunnkurs i analyse I. LØSNINGSFORSLAG

Eksamensoppgave i MA1101/MA6101 Grunnkurs i analyse I. LØSNINGSFORSLAG Institutt for matematiske fag Eksamensoppgave i MA/MA6 Grunnkurs i analyse I. LØSNINGSFORSLAG Faglig kontakt under eksamen: John Erik Fornæss /Kari Hag Tlf: 464944/483988 Eksamensdato: 8. desember 5 Eksamenstid

Detaljer

2T kapittel 3 Modellering og bevis Utvalgte løsninger oppgavesamlingen

2T kapittel 3 Modellering og bevis Utvalgte løsninger oppgavesamlingen T kapittel 3 Modellerig og bevis Utvalgte løsiger oppgavesamlige 301 a Sitthøyde i 1910 blir 170,0 171, 4 170,7. I 1970 blir de 177,1 179, 4 178,3. b Med som atall år etter 1900 og y som sitthøyde i cetimeter

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, øst 2013 Forelesning 7 www.ntnu.no TMA4100 Matematikk 1, øst 2013, Forelesning 7 Derivasjon Denne uken skal vi begynne på tema 2 om derivasjon. I dagens forelesning skal vi se på

Detaljer

Oppgavesettet er på 3 sider eks. forside, og inneholder 12 deloppgaver: 1abc, 2, 3, 4abc, 5ab, 6ab.

Oppgavesettet er på 3 sider eks. forside, og inneholder 12 deloppgaver: 1abc, 2, 3, 4abc, 5ab, 6ab. EKSAMENSOPPGAVE MAT-0001 (BOKMÅL) Eksamen i : Mat-0001 Brukerkurs i matematikk. Dato : tirsdag 4. desember 2012. Tid : 09.00-13.00. Sted: : Åsgårdvegen 9. Tillatte hjelpemidler : Alle trykte og skrevne.

Detaljer

Fagdag 2-3mx 24.09.07

Fagdag 2-3mx 24.09.07 Fagdag 2-3mx 24.09.07 Jeg beklager at jeg ikke har fuet oe ye morsomme spill vi ka studere, til gjegjeld skal dere slippe prøve/test dee gage. Istruks: Vi arbeider som valig med 3 persoer på hver gruppe.

Detaljer

Krasjkurs MAT101 og MAT111

Krasjkurs MAT101 og MAT111 Krasjkurs MAT101 og MAT111 Forord Disse notatene ble skrevet under et åtte timer (to firetimers forelesninger) i løpet av 10. og 11. desember 2012. Det er mulig at noen av utregningene ikke stemmer, enten

Detaljer

Heldagsprøve R2 - Våren

Heldagsprøve R2 - Våren Heldagsprøve R - Våren 07-0.05.7 Løsningsskisser (versjon.05.7) Del - Uten hjelpemidler - timer Oppgave Deriver funksjonene: a) fx x ln x b) gx sinln x c) hx x cos x a) Produktregel: f x ln x x x ln x

Detaljer

Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål Eksamen 30..00 REA304 Matematikk R Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del : Hjelpemidler på Del : Framgangsmåte: 5 timer: Del skal leveres inn etter timer. Del skal

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger Eksamensdag: Torsdag 10 januar 2008 Tid for eksamen: 9:00 12:00 Oppgavesettet er på 6

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA400 Matematikk Høst 04 Løsningsforslag Øving 04 30 For å vise at f er en injektiv one-to-one funksjon, ser vi på den deriverte,

Detaljer

Matematikk 1 (TMA4100)

Matematikk 1 (TMA4100) Matematikk 1 (TMA4100) Forelesning 7: Derivasjon (fortsettelse) Eirik Hoel Høiseth Stipendiat IMF NTNU 23. august, 2012 Den deriverte som momentan endringsrate Den deriverte som momentan endringsrate Repetisjon

Detaljer

Kap : Derivasjon 1.

Kap : Derivasjon 1. Ukeoppgaver, uke 36, i Matematikk 0, Kap. 3.-3.4: Derivasjon. Høgskolen i Gjøvik Avdeling for ingeniørfag Matematikk 0 Ukeoppgaver uke 36 I løpet av uken blir løsningsforslag lagt ut på emnesiden http://www.hig.no/ing/allmennfag/emnesider/rea042

Detaljer

Matematikk 1 (TMA4100)

Matematikk 1 (TMA4100) Matematikk 1 (TMA4100) Forelesning 2: Funksjoner (fortsettelse) Eirik Hoel Høiseth Stipendiat IMF NTNU 16. august, 2012 Eksponentialfunksjoner Eksponentialfunksjoner Definisjon: Eksponentialfunksjon En

Detaljer

Heldagsprøve i matematikk. Svar og løsningsforslag

Heldagsprøve i matematikk. Svar og løsningsforslag Heldagsprøve i matematikk Svar og løsningsforslag Mandag 19. desember 005 Forkurset, Høgskolen i Oslo Tillatte hjelpemidler: Lommeregner. Formelsamling i matematikk. Tid: 5 klokketimer Alle svar må være

Detaljer

Mål og innhold i Matte 1

Mål og innhold i Matte 1 Mål og innhold i Institutt for matematiske fag 15. november 2013 på Målet med denne oversikten er at vi skal se hvor vi er i pensum, og at du skal kunne finne hva du kan/ikke kan. Jeg vil i tillegg vise

Detaljer

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 14.12.2007

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 14.12.2007 Høgskole Telemark Avdelg for estetske fag, folkekultur og lærerutdag BOKMÅL 4..7 UTATT PRØVE I MATEMATIKK, Modul 5 studepoeg Td: 5 tmer Hjelpemdler: Kalkulator og vedlagt formelsamlg (bakerst oppgavesettet).

Detaljer

UNIVERSITETET I BERGEN

UNIVERSITETET I BERGEN Bokmål UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Løsningsforslag til Eksamen i emnet MAT - Grunnkurs i matematikk I Torsdag 22. mai 28, kl. 9-4. Dette er kun et løsningsforslag.

Detaljer

Løsningsforslag. f(x) = 2/x + 12x

Løsningsforslag. f(x) = 2/x + 12x Prøve i FO929A - Matematikk Dato: august 212 Målform: Bokmål Antall oppgaver: 5 (2 deloppgaver) Antall sider: 3 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver

Detaljer

SIF5003 Matematikk 1, 5. desember 2001 Løsningsforslag

SIF5003 Matematikk 1, 5. desember 2001 Løsningsforslag SIF5003 Matematikk, 5. desember 200 Oppgave For den første grensen får vi et /-uttrykk, og bruker L Hôpitals regel markert ved =) : lim 0 + ln ln sin 0 + cos sin 0 + cos sin ) =. For den andre får vi et

Detaljer

Forelesning Elkraftteknikk 1, 17.08.2004 Oppdatert 23.08.2004 Skrevet av Ole-Morten Midtgård. HØGSKOLEN I AGDER Fakultet for teknologi

Forelesning Elkraftteknikk 1, 17.08.2004 Oppdatert 23.08.2004 Skrevet av Ole-Morten Midtgård. HØGSKOLEN I AGDER Fakultet for teknologi Forelesig Elkrafttekikk, 7.08.004 Oppdatert 3.08.004 Skreet a Ole-Morte Midtgård HØGSKOEN I AGDER Fakultet for tekologi Komplekse tall og isere Komplekse tall er sært yttige i aalyse a elkraftsystemer.

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag 7. jauar 7 EKSAMEN Løsigsforslag Emekode: ITF75 Dato: 4. desember 6 Hjelpemidler: - To A4-ark med valgfritt ihold på begge sider. Emeav: Matematikk for IT Eksamestid: 9. 3. Faglærer: Christia F Heide Kalkulator

Detaljer

LØSNINGSFORSLAG TILEKSAMEN I FAG TMA4240/TMA4245 STATISTIKK 10. august 2005

LØSNINGSFORSLAG TILEKSAMEN I FAG TMA4240/TMA4245 STATISTIKK 10. august 2005 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 8 LØSNINGSFORSLAG TILEKSAMEN I FAG TMA440/TMA445 STATISTIKK 0. august 005 Oppgave Smeltepuktsbestemmelse a) Vi jobber i dette

Detaljer

UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Eksamen i MAT111 Grunnkurs i matematikk I Løsningsforslag

UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Eksamen i MAT111 Grunnkurs i matematikk I Løsningsforslag UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i MAT Grunnkurs i matematikk I Løsningsforslag Onsdag 9. mai, kl. 9. 4. Bokmål Oppgave a) La R være området mellom kurvene Finn

Detaljer

NTNU MA0003. Ole Jacob Broch. Norwegian University of Science and Technology. MA0003 p.1/29

NTNU MA0003. Ole Jacob Broch. Norwegian University of Science and Technology. MA0003 p.1/29 MA0003 Ole Jacob Broch Norwegian University of Science and Technology MA0003 p.1/29 Oversikt, torsdag 13/1 Avsnitt 1.3: intervaller og intervallnotasjon definisjons- og verdimengden til en funksjon Avsnitt

Detaljer

Løsning eksamen S2 våren 2010

Løsning eksamen S2 våren 2010 Løsig eksame S våre 010 Oppgave 1 a) 1) f( ) l 1 f ( ) l l l l ( l 1) ) g ( ) 3e g( ) 3e 3e 6e b) Rekke er geometrisk med Rekke kovergerer. Summe er a1 1 1 s 1 k 1 1 1 1 1 k og oppfller dermed kravet 1

Detaljer

Matematikk 3MX AA6524 og AA6526 Elever og privatister 8. desember 2003

Matematikk 3MX AA6524 og AA6526 Elever og privatister 8. desember 2003 E K S A M E N LÆRINGSSENTERET Matematikk 3MX AA6524 og AA6526 Elever og privatister Bokmål 8. desember 2003 Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag Les opplysningene

Detaljer

Econ 2130 uke 15 (HG) Poissonfordelingen og innføring i estimering

Econ 2130 uke 15 (HG) Poissonfordelingen og innføring i estimering Eco 130 uke 15 (HG) Poissofordelige og iførig i estimerig 1 Poissofordelige (i) Tilærmig til biomialfordelige. Regel. ( Poissotilærmelse ) Ata Y ~ bi(, p) E( Y ) = p og var( Y ) = p(1 p). Hvis er stor

Detaljer

Oppgavesettet har 11 punkter, 1ab, 2abc, 3, 4, 5ab og 6ab, som teller likt ved bedømmelsen.

Oppgavesettet har 11 punkter, 1ab, 2abc, 3, 4, 5ab og 6ab, som teller likt ved bedømmelsen. NTNU Istitutt for matematiske fag SIF53 Matematikk 4N eksame 453 Løsigsforslag Oppgavesettet har pukter, ab, abc, 3, 4, 5ab og 6ab, som teller likt ved bedømmelse a Vi har h(t = t e (t τ f(τ dτ = e t f(t

Detaljer

Ukeoppgaver, uke 42, i Matematikk 10, Bestemt integrasjon. 1

Ukeoppgaver, uke 42, i Matematikk 10, Bestemt integrasjon. 1 Ukeoppgaver, uke 2, i Matematikk, Bestemt itegrasjo. Høgskole i Gjøvik Avdelig for igeiørfag Matematikk Ukeoppgaver uke 2 I løpet av uke blir løsigsforslag lagt ut på emeside http://www.hig.o/toel/allmefag/emesider/rea2

Detaljer

Oppfriskningskurs i matematikk 2008

Oppfriskningskurs i matematikk 2008 Oppfriskningskurs i matematikk 2008 Marte Pernille Hatlo Institutt for matematiske fag, NTNU 4.-9. august 2008 Velkommen! 2 Temaer Algebra Trigonometri Funksjoner og derivasjon Integrasjon Eksponensial-

Detaljer

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1008 Matematikk 2T Eksamen 30.11.2009. Bokmål

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1008 Matematikk 2T Eksamen 30.11.2009. Bokmål Eksempel på løsning 010 Sentralt gitt skriftlig eksamen MAT1008 Matematikk T Eksamen 30.11.009 Bokmål MAT1008 Matematikk T HØSTEN 009 Eksempel på løsning med vekt på bruk av digitale verktøy Hva er en

Detaljer

Løsningsforslag eksamen MAT111 Grunnkurs i Matematikk I høsten 2009

Løsningsforslag eksamen MAT111 Grunnkurs i Matematikk I høsten 2009 Løsningsforslag eksamen MAT Grunnkurs i Matematikk I høsten 9 OPPGAVE (a) Vi har w = + ( ) =. I et komplekse plan ligger w i 4. kvarant og vinkelen θ mellom tallet og en relle aksen har tan θ =, vs. at

Detaljer