TMA4100 Matematikk 1 Høst 2014
|
|
- Thea Berntsen
- 7 år siden
- Visninger:
Transkript
1 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag TMA400 Matematikk Høst 04 Løsigsforslag Øvig 3 Review Exercises, side 454 Vi starter med å tege e figur av e skål med va: z A(z) 0 Skåle har bu i z 0 og tverrsittareal A(z). Volumet med va i skåla fier vi ved å itegrere tverrsittarealet fra 0 til z, V (z) z 0 A(y) dy. Det er oppgitt i oppgave at vaet fordamper med rate proporsjoal med overflatearealet. Side vaet har overflateareal A(z), betyr dette at volumet derivert med hesy på tide t er lik e kostat k gaget med overflatearealet, dv dt ka(z). Vi setter i for V (z) og bruker kjereregele for derivasjo samme med aalyses fudametalteorem. Vestreside ka da skrives som dv dt dv ( dz d z ) dz dz dt A(y) dy dz dt A(z)dz dt. Vi setter dette lik høyreside, ka(z), og ser da at 0 dz dt k. Dette vil si at vahøyde syker med kostat rate. Legg merke til at vi gjorde dee utregige for et vilkårlig valgt tverrsittareal. Resultatet er derfor uavhegig av forme på skåle. Review Exercises 8, side 455 Vi teger e figur av diske: 3. ovember 04 Side av 6
2 Løsigsforslag Øvig 3 y 3 3 x Vi er ute etter å fie masseseteret, ( x, ȳ), til de største sirkulære diske i figure med de grå dele fjeret. Tetthete til skive er kostat lik σ. På gru av symmetri ser vi at ȳ 0. Vi forveter at x < 0 side dele vi fjerer ligger i området x > 0. La oss kalle hele de største sirkulære diske for A, de miste sirkulære diske (de vi fjerer) for B, og diske med hull for C. Side vi har kostat tetthet, σ, vet vi at masse og masseseteret til A og B er gitt som m A σπ 3 9σπ, ( x A, ȳ A ) (0, 0), m B σπ σπ, ( x B, ȳ B ) (, 0). Videre vet vi at mometet til et legeme beståede av flere deler er summe av mometet til hver del. I vårt tilfelle vil det si at mometet om x 0 til A er lik summe av mometet om x 0 til B og C, M x0,a M x0,b + M x0,c. Vi vet også at mometet om x 0 til et legeme er produktet av arme, det vil avstade fra masseseteret til x 0, og masse. Fra ligige over ka vi å fie et uttrykk for M x0,c, M x0,c M x0,a M x0,b x A m A x B m B 0 σπ σπ. Masse til C er gitt som Det betyr at m C m A m B 8σπ. x M x0,c m C σπ 8σπ 8. Masseseteret til diske med hull (C) er altså ( x, ȳ) ( /8, 0). Dette virker som er rimelig resultat. 3. ovember 04 Side av 6
3 Løsigsforslag Øvig 3 Kommetar: I dee oppgave er det også mulig å rege ut masseseteret ved hjelp av itegrasjo. På gru av symmetrie i oppgave er det eklere å bruke e mer gruleggede forståelse av masseseter slik vi har gjort her Vi er gitt rekke Legg merke til at a, cos(π) a 00 cos(π). + 3 {, for like,, for odde. Vi har altså e altererede rekke. Derfor prøver vi med de altererede rekke teste (The alteratig series test, side 5 i boka). Vi har at 00 cos(( + )π) a + ( + ) , 00 cos(π) a Altså er a + a for alle. Det vil si at leddee er sykede i størrelse (absolutt verdi). I grese har vi at lim a 00 cos(π) lim Alle betigelsee for de altererede rekke teste er derfor oppfylt, og vi kokluderer med at rekke kovergerer. Vi udersøker så om rekke er absolutt koverget ved å se på rekke a Vi bruker gresesammeligigsteste (A limit compariso test, side 55 i boka) og sammeliger med de divergete rekke b, der b. Både a og b er positive for alle, og dessute er a lim lim b lim Det følger at rekke a divergerer. Rekke a er derfor betiget koverget Vi er gitt rekke a, a ( ) 3!. 3. ovember 04 Side 3 av 6
4 Løsigsforslag Øvig 3 Teorem 5, side 53 i boka, gir e øvre grese på absoluttverdie av feile, s s a +. For å kue bruke dee må betigelsee i de altererede rekke teste være oppfylt, slik at rekke faktisk kovergerer. Vi ser at a er altererede side faktore ( ) altererer mellom og, mes faktore 3! er positiv for alle. Videre er a + 3+ ( + )! 3 3 ( + )! 3 + a. Det vil si at a + a for. Til slutt ka vi vise at lim a 3 lim ( )! 0. Vi har her brukt at! vokser raskere e x for alle reele tall x (se Teorem 3 side 50 i boka). Vi øsker å å fie de miste verdie av slik at s s 0,00. Fra ulikhete over er dette oppfylt år a + 0, ( + )! 0,00. Ved å sette i for stigede verdier av, ser vi at dette er oppfylt år. Vi må altså ta med miimum 3 ledd (husk å telle med 0) for å approksimere summe s med e feil midre e 0, Vi starter med å skrive om rekka, (4x ) 4 ( x 4 ) a ( x 4), der a 4. Vi gjekjeer dette som e potesrekke med kovergessetrum i x 4. For å fie kovergesradiuse, R, ser vi på grese a + L lim a lim lim 4 ( + ) (+) lim 4 lim 4 lim ( + )( + ) ( lim ) ( + Dette betyr at R (se side 59 i boka) og at rekke kovergerer for alle x. Dette ble også demostrert i oppgave 9.3. i forrige øvig. ) 3. ovember 04 Side 4 av 6
5 Løsigsforslag Øvig Vi er gitt rekka La oss istedefor studere potesrekka ( + )x +. x + x. Observer at ved å sette x er dee lik rekka gitt i oppgave. De adre summe i rekka er e geometrisk rekke, og vi vet at x, år x <. x La oss å følge fremgagsmåte i eksemplee 4 og 6 i boka. Vi deriverer uttrykket over med hesy på x, d dx d dx x d dx x ( + x + x + x ) ( x) + x + 3x +... x ( x) ( x). Vær oppmerksom på at dee ligige også gjelder for x <. Legg så merke til at det første leddet i de første summe i potesrekka vår er ull, slik at vi har at x x x x x ( x). I de siste likhete har vi brukt uttrykket vi fat ved derivasjo ovefor. Vi har altså vist at ( + )x Spesielt, for x, har vi vist at + x ( x) +, år x <. x ( ) cos t og skriver om det opp Vi bruker de trigoometriske idetitete cos t gitte uttrykket, ( cos x ) + cos x. 3. ovember 04 Side 5 av 6
6 Løsigsforslag Øvig 3 Vi bruker så Maclauri-rekka til cos x, ( ) cos x ()! x x! + x4 4! x6 6! Ved å sette dee i i uttrykket over får vi at + cos x x! + x4 4! x6 6! ( ) ()! x. Side Maclauri-rekka til cos x er gyldig for alle x, er også dee det Vi skal evaluere grese lim (e x x) x l( + x ) Observer at dette er et uttrykk er på ubestemt form [0/0]. Vi starter med å skrive om tellere ved å bruke Maclauri-rekka til e x, e x x! + x + x + x Dee gjelder for alle x, og tellere ka å uttrykkes som ( ) x (e x x) + x x4 4 + O(x5 ). I de siste likhete har vi brukt at det eeste leddet med polyomgrad midre e 5 som fremkommer ved å kvadrere uttrykket i paratese er x4 4. Alle adre ledd igår i leddet O(x 5 ). For å forekle evere, fier vi først Maclauri-rekka til l( + x ). Vi vet at l( + y) Ved å la y x får vi at l( + x ) ( ) y, for < y. ( ) x x x4 + x6 3 x Dee gjelder for < x eller ekvivalet for x. Nevere ka å skrives som x l( + x ) x4 x6 3 + x x4 + O(x6 ). Vi er å klare for å evaluere grese, lim (e x x) x l( + x ) lim x O(x5 ) x 4 + O(x6 ) lim + O(x) + O(x ). 3. ovember 04 Side 6 av 6
s = k k=1 dx x A n = n = lim = lim 2 arctan ( x = π arctan ( n (2k 1)!, s n = k=1
TMA400 Høst 06 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsforslag Øvig 0 9.3.30 Me vil fia det miste itervallet som me ka vera sikker på at summe s k k + 4 ligg i. Om
DetaljerMA1102 Grunnkurs i analyse II Vår 2014
Norges tekiskaturviteskapelige uiversitet Istitutt for matematiske fag MA Grukurs i aalyse II Vår 4 Løsigsforslag Øvig 6..5g Ser på forholdet a + /a som er ( + )!4 + ( + ) + ( ) 4( + )! 4( + ) =!4 ( +
DetaljerMA1102 Grunnkurs i Analyse II Vår 2017
Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag MA2 Grukurs i Aalyse II Vår 27 Løsigsforslag Øvig 7 2.5: For hvilke x kovergerer rekke? b) (2x) c) (l x) e) 2 si x 2 b) Dette er
Detaljere n . Videre er det en alternerende følge, da annenhvert ledd er positivt og negativt. Vi ser også at n a n = lim n e n = 0. lim n n 1 n 3n 2 = lim
TMA400 Høst 206 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsforslag Øvig 9 9..8 Vi er gitt følge { ( ) } {a }. e De første leddee i følge er a e, a 2 2 e 2, a e, a 4 4
DetaljerMA1102 Grunnkurs i analyse II Vår 2019
Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag MA0 Grukurs i aalyse II Vår 09 9 Vi har rekke Dette er e geometrisk rekke som beskrevet på side 50 i læreboka, med x (side ) Spesielt
DetaljerFasit til utvalgte oppgaver MAT1110, uka 18/5-21/5
Fasit til utvalgte oppgaver MAT0, uka 8/5-2/5 Øyvid Rya (oyvidry@i.uio.o) May 28, 200 Oppgave 2.4. Rekke er betiget koverget, side + divergerer, mes de altererede rekke kovergerer etter teste for altererede
DetaljerMA1101 Grunnkurs Analyse I Høst 2017
Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag MA0 Grukurs Aalyse I Høst 07 Løsigsforslag Øvig..b) Vi skriver om 7 = 4 4 7 Korollar.. gir at 7 4 er irrasjoal (side vi vet 7 4 er
Detaljerx n = 1 + x + x 2 + x 3 + x x n + = 1 1 x
Potesrekker Forelest: 29. Sept, 2004 Vi lærte fra de geometriske rekkee at x = 1 + x + x 2 + x 3 + x 4 + + x + = 1 1 x så lege x < 1. For uttrykket til høyre er ikke oe aet e sum-formele for geometriske
DetaljerLøsningsforslag til prøveeksamen i MAT1110, våren 2012
Løsigsforslag til prøveeksame i MAT, våre Oppgave : Vi har A = 3 III+I I+II 3 ( )II 3 3 Legg merke til at A er de utvidede matrise til ligigssystemet. Vi ser at søyle 3 og 4 i de reduserte trappeforme
DetaljerMA1102 Grunnkurs i analyse II Vår 2014
Norges tekiskaturviteskapelige uiversitet Istitutt for matematiske fag MA Grukurs i aalyse II Vår 4 Løsigsforslag Øvig..4 f ) Skriver om, og får Reger ut ved L'Hopitals regel at cos/) cos/)) = /. cos/)
DetaljerTotalt Antall kandidater oppmeldt 1513 Antall møtt til eksamen 1421 Antall bestått 1128 Antall stryk 247 Antall avbrutt 46 % stryk og avbrutt 21%
TMA4100 Høste 2007 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Kommetarer til eksame Dette dokumetet er e oppsummerig av erfarigee fra sesure av eksame i TMA4100 Matematikk
DetaljerUtvidet løsningsforslag Eksamen i TMA4100 Matematikk 1, 16/12 2008
Utvidet løsigsforslag Eksame i TMA4 Matematikk, 6/ 8 Oppgave i) Vi gjør substitusjoe u = si θ og får π/ [ u si θ cos θ dθ = u du = E ae løsigsmetode er π/ si θ cos θ dθ = π/ ] si θ dθ = 4 = 4 ( ( ) ( ))
DetaljerMA 1410: Analyse Uke 48, aasvaldl/ma1410 H01. Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag
MA 40: Aalyse Uke 48, 00 http://home.hia.o/ aasvaldl/ma40 H0 Høgskole i Agder Avdelig for realfag Istitutt for matematiske fag Oppgave 8.7:. Vi har f(x) = cosh(x) = ex +e x. f(0) =. Derivasjo gir f (x)
Detaljer8 + 2 n n 4. 3n 4 7 = 8 3.
Seksjo 4. Oppgave (). Fi greseverdiee: 8 a) 4 + 4 7 b) 4 +7 5 c) + 7 4 ( ) d) 5 4 44 + 5 4 e) 5 + si() e +6 5 Løsig. Vi vil bruke samme metode som i Eksempel 4..5 fra boke i disse oppgavee. Når vi skal
DetaljerVi skal hovedsakelig ikke bestemme summen men om rekken konvergerer. det vil si om summen til rekken er et bestemt tall
Kapittel 8 Oppsummerig-Rekker Rekker er summe til edelig eller uedelig mage ledd i e tallfølge. Potesrekker ka beyttes til å uttrykke vaskelige fuksjoer om et pukt. Ma ka skreddesy potesfuksjoer ved hjelp
DetaljerLøsningsforslag Eksamen MAT112 vår 2011
Løsigsforslag Eksame MAT vår OPPGAVE Gitt følge {a } defiert rekursivt ved a = 5, a + = a + 6, =,,, 3,.... (a) Vis (for eksempel ved iduksjo) at {a } er stregt avtagede og edtil begreset. (b) Avgjør om
DetaljerTMA4245 Statistikk Eksamen mai 2017
TMA445 Statistikk Eksame mai 07 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsskisse Oppgave a Når vi reger ut disse tre sasylighetee må ma huske på at de mulige verdiee
DetaljerTMA4125 Matematikk 4N
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag TMA425 Matematikk 4N Løsigsforslag - Øvig 9 Fra Kreyszig, avsitt.5 3 Vi skal fie temperature u(x, t) i e stav (L = π, c = ) som er
DetaljerTMA4240 Statistikk Høst 2009
TMA440 Statistikk Høst 009 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b4 Løsigsskisse Oppgave Øsker å fie 99% kofidesitervall for µ µ år vi atar ormalfordeliger
DetaljerVelkommen til oversiktsforelesninger i Matematikk 1. med Jørgen Endal
Velkomme til oversiktsforelesiger i Matematikk 1 med Jørge Edal Følger, rekker, og potesrekker (kap. 9.1 9.7) Forelesig 2 (kap. 9.3 9.4) Dages økkelbegrep: Sammeligigsteste Gresesammeligigsteste Forholdsteste
DetaljerTMA4100 Matematikk 1 Høst 2006
TMA4 Mtemtikk Høst 26 Norges tekisk turviteskpelige uiversitet Istitutt for mtemtiske fg Løsigsforslg, vsluttede eksme 5.2.26 De første greseverdie er e uestemt form v type "/", og L Hopitls regel gir
DetaljerTMA4100 Høst Løsningsforslag Øving 2. Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag
TMA400 Høst 206 Norges tekiskaturviteskapelige uiversitet Istitutt for matematiske fag Løsigsforslag Øvig 2 2..0: Vi bruker eisjoe for ikke-vertikale tagetlijer sie 97 i læreboke). Tagetlije gjeom et pukt
DetaljerForkunnskaper i matematikk for fysikkstudenter. Derivasjon.
Defiisjo av derivert Vi har stor ytte av å vite hvor raskt e fuksjo vokser eller avtar Mer presist: Vi øsker å bestemme stigigstallet til tagete til fuksjosgrafe P Q Figure til vestre viser hvorda vi ka
DetaljerMa Analyse II Øving 5
Ma0 - Aalyse II Øvig 5 Øistei Søvik.0.0 Oppgaver 9. Determie whether the give sequece is (a) bouded (above or below), (b) positive or egative (ultimately), (c) icreasig, decreasig, or alteratig, ad (d)
DetaljerST1201 Statistiske metoder
ST Statistiske metoder Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsforslag - Eksame desember Oppgave a) Dette er e ANOVA-tabell for k-utvalg med k 4 og j 6 for j,,3,4.
DetaljerTMA4240 Statistikk Eksamen desember 2015
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag TMA20 Statistikk Eksame desember 205 Løsigsskisse Oppgave a) De kumulative fordeligsfuksjoe til X, F (x) P (X x): F (x) P (X x) x
DetaljerTMA4245 Statistikk Vår 2015
TMA4245 Statistikk Vår 2015 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer 12, blokk II Oppgave 1 Kari har ylig kjøpt seg e y bil. Nå øsker hu å udersøke biles besiforbruk
DetaljerHøgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 16. mai 2008
Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL 6. mai 008 EKSAMEN I MATEMATIKK Modul 5 studiepoeg Tid: 5 timer Oppgavesettet er på 8 sider (ikludert formelsamlig). Hjelpemidler:
DetaljerTMA4240 Statistikk Høst 2015
TMA4240 Statistikk Høst 2015 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer 12, blokk II I dee siste øvige fokuserer vi på lieær regresjo, der vi har kjete kovariater
DetaljerE K S A M E N : FAG: Matematikk 1 MA-154 LÆRER: MORTEN BREKKE. Klasse(r): Alle Dato: 1. des 11 Eksamenstid, fra-til: 0900-1400
UNIVERSITETET I AGDER Grimstad E K S A M E N : FAG: Matematikk MA-54 LÆRER: MORTEN BREKKE Klasse(r): Alle Dato:. des Eksamestid, fra-til: 0900-400 Eksamesoppgave består av følgede iklusive forside Atall
DetaljerTMA4100 Matematikk 1 Høst 2014
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA Matematikk Høst Løsningsforslag Øving Review Exercise 6, side 86 Vi lar fx sin x. Taylor-polynomet av grad 6 til f om x
DetaljerTid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt.
Tid: 3 timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave (3 poeg) Deriver fuksjoee a) f( ) cos5 f 5 si5 0 si5 g e si Vi bruker produktregele for derivasjo,
DetaljerH 1 : µ 1 µ 2 > 0. t = ( x 1 x 2 ) (µ 1 µ 2 ) s p. s 2 p = s2 1 (n 1 1) + s 2 2 (n 2 1) n 1 + n 2 2
TMA4245 Statistikk Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b4 Løsigsskisse Oppgave 1 Vi øsker å fie ut om et ytt serum ka stase leukemi. 5 mus får serumet, 4
DetaljerOppgave 1 a) Minste kvadraters metode tilpasser en linje til punktene ved å velge den linja som minimerer kvadratsummen. x i (y i α βx i ) = 0, SSE =
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalte oppgaver 2, blokk II Løsigsskisse Oppgave a Miste kvadraters metode tilpasser e lije til puktee ved å velge de lija som
DetaljerFØLGER, REKKER OG GJENNOMSNITT
FØLGER, REKKER OG GJENNOMSNITT Espe B. Lagelad realfagshjoret.wordpress.com espebl@hotmail.com 9.mars 06 Iledig E tallfølge er e serie med tall som kommer etter hveradre i e bestemt rekkefølge. Kvadrattallee
DetaljerAvdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 22. mai EKSAMEN I MATEMATIKK 2 Modul 1 15 studiepoeng, fjernundervisning
Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL mai 007 EKSAMEN I MATEMATIKK Modul 5 studiepoeg, fjerudervisig Tid: 5 timer Oppgavesettet er på 9 sider (ikludert formelsamlig)
Detaljerf(x)dx = F(x) = f(u)du. 1 (4u + 1) du = 3 0 for x < 0, 2 + for x [0,1], 1 for x > 1. = 1 F 4 = P ( X > 1 2 X > 1 ) 4 X > 1 ) =
TMA Statistikk Norges tekisk-aturviteskapelige uiversitet Istitutt for ateatiske fag Løsigsforslag - Eksae deseber 9 Oppgave a Besteer k ved å kreve fxdx =, fxdx = De kuulative fordeligsfuksjoe Fx er gitt
DetaljerTMA4120 Matte 4k Høst 2012
TMA41 Matte 4k Høst 1 Norges tekiskaturviteskapelige uiversitet Istitutt for matematiske fag Løsigsforslag til oppgaver fra Kreyzig utgave 1: 11.1.18 Fuksjoe er lik for < x
DetaljerST1201 Statistiske metoder
ST20 Statistiske metoder Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsforslag - Eksame desember 2005 Oppgave a Ma beyttet radomisert blokkdesig. I situasjoe har ma k =
DetaljerDer oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte.
Eksame 20052009 REA3024 Matematikk R2 Nyorsk/Bokmål Bokmål Eksamesiformasjo Eksamestid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Bruk av kilder: Vedlegg: Framgagsmåte: Veiledig om vurderige: 5 timer:
DetaljerTMA4240 Statistikk Høst 2015
Høst 205 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer, blokk II Løsigsskisse Oppgave a) X bi(, p) fordi: Udersøker uavhegige delar av DNA-strukture. Fi for kvar del
DetaljerAlgebra S2, Prøve 2 løsning
Algebra S, Prøve løsig Del Tid: 90 mi Hjelpemidler: Skrivesaker Oppgave I rekkee edefor får du oppgitt a og e rekursiv formel for a. Du skal. skrive opp de fire første leddee og avgjøre om rekka er aritmetisk,
DetaljerUkeoppgaver, uke 42, i Matematikk 10, Bestemt integrasjon. 1
Ukeoppgaver, uke 2, i Matematikk, Bestemt itegrasjo. Høgskole i Gjøvik Avdelig for igeiørfag Matematikk Ukeoppgaver uke 2 I løpet av uke blir løsigsforslag lagt ut på emeside http://www.hig.o/toel/allmefag/emesider/rea2
DetaljerEksamen REA3024 Matematikk R2. Nynorsk/Bokmål
Eksame 6.05.010 REA304 Matematikk R Nyorsk/Bokmål Bokmål Eksamesiformasjo Eksamestid: Hjelpemidler på Del 1: Hjelpemidler på Del : Vedlegg: Framgagsmåte: Veiledig om vurderige: 5 timer: Del 1 skal leveres
Detaljer) = P(Z > 0.555) = > ) = P(Z > 2.22) = 0.013
TMA4240 Statistikk Vår 2008 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b5 Løsigsskisse Oppgave 1 a) X 1,...,X 16 er u.i.f. N(80,18 2 ). Setter Y = X. i) P(X 1 >
DetaljerTMA4240 Statistikk Høst 2016
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalt øvig 8 Løsigsskisse Oppgave 1 a) Simuler 1000 datasett i MATLAB. Hvert datasett skal bestå av 100 utfall fra e ormalfordelig
DetaljerUkeoppgaver i BtG207 Statistikk, uke 4 : Binomisk fordeling. 1
Ukeoppgaver i BtG20 Statistikk, uke 4 : Biomisk fordelig. 1 Høgskole i Gjøvik Avdelig for tekologi, økoomi og ledelse. Statistikk Ukeoppgaver uke 4 Biomisk fordelig. Oppgave 1 La de stokastiske variable
DetaljerTerminprøve R2 Høsten 2014 Løsning
Termiprøve R Høste 04 Løsig Del Tid: 3 timer Hjelpemidler: Skrivesaker Oppgave (6 poeg) E flate i rommet er gitt ved likige: x 4x y 6y z 8z 0 0 a) Vis at puktet P3, 5, ligger på flate Puktet P3, 5, ligger
DetaljerEksamen 20.05.2009. REA3024 Matematikk R2. Nynorsk/Bokmål
Eksame 20052009 REA3024 Matematikk R2 Nyorsk/Bokmål Nyorsk Eksamesiformasjo Eksamestid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Bruk av kjelder: Vedlegg: Framgagsmåte: Rettleiig om vurderiga: 5 timar:
Detaljer2. Bestem nullpunktene til g.
Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL 0. desember 007 EKSAMEN I MATEMATIKK Modul 5 studiepoeg Tid: 5 timer Oppgavesettet er på 9 sider (ikludert formelsamlig).
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-aturviteskapelige fakultet Eksame i MAT00 Matematikk I Eksamesdag: Fredag 4 jui 00 Tid for eksame: 0900 00 Oppgavesettet er på sider Vedlegg: Tillatte hjelpemidler:
DetaljerS2 kapittel 1 Rekker Løsninger til innlæringsoppgavene
Løsiger til ilærigsoppgavee kapittel Rekker Løsiger til ilærigsoppgavee a Vi ser at differase mellom hvert ledd er 4, så vi får det este leddet ved å legge til 4 Det este leddet blir altså 6 + 4 = 0 b
DetaljerOppgavesettet har 11 punkter, 1ab, 2abc, 3, 4, 5ab og 6ab, som teller likt ved bedømmelsen.
NTNU Istitutt for matematiske fag SIF53 Matematikk 4N eksame 453 Løsigsforslag Oppgavesettet har pukter, ab, abc, 3, 4, 5ab og 6ab, som teller likt ved bedømmelse a Vi har h(t = t e (t τ f(τ dτ = e t f(t
DetaljerAvsnitt 8.1 i læreboka Differensligninger
Diskret Matematikk Fredag 6. ovember 015 Avsitt 8.1 i læreboka Differesligiger I kapittel lærte vi om følger og rekker. Vi studerte både aritmetiske og geometriske følger og rekker. Noe følger og rekker
DetaljerLøsning R2-eksamen høsten 2016
Løsig R-eksame høste 016 Tid: 3 timer Hjelpemidler: Valige skrivesaker, lijal med cetimetermål og vikelmåler er tillatt. Oppgave 1 (4 poeg) Deriver fuksjoee a) ( ) 3cos f( x) 3 six 6six f x x b) gx ( )
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-aturviteskapelige fakultet Eksame i STK2120 Statistiske metoder og dataaalyse 2 Eksamesdag: Madag 6. jui 2011. Tid for eksame: 09.00 13.00. Oppgavesettet er på 5 sider.
DetaljerEksamen REA3028 S2, Våren 2011
Eksame REA08 S, Våre 0 Del Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave (8 poeg) a) Deriver fuksjoee ) f 5 f 6 5 ) g g ) h l 9 9 6 4 h l
DetaljerLØSNINGSFORSLAG TILEKSAMEN I FAG TMA4240/TMA4245 STATISTIKK 10. august 2005
Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 8 LØSNINGSFORSLAG TILEKSAMEN I FAG TMA440/TMA445 STATISTIKK 0. august 005 Oppgave Smeltepuktsbestemmelse a) Vi jobber i dette
DetaljerLøsningsforslag ST2301 øving 3
Løsigsforslag ST2301 øvig 3 Kapittel 1 Exercise 11 Et utvalg på 100 idivider trekkes fra e populasjo med tilfeldig parrig. Det ble observert AA 63 idivider av geotype AA, Aa 27, og aa 10. Lag et 95 % kofidesitervall
DetaljerTMA4240 Statistikk Høst 2016
TMA44 Statistikk Høst 16 Nrges tekisk-aturviteskapelige uiversitet Istitutt fr matematiske fag Abefalt øvig 7 Løsigsskisse Oppgave 1 a) Reger først ut de kumulative frdeligsfuksje til X: F X (x) = Z x
DetaljerLøsningsforslag Oppgave 1
Løsigsforslag Oppgave 1 a X i µ 0 σ X i µ 0 2 σ 2, i 1,..., er uavhegige og stadard N0, 1 fordelte. Da er, i 1,..., uavhegige og χ 2 -fordelte med e frihetsgrad. Da er summe χ 2 -fordelt med atall frihetsgrader
DetaljerEksamen R2, Våren 2010
Eksame R, Våre 010 Del 1 Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave 1 a) Deriver fuksjoe gitt ved f x x cos 3 x b) Bestem itegralee 1)
DetaljerMatematikk for IT. Prøve 2. Onsdag 21. oktober 2015
Matematikk for IT Prøve Osdag. oktober 5 Løsigsforslag 6. oktober 5 Oppgave Gitt følgede slutig: Hvis fakturae ble sedt forrige madag så fikk du pegee i går. Du fikk pegee i går. Derfor ble fakturae sedt
DetaljerEksamen R2, Høsten 2010
Eksame R, Høste 00 Del Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave (6 poeg) a) Deriver fuksjoee ) f l f ( ) l l (l ) ) g( ) si cos f si
DetaljerTMA4245 Statistikk Eksamen august 2015
Eksame august 15 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsskisse Oppgave 1 a asylighetee blir og X > Z > 1 1 Z 1 Φ.3,.5 W > 5 X + Y > 5 b Forvetet samfuskostad blir
DetaljerTMA4240/4245 Statistikk 11. august 2012
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag TMA424/4245 Statistikk. august 22 Eksame - løsigsforslag Oppgave Vi har N Nµ,σ 2, µ 85 og X > 88. a X µ X > 88 σ > 88 µ Z > 88 85
DetaljerTMA4100 Matematikk 1 Høst 2014
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA400 Matematikk Høst 04 Løsningsforslag Øving 04 30 For å vise at f er en injektiv one-to-one funksjon, ser vi på den deriverte,
DetaljerTMA4240 Statistikk 2014
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer 2, blokk II Løsigsskisse Oppgave a µ populasjosgjeomsitt, dvs. eit gjeomsitt for alle bilae som køyrer på vegstrekige
DetaljerDifferensligninger Forelesningsnotat i Diskret matematikk Differensligninger
Differesligiger Forelesigsotat i Diskret matematikk 017 Differesligiger I kapittel lærte vi om følger og rekker. Vi studerte både aritmetiske og geometriske følger og rekker. Noe følger og rekker er imidlertid
Detaljer0.5 (6x 6x2 ) dx = [3x 2 2x 3 ] 0.9. n n. = n. ln x i + (β 1) i=1. n i=1
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer 9, blokk II Løsigsskisse Oppgave a The probability is.9.5 6x( x dx.9.5 (6x 6x dx [3x x 3 ].9.5.47. b The likelihood fuctio
DetaljerEKSAMEN Løsningsforslag
..4 EKSAMEN Løsigsforslag Emekode: ITF75 Dato: 6. desember Eme: Matematikk for IT Eksamestid: kl 9. til kl. Hjelpemidler: To A4-ark med valgfritt ihold på begge sider. Kalkulator er ikke tillatt. Faglærer:
DetaljerNTNU. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 5. Avsnitt Vi vil finne dx ( cos t dt).
NTNU Instittt for matematiske fag TMA4 Matematikk høsten Løsningsforslag - Øving 5 Avsnitt 5.4 ( + cos x)dx = dx + cos xdx = π + [sin x] π = π + (sin π sin) = π. 44 Vi vil finne d x dx ( cos t dt). Merk
DetaljerFagdag 2-3mx 24.09.07
Fagdag 2-3mx 24.09.07 Jeg beklager at jeg ikke har fuet oe ye morsomme spill vi ka studere, til gjegjeld skal dere slippe prøve/test dee gage. Istruks: Vi arbeider som valig med 3 persoer på hver gruppe.
Detaljer2.1 Polynomdivisjon. Oppgave 2.10
. Polyomdivisjo Oppgave. ( 5 + ) : = + + ( + ):( ) 6 + 6 8 8 = + + c) ( + 5 ) : = + 6 6 d) + + + = + + = + + + 8+ ( ):( ) + + + Oppgave. ( + 5+ ):( ) 5 + + = + ( 5 ): 9 + + + = + + + 5 + 6 9 c) ( 8 66
DetaljerEksamen REA3028 S2, Våren 2012
Eksame REA08 S, Våre 0 Del Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave (4 poeg) a) Deriver fuksjoee ) f f ) g e 4 4 4 g e e 4 g e e g e
DetaljerS2 kapittel 1 Rekker Løsninger til kapitteltesten i læreboka
S kapittel Rekker Løsiger til kapittelteste i læreboka A a Det femte og sjette eiffeltallet ser slik ut: b De fire første leddee er det bare å telle opp:,5,9,4 For å komme til este ledd, legger vi til,
DetaljerKapittel 10 fra læreboka Grafer
Forelesigsotat i Diskret matematikk torsdag 6. oktober 017 Kapittel 10 fra læreboka Grafer (utdrag) E graf er e samlig pukter (oder) og kater mellom puktee (eg. odes, vertex, edge). E graf kalles rettet
DetaljerTMA4240 Statistikk Høst 2016
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalt øvig 2 Løsigsskisse Oppgave a Miste kvadraters metode tilpasser e lije til puktee ved å velge de lija som miimerer kvadratsumme
DetaljerLøsningsforslag til eksamen i STK desember 2010
Løsigsforslag til eksame i STK0 0. desember 200 Løsigsforslaget har med flere detaljer e det vil bli krevd til eksame. Oppgave a Det er tilpasset e multippel lieær regresjosmodell av forme β 0 + β x i
DetaljerEksamen INF3350/INF4350 H2006 Løsningsforslag
Eksame INF3350/INF4350 H2006 Løsigsforslag Oppgave. Score (eller bit score) S' er e statistisk idikator på hvor sigifikat e match er. Høyere bit score svarer til høyere sigifikas. Idikatore er uavhegig
DetaljerLØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004
Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 0 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Oppgave Midtveiseksame a) X er e stokastisk variabel
Detaljer5 y y! e 5 = = y=0 P (Y < 5) = P (Y 4) = 0.44,
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalte oppgaver 9, blokk II Løsigsskisse Oppgave a) Vi lar her Y være atall fugler som kolliderer med vidmølla i løpet av de gitte
DetaljerPolynominterpolasjon
Polyomiterpolasjo Ae Kværø March 5, 2018 1 Problemstillig Gitt + 1 pukter (x i, y i ) i=0 med distikte x-verdier (dvs. x i = x j hvis i = j). Fi et polyom p(x) av lavest mulig grad slik at p(x i ) = y
DetaljerSIF53 Matemati Esame gir = 4 =:5 (legde νa delitervallee) og deleutee x =,x =:5, x =,x 3 =:5 ogx 4 =. Med f(x) = +x 4 fνar vi tabelle: x : :5 :
SIF53 Matemati Esame 8..999 Norges teis-aturvitesaelige uiversitet Istitutt for matematise fag Lsigsforslag X = ( ) : Diverget. X = ( ) X ( ) : Absolutt overget. = : Betiget overget. (i) (ii) x! x! x(e
DetaljerKommentarer til oppgaver;
Kapittel - Algebra Versjo: 11.09.1 - Rettet feil i 0, 1 og 70 og lagt i litt om GeoGebra-bruk Kommetarer til oppgaver; 0, 05, 10, 13, 15, 5, 9, 37, 5,, 5, 59, 1, 70, 7, 78, 80,81 0 a) Trykkfeil i D-koloe
DetaljerLøsning eksamen R2 våren 2010
Løsig eksame R våre 010 Oppgave 1 a) f( x) x cos3x f ( x) x cos 3x x cos 3x x cos 3x x si 3x 3x xcos 3x 3x si 3x b) 1) v v u v u 1 u x x 1 x 5 x 5 x 5xe dx 5x e 5 e dx xe e dx 5 5 1 5 5 x x x x xe e C
DetaljerEksamen R2, Va ren 2013
Eksame R, Va re 013 Oppgave 1 (4 poeg) Deriver fuksjoee a) f x 3cos x f x 3 six 3si x b) gx x 6si 7 Bruker kjereregele på uttrykket si x der og Vi har da guu siu u cosu cos x gx 6cos x 6 cos x u x g u
DetaljerLøsningsforslag Eksamen 10. august 2010 FY2045/TFY4250 Kvantemekanikk I
Eksame FY045/TFY450 10. august 010 - løsigsforslag 1 Oppgave 1 Løsigsforslag Eksame 10. august 010 FY045/TFY450 Kvatemekaikk I a. Bølgefuksjoe ψ for første eksiterte tilstad er (i likhet med ψ 4, ψ 6 osv)
DetaljerPositive rekker. Forelest: 3. Sept, 2004
Postve rekker Forelest: 3. Sept, 004 V skal tde utover fokusere på å teste om e rekke kovergerer, og skyve formler for summerg bakgrue. Dette er gje ford det første målet vårt er å lære hvorda v ka fe
DetaljerDetaljert løsningsveiledning til ECON1310 seminaroppgave 9, høsten der 0 < t < 1
Detaljert løsigsveiledig til ECON30 semiaroppgave 9, høste 206 Dee løsigsveiledige er mer detaljert e det et fullgodt svar på oppgave vil være, og mer utfyllede e e valig fasit. De er met som e guide til
DetaljerEksempeloppgave 2014. REA3028 Matematikk S2 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)
Eksempeloppgave 2014 REA3028 Matematikk S2 Eksempel på eksame våre 2015 etter y ordig Ny eksamesordig Del 1: 3 timer (ute hjelpemidler) Del 2: 2 timer (med hjelpemidler) Mistekrav til digitale verktøy
DetaljerLØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK 5.august 2004
Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 0 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK 5.august 2004 Oppgave Foruresig X er e stokastisk variabel som agir
DetaljerSom vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon, språk og stil variere noe fra oppgave til oppgave.
NTNU Institutt for matematiske fag TMA4105 Matematikk, øving 7, vår 011 Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon,
DetaljerOppgaver fra boka: Med lik men ukjent varians antatt har vi fra pensum at. t n1 +n 2 2 under H 0 (12 1) (12 1)
MOT30 Statistiske metoder, høste00 Løsiger til regeøvig r. 5 (s. ) Oppgaver fra boka: Oppgave 0.36 (0.0:8) Dekkslitasje X,..., X u.i.f. N(µ, σ ) og X,..., X u.i.f. N(µ, σ ) og alle variable er uavhegige.
DetaljerFølger og rekker. Kapittel Følger
Kapittel 4 Følger og rekker E viktig egeskap ved polyomiale fuksjoer er at vi ekelt) ka rege ut verdiee av fuksjoee i et valgt pukt. Grue er at polyomer er et slags speilbilde av de valige regeoperasjoee.
DetaljerOM TAYLOR POLYNOMER. f x K f a x K a. f ' a = lim x/ a. f ' a z
OM TAYLOR POLYNOMER I dette otatet, som utfyller avsitt 6. i Gullikses bok, skal vi se på Taylor polyomer og illustrere hvorfor disse er yttige. Det å berege Taylor polyomer for håd er i prisippet ikke
DetaljerLøsningsforslag R2 Eksamen 04.06.2012. Nebuchadnezzar Matematikk.net Øistein Søvik
Løsigsforslag R2 Eksame 6 Vår 04.06.202 Nebuchadezzar Matematikk.et Øistei Søvik Sammedrag De fleste forlagee som gir ut lærebøker til de videregåede skole, gir ut løsigsforslag til tidligere gitte eksameer.
DetaljerØvinger uke 46 løsninger
Øviger uke 6 løsiger Oppgave Verdie av determiate er avgjørede for atall løsiger. ed e parameter i oppgave løer det seg å bestemme determiate først og fie ut for hvilke parameterverdier determiate er ull.
DetaljerLøsning eksamen S2 våren 2010
Løsig eksame S våre 010 Oppgave 1 a) 1) f( ) l 1 f ( ) l l l l ( l 1) ) g ( ) 3e g( ) 3e 3e 6e b) Rekke er geometrisk med Rekke kovergerer. Summe er a1 1 1 s 1 k 1 1 1 1 1 k og oppfller dermed kravet 1
Detaljer