s = k k=1 dx x A n = n = lim = lim 2 arctan ( x = π arctan ( n (2k 1)!, s n = k=1

Størrelse: px
Begynne med side:

Download "s = k k=1 dx x A n = n = lim = lim 2 arctan ( x = π arctan ( n (2k 1)!, s n = k=1"

Transkript

1 TMA400 Høst 06 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsforslag Øvig Me vil fia det miste itervallet som me ka vera sikker på at summe s k k + 4 ligg i. Om ei skriv de -te delsumme som s k /k + 4) har ei ifølgje boka side 53 at summe må liggja i itervallet [s + A +, s + A ], der A : /x + 4). Me fi at A lim R x + 4 R lim R x + 4 arcta x π 4 arcta ) R og dermed har me at [ s s + π 4 ) + arcta, s + π 4 ) ] arcta. Om me o vel midtpuktet på dette itervallet, s, til å tilærma s har me feilestimatet s s A A + ) + ) ) arcta arcta. 4 Ved isetjig av ulike verdiar for i uttrykket ovafor og litt prøvig og feilig fi ei at for er s s , altså treg ei mist ledd i delsumme for at feile skal vera midre e ), Me vil fia ei øvre skrake for feile s s, der s k k )!, s k k )!. Dette mier om Example 7, side 58 i boka så me vil prøva same framgagsmåte. oktober 06 Side av 6

2 Løsigsforslag Øvig 0 her. Me ser at 0 < s s < + )! + + )! k+ + k )! + )! + + 3)! + + 5)! ) + ) + ) ) + ) + ) + ) + ) + ) + ) +... ) + + )) + + )) , der me har brukt at +) < +)+ < +) <... Me har o ei geometrisk sum ii paratese og dermed ka me estimera feile med 0 < s s < + )! +)) 4 + ) + )! 4 + ). Me prøver oss fram med å setja i for i uttrykket til høgre, og fi at for er s s < 3/ > 0.00, meda for 3 er s s < 4/ < Altså treg ei berre tre ledd for at feile skal vera midre e Dette er ei kosekves av at! veks såpass raskt, og ei ser at det este leddet i rekkja, /7! /5040, allereie er mykje midre e Me vil først visa at rekkja M+ 3 l l l ) p kovergerer viss og berre viss p >. Det er då ok å sjå på restleddet til de edelege delsumme opp til M, som me ka estimera med eit itegral på følgjade vis, l l l ) p < M x l xl l x) p. ) Lat oss i itegralet gjera substitusjoe v l x, dv /x: M x l xl l x) p l M du vl v) p. Her ka me igje bruka ei l-substitusjo, u l v, du dv/v, og me får l M dv vl v) p l l M Dette hadde ei òg komme fram til om ei direkte hadde gjort substitusjoe u l l x, du /x l x). Itegralet til høgre kjeer me att som eit p-itegral frå side 364 i boka som me veit at kovergerer berre for p >. du u p. No vil me geeralisera dette resultatet for rekkjer på forma N l )l l )...l j )l j+ ) p,. oktober 06 Side av 6

3 Løsigsforslag Øvig 0 der l j } l l {{... l}. Igje ser me på estimatet j l -ar l )l l )...l j )l j+ ) p < M+ M xl x)l l x)...l j x)l j+ x) p. ) I førre tilfelle såg me at det fugerte å gjera substitusjoe u l l x, så me prøver på same vis her med å setja u l j+ x. Ved å derivera u får me gjeom gjetatt bruk av kjereregele at du l j x l j x... l x x, og dermed får ei xl x)l l x)...l j x)l j+ x) p du l j+ M u p, M som er øyaktig same situasjo som tidlegare Me skal avgjera om rekkja ) ) ) er kovergerer eller divergerer. Me ser at rekkja er geometrisk med sum. Her ser me at alle ledd i rekkja er positive, så rekkja kovergerer òg absolutt Me skal avgjera om rekkja ) kovergerer eller divergerer. Sida absolutt koverges impliserer koverges er det aturleg å starta med å sjå på rekkja Me bruker forholdsteste og fi at! )!!. + / + )! /! 0, og dermed har ei at rekkja er absolutt koverget.. oktober 06 Side 3 av 6

4 Løsigsforslag Øvig Vi er gitt rekke a, a 00 cosπ). + 3 Legg merke til at cosπ) {, for like,, for odde. Vi har altså e altererede rekke. Derfor prøver vi med de altererede rekke teste The alteratig series test, side 5 i boka). Vi har at 00 cos + )π) a + + ) , 00 cosπ) a Altså er a + a for alle. Det vil si at leddee er sykede i størrelse absolutt verdi). I grese har vi at lim a 00 cosπ) lim Alle betigelsee for de altererede rekke teste er derfor oppfylt, og vi kokluderer med at rekke kovergerer. Vi udersøker så om rekke er absolutt koverget ved å se på rekke a Vi bruker gresesammeligigsteste A limit compariso test, side 55 i boka) og sammeliger med de divergete rekke b, der b. Både a og b er positive for alle, og dessute er a lim lim b lim Det følger at rekke a divergerer. Rekke a er derfor betiget koverget Vi er gitt rekke a, a ) 3!. Teorem 5, side 53 i boka, gir e øvre grese på absoluttverdie av feile, s s a +.. oktober 06 Side 4 av 6

5 Løsigsforslag Øvig 0 For å kue bruke dee må betigelsee i de altererede rekke teste være oppfylt, slik at rekke faktisk kovergerer. Vi ser at a er altererede side faktore ) altererer mellom og, mes faktore 3! er positiv for alle. Videre er a )! )! 3 + a. Det vil si at a + a for. Til slutt ka vi vise at lim a 3 lim )! 0. Vi har her brukt at! vokser raskere e x for alle reele tall x se Teorem 3 side 50 i boka). Vi øsker å å fie de miste verdie av slik at s s 0, 00. Fra ulikhete over er dette oppfylt år a + 0, , )! Ved å sette i for stigede verdier av, ser vi at dette er oppfylt år. Vi må altså ta med miimum 3 ledd husk å telle med 0) for å approksimere summe s med e feil midre e 0, Me skal fia dei verdiae for x som gjer at rekkja x ) ) + 3 kovergerer absolutt, kovergerer betiga eller divergerer. Det er alltid aturleg å starta med de absolutte kovergese, så me ser på Forholdsteste gjev oss a + a x ) ) + 3 x + 3. x x + ) + 3 x + 5 x. Frå dette ser me at rekkja kovergerer absolutt for x <, det vil seia 0 < x <. Me ser òg at rekkja divergerer for x >, altså for x < 0 og x >. Då gjestår det å sjekka om rekkja kovergerer betiga i pukta x 0 og x. Om ei set x 0 får ei ) ) > Dette ble også demostrert i oppgave 9.3. i forrige øvig. 3 + ) 3,. oktober 06 Side 5 av 6

6 Løsigsforslag Øvig 0 så rekkja er diverget i dette puktet. Om ei i stade set x får ei ) + 3, som er ei altererade rekkje. Dermed ka me bruka altererade rekkje-teste på side 5 i boka, og me sjekkar om kvart av dei tre pukta er oppfylt. For det første ser me at a a + ) ) ) + 5) < 0 for alle 0, for det adre er for 0, og for det tredje er a < + 3 a lim a ) lim Alle pukta er dermed oppfylte og me ka slå fast at rekkja er betiga koverget i x Me skal fia dei verdiae for x som gjer at rekkja + ) x kovergerer absolutt, kovergerer betiga eller divergerer. Som valeg startar me med å sjå om rekkja kovergerer absolutt, + x) Me bruker forholdsteste på dee rekkja, a + x + a + x + x. x +, x og fi at rekkja kovergerer absolutt for x + < x. Det vil seia år avstade frå x til - er midre e avstade frå x til 0, som igje betyr at x < /. Me har då òg at rekkja divergerer for x > /. Det gjestår dermed å sjekka om rekkja kovergerer betiga i x /, og ved isetjig av dee verdie får me at rekkja vert + ) / ). Dette er ikkje oko aa e de altererade harmoiske rekkja som me veit at kovergerer, og dermed er rekkja betiga koverget i x /.. oktober 06 Side 6 av 6

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag TMA400 Matematikk Høst 04 Løsigsforslag Øvig 3 Review Exercises, side 454 Vi starter med å tege e figur av e skål med va: z A(z)

Detaljer

e n . Videre er det en alternerende følge, da annenhvert ledd er positivt og negativt. Vi ser også at n a n = lim n e n = 0. lim n n 1 n 3n 2 = lim

e n . Videre er det en alternerende følge, da annenhvert ledd er positivt og negativt. Vi ser også at n a n = lim n e n = 0. lim n n 1 n 3n 2 = lim TMA400 Høst 206 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsforslag Øvig 9 9..8 Vi er gitt følge { ( ) } {a }. e De første leddee i følge er a e, a 2 2 e 2, a e, a 4 4

Detaljer

MA1102 Grunnkurs i analyse II Vår 2014

MA1102 Grunnkurs i analyse II Vår 2014 Norges tekiskaturviteskapelige uiversitet Istitutt for matematiske fag MA Grukurs i aalyse II Vår 4 Løsigsforslag Øvig 6..5g Ser på forholdet a + /a som er ( + )!4 + ( + ) + ( ) 4( + )! 4( + ) =!4 ( +

Detaljer

MA1102 Grunnkurs i Analyse II Vår 2017

MA1102 Grunnkurs i Analyse II Vår 2017 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag MA2 Grukurs i Aalyse II Vår 27 Løsigsforslag Øvig 7 2.5: For hvilke x kovergerer rekke? b) (2x) c) (l x) e) 2 si x 2 b) Dette er

Detaljer

MA1102 Grunnkurs i analyse II Vår 2014

MA1102 Grunnkurs i analyse II Vår 2014 Norges tekiskaturviteskapelige uiversitet Istitutt for matematiske fag MA Grukurs i aalyse II Vår 4 Løsigsforslag Øvig..4 f ) Skriver om, og får Reger ut ved L'Hopitals regel at cos/) cos/)) = /. cos/)

Detaljer

MA1101 Grunnkurs Analyse I Høst 2017

MA1101 Grunnkurs Analyse I Høst 2017 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag MA0 Grukurs Aalyse I Høst 07 Løsigsforslag Øvig..b) Vi skriver om 7 = 4 4 7 Korollar.. gir at 7 4 er irrasjoal (side vi vet 7 4 er

Detaljer

Fasit til utvalgte oppgaver MAT1110, uka 18/5-21/5

Fasit til utvalgte oppgaver MAT1110, uka 18/5-21/5 Fasit til utvalgte oppgaver MAT0, uka 8/5-2/5 Øyvid Rya (oyvidry@i.uio.o) May 28, 200 Oppgave 2.4. Rekke er betiget koverget, side + divergerer, mes de altererede rekke kovergerer etter teste for altererede

Detaljer

Vi skal hovedsakelig ikke bestemme summen men om rekken konvergerer. det vil si om summen til rekken er et bestemt tall

Vi skal hovedsakelig ikke bestemme summen men om rekken konvergerer. det vil si om summen til rekken er et bestemt tall Kapittel 8 Oppsummerig-Rekker Rekker er summe til edelig eller uedelig mage ledd i e tallfølge. Potesrekker ka beyttes til å uttrykke vaskelige fuksjoer om et pukt. Ma ka skreddesy potesfuksjoer ved hjelp

Detaljer

MA 1410: Analyse Uke 48, aasvaldl/ma1410 H01. Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag

MA 1410: Analyse Uke 48, aasvaldl/ma1410 H01. Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag MA 40: Aalyse Uke 48, 00 http://home.hia.o/ aasvaldl/ma40 H0 Høgskole i Agder Avdelig for realfag Istitutt for matematiske fag Oppgave 8.7:. Vi har f(x) = cosh(x) = ex +e x. f(0) =. Derivasjo gir f (x)

Detaljer

Velkommen til oversiktsforelesninger i Matematikk 1. med Jørgen Endal

Velkommen til oversiktsforelesninger i Matematikk 1. med Jørgen Endal Velkomme til oversiktsforelesiger i Matematikk 1 med Jørge Edal Følger, rekker, og potesrekker (kap. 9.1 9.7) Forelesig 2 (kap. 9.3 9.4) Dages økkelbegrep: Sammeligigsteste Gresesammeligigsteste Forholdsteste

Detaljer

8 + 2 n n 4. 3n 4 7 = 8 3.

8 + 2 n n 4. 3n 4 7 = 8 3. Seksjo 4. Oppgave (). Fi greseverdiee: 8 a) 4 + 4 7 b) 4 +7 5 c) + 7 4 ( ) d) 5 4 44 + 5 4 e) 5 + si() e +6 5 Løsig. Vi vil bruke samme metode som i Eksempel 4..5 fra boke i disse oppgavee. Når vi skal

Detaljer

Løsningsforslag til prøveeksamen i MAT1110, våren 2012

Løsningsforslag til prøveeksamen i MAT1110, våren 2012 Løsigsforslag til prøveeksame i MAT, våre Oppgave : Vi har A = 3 III+I I+II 3 ( )II 3 3 Legg merke til at A er de utvidede matrise til ligigssystemet. Vi ser at søyle 3 og 4 i de reduserte trappeforme

Detaljer

x n = 1 + x + x 2 + x 3 + x x n + = 1 1 x

x n = 1 + x + x 2 + x 3 + x x n + = 1 1 x Potesrekker Forelest: 29. Sept, 2004 Vi lærte fra de geometriske rekkee at x = 1 + x + x 2 + x 3 + x 4 + + x + = 1 1 x så lege x < 1. For uttrykket til høyre er ikke oe aet e sum-formele for geometriske

Detaljer

Totalt Antall kandidater oppmeldt 1513 Antall møtt til eksamen 1421 Antall bestått 1128 Antall stryk 247 Antall avbrutt 46 % stryk og avbrutt 21%

Totalt Antall kandidater oppmeldt 1513 Antall møtt til eksamen 1421 Antall bestått 1128 Antall stryk 247 Antall avbrutt 46 % stryk og avbrutt 21% TMA4100 Høste 2007 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Kommetarer til eksame Dette dokumetet er e oppsummerig av erfarigee fra sesure av eksame i TMA4100 Matematikk

Detaljer

MA1102 Grunnkurs i analyse II Vår 2019

MA1102 Grunnkurs i analyse II Vår 2019 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag MA0 Grukurs i aalyse II Vår 09 9 Vi har rekke Dette er e geometrisk rekke som beskrevet på side 50 i læreboka, med x (side ) Spesielt

Detaljer

E K S A M E N : FAG: Matematikk 1 MA-154 LÆRER: MORTEN BREKKE. Klasse(r): Alle Dato: 1. des 11 Eksamenstid, fra-til: 0900-1400

E K S A M E N : FAG: Matematikk 1 MA-154 LÆRER: MORTEN BREKKE. Klasse(r): Alle Dato: 1. des 11 Eksamenstid, fra-til: 0900-1400 UNIVERSITETET I AGDER Grimstad E K S A M E N : FAG: Matematikk MA-54 LÆRER: MORTEN BREKKE Klasse(r): Alle Dato:. des Eksamestid, fra-til: 0900-400 Eksamesoppgave består av følgede iklusive forside Atall

Detaljer

Konvergenstester Forelesning i Matematikk 1 TMA4100

Konvergenstester Forelesning i Matematikk 1 TMA4100 Konvergenstester Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 1. november 2011 Kapittel 8.3. Integrasjonstesten 3 Ikke-avtagende delsummer Husker at n-te delsum av

Detaljer

Løsningsforslag Eksamen MAT112 vår 2011

Løsningsforslag Eksamen MAT112 vår 2011 Løsigsforslag Eksame MAT vår OPPGAVE Gitt følge {a } defiert rekursivt ved a = 5, a + = a + 6, =,,, 3,.... (a) Vis (for eksempel ved iduksjo) at {a } er stregt avtagede og edtil begreset. (b) Avgjør om

Detaljer

TMA4240 Statistikk Høst 2009

TMA4240 Statistikk Høst 2009 TMA440 Statistikk Høst 009 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b4 Løsigsskisse Oppgave Øsker å fie 99% kofidesitervall for µ µ år vi atar ormalfordeliger

Detaljer

Utvidet løsningsforslag Eksamen i TMA4100 Matematikk 1, 16/12 2008

Utvidet løsningsforslag Eksamen i TMA4100 Matematikk 1, 16/12 2008 Utvidet løsigsforslag Eksame i TMA4 Matematikk, 6/ 8 Oppgave i) Vi gjør substitusjoe u = si θ og får π/ [ u si θ cos θ dθ = u du = E ae løsigsmetode er π/ si θ cos θ dθ = π/ ] si θ dθ = 4 = 4 ( ( ) ( ))

Detaljer

TMA4100 Høst Løsningsforslag Øving 2. Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag

TMA4100 Høst Løsningsforslag Øving 2. Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag TMA400 Høst 206 Norges tekiskaturviteskapelige uiversitet Istitutt for matematiske fag Løsigsforslag Øvig 2 2..0: Vi bruker eisjoe for ikke-vertikale tagetlijer sie 97 i læreboke). Tagetlije gjeom et pukt

Detaljer

FØLGER, REKKER OG GJENNOMSNITT

FØLGER, REKKER OG GJENNOMSNITT FØLGER, REKKER OG GJENNOMSNITT Espe B. Lagelad realfagshjoret.wordpress.com espebl@hotmail.com 9.mars 06 Iledig E tallfølge er e serie med tall som kommer etter hveradre i e bestemt rekkefølge. Kvadrattallee

Detaljer

TMA4120 Matte 4k Høst 2012

TMA4120 Matte 4k Høst 2012 TMA41 Matte 4k Høst 1 Norges tekiskaturviteskapelige uiversitet Istitutt for matematiske fag Løsigsforslag til oppgaver fra Kreyzig utgave 1: 11.1.18 Fuksjoe er lik for < x

Detaljer

Ma Analyse II Øving 5

Ma Analyse II Øving 5 Ma0 - Aalyse II Øvig 5 Øistei Søvik.0.0 Oppgaver 9. Determie whether the give sequece is (a) bouded (above or below), (b) positive or egative (ultimately), (c) icreasig, decreasig, or alteratig, ad (d)

Detaljer

Løsningsforslag ST2301 øving 3

Løsningsforslag ST2301 øving 3 Løsigsforslag ST2301 øvig 3 Kapittel 1 Exercise 11 Et utvalg på 100 idivider trekkes fra e populasjo med tilfeldig parrig. Det ble observert AA 63 idivider av geotype AA, Aa 27, og aa 10. Lag et 95 % kofidesitervall

Detaljer

S2 kapittel 1 Rekker Løsninger til innlæringsoppgavene

S2 kapittel 1 Rekker Løsninger til innlæringsoppgavene Løsiger til ilærigsoppgavee kapittel Rekker Løsiger til ilærigsoppgavee a Vi ser at differase mellom hvert ledd er 4, så vi får det este leddet ved å legge til 4 Det este leddet blir altså 6 + 4 = 0 b

Detaljer

Eksamen 20.05.2009. REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen 20.05.2009. REA3024 Matematikk R2. Nynorsk/Bokmål Eksame 20052009 REA3024 Matematikk R2 Nyorsk/Bokmål Nyorsk Eksamesiformasjo Eksamestid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Bruk av kjelder: Vedlegg: Framgagsmåte: Rettleiig om vurderiga: 5 timar:

Detaljer

TMA4245 Statistikk Eksamen mai 2017

TMA4245 Statistikk Eksamen mai 2017 TMA445 Statistikk Eksame mai 07 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsskisse Oppgave a Når vi reger ut disse tre sasylighetee må ma huske på at de mulige verdiee

Detaljer

I = (x 2 2x)e kx dx. U dv = UV V du. = x 1 1. k ekx x 1 ) = x k ekx 2x dx. = x2 k ekx 2 k. k ekx 2 k I 2. k ekx 2 k 1

I = (x 2 2x)e kx dx. U dv = UV V du. = x 1 1. k ekx x 1 ) = x k ekx 2x dx. = x2 k ekx 2 k. k ekx 2 k I 2. k ekx 2 k 1 TMA4 Høst 6 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 6 6..4 Vi skal evaluere det ubestemte integralet I = ( e k. Vi starter med å dele opp integralet

Detaljer

Konvergenstester Forelesning i Matematikk 1 TMA4100

Konvergenstester Forelesning i Matematikk 1 TMA4100 Konvergenstester Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 1. november 2011 Kapittel 8.6. Alternerende rekker Absolutt og betinget konvergens 3 Alternerende rekker

Detaljer

OM TAYLOR POLYNOMER. f x K f a x K a. f ' a = lim x/ a. f ' a z

OM TAYLOR POLYNOMER. f x K f a x K a. f ' a = lim x/ a. f ' a z OM TAYLOR POLYNOMER I dette otatet, som utfyller avsitt 6. i Gullikses bok, skal vi se på Taylor polyomer og illustrere hvorfor disse er yttige. Det å berege Taylor polyomer for håd er i prisippet ikke

Detaljer

TMA4125 Matematikk 4N

TMA4125 Matematikk 4N Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag TMA425 Matematikk 4N Løsigsforslag - Øvig 9 Fra Kreyszig, avsitt.5 3 Vi skal fie temperature u(x, t) i e stav (L = π, c = ) som er

Detaljer

S2 kapittel 1 Rekker Løsninger til kapitteltesten i læreboka

S2 kapittel 1 Rekker Løsninger til kapitteltesten i læreboka S kapittel Rekker Løsiger til kapittelteste i læreboka A a Det femte og sjette eiffeltallet ser slik ut: b De fire første leddee er det bare å telle opp:,5,9,4 For å komme til este ledd, legger vi til,

Detaljer

Terminprøve R2 Høsten 2014 Løsning

Terminprøve R2 Høsten 2014 Løsning Termiprøve R Høste 04 Løsig Del Tid: 3 timer Hjelpemidler: Skrivesaker Oppgave (6 poeg) E flate i rommet er gitt ved likige: x 4x y 6y z 8z 0 0 a) Vis at puktet P3, 5, ligger på flate Puktet P3, 5, ligger

Detaljer

Følger og rekker. Kapittel Følger

Følger og rekker. Kapittel Følger Kapittel 4 Følger og rekker E viktig egeskap ved polyomiale fuksjoer er at vi ekelt) ka rege ut verdiee av fuksjoee i et valgt pukt. Grue er at polyomer er et slags speilbilde av de valige regeoperasjoee.

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalt øvig 8 Løsigsskisse Oppgave 1 a) Simuler 1000 datasett i MATLAB. Hvert datasett skal bestå av 100 utfall fra e ormalfordelig

Detaljer

Algebra S2, Prøve 2 løsning

Algebra S2, Prøve 2 løsning Algebra S, Prøve løsig Del Tid: 90 mi Hjelpemidler: Skrivesaker Oppgave I rekkee edefor får du oppgitt a og e rekursiv formel for a. Du skal. skrive opp de fire første leddee og avgjøre om rekka er aritmetisk,

Detaljer

Oppgaver fra boka: X 2 X n 1

Oppgaver fra boka: X 2 X n 1 MOT30 Statistiske metoder, høste 00 Løsiger til regeøvig r 3 (s ) Oppgaver fra boka: 94 (99:7) X,, X uif N(µ, σ ) og X,, X uif N(µ, σ ) og alle variable er uavhegige Atar videre at σ = σ = σ og ukjet Kodesitervall

Detaljer

TMA4245 Statistikk Vår 2015

TMA4245 Statistikk Vår 2015 TMA4245 Statistikk Vår 2015 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer 12, blokk II Oppgave 1 Kari har ylig kjøpt seg e y bil. Nå øsker hu å udersøke biles besiforbruk

Detaljer

Eksamen 21.05.2013. REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen 21.05.2013. REA3024 Matematikk R2. Nynorsk/Bokmål Eksame 21.05.2013 REA3024 Matematikk R2 Nyorsk/Bokmål Nyorsk Eksamesiformasjo Eksamestid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: 5 timar: Del 1 skal leverast i etter 2 timar. Del 2 skal leverast

Detaljer

Ukeoppgaver, uke 42, i Matematikk 10, Bestemt integrasjon. 1

Ukeoppgaver, uke 42, i Matematikk 10, Bestemt integrasjon. 1 Ukeoppgaver, uke 2, i Matematikk, Bestemt itegrasjo. Høgskole i Gjøvik Avdelig for igeiørfag Matematikk Ukeoppgaver uke 2 I løpet av uke blir løsigsforslag lagt ut på emeside http://www.hig.o/toel/allmefag/emesider/rea2

Detaljer

SIF53 Matemati Esame gir = 4 =:5 (legde νa delitervallee) og deleutee x =,x =:5, x =,x 3 =:5 ogx 4 =. Med f(x) = +x 4 fνar vi tabelle: x : :5 :

SIF53 Matemati Esame gir = 4 =:5 (legde νa delitervallee) og deleutee x =,x =:5, x =,x 3 =:5 ogx 4 =. Med f(x) = +x 4 fνar vi tabelle: x : :5 : SIF53 Matemati Esame 8..999 Norges teis-aturvitesaelige uiversitet Istitutt for matematise fag Lsigsforslag X = ( ) : Diverget. X = ( ) X ( ) : Absolutt overget. = : Betiget overget. (i) (ii) x! x! x(e

Detaljer

Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål Eksame 6.05.010 REA304 Matematikk R Nyorsk/Bokmål Bokmål Eksamesiformasjo Eksamestid: Hjelpemidler på Del 1: Hjelpemidler på Del : Vedlegg: Framgagsmåte: Veiledig om vurderige: 5 timer: Del 1 skal leveres

Detaljer

TMA4100 Matematikk 1 for MTDESIG, MTIØT-PP, MTMART og MTPROD høsten 2010

TMA4100 Matematikk 1 for MTDESIG, MTIØT-PP, MTMART og MTPROD høsten 2010 TMA4100 Matematikk 1 for MTDESIG, MTIØT-PP, MTMART og MTPROD høsten 2010 Toke Meier Carlsen Institutt for matematiske fag 28. oktober 2010 2 Fremdriftplan I går 7.7 Uegentlige integraler 8.1 Følger I dag

Detaljer

Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt.

Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Tid: 3 timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave (3 poeg) Deriver fuksjoee a) f( ) cos5 f 5 si5 0 si5 g e si Vi bruker produktregele for derivasjo,

Detaljer

Terminprøve R2 Høsten 2014

Terminprøve R2 Høsten 2014 Termiprøve R Høste 04 Del Tid: 3 timer Hjelpemidler: Skrivesaker Oppgave (6 poeg) E flate i rommet er gitt ved likige: x 4x y 6y z 8z 0 0 a) Vis at puktet P3, 5, ligger på flate b) Vis at dette er e kuleflate

Detaljer

TMA4100 Matematikk 1 Høst 2006

TMA4100 Matematikk 1 Høst 2006 TMA4 Mtemtikk Høst 26 Norges tekisk turviteskpelige uiversitet Istitutt for mtemtiske fg Løsigsforslg, vsluttede eksme 5.2.26 De første greseverdie er e uestemt form v type "/", og L Hopitls regel gir

Detaljer

Eksamen R2, Høsten 2010

Eksamen R2, Høsten 2010 Eksame R, Høste 00 Del Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave (6 poeg) a) Deriver fuksjoee ) f l f ( ) l l (l ) ) g( ) si cos f si

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-aturviteskapelige fakultet Eksame i STK2120 Statistiske metoder og dataaalyse 2 Eksamesdag: Madag 6. jui 2011. Tid for eksame: 09.00 13.00. Oppgavesettet er på 5 sider.

Detaljer

Introduksjon. Hypotesetesting / inferens (kap 3) Populasjon og utvalg. Populasjon og utvalg. Populasjonsvarians

Introduksjon. Hypotesetesting / inferens (kap 3) Populasjon og utvalg. Populasjon og utvalg. Populasjonsvarians Hypotesetestig / iferes (kap ) Itroduksjo Populasjo og utvalg Statistisk iferes Utvalgsfordelig (samplig distributio) Utvalgsfordelige til gjeomsittet Itroduksjo Vi øsker å få iformasjo om størrelsee i

Detaljer

TMA4245 Statistikk Eksamen august 2015

TMA4245 Statistikk Eksamen august 2015 Eksame august 15 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsskisse Oppgave 1 a asylighetee blir og X > Z > 1 1 Z 1 Φ.3,.5 W > 5 X + Y > 5 b Forvetet samfuskostad blir

Detaljer

H 1 : µ 1 µ 2 > 0. t = ( x 1 x 2 ) (µ 1 µ 2 ) s p. s 2 p = s2 1 (n 1 1) + s 2 2 (n 2 1) n 1 + n 2 2

H 1 : µ 1 µ 2 > 0. t = ( x 1 x 2 ) (µ 1 µ 2 ) s p. s 2 p = s2 1 (n 1 1) + s 2 2 (n 2 1) n 1 + n 2 2 TMA4245 Statistikk Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b4 Løsigsskisse Oppgave 1 Vi øsker å fie ut om et ytt serum ka stase leukemi. 5 mus får serumet, 4

Detaljer

LØSNINGSFORSLAG TILEKSAMEN I FAG TMA4240/TMA4245 STATISTIKK 10. august 2005

LØSNINGSFORSLAG TILEKSAMEN I FAG TMA4240/TMA4245 STATISTIKK 10. august 2005 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 8 LØSNINGSFORSLAG TILEKSAMEN I FAG TMA440/TMA445 STATISTIKK 0. august 005 Oppgave Smeltepuktsbestemmelse a) Vi jobber i dette

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 TMA4240 Statistikk Høst 2015 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer 12, blokk II I dee siste øvige fokuserer vi på lieær regresjo, der vi har kjete kovariater

Detaljer

f '( x) 28x 6x 2 ( 2) x x 4(3t 2 s) 6s 2x 6(3t 2 s) 2t ln x 2ln y med bibetingelsen 2x y m. Her er m 0

f '( x) 28x 6x 2 ( 2) x x 4(3t 2 s) 6s 2x 6(3t 2 s) 2t ln x 2ln y med bibetingelsen 2x y m. Her er m 0 Fsit obligtorisk oppgve Oppgve (9 poeg) Deriver følgede fuksjoer med hes på lle rgumeter ) f ( ) 7 f '( ) 8 6 svr: b) Svr: g ( ) ( ) ( ) g ( ) ( ) ( ) c) h( ) f ( )( ) Svr: h( ) f '( )( ) f ( ) d) Svr:

Detaljer

Oppgave 1 a) Minste kvadraters metode tilpasser en linje til punktene ved å velge den linja som minimerer kvadratsummen. x i (y i α βx i ) = 0, SSE =

Oppgave 1 a) Minste kvadraters metode tilpasser en linje til punktene ved å velge den linja som minimerer kvadratsummen. x i (y i α βx i ) = 0, SSE = Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalte oppgaver 2, blokk II Løsigsskisse Oppgave a Miste kvadraters metode tilpasser e lije til puktee ved å velge de lija som

Detaljer

TMA4240 Statistikk Eksamen desember 2015

TMA4240 Statistikk Eksamen desember 2015 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag TMA20 Statistikk Eksame desember 205 Løsigsskisse Oppgave a) De kumulative fordeligsfuksjoe til X, F (x) P (X x): F (x) P (X x) x

Detaljer

Løsning eksamen R1 våren 2010

Løsning eksamen R1 våren 2010 Løsig eksame R våre 00 Oppgave a) ) f ( ) l f ( ) ' l l l l f ( ) (l ) ) g( ) 4e g( ) 4 e ( ) 4 e ( ) g( ) 4( ) e b) ( ) 4 4 6 P ) P() 4 4 6 8 6 8 6 0 Divisjo med ( ) går opp. 4 4 6 : ( ) 8 4 4 8 6 8 6

Detaljer

Taylor- og Maclaurin-rekker

Taylor- og Maclaurin-rekker Taylor- og Maclaurin-rekker Forelest: Okt, 004 Potensrekker er funksjoner Vi så at noen funksjoner vi kjenner på andre måter kan skrives som funksjoner, for eksempel: = + t + t + t 3 + + t n + t e x =

Detaljer

ST1201 Statistiske metoder

ST1201 Statistiske metoder ST Statistiske metoder Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsforslag - Eksame desember Oppgave a) Dette er e ANOVA-tabell for k-utvalg med k 4 og j 6 for j,,3,4.

Detaljer

Kommentarer til oppgaver;

Kommentarer til oppgaver; Kapittel - Algebra Versjo: 11.09.1 - Rettet feil i 0, 1 og 70 og lagt i litt om GeoGebra-bruk Kommetarer til oppgaver; 0, 05, 10, 13, 15, 5, 9, 37, 5,, 5, 59, 1, 70, 7, 78, 80,81 0 a) Trykkfeil i D-koloe

Detaljer

Forkunnskaper i matematikk for fysikkstudenter. Derivasjon.

Forkunnskaper i matematikk for fysikkstudenter. Derivasjon. Defiisjo av derivert Vi har stor ytte av å vite hvor raskt e fuksjo vokser eller avtar Mer presist: Vi øsker å bestemme stigigstallet til tagete til fuksjosgrafe P Q Figure til vestre viser hvorda vi ka

Detaljer

Kapittel 10 fra læreboka Grafer

Kapittel 10 fra læreboka Grafer Forelesigsotat i Diskret matematikk torsdag 6. oktober 017 Kapittel 10 fra læreboka Grafer (utdrag) E graf er e samlig pukter (oder) og kater mellom puktee (eg. odes, vertex, edge). E graf kalles rettet

Detaljer

Eksamen REA3028 S2, Våren 2011

Eksamen REA3028 S2, Våren 2011 Eksame REA08 S, Våre 0 Del Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave (8 poeg) a) Deriver fuksjoee ) f 5 f 6 5 ) g g ) h l 9 9 6 4 h l

Detaljer

Eksamen R2, Våren 2010

Eksamen R2, Våren 2010 Eksame R, Våre 010 Del 1 Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave 1 a) Deriver fuksjoe gitt ved f x x cos 3 x b) Bestem itegralee 1)

Detaljer

Eksamen REA3028 S2, Våren 2010

Eksamen REA3028 S2, Våren 2010 Eksame REA308 S, Våre 010 Del 1 Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave 1 (6 poeg) a) Deriver fuksjoee: 1) f x x lx f x x lx x x f

Detaljer

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 16. mai 2008

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 16. mai 2008 Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL 6. mai 008 EKSAMEN I MATEMATIKK Modul 5 studiepoeg Tid: 5 timer Oppgavesettet er på 8 sider (ikludert formelsamlig). Hjelpemidler:

Detaljer

Positive rekker. Forelest: 3. Sept, 2004

Positive rekker. Forelest: 3. Sept, 2004 Postve rekker Forelest: 3. Sept, 004 V skal tde utover fokusere på å teste om e rekke kovergerer, og skyve formler for summerg bakgrue. Dette er gje ford det første målet vårt er å lære hvorda v ka fe

Detaljer

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>. 1 ECON130: EKSAMEN 013 VÅR - UTSATT PRØVE TALLSVAR. Det abefales at de 9 deloppgavee merket med A, B, teller likt uasett variasjo i vaskelighetsgrad. Svaree er gitt i

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 Høst 205 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer, blokk II Løsigsskisse Oppgave a) X bi(, p) fordi: Udersøker uavhegige delar av DNA-strukture. Fi for kvar del

Detaljer

= x lim n n 2 + 2n + 4

= x lim n n 2 + 2n + 4 NTNU Institutt for matematiske fag TMA400 Matematikk høsten 20 Løsningsforslag - Øving Avsnitt 8.7 6 Potensrekken konvergerer opplagt for x = 0, så i drøftingen nedenfor antar vi x 0. Vi vil bruke forholdstesten

Detaljer

) = P(Z > 0.555) = > ) = P(Z > 2.22) = 0.013

) = P(Z > 0.555) = > ) = P(Z > 2.22) = 0.013 TMA4240 Statistikk Vår 2008 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b5 Løsigsskisse Oppgave 1 a) X 1,...,X 16 er u.i.f. N(80,18 2 ). Setter Y = X. i) P(X 1 >

Detaljer

Potensrekker Forelesning i Matematikk 1 TMA4100

Potensrekker Forelesning i Matematikk 1 TMA4100 Potensrekker Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 1. november 2011 Kapittel 8.7. Potensrekker (fra konvergens av) 3 Konvergens av potensrekker Eksempel For

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK 5.august 2004

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK 5.august 2004 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 0 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK 5.august 2004 Oppgave Foruresig X er e stokastisk variabel som agir

Detaljer

ST1201 Statistiske metoder

ST1201 Statistiske metoder ST20 Statistiske metoder Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsforslag - Eksame desember 2005 Oppgave a Ma beyttet radomisert blokkdesig. I situasjoe har ma k =

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-aturviteskapelige fakultet Eksame i: STK11 Sasylighetsregig og statistisk modellerig. LØSNINGSFORSLAG Eksamesdag: Fredag 9. jui 217. Tid for eksame: 9. 13.. Oppgavesettet

Detaljer

Nynorsk OPPGÅVE 1. a) Deriver funksjonane: b) Finn integrala ved rekning: c) Løys likninga ved rekning, og gi opp svaret som eksakte verdiar: + =

Nynorsk OPPGÅVE 1. a) Deriver funksjonane: b) Finn integrala ved rekning: c) Løys likninga ved rekning, og gi opp svaret som eksakte verdiar: + = OPPGÅVE a) Deriver fuksjoae: ) f ( x) = 3six+ cosx ) gx ( ) = six cosx b) Fi itegrala ved rekig: ) ) e 3e x d x l xd x Tips: l xdx= l xdx c) Løys likiga ved rekig, og gi opp svaret som eksakte verdiar:

Detaljer

1 Mandag 1. februar 2010

1 Mandag 1. februar 2010 Mandag. februar 200 I dag skal vi fortsette med rekkeutviklinger som vi begynte med forrige uke. Vi skal se på litt mer generell rekker og vurdere når de konvergerer, bl.a. gi et enkelt kriterium. Dette

Detaljer

x n+1 = x n f(x n) f (x n ) = x n x2 n 3

x n+1 = x n f(x n) f (x n ) = x n x2 n 3 TMA4 Høst 26 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag 4.2.8 Vi setter f(x) = x 2 3. Da blir f (x) = 2x, og iterasjonen blir f (x n ) = x n x2 n 3 2x n () Siden vi har

Detaljer

Eksamen REA3028 S2, Våren 2012

Eksamen REA3028 S2, Våren 2012 Eksame REA08 S, Våre 0 Del Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave (4 poeg) a) Deriver fuksjoee ) f f ) g e 4 4 4 g e e 4 g e e g e

Detaljer

Seksjonene 9.6-7: Potensrekker og Taylor/Maclaurinrekker

Seksjonene 9.6-7: Potensrekker og Taylor/Maclaurinrekker Seksjonene 9.6-7: Potensrekker og Taylor/Maclaurinrekker Andreas Leopold Knutsen 15. februar 2010 Funksjonsrekker En rekke på formen f n (x) der f n er en funksjon, kalles en funksjonsrekke. For alle x

Detaljer

5 y y! e 5 = = y=0 P (Y < 5) = P (Y 4) = 0.44,

5 y y! e 5 = = y=0 P (Y < 5) = P (Y 4) = 0.44, Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalte oppgaver 9, blokk II Løsigsskisse Oppgave a) Vi lar her Y være atall fugler som kolliderer med vidmølla i løpet av de gitte

Detaljer

Statistikk og økonomi, våren 2017

Statistikk og økonomi, våren 2017 Statistikk og økoomi, våre 07 Obligatorisk oppgave 6 Løsigsforslag Oppgave E terig kastes 0 gager, og det registreres hvor mage 6-ere som oppås i løpet av disse 0 kastee. Vi ka kalle atall 6-ere i løpet

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalt øvig 11 Løsigsskisse Oppgave 1 a) E rimelig estimator for forvetigsverdie µ er gjeomsittet X = 1 X i, som vil være ormalfordelt

Detaljer

Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte.

Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte. Eksame 20052009 REA3024 Matematikk R2 Nyorsk/Bokmål Bokmål Eksamesiformasjo Eksamestid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Bruk av kilder: Vedlegg: Framgagsmåte: Veiledig om vurderige: 5 timer:

Detaljer

Kapittel 8: Estimering

Kapittel 8: Estimering Kaittel 8: Estimerig Estimerig hadler kort sagt om hvorda å aslå verdie å arametre som,, og dersom disse er ukjete. like arametre sier oss oe om oulasjoe vi studerer (dvs om alle måliger av feomeet som

Detaljer

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 22. mai EKSAMEN I MATEMATIKK 2 Modul 1 15 studiepoeng, fjernundervisning

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 22. mai EKSAMEN I MATEMATIKK 2 Modul 1 15 studiepoeng, fjernundervisning Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL mai 007 EKSAMEN I MATEMATIKK Modul 5 studiepoeg, fjerudervisig Tid: 5 timer Oppgavesettet er på 9 sider (ikludert formelsamlig)

Detaljer

Polynominterpolasjon

Polynominterpolasjon Polyomiterpolasjo Ae Kværø March 5, 2018 1 Problemstillig Gitt + 1 pukter (x i, y i ) i=0 med distikte x-verdier (dvs. x i = x j hvis i = j). Fi et polyom p(x) av lavest mulig grad slik at p(x i ) = y

Detaljer

MOT310 Statistiske metoder 1, høsten 2011

MOT310 Statistiske metoder 1, høsten 2011 MOT310 Statistiske metoder 1, høste 2011 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 24. august, 2011 Bjør H. Auestad Itroduksjo og repetisjo 1 / 32 Repetisjo; 9.1,

Detaljer

f(x)dx = F(x) = f(u)du. 1 (4u + 1) du = 3 0 for x < 0, 2 + for x [0,1], 1 for x > 1. = 1 F 4 = P ( X > 1 2 X > 1 ) 4 X > 1 ) =

f(x)dx = F(x) = f(u)du. 1 (4u + 1) du = 3 0 for x < 0, 2 + for x [0,1], 1 for x > 1. = 1 F 4 = P ( X > 1 2 X > 1 ) 4 X > 1 ) = TMA Statistikk Norges tekisk-aturviteskapelige uiversitet Istitutt for ateatiske fag Løsigsforslag - Eksae deseber 9 Oppgave a Besteer k ved å kreve fxdx =, fxdx = De kuulative fordeligsfuksjoe Fx er gitt

Detaljer

Seksjonene 9.6-7: Potensrekker og Taylor/Maclaurinrekker

Seksjonene 9.6-7: Potensrekker og Taylor/Maclaurinrekker Seksjonene 9.6-7: Potensrekker og Taylor/Maclaurinrekker Andreas Leopold Knutsen 14. februar 2012 Funksjonsrekker En rekke på formen fn(x) der fn er en funksjon, kalles en n=1 funksjonsrekke. For alle

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 TMA44 Statistikk Høst 16 Nrges tekisk-aturviteskapelige uiversitet Istitutt fr matematiske fag Abefalt øvig 7 Løsigsskisse Oppgave 1 a) Reger først ut de kumulative frdeligsfuksje til X: F X (x) = Z x

Detaljer

2.1 Polynomdivisjon. Oppgave 2.10

2.1 Polynomdivisjon. Oppgave 2.10 . Polyomdivisjo Oppgave. ( 5 + ) : = + + ( + ):( ) 6 + 6 8 8 = + + c) ( + 5 ) : = + 6 6 d) + + + = + + = + + + 8+ ( ):( ) + + + Oppgave. ( + 5+ ):( ) 5 + + = + ( 5 ): 9 + + + = + + + 5 + 6 9 c) ( 8 66

Detaljer

Løsningsforslag. Avgjør om følgende rekker konvergerer. Finn summen til de rekkene som konvergerer. a) 2 2n /3 n

Løsningsforslag. Avgjør om følgende rekker konvergerer. Finn summen til de rekkene som konvergerer. a) 2 2n /3 n Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering Innleveringsfrist Tirsdag. februar 203 kl. 0:30 Antall oppgaver: 9 Løsningsforslag Avgjør om følgende rekker konvergerer. Finn summen

Detaljer

EKSAMEN I TMA4245 Statistikk

EKSAMEN I TMA4245 Statistikk Noregs tekisk aturvitskaplege uiversitet Istitutt for matematiske fag Side 1 av 5 Fagleg kotakt uder eksame: Turid Follestad (98 06 68 80/73 59 35 37) Hugo Hammer (45 21 01 84/73 59 77 74) Eirik Mo (41

Detaljer

S2 kapittel 1 Rekker Utvalgte løsninger oppgavesamlingen

S2 kapittel 1 Rekker Utvalgte løsninger oppgavesamlingen Utvlgte løsiger oppgvesmlige S kpittel Rekker Utvlgte løsiger oppgvesmlige 0 Vi k prøve med differsemetode Differsee mellom leddee utover er 4,6,8, så det er rimelig t differse mellom femte og fjerde ledd

Detaljer

2 Algebra R2 Oppgaver

2 Algebra R2 Oppgaver 2 Algebra R2 Oppgaver 2 Tallfølger 2 22 Tallrekker 8 23 Uedelige geometriske rekker 5 24 Iduksjosbevis 20 25 Eksamesoppgaver 2 Øvigsoppgaver Stei Aaese og Olav Kristese/NDLA Eksamesoppgavee er hetet fra

Detaljer

Estimering 2. -Konfidensintervall

Estimering 2. -Konfidensintervall Estimerig 2 -Kofidesitervall Dekkes av kap. 9.4-9.5, 9.10, 9.12 og forelesigsotatee. Dersom forsøket gjetas mage gager vil (1 α)100% av itervallee [ ˆΘ L, ˆΘ U ] ieholde de ukjete parametere θ (som er

Detaljer

Løsning eksamen S2 våren 2010

Løsning eksamen S2 våren 2010 Løsig eksame S våre 010 Oppgave 1 a) 1) f( ) l 1 f ( ) l l l l ( l 1) ) g ( ) 3e g( ) 3e 3e 6e b) Rekke er geometrisk med Rekke kovergerer. Summe er a1 1 1 s 1 k 1 1 1 1 1 k og oppfller dermed kravet 1

Detaljer

EKSAMENSOPPGAVE. Mat-1060 Beregningsorientert programmering og statistikk

EKSAMENSOPPGAVE. Mat-1060 Beregningsorientert programmering og statistikk Fakultet for aturviteskap og tekologi EKSAMENSOPPGAVE Eksame i: (Kode og av) Dato: 05.1.017 Klokkeslett: 09:00-13:00 Sted: Åsgårdv 9 Mat-1060 Beregigsorietert programmerig og statistikk Tillatte hjelpemidler:

Detaljer