= x lim n n 2 + 2n + 4

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "= x lim n n 2 + 2n + 4"

Transkript

1 NTNU Institutt for matematiske fag TMA400 Matematikk høsten 20 Løsningsforslag - Øving Avsnitt Potensrekken konvergerer opplagt for x = 0, så i drøftingen nedenfor antar vi x 0. Vi vil bruke forholdstesten for å finne for hvilke x rekken konvergerer absolutt. ( ) a n+ x n+ n lim = lim n a n n x n n 2 + 2n + 4 n = x lim n n 2 + 2n + 4 = x lim n + 3 n n + 4 n 2 = x Vi har dermed at rekken divergerer for x > og konvergerer absolutt for x < slik at konvergensradien R =. Rekken konvergerer i intervallet < x < fordi den konvergerer absolutt her. Vi må i tillegg sjekke punktene x = og x =. x = gir rekken n som divergerer n 2 +3 ( ) n n 2 +3 (sammenlign med n n ). x = gir den alternerende rekken n som konvergerer (bruk Leibniz teorem). Vi har med andre ord at rekken konvergerer i intervallet < x, absolutt for < x < og betinget for x =. 8 Potensrekken konvergerer opplagt for x = 0, så i drøftingen nedenfor antar vi x 0. Vi vil bruke forholdstesten for å finne for hvilke x rekken konvergerer absolutt. ( a n+ 4 n x n+ lim = lim n a n n 4n+ x n n + n n 2 ) + n 2 + 2n + 2 = x 4 lim + n n lim n + n n + 2 n 2 = x 4 = x 4 Vi har dermed at rekken divergerer for x 4 > og konvergerer absolutt for x 4 < slik at konvergensradien R = 4. Rekken konvergerer i intervallet 4 < x < 4 fordi den konvergerer absolutt her. Vi må i tillegg sjekke punktene x = 4 og x = 4. x = 4 gir den alternerende rekken ( ) n n n=0 n 2 + som konvergerer (bruk Leibniz teorem). x = 4 gir den divergente rekken n n=0 n 2 + (sammenlign med n n ). Vi har med andre ord at rekken konvergerer i intervallet 4 x < 4, absolutt for 4 < x < 4 og betinget for x = 4. Avsnitt Vi får oppgitt f(x) = x. Vi deriverer f og får f (k) (x) = ( x) k+ lfov 4. november 20 Side

2 I punktet x = 0 blir dette Maclaurinrekken generert av f blir da f (k) (0) = f (k) (0) x k = x k 24 f(x) = 3x 5 x 4 + 2x 3 + x 2 2 f () (x) = 5x 4 4x 3 + 6x 2 + 2x f (2) (x) = 60x 3 2x 2 + 2x + 2 f (3) (x) = 80x 2 24x + 2 f (4) (x) = 360x 24 f (5) (x) = 360 f (k) (x) = 0, for k 6 Sett inn x = a =. f( ) = 7 f () ( ) = 23 f (2) ( ) = 82 f (3) ( ) = 26 f (4) ( ) = 384 f (5) ( ) = 360 f (k) ( ) = 0, for k 6 Taylorrekken generert av f i punktet x = blir da f (k) (a) (x a) k = (x + ) 4 (x + ) (x + ) 3 6 (x + ) (x + ) 5 Merk at hvis man ganger ut dette polynomet vil man ende opp med f(x). Avsnitt Vi rekkeutvikler eksponentialfunksjonen e u om u = 0 og får e u = + u + 2 u2 + 6 u u = Sett inn u = t 2 og multipliser med t 2 for å få integranden t 2 e t2 = t 2 t t6 6 t t0... = u k, u R. ( ) k t 2(k+). lfov 4. november 20 Side 2

3 Denne rekken integreres leddvis: F (x) = x 0 t 2 e t2 dt = 3 x3 5 x5 + 4 x7 54 x x 560 x = ( ) k x 2k+3 (2k + 3). Observer at dette er en alternerende rekke som oppfyller kravene i Th. 4, s. 539, for 0 x. Av feilestimatformelen for alternerende rekker (Th. 5 s.539) følger at F (x) P 2n+3 (x) ( )n+ x 2(n+)+3 (2(n+)+3)(n+)! (2(n+)+3)(n+)!, der P n(x) er Maclaurin-polynomet av orden n. Den siste ulikheten følger av at x. Mao.: F (x) P 3 (x) /4 F (x) P 5 (x) /54 F (x) P 7 (x) /264 F (x) P (x) /560 < 0 3. Polynomet P (x) tilnærmer F (x) med feil mindre enn 0 3 i intervallet [0, ]. 32 Vi kjenner rekkeutviklingen av sin x om x = 0: Det følger at sin θ = θ θ3 3! + θ5 5! θ7 7! + = n=0 ( ) n θ 2n+ (2n + )! sin θ θ + (θ 3 /6) θ θ3 3! lim θ 0 θ 5 = lim + θ5 5! θ7 7! + θ + (θ3 /6) θ 0 θ 5 = lim( θ 0 5! θ2 7! + ) = 5! = Vi kjenner Maclaurin-rekka til cos x og dermed til f(x) = cos 2x ved å erstatte x med 2x. Rekka blir da ( ) j 2 2j x 2j. Ved å bruke identiteten som er gitt i oppgava følger at Maclaurinrekka til sin 2 x er lik rekka til cos 2x 2 2 : 2 2 ( ) j 2 2j x 2j = ( ) j+ 2 2j x 2j. Ved å derivere rekka leddvis får en at Maclaurinrekka til (sin 2 x) = 2 sin x cos x er lik ( ) j+ 2 2j 2j x 2j = ( ) j+ 2 2j x 2j. (2j )! lfov 4. november 20 Side 3

4 Maclaurin-rekka til g(x) = sin 2x finner vi på samme måte som vi fant rekka til cos 2x og får ( ) j 2 2j+ x 2j+. (2j + )! En kan lett se at denne rekka er lik rekka ovenfor ved å endre summasjonsgrensa: innfør k = j Fra oppgave 37 vet vi at Maclaurin-rekkene til cos 2x og sin 2 x er ( ) j 2 2j x 2j og ( ) j+ 2 2j x 2j. Ved å bruke identiteten som er gitt i oppgava følger det at Maclaurinrekka til cos 2 x er lik Maclaurin-rekka til cos 2x + sin 2 x: ( ) j 2 2j x 2j + ( ) j+ 2 2j x 2j = + = + = + ( ) j 2 2j x 2j + ( ) j+ 2 2j ( ) j 2 2j + ( ) j+ 2 2j ( ) j 2 2j x 2j. x 2j x 2j 40 Vi skal vise at dersom grafen til en to ganger deriverbar funksjon f(x) har et vendepunkt i x = a, så er lineariseringen av f i x = a også den kvadratiske tilnærmingen av f i x = a. Den kvadratiske tilnærmingen av f i x = a er gitt ved P 2 (x) = f(a) + f (a)(x a) + f (x) 2! (x a) 2. Dersom f har et vendepunkt i x = a, har vi at f (a) = 0, og P 2 (x) = f(a) + f (a)(x a) = P (x), som er lineariseringen av f i x = a. Avsnitt Vi bruker formelen for binomiske rekker. ( + x 2 ) 3 = + k= 8 Formelen for binomiske rekker gir oss for x 2 < ( ( x 2 ) ) 2 = ( x 2 ) 2 = + Vi multipliserer denne med 2x. ( ) 3 (x 2 ) k = k 3 x x4 4 8 x k= 2x ( x 2 ) 2 = 2x + 4x3 + 6x 5 + 8x 7 + 0x 9 + = ( ) 2 ( x 2 ) k = + 2x 2 + 3x 4 + 4x 6 + 5x k 2(k + )x 2k+ Alternativt kan man se at ( ( x 2 ) ) = ( x 2 ) 2. Vi kan dermed komme fram til det samme svaret ved å derivere rekkeutviklingen til ( x 2 ). lfov 4. november 20 Side 4

5 Eksamensoppgaver 64 Vi vil finne konvergensintervallet til rekka Vi har at og u n = n + n x n. u n+ u n = n + n x n+ n + + n + x n = lim u n+ = x. n u n n + n n + + n + x, Det følger fra forholdstesten at rekka konvergerer absolutt når x < og divergerer når x >. Til slutt sjekker vi endepunktene for intervallet. La x =. Vi ser da på rekka n + n 2n. Ved sammenligningstesten ser vi at rekka divergerer når x =. La så x =. For rekka ( ) n ( ) n a n = n + n har vi at alle ledd er positive, a n+ a n for alle n, og lim n a n = 0. Altså konvergerer denne rekka (betinget) ved testen for alternerende rekker. 65 Den oppgitte potensrekken gir 0 e x dx = x 0 ( ( ) e x = n xn n! ( ) n xn n! n=0 ) dx = ( ) n n! n = 2! 2 + 3! 3 4! 4 + som er en alternerende rekke der leddene avtar i absoluttverdi. Feilestimatet for alternerende rekker sier derfor at vi kun trenger å summere ledd i rekken til det neste leddet er mindre enn ønsket nøyaktighet. Vi krever altså /(n! n) < 0,002, som er ekvivalent med n! n > 500. Her er en liten tabell: n n! n! n Siden det femte leddet i rekken er lite nok, trenger vi altså bare summere de første fire leddene i rekken, og får tilnærmingen L = 2! 2 + 3! 3 4! 4 = ,795. lfov 4. november 20 Side 5

6 67 a) La f(x) = arctan(x) x 2. Vi merker oss at f( 3 ) = π 6 3 > 2 3 > 0 og 2 f() = 2 < 0. Da f er en kontinuerlig funksjon følger det fra skjæringssetningen at det finnes minst ett positivt punkt c [ 3, ] slik at f(c) = 0. La g(x) = arctan(x) og h(x) = x 2. Vi deriverer g og finner at g (x) = + x 2, g (x) = 2x + x 2. Vi ser at g (x) 0 for alle x > 0. Altså er g(x) en konkav funksjon på intervallet [0, ). Om funksjonen h(x) vet vi at h (x) = 2 > 0 for alle x. Altså er h(x) en konveks funksjon på intervallet [0, ). En konkav og en konveks funksjon kan ha 0, eller 2 skjæringspunkter, men ikke flere (ved Rolles teorem). Vi vet at det finnes et positivt tall c slik at g(c) = h(c). Vi har også at g(0) = h(0). Altså har vi lokalisert alle mulige skjæringspunkter for g(x) = arctan(x) og h(x) = x 2 på intervallet [0, ). b) Fra oppgave a) ser vi at g(0) = 0, g (0) = og g (0) = 0. Vi deriverer g nok en gang og finner g (3) 2 (x) = ( + x 2 ) 2 + 8x2 ( + x 2 ) 3. Altså har vi at g (3) (0) = 2, og Taylorpolynomet omkring 0 av grad 3 for g(x) = arctan(x) er gitt ved T 3 (x) = x 2 3! x3 = x 3 x3. Vi finner et estimat for det positive skjæringspunktet mellom g(x) og h(x) ved å løse T 3 (x) = x 3 x3 = h(x) = x 2. Dette gir ligningen som har positiv løsning 3 x(x2 + 3x 3) = 0, x = 2 ( 3 + 2) lfov 4. november 20 Side 6

7 n x n Tabell : Eksamensoppgave 67c) c) Vi har at f (x) = + x 2 2x. Altså er Newtons iterasjonsalgoritme gitt ved ( ) x n+ = x n (arctan(x n ) x 2 n) + x 2 2x n n = x n (arctan(x n) x 2 n)(x 2 n + ) 2(x 2. n + ) Tabell viser x, x 2 og x 3 ved bruk av startverdien x 0 = lfov 4. november 20 Side 7

TMA4100 Matematikk1 Høst 2009

TMA4100 Matematikk1 Høst 2009 TMA400 Matematikk Høst 2009 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 2 8926 Vi serieutvikler eksponentialfunksjonen e u om u 0 og får e u + u +

Detaljer

Konvergenstester Forelesning i Matematikk 1 TMA4100

Konvergenstester Forelesning i Matematikk 1 TMA4100 Konvergenstester Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 1. november 2011 Kapittel 8.6. Alternerende rekker Absolutt og betinget konvergens 3 Alternerende rekker

Detaljer

NTNU Institutt for matematiske fag. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 8. Oppgave 1. Oppgave 2

NTNU Institutt for matematiske fag. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 8. Oppgave 1. Oppgave 2 NTNU Institutt for matematiske fag TMA4 Matematikk høsten Løsningsforslag - Øving 8 Oppgave b. Vi har at f() > og f(π/) π /6

Detaljer

Potensrekker Forelesning i Matematikk 1 TMA4100

Potensrekker Forelesning i Matematikk 1 TMA4100 Potensrekker Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 11. november 2011 Kapittel 8.8. Taylorrekker og Maclaurinrekker 3 Taylor-polynomer Definisjon (Taylorpolynomet

Detaljer

Løsningsforslag til Mat112 Obligatorisk Oppgave, våren Oppgave 1

Løsningsforslag til Mat112 Obligatorisk Oppgave, våren Oppgave 1 Løsningsforslag til Mat2 Obligatorisk Oppgave, våren 206 Oppgave Avgjør om følgende rekker er konvergente: (a) n + n n + n + Løsning: rekken lim : n n + n n + n + Vi bruker grensesammenligningstesten mhp.

Detaljer

Løsningsforslag Eksamen i MA1102/MA6102 Grunnkurs i analyse II 17/

Løsningsforslag Eksamen i MA1102/MA6102 Grunnkurs i analyse II 17/ Løsningsforslag Eksamen i MA0/MA60 Grunnkurs i analyse II 7/ 008 Oppgave y = y +, y(0) = 0 a) n n y n y = n y n + y = y y n+ 0 0 0 / / / / / 5/4 / 5/8 9/8 9/8 så Eulers metode med steglengde / gir oss

Detaljer

Oversikt over Matematikk 1

Oversikt over Matematikk 1 1 Oversikt over Matematikk 1 Induksjon Grenser og kontinuitet Skjæringssetningen Eksistens av ekstrempunkt Elementære funksjoner Derivasjon Sekantsetningen Integrasjon Differensialligninger Kurver i planet

Detaljer

x 2 = x 1 f(x 1) (x 0 ) 3 = 2 x 2 n n x 1 n 0 0, , , , , , , , , , , 7124

x 2 = x 1 f(x 1) (x 0 ) 3 = 2 x 2 n n x 1 n 0 0, , , , , , , , , , , 7124 NTNU Institutt for matematiske fag TMA4100 Matematikk 1 høsten 011 Løsningsforslag - Øving 4 Avsnitt 47 3 La f(x) = x 4 +x 3 med f (x) = 4x 3 +1 Med x 0 = 1 får ein med Newtons metode at Med x 0 = 1 får

Detaljer

Løsningsforslag eksamen i TMA4100 Matematikk desember Side 1 av 7

Løsningsforslag eksamen i TMA4100 Matematikk desember Side 1 av 7 Løsningsforslag eksamen i TMA4 Matematikk 2. desember 23. Side av 7 Oppgave Løs initialverdiproblemet y (2/x)y, y() 2. Løsning: y (2/x)y er en førsteordens lineær differensialligning. Vi finner en løsning

Detaljer

Rekker, Konvergenstester og Feilestimat

Rekker, Konvergenstester og Feilestimat NTNU December 8, 2012 Oversikt 1 2 3 4 5 6 For å forstå, må vi først forstå potensrekker For å forstå potensrekker, må vi først forstå rekker. For å forstå rekker, må vi først forstå følger. Definisjon

Detaljer

MA1102 Grunnkurs i analyse II Vår 2014

MA1102 Grunnkurs i analyse II Vår 2014 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag MA Grunnkurs i analyse II Vår 4 Løsningsforslag Øving 9 7.3.b Med f() = tan +, så er f () = cos () på intervallet ( π/, π/).

Detaljer

Taylor- og Maclaurin-rekker

Taylor- og Maclaurin-rekker Taylor- og Maclaurin-rekker Forelest: Okt, 004 Potensrekker er funksjoner Vi så at noen funksjoner vi kjenner på andre måter kan skrives som funksjoner, for eksempel: = + t + t + t 3 + + t n + t e x =

Detaljer

Seksjonene 9.6-7: Potensrekker og Taylor/Maclaurinrekker

Seksjonene 9.6-7: Potensrekker og Taylor/Maclaurinrekker Seksjonene 9.6-7: Potensrekker og Taylor/Maclaurinrekker Andreas Leopold Knutsen 14. februar 2012 Funksjonsrekker En rekke på formen fn(x) der fn er en funksjon, kalles en n=1 funksjonsrekke. For alle

Detaljer

Matematikk 1. Oversiktsforelesning. Lars Sydnes November 25, Institutt for matematiske fag

Matematikk 1. Oversiktsforelesning. Lars Sydnes November 25, Institutt for matematiske fag Matematikk 1 Oversiktsforelesning Lars Sydnes sydnes@math.ntnu.no Institutt for matematiske fag November 25, 2009 LS (IMF) tma4100rep November 25, 2009 1 / 21 Matematikk 1 Hovedperson Relle funksjoner

Detaljer

Derivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 2. september 2011

Derivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 2. september 2011 Derivasjon Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 2. september 20 Kapittel 3.7. Derivasjon av inverse funksjoner 3 Derivasjon av inverse til deriverbare funksjoner

Detaljer

UNIVERSITETET I BERGEN

UNIVERSITETET I BERGEN Bokmål UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Løsningsforslag til Eksamen i emnet MAT - Grunnkurs i matematikk I Torsdag 22. mai 28, kl. 9-4. Dette er kun et løsningsforslag.

Detaljer

Seksjonene 9.6-7: Potensrekker og Taylor/Maclaurinrekker

Seksjonene 9.6-7: Potensrekker og Taylor/Maclaurinrekker Seksjonene 9.6-7: Potensrekker og Taylor/Maclaurinrekker Andreas Leopold Knutsen 15. februar 2010 Funksjonsrekker En rekke på formen f n (x) der f n er en funksjon, kalles en funksjonsrekke. For alle x

Detaljer

1.1.1 Rekke med konstante ledd. En rekke med konstante ledd er gitt som. a n (1) n=m

1.1.1 Rekke med konstante ledd. En rekke med konstante ledd er gitt som. a n (1) n=m Formelsamling og tabeller FO020E Matte 2000 for elektroprogrammet 1 Matematikk 1.1 Denisjoner av ulike typer polynomer og rekker 1.1.1 Rekke med konstante ledd En rekke med konstante ledd er gitt som a

Detaljer

Potensrekker Forelesning i Matematikk 1 TMA4100

Potensrekker Forelesning i Matematikk 1 TMA4100 Potensrekker Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 15. november 2011 Kapittel 8.9. Konvergens av Taylorrekker 3 i 3 i Løs likningen x 2 + 1 = 0 3 i Løs likningen

Detaljer

Oppsummering TMA4100. Kristian Seip. 26./28. november 2013

Oppsummering TMA4100. Kristian Seip. 26./28. november 2013 Oppsummering TMA4100 Kristian Seip 26./28. november 2013 Forelesningene 26./28. november Disse forelesningene er et forsøk på å se de store linjer og sammenhengen mellom de ulike deltemaene i TMA4100 delvis

Detaljer

Løsningsforslag. Avgjør om følgende rekker konvergerer. Finn summen til de rekkene som konvergerer. a) 2 2n /3 n

Løsningsforslag. Avgjør om følgende rekker konvergerer. Finn summen til de rekkene som konvergerer. a) 2 2n /3 n Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering Innleveringsfrist Tirsdag. februar 203 kl. 0:30 Antall oppgaver: 9 Løsningsforslag Avgjør om følgende rekker konvergerer. Finn summen

Detaljer

Potensrekker. Binomialrekker

Potensrekker. Binomialrekker Potensrekker Potensrekker er rekker på formen: Potensrekker kan brukes på en rekke områder for å finne tilnærmede eller eksakte løsninger på problemer som ellers kanskje må løses numerisk eller krever

Detaljer

SIF5003 Matematikk 1, 5. desember 2001 Løsningsforslag

SIF5003 Matematikk 1, 5. desember 2001 Løsningsforslag SIF5003 Matematikk, 5. desember 200 Oppgave For den første grensen får vi et /-uttrykk, og bruker L Hôpitals regel markert ved =) : lim 0 + ln ln sin 0 + cos sin 0 + cos sin ) =. For den andre får vi et

Detaljer

1 Mandag 1. februar 2010

1 Mandag 1. februar 2010 Mandag. februar 200 I dag skal vi fortsette med rekkeutviklinger som vi begynte med forrige uke. Vi skal se på litt mer generell rekker og vurdere når de konvergerer, bl.a. gi et enkelt kriterium. Dette

Detaljer

Følger og rekker. Department of Mathematical Sciences, NTNU, Norway. November 10, 2014

Følger og rekker. Department of Mathematical Sciences, NTNU, Norway. November 10, 2014 Department of Mathematical Sciences, NTNU, Norway November 10, 2014 Forelesning (03.01.2014): kap 9.1 og 9.2 Beskrivelse av følger eksempler og definisjon Egenskaper med følger Grenseverdi for følger (og

Detaljer

Løsningsforslag eksamen 18/ MA1102

Løsningsforslag eksamen 18/ MA1102 Løsningsforslag eksamen 8/5 009 MA0. Dette er en alternerende rekke, der leddene i størrelse går monotont mot null, så alternerenderekketesten gir oss konvergens. (Vi kan også vise konvergens ved å vise

Detaljer

Oppsummering TMA4100. Kristian Seip. 17./18. november 2014

Oppsummering TMA4100. Kristian Seip. 17./18. november 2014 Oppsummering TMA4100 Kristian Seip 17./18. november 2014 Forelesningene 17./18. november Disse forelesningene er et forsøk på å se de store linjer og sammenhengen mellom de ulike deltemaene i TMA4100 delvis

Detaljer

e x = 1 + x + x2 2 + R 2(x), = e 3! ( 1) n x n = n! n=0 y n+1 = y 0 + f(t, y n (t)) dt 1 dt = 1 + x (1 + t) dt = 1 + x x2

e x = 1 + x + x2 2 + R 2(x), = e 3! ( 1) n x n = n! n=0 y n+1 = y 0 + f(t, y n (t)) dt 1 dt = 1 + x (1 + t) dt = 1 + x x2 NTNU Institutt for matematiske fag TMA400 Matematikk høsten 20 Løsningsforslag - Øving 2 Avsnitt 8.9 23 Ved Taylors formel (med a = 0) har vi at der R 2 (x) = f (n+) (c) (n+)! e x = + x + x2 2 + R 2(x),

Detaljer

UNIVERSITETET I BERGEN

UNIVERSITETET I BERGEN UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i emnet MAT - Grunnkurs i Matematikk II Torsdag 4. juni 05, kl. 09:00-4:00 Bokmål Tillatte hjelpemiddel: Enkel kalkulator i samsvar

Detaljer

Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010

Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010 Oppgave 1 Løs ulikheten x + 6 5 x + 2 Strategien er å

Detaljer

Oppsummering TMA4100. Kristian Seip. 16./17. november 2015

Oppsummering TMA4100. Kristian Seip. 16./17. november 2015 Oppsummering TMA4100 Kristian Seip 16./17. november 2015 Forelesningene 17./18. november Denne forelesningen beskriver de store linjer og sammenhengen mellom de ulike deltemaene i TMA4100 noen tips for

Detaljer

Løsningsforslag: Eksamen i MAT111 - Grunnkurs i Matematikk I

Løsningsforslag: Eksamen i MAT111 - Grunnkurs i Matematikk I Universitetet i Bergen Matematisk institutt Bergen, 8. desember 006. Bokmål Løsningsforslag: Eksamen i MAT - Grunnkurs i Matematikk I Mandag desember 8, 006, kl. 09-4. Oppgave Gitt funksjonen f(x) = ln(

Detaljer

Første og andrederivasjons testen Anvendt optimering Forelesning i Matematikk 1 TMA4100

Første og andrederivasjons testen Anvendt optimering Forelesning i Matematikk 1 TMA4100 Første og andrederivasjons testen Anvendt optimering Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 13. september 2011 Kapittel 4.3. Monotone funksjoner og førstederivasjons-testen

Detaljer

SIF5003 Matematikk 1, 6. desember 2000 Løsningsforslag

SIF5003 Matematikk 1, 6. desember 2000 Løsningsforslag SIF53 Matematikk 1, 6. desember 2 Oppgave 1 Dreid om y aksen: iv). Dreid om x = 1: iii). Oppgave 2 Om bredden på rektanglet er 2x og høyden er y finner vi for det ukjente arealet A og den kjente omkretsen

Detaljer

Ekstremverdier Mellomverdisatsen Forelesning i Matematikk 1 TMA4100

Ekstremverdier Mellomverdisatsen Forelesning i Matematikk 1 TMA4100 Ekstremverdier Mellomverdisatsen Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 9. september 2011 Kapittel 4.1. Funksjoners ekseremverdier fra og med lokale ekstrema

Detaljer

TMA4100 Matematikk1 Høst 2008

TMA4100 Matematikk1 Høst 2008 TMA400 Matematikk Høst 008 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 4 4..3 Vi skal finne absolutt maksimum og absolutt minimum verdiene for funksjonen

Detaljer

Løsningsforslag til Eksamen i MAT111

Løsningsforslag til Eksamen i MAT111 Universitetet i Bergen Matematisk institutt Bergen, 9. desember 25. Bokmål Løsningsforslag til Eksamen i MAT Mandag 9. desember 25, kl. 9-. Dette er kun et løsningsforslag. Oppgave a) Betrakt de to komplekse

Detaljer

TMA4100 Matematikk 1, 4. august 2014 Side 1 av 12. x 2 3x +2. x 2

TMA4100 Matematikk 1, 4. august 2014 Side 1 av 12. x 2 3x +2. x 2 TMA4 Matematikk, 4. august 24 Side av 2 Oppgave Den rasjonale funksjonen p er definert som p(x) x2 3x +2 3x 2 5x +2. Finn de tre grenseverdiene lim xæ p(x), lim xæ p(x) og lim xæœ p(x). Løsning: x 2 3x

Detaljer

Institutionen för Matematik, KTH

Institutionen för Matematik, KTH Institutionen för Matematik, KTH Lösningsforslag till tentamen, 200-2-7, kl. 8.00-.00. 5B04, Envariabel. Uppgift. Den karakteristiske ligningen r 2 r + 2 0 kan omskrives som (r )(r 2) 0. Den generelle

Detaljer

Finne løsninger på ligninger numerisk: Newton-Raphson metoden og Fikspunktiterasjon MAT111, høsten 2017

Finne løsninger på ligninger numerisk: Newton-Raphson metoden og Fikspunktiterasjon MAT111, høsten 2017 Finne løsninger på ligninger numerisk: Newton-Raphson metoden og Fikspunktiterasjon MAT111, høsten 2017 Andreas Leopold Knutsen 4. oktober 2017 Problem og hovedidé Problem: Finn løsning(er) r på en ligning

Detaljer

MAT jan jan feb MAT Våren 2010

MAT jan jan feb MAT Våren 2010 MAT 1012 Våren 2010 Mandag 25. januar 2010 Forelesning Vi fortsetter med å se på det bestemte integralet, bl.a. på hvordan vi kan bruke numeriske beregninger til å bestemme verdien når vi ikke nødvendigvis

Detaljer

Løsningsforslag til prøveeksamen i MAT 1110, våren 2006

Løsningsforslag til prøveeksamen i MAT 1110, våren 2006 Løsningsforslag til prøveeksamen i MAT, våren 6 Oppgave : a) Vi har C 5 3 II+( )I a + 3a 3a III+I 3 II 3 3 3 3 a + 3a 3a 3 a + 3a 3a III+II I+( ))II 3 3 3 a + 3a 3a 3 3 3 a + 3a 4 3 3a a + 3a 4 3 3a b)

Detaljer

Konvergenstester Forelesning i Matematikk 1 TMA4100

Konvergenstester Forelesning i Matematikk 1 TMA4100 Konvergenstester Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 1. november 2011 Kapittel 8.3. Integrasjonstesten 3 Ikke-avtagende delsummer Husker at n-te delsum av

Detaljer

Deleksamen i MAT111 - Grunnkurs i Matematikk I

Deleksamen i MAT111 - Grunnkurs i Matematikk I Bergen, oktober. 2004. Løsningsforslag til Deleksamen i MAT - Grunnkurs i Matematikk I Mandag. oktober 2004, kl. 09-2. Oppgave Beregn grensen f.eks. ved hjelp av l Hôpitals regel. lim x ln x x Vi ser at

Detaljer

1+2 x, dvs. løse ligningen mhp. x. y = 100. y(1+2 x ) = = 2 x = y. xln2 = ln 100 y. x = 1 ln2 ln. f 1 (x) = 1 ln2 ln x

1+2 x, dvs. løse ligningen mhp. x. y = 100. y(1+2 x ) = = 2 x = y. xln2 = ln 100 y. x = 1 ln2 ln. f 1 (x) = 1 ln2 ln x NTNU Institutt for matematiske fag TMA400 Matematikk Høsten 20 Løsningsforslag - Øving Avsnitt.5 59 a) Vi skal invertere y f(x) 00 +2 x, dvs. løse ligningen mhp. x. y 00 +2 x y(+2 x ) 00 2 x 00 00 y y

Detaljer

Flere anvendelser av derivasjon

Flere anvendelser av derivasjon Flere anvendelser av derivasjon Department of Mathematical Sciences, NTNU, Norway September 30, 2014 Forelesning 17.09.2014 Fikspunkt-iterasjon Newtons metode Metoder for å finne nullpunkter av funksjoner:

Detaljer

TMA4100 Matematikk 1 for MTDESIG, MTIØT-PP, MTMART og MTPROD høsten 2010

TMA4100 Matematikk 1 for MTDESIG, MTIØT-PP, MTMART og MTPROD høsten 2010 TMA4100 Matematikk 1 for MTDESIG, MTIØT-PP, MTMART og MTPROD høsten 2010 Toke Meier Carlsen Institutt for matematiske fag 28. oktober 2010 2 Fremdriftplan I går 7.7 Uegentlige integraler 8.1 Følger I dag

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4 Matematikk Høst 24 Løsningsforslag Øving 9 4.3.4 Vi bruker Taylor-polynom til å løse denne oppgaven. Taylor-polynomet (Maclaurinpolynomet)

Detaljer

Velkommen til eksamenskurs i matematikk 1

Velkommen til eksamenskurs i matematikk 1 Velkommen til eksamenskurs i matematikk 1 Haakon C. Bakka Institutt for matematiske fag 4.-5. desember 2010 Program I dag og i morgen skal vi holde på fra 10-16 med en pause fra 13-14. Vi skal gjennom:

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4 Matematikk Høst 4 Løsningsforslag Øving 5.7.4 Vi observerer at både y = cos πx 4 og y = x er like funksjoner. Det vil si

Detaljer

Løsningsforslag til eksamen i MAT1110, 13/6-07

Løsningsforslag til eksamen i MAT1110, 13/6-07 Løsningsforslag til eksamen i MAT, 3/6-7 Oppgaveteksten er gjengitt i kursiv Oppgave : a) Finn de stasjonære (kritiske) punktene til f(x, ) = x + 4x Løsning: Finner først de partiellderiverte: (x, ) x

Detaljer

Løsningsforslag Eksamen M100 Høsten 1998

Løsningsforslag Eksamen M100 Høsten 1998 Løsningsforslag Eksamen M00 Høsten 998 Oppgave { x y = f(x) = + x + a hvis x ln( + x ) x hvis < x lim f(x) = f( ) = + a = a x lim f(x) = ln( + x ( ) ) ( ) = ln + For at f(x) skal være kont. i x = må lim

Detaljer

Løsningsforslag for eksamen i brukerkurs i matematikk A (MA0001)

Løsningsforslag for eksamen i brukerkurs i matematikk A (MA0001) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 8 Løsningsforslag for eksamen i brukerkurs i matematikk A (MA1) Bokmål Tirsdag 1. desember 11 Tid: 9: 1: (4 timer)

Detaljer

Generelle teoremer og definisjoner MA1102 Grunnkurs i analyse II - NTNU

Generelle teoremer og definisjoner MA1102 Grunnkurs i analyse II - NTNU Generelle teoremer og definisjoner MA110 Grunnkurs i analyse II - NTNU Lærebok: Kalkulus, Universitetsforlaget, 006, 3. utgave av Tom Lindstrøm Jonas Tjemsland 9. april 015 3 Komplekse tall 3.1 Regneregler

Detaljer

Arne B. Sletsjøe. Oppgaver, MAT 1012

Arne B. Sletsjøe. Oppgaver, MAT 1012 Arne B. Sletsjøe Oppgaver, MAT 101 1 En-variabel kalkulus 1.1 I de følgende oppgavene, i) finn alle kritiske punkter til f(x), ii) beskriv monotoniegenskapene til funksjonene ved å se på fortegnet til

Detaljer

Fasit til utvalgte oppgaver MAT1100, uka 15/11-19/11

Fasit til utvalgte oppgaver MAT1100, uka 15/11-19/11 Fasit til utvalgte oppgaver MAT uka 5/-9/ Øyvind Ryan oyvindry@ifi.uio.no) November Oppgave 9.. Vi skriver 5x 5 x )x ) A x B x og ser at vi må løse likningene Ax ) Bx ) x )x ) A B 5 A B 5. A B)x A B x

Detaljer

EKSAMEN I EMNET Løsning: Mat Grunnkurs i Matematikk I Mandag 14. desember 2015 Tid: 09:00 14:00

EKSAMEN I EMNET Løsning: Mat Grunnkurs i Matematikk I Mandag 14. desember 2015 Tid: 09:00 14:00 Universitetet i Bergen Det matematisk naturvitenskapelige fakultet Matematisk institutt Side 1 av 7 BOKMÅL EKSAMEN I EMNET Mat 111 - Grunnkurs i Matematikk I Mandag 14. desember 15 Tid: 9: 14: Tillatte

Detaljer

Derivasjon ekstremverdier Forelesning i Matematikk 1 TMA4100

Derivasjon ekstremverdier Forelesning i Matematikk 1 TMA4100 Derivasjon ekstremverdier Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 6. september 20 Kapittel 3.. Hyperbolske funksjoner 3 Hyperbolske funksjoner Definisjon (Grunndefinisjoner)

Detaljer

dg = ( g P0 u)ds = ( ) = 0

dg = ( g P0 u)ds = ( ) = 0 NTNU Institutt for matematiske fag TMA4105 Matematikk 2, øving 8, vår 2011 Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon,

Detaljer

Løsningsforslag til eksamen i MAT111 - Grunnkurs i Matematikk I

Løsningsforslag til eksamen i MAT111 - Grunnkurs i Matematikk I Universitetet i Bergen Matematisk institutt Bokmål Løsningsforslag til eksamen i MAT111 - Grunnkurs i Matematikk I Mandag 17. desember 2007, kl. 09-14. Oppgave 1 Gitt f(x) = x + x 2 1, 1 x 1. a) Finn og

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Forelesning 9 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 9 Derivasjon I dagens forelesning skal vi se på følgende: 1 Tilnærminger til små endringer. 2 Vekstfart.

Detaljer

Eksamen i MAT1100 H14: Løsningsforslag

Eksamen i MAT1100 H14: Løsningsforslag Eksamen i MAT H4: Løsningsforslag Oppgave. ( poeng) Dersom f(x, y) x sin(xy ), er f y lik: A) sin(xy ) + xy cos(xy ) B) x cos(xy ) C) x y cos(xy ) D) sin(xy ) + x y cos(xy ) E) cos(xy ) Riktig svar: C):

Detaljer

I = (x 2 2x)e kx dx. U dv = UV V du. = x 1 1. k ekx x 1 ) = x k ekx 2x dx. = x2 k ekx 2 k. k ekx 2 k I 2. k ekx 2 k 1

I = (x 2 2x)e kx dx. U dv = UV V du. = x 1 1. k ekx x 1 ) = x k ekx 2x dx. = x2 k ekx 2 k. k ekx 2 k I 2. k ekx 2 k 1 TMA4 Høst 6 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 6 6..4 Vi skal evaluere det ubestemte integralet I = ( e k. Vi starter med å dele opp integralet

Detaljer

Oblig 1 - vår 2015 MAT1012

Oblig 1 - vår 2015 MAT1012 Oblig 1 - vår 15 MAT11 MARI RØYSHEIM University of Oslo, Department of Physics 17. februar 15 Med forbehold om trykkfeil og andre feil! Oppgave 1 a) Vi skal finne det bestemte integralet, og bruker substitusjon.

Detaljer

OPPGAVE 1 LØSNINGSFORSLAG

OPPGAVE 1 LØSNINGSFORSLAG LØSNINGSFORSLAG UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i MAT - Grunnkurs i matematikk I torsdag 5.desember 20 kl. 09:00-4:00 OPPGAVE a Modulus: w = 2 + 3 2 = 2. Argument

Detaljer

Vi regner først ut de nødvendige partiellderiverte for å se om vektorfeltet er konservativt. z = 2z, F 2 F 2 z = 2y, F 3. x = 2x, F 3.

Vi regner først ut de nødvendige partiellderiverte for å se om vektorfeltet er konservativt. z = 2z, F 2 F 2 z = 2y, F 3. x = 2x, F 3. TMA415 Matematikk Vår 15 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 7 Alle oppgavenummer refererer til 8. utgave av Adams & Essex alculus: A omplete

Detaljer

Løsningsforslag til Obligatorisk innlevering 7

Løsningsforslag til Obligatorisk innlevering 7 Løsningsforslag til Obligatorisk innlevering 7 Oppgave a) Likningen e 2x 6e x + 5 = 0 er en annengradslikning i e x. Siden ( ) ( 5) = 5 og 5 = 6 så faktoriserer annengradsuttrykket som (e x 5)(e x ). Dette

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 00 Modellering og beregninger. Eksamensdag: Torsdag 6. desember 202. Tid for eksamen: 9:00 3:00. Oppgavesettet er på 8

Detaljer

. Følgelig er csc 1 ( 2) = π 4. sinθ = 3

. Følgelig er csc 1 ( 2) = π 4. sinθ = 3 NTNU Institutt for matematiske fag TMA4100 Matematikk 1 høsten 011 Løsningsforslag - Øving Avsnitt.7 99 Vi deriverer to ganger: = A 1 cos(ln) B1 sin(ln) = A 1 cos(ln) A 1 sin(ln)+b 1 sin(ln) B 1 cos(ln)

Detaljer

2 3 2 t der parameteren t kan være et vilkårlig reelt tall. i) Finn determinanten til M. M =

2 3 2 t der parameteren t kan være et vilkårlig reelt tall. i) Finn determinanten til M. M = Oppgave a) Løs likningssystemet x + 3x + x 3 = x + x 3 = 0 3x + x + 3x 3 = 8 Svar: Rekkereduksjon av totalmatrisen gir 0 0 0 0 7 0 0 0 0 Det betyr at løsningen er gitt ved x +x 3 = 0, x = 7 og x 3 en fri

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger del 1 Eksamensdag: Tirsdag 7. desember 2004 Tid for eksamen: 14:30 17:30 Oppgavesettet

Detaljer

Løsningsforslag eksamen MAT111 Grunnkurs i Matematikk I høsten 2009

Løsningsforslag eksamen MAT111 Grunnkurs i Matematikk I høsten 2009 Løsningsforslag eksamen MAT Grunnkurs i Matematikk I høsten 9 OPPGAVE (a) Vi har w = + ( ) =. I et komplekse plan ligger w i 4. kvarant og vinkelen θ mellom tallet og en relle aksen har tan θ =, vs. at

Detaljer

Løsningsforslag. f(x) = 2/x + 12x

Løsningsforslag. f(x) = 2/x + 12x Prøve i FO929A - Matematikk Dato: august 212 Målform: Bokmål Antall oppgaver: 5 (2 deloppgaver) Antall sider: 3 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver

Detaljer

Eksamensoppgave i MA1101/MA6101 Grunnkurs i analyse I. LØSNINGSFORSLAG

Eksamensoppgave i MA1101/MA6101 Grunnkurs i analyse I. LØSNINGSFORSLAG Institutt for matematiske fag Eksamensoppgave i MA/MA6 Grunnkurs i analyse I. LØSNINGSFORSLAG Faglig kontakt under eksamen: John Erik Fornæss /Kari Hag Tlf: 464944/483988 Eksamensdato: 8. desember 5 Eksamenstid

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT-INF 1100L Programmering, modellering, og beregninger. Eksamensdag: Fredag 2. Desember 2016. Tid for eksamen: 9:00 13:00.

Detaljer

Løsningsforslag til eksamen i MAT 1100 H07

Løsningsforslag til eksamen i MAT 1100 H07 Løsningsforslag til eksamen i MAT H7 DEL. (3 poeng Hva er den partiellderiverte f y når f(x, y, z = xeyz? xze yz e yz xe yz e yz + xze yz e yz + xze yz + xye yz Riktig svar: a xze yz Begrunnelse: Deriver

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT1100 Kalkulus Eksamensdag: Fredag 14. oktober 2016 Tid for eksamen: 13.00 15.00 Oppgavesettet er på 5 sider. Vedlegg: Svarark,

Detaljer

Newtons metode - Integrasjon Forelesning i Matematikk 1 TMA4100

Newtons metode - Integrasjon Forelesning i Matematikk 1 TMA4100 Newtons metode - Integrasjon Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 20. september 2011 Kapittel 4.7. Newtons metode 3 Eksakt løsning Den eksakte løsningen av

Detaljer

UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Eksamen i MAT111 Grunnkurs i matematikk I Løsningsforslag

UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Eksamen i MAT111 Grunnkurs i matematikk I Løsningsforslag UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i MAT Grunnkurs i matematikk I Løsningsforslag Onsdag 9. mai, kl. 9. 4. Bokmål Oppgave a) La R være området mellom kurvene Finn

Detaljer

Repitisjon av Diverse Emner

Repitisjon av Diverse Emner NTNU December 15, 2012 Oversikt 1 2 3 4 5 Å substituere x med en trigonometrisk funksjon, gjør det mulig å evaluere integral av typen I = dx a 2 +x 2 I = dx a 2 +x 2 I = dx a 2 x 2 der a er en positiv

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA400 Matematikk Høst 04 Løsningsforslag Øving 04 30 For å vise at f er en injektiv one-to-one funksjon, ser vi på den deriverte,

Detaljer

TMA4100 Matematikk 1 for MTDESIG, MTIØT-PP, MTMART og MTPROD høsten 2010

TMA4100 Matematikk 1 for MTDESIG, MTIØT-PP, MTMART og MTPROD høsten 2010 TMA4100 Matematikk 1 for MTDESIG, MTIØT-PP, MTMART og MTPROD høsten 2010 Toke Meier Carlsen Institutt for matematiske fag 2. september 2010 2 Fremdriftplan I går 3.6 Implisitt derivasjon 3.7 Derivasjon

Detaljer

Figur 2: Fortegnsskjema for g (x)

Figur 2: Fortegnsskjema for g (x) Løsningsforslag Eksamen M00 Våren 998 Oppgave a) g) = e ) = e ) Figur : Fortegnsskjema for g) g) > 0 for < 0 og > og g) < 0 for 0 <

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Forelesning 11 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 11 Transcendentale funksjoner Vi begynner nå på temaet transcendentale funksjoner. I dagens forelesning

Detaljer

Eksamen i emnet MAT111/M100 - Grunnkurs i matematikk I Mandag 15. desember 2003, kl. 09-13(15) LØYSINGSFORSLAG OPPGÅVE 2:

Eksamen i emnet MAT111/M100 - Grunnkurs i matematikk I Mandag 15. desember 2003, kl. 09-13(15) LØYSINGSFORSLAG OPPGÅVE 2: Eksamen i emnet MAT/M00 - Grunnkurs i matematikk I Mandag 5. desember 2003, kl. 09-3(5) LØYSINGSFORSLAG Finn dei deriverte til i) f(x) = x 2 ln x OPPGÅVE : exp(u 2 )du, x, ii) f(x) = x cos(x). i) d x 2

Detaljer

Løsningsforslag. og B =

Løsningsforslag. og B = Prøve i Matte Dato: vår 5 ENDRE Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver ar lik vekt. Oppgave a Gitt matrisene A regn ut A + B, AB. Løsningsforslag 4 og B 7 5 Vi

Detaljer

Matematikk 1 (TMA4100)

Matematikk 1 (TMA4100) Matematikk 1 (TMA4100) Forelesning 7: Derivasjon (fortsettelse) Eirik Hoel Høiseth Stipendiat IMF NTNU 23. august, 2012 Den deriverte som momentan endringsrate Den deriverte som momentan endringsrate Repetisjon

Detaljer

TMA4100: Repetisjon før midtsemesterprøven

TMA4100: Repetisjon før midtsemesterprøven TMA4100: Repetisjon før midtsemesterprøven 10.10.09 Lars Sydnes sydnes@math.ntnu.no Institutt for matematiske fag October 1, 2009 L.S. (NTNU) TMA4100: Oversikt October 1, 2009 1 / 20 Kapittel 1: Funksjoner.

Detaljer

. Følgelig er csc 1 ( 2) = π 4. sin θ = 3

. Følgelig er csc 1 ( 2) = π 4. sin θ = 3 NTNU Institutt for matematiske fag TMA400 Matematikk høsten 00 Løsningsforslag - Øving Avsnitt 3.7 99 Vi deriverer to ganger: = A cos (ln ) B sin (ln ) = A cos (ln ) A sin (ln ) + B sin (ln ) B cos (ln

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT00 Kalkulus Eksamensdag: Fredag 9. oktober 205 Tid for eksamen: 5.00 7.00 Oppgavesettet er på 5 sider. Vedlegg: Svarark, formelsamling.

Detaljer

a) f(x) = 3 cos(2x 1) + 12 LF: Vi benytter (lineær) kjerneregel og får f (x) = (sin(7x + 1)) (sin( x) + x) sin(7x + 1)(sin( x) + x) ( sin(x) + x) 2 =

a) f(x) = 3 cos(2x 1) + 12 LF: Vi benytter (lineær) kjerneregel og får f (x) = (sin(7x + 1)) (sin( x) + x) sin(7x + 1)(sin( x) + x) ( sin(x) + x) 2 = Innlevering ELFE KJFE MAFE Matematikk 1000 HIOA Obligatorisk innlevering 4 Innleveringsfrist Mandag 12. oktober 2015 før forelesningen 12:30 Antall oppgaver: 7 + 3 Løsningsforslag 1 Deriver de følgende

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA Matematikk Høst Løsningsforslag Øving Review Exercise 6, side 86 Vi lar fx sin x. Taylor-polynomet av grad 6 til f om x

Detaljer

Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3

Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3 Prøve i Matematikk BYFE DAFE Dato: 27. mai 26 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Løsningsforslag Oppgave Gitt matrisene [ 2 A 4 B [ 2 og C [ 2

Detaljer

TMA4123/TMA4125 Matematikk 4M/4N Vår 2013

TMA4123/TMA4125 Matematikk 4M/4N Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA41/TMA415 Matematikk 4M/4N Vår 1 Løsningsforslag Øving 1 Skriv om følgende trigonometriske funksjoner til fourierrekker ved

Detaljer

DAFE ELFE Matematikk 1000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Mandag 2. mars 2015 før forelesningen 10:30 Antall oppgaver: 17

DAFE ELFE Matematikk 1000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Mandag 2. mars 2015 før forelesningen 10:30 Antall oppgaver: 17 Innlevering DAFE ELFE Matematikk 000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Mandag 2. mars 205 før forelesningen 0:0 Antall oppgaver: 7 Deriver de følgende funksjonene. 2 a) f(x) = cos(2x )

Detaljer

MA oppsummering så langt

MA oppsummering så langt MA1101 - oppsummering så langt Torsdag 29. september 2005 http://www.math.ntnu.no/emner/ma1101/2005h/ MA1101- oppsummering så langt p.1/21 Pensum til semesterprøven Kapittel P Kapittel 1 Kapittel 2: avsnittene

Detaljer

Løsningsforslag Eksamen M001 Våren 2002

Løsningsforslag Eksamen M001 Våren 2002 Løsningsforslag Eksamen M Våren Oppgave f(x) = (x )e x Bruker produktregelen i derivasjonen f (x) = e x + (x ) (e x ) For å derivere e x velges kjernen u = x, og vi får (e x ) = e u. f (x) = e x + (x )

Detaljer

Forelesning Matematikk 4N

Forelesning Matematikk 4N Forelesning Matematikk 4N Hans Jakob Rivertz Institutt for matematiske fag 11. september 2006 2 Den høyrederiverte og venstrederiverte Definisjon Den høyrederiverte til en funksjon f(x) i punktet x er

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT-INF 11L Programmering, modellering, og beregninger. Eksamensdag: Fredag 5. Desember 214. Tid for eksamen: 9: 13:. Oppgavesettet

Detaljer

Løsningsforslag. e n. n=0. 3 n 2 2n 1. n=1

Løsningsforslag. e n. n=0. 3 n 2 2n 1. n=1 Eksamen i BYPE2000 - Matematikk 2000 Dato: 6. juni 2014 Målform: Bokmål Antall oppgaver: 7 (20 deloppgaver) Antall sider: 4 Vedlegg: Noen formler Hjelpemiddel: Ingen Alle svarene skal grunngis. Alle deloppgavene

Detaljer