Potensrekker Forelesning i Matematikk 1 TMA4100

Størrelse: px
Begynne med side:

Download "Potensrekker Forelesning i Matematikk 1 TMA4100"

Transkript

1 Potensrekker Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 1. november 2011

2 Kapittel 8.7. Potensrekker (fra konvergens av)

3 3 Konvergens av potensrekker Eksempel For hvilke x konvergerer rekkene ( 1) n 1 x n n n=1 ( 1) n=1 n 1 x 2n 1 = x x x 3 3 (1) = x x 3 2n x 5 5 (2) x n n! n=0 = 1 + x + x 2 2! + x 3 3! + (3) n!x n = 1 + x + 2!x 2 + 3!x 3 + 4!x 4 + (4) n=0

4 4 Konvergens av potensrekker Teorem (Konvergensteoremet for potenrekker) Hvis potensrekken a n x n = a 0 + a 1 x + a 2 x 2 + a 3 x 3 + n=0

5 4 Konvergens av potensrekker Teorem (Konvergensteoremet for potenrekker) Hvis potensrekken a n x n = a 0 + a 1 x + a 2 x 2 + a 3 x 3 + n=0 1 Konvergerer for x = c 0, så konvergerer den absolutt for x < c

6 4 Konvergens av potensrekker Teorem (Konvergensteoremet for potenrekker) Hvis potensrekken a n x n = a 0 + a 1 x + a 2 x 2 + a 3 x 3 + n=0 1 Konvergerer for x = c 0, så konvergerer den absolutt for x < c 2 Divergerer for x = d, så divergerer den for x > d

7 Setning Konvergensen til c n (x a) n kan beskrives på nøyaktig 3 måter n=0

8 Setning Konvergensen til 1 Rekken c n (x a) n kan beskrives på nøyaktig 3 måter n=0

9 Setning Konvergensen til c n (x a) n kan beskrives på nøyaktig 3 måter n=0 1 Rekken konvergerer absolutt for x a < R

10 Setning Konvergensen til c n (x a) n kan beskrives på nøyaktig 3 måter n=0 1 Rekken konvergerer absolutt for x a < R og divergerer for x a > R, der R er et positivt reelt tall. Uvisst for x = a R og x = a + R.

11 Setning Konvergensen til c n (x a) n kan beskrives på nøyaktig 3 måter n=0 1 Rekken konvergerer absolutt for x a < R og divergerer for x a > R, der R er et positivt reelt tall. Uvisst for x = a R og x = a + R. 2 Rekken konvergerer absolutt for alle x (R = )

12 Setning Konvergensen til c n (x a) n kan beskrives på nøyaktig 3 måter n=0 1 Rekken konvergerer absolutt for x a < R og divergerer for x a > R, der R er et positivt reelt tall. Uvisst for x = a R og x = a + R. 2 Rekken konvergerer absolutt for alle x (R = ) 3 Rekken konvergerer i x = a og divergerer ellers (R = 0)

13 6 Konvergensradius til en potensrekke Definisjon Størrelsen R kalles for konvergensradiusen til potensrekkenrekken. Definisjon Intervallet der potensrekken konvergerer kalles konvergensintervallet til potensrekken

14 7 Konvergensanalyse av potensrekker 1 Anvend rottesten eller forholdstesten for å finne intervall der rekken konvergerer absolutt. x a < R

15 7 Konvergensanalyse av potensrekker 1 Anvend rottesten eller forholdstesten for å finne intervall der rekken konvergerer absolutt. x a < R 2 Hvis intervallet er endelig. Sjekk konvergens på endepunktene. Bruk enten

16 7 Konvergensanalyse av potensrekker 1 Anvend rottesten eller forholdstesten for å finne intervall der rekken konvergerer absolutt. x a < R 2 Hvis intervallet er endelig. Sjekk konvergens på endepunktene. Bruk enten en sammenlikningstest

17 7 Konvergensanalyse av potensrekker 1 Anvend rottesten eller forholdstesten for å finne intervall der rekken konvergerer absolutt. x a < R 2 Hvis intervallet er endelig. Sjekk konvergens på endepunktene. Bruk enten en sammenlikningstest integraltest

18 7 Konvergensanalyse av potensrekker 1 Anvend rottesten eller forholdstesten for å finne intervall der rekken konvergerer absolutt. x a < R 2 Hvis intervallet er endelig. Sjekk konvergens på endepunktene. Bruk enten en sammenlikningstest integraltest eller alternerende rekketest.

19 7 Konvergensanalyse av potensrekker 1 Anvend rottesten eller forholdstesten for å finne intervall der rekken konvergerer absolutt. x a < R 2 Hvis intervallet er endelig. Sjekk konvergens på endepunktene. Bruk enten en sammenlikningstest integraltest eller alternerende rekketest. 3 For x a > R, DIVERGERER potensrekken

20 8 Derivasjon av potensrekker Hvis c n (x a) konvergerer for x a < R har vi en funksjon f(x) = c n (x a) n n=0

21 8 Derivasjon av potensrekker Hvis c n (x a) konvergerer for x a < R har vi en funksjon f(x) = c n (x a) n n=0 f(x) kan deriveres så mange ganger vi vil.

22 8 Derivasjon av potensrekker Hvis c n (x a) konvergerer for x a < R har vi en funksjon f(x) = c n (x a) n n=0 f(x) kan deriveres så mange ganger vi vil. Vi deriverer f(x) ved å derivere ledd for ledd f (x) = n c n (x a) n 1 n=1 f (x) = n(n 1) c n (x a) n 2 n=2

23 8 Derivasjon av potensrekker Hvis c n (x a) konvergerer for x a < R har vi en funksjon f(x) = c n (x a) n n=0 f(x) kan deriveres så mange ganger vi vil. Vi deriverer f(x) ved å derivere ledd for ledd f (x) = n c n (x a) n 1 n=1 f (x) = n(n 1) c n (x a) n 2 n=2 De deriverte konvegerer også for x a < R.

24 9 Integrasjon av potensrekker Anta f(x) = c n (x a) n konvergerer for x a < R. n=0

25 9 Integrasjon av potensrekker Anta f(x) = c n (x a) n konvergerer for x a < R. n=0 1 Da konvergerer c n (x a) n+1 for x a < R. n + 1 n=0

26 9 Integrasjon av potensrekker Anta f(x) = c n (x a) n konvergerer for x a < R. n=0 1 Da konvergerer 2 f(x) dx = c n (x a) n+1 for x a < R. n + 1 n=0 c n (x a) n+1 + C for x a < R. n + 1 n=0

27 10 Multiplikasjon av potensrekker ( ) ( ) ( ) a n x n b n x n = c n x n n=0 n=0 n=0 Hva er c n? Setning n c n = a 0 b n + a 1 b n a n b 0 = a k b n k k=0

28 Kapittel 8.8. Taylorrekker og Maclaurinrekker

29 12 Derivering av potensrekke Gitt en potensrekke f(x) = c k (x a) k k=0 Hva er alle dens deriverte i x = a?

30 12 Derivering av potensrekke Gitt en potensrekke f(x) = c k (x a) k k=0 Hva er alle dens deriverte i x = a? Hva er d n f dx n(a)?

31 13 Maclaurin-rekker Definisjon (Maclaurinrekken generert av f(x)) La f(x) ha deriverte av alle orden i et intervall som inneholder x = 0. Maclauinrekken til f(x) er k=0 f (k) (0) k! x k = f(0) + f (0)x + f (0) 2! x f (n) (0) x n + n!

32 14 Taylor-rekker Definisjon (Taylorrekken generert av f(x)) La f(x) ha deriverte av alle orden i et intervall som inneholder x = a. Taylorrekken til f(x) er k=0 = f(a) + f (a)(x a) + f (a) 2! f (k) (a) (x a) k k! (x a) f (n) (a) (x a) n + n!

33 15 Taylor-polynomer Definisjon (Taylorpolynomet av grad n generert av f(x)) La f(x) ha deriverte av minst orden n i et intervall som inneholder x = a. Taylorpolynomet til f(x) av orden n er n k=0 = f(a) + f (a)(x a) + f (a) 2! f (k) (a) (x a) k k! (x a) f (n) (a) (x a) n n!

34 16 Eksempler på Taylorpolynomer Finn taylorpolynomene til 1 e x, om(kring) x = 0

35 16 Eksempler på Taylorpolynomer Finn taylorpolynomene til 1 e x, om(kring) x = x, om x = 3

36 16 Eksempler på Taylorpolynomer Finn taylorpolynomene til 1 e x, om(kring) x = x, om x = 3 3 sin x, om x = 0

37 17 Taylorpolynomer av sin x om x = sin x = P(x)

38 17 Taylorpolynomer av sin x om x = 0 1 P sin x x = P 1 (x)

39 17 Taylorpolynomer av sin x om x = 0 1 P P 3 sin x x 1 3! x 3 = P 3 (x)

40 17 Taylorpolynomer av sin x om x = 0 1 P 1 P P 3 sin x x 1 3! x ! x 5 = P 5 (x)

41 17 Taylorpolynomer av sin x om x = 0 1 P 1 P P 3 P 7 sin x x 1 3! x ! x 5 1 7! x 7 = P 7 (x)

42 17 Taylorpolynomer av sin x om x = 0 1 P 1 P 5 P P 3 P 7 sin x x 1 3! x ! x 5 1 7! x ! x 9 = P 9 (x)

43 17 Taylorpolynomer av sin x om x = 0 1 P 1 P 5 P P 3 P 7 P 11 sin x x 1 3! x ! x 5 1 7! x ! x ! x 11 = P 11 (x)

44 17 Taylorpolynomer av sin x om x = 0 1 P 1 P 5 P 9 P P 3 P 7 P 11 sin x x 1 3! x ! x 5 1 7! x ! x ! x ! x 13 = P 13 (x)

45 17 Taylorpolynomer av sin x om x = 0 1 P 1 P 5 P 9 P P 3 P 7 P 11 P 15 sin x x 1 3! x ! x 5 1 7! x ! x ! x ! x ! x 15 = P 15 (x)

46 17 Taylorpolynomer av sin x om x = 0 1 P 1 P 5 P 9 P 13 P P 3 P 7 P 11 P 15 sin x x 1 3! x ! x 5 1 7! x ! x ! x ! x ! x ! x 17 = P 17 (x)

47 18 En tankevekker-rekke Taylorrekken til f(x) = { 0 x = 0 e 1/x x 0 1

48 18 En tankevekker-rekke Taylorrekken til f(x) = { 0 x = 0 e 1/x x 0 1 = 0

49 Kapittel 8.9. Konvergens av Taylorrekker

50 20 Taylors teorem (Teori) Teorem (Taylors teorem) 1 Gitt en funksjon f og dens n deriverte f, f, f,..., f (n+1) er kontinuerlige på et lukket intervall mellom a og b.

51 20 Taylors teorem (Teori) Teorem (Taylors teorem) 1 Gitt en funksjon f og dens n deriverte f, f, f,..., f (n+1) er kontinuerlige på et lukket intervall mellom a og b. 2 Da finnes et punkt c mellom a og b slik at

52 20 Taylors teorem (Teori) Teorem (Taylors teorem) 1 Gitt en funksjon f og dens n deriverte f, f, f,..., f (n+1) er kontinuerlige på et lukket intervall mellom a og b. 2 Da finnes et punkt c mellom a og b slik at f(b) = f(a) + f (a)(b a) + f (a) (b a) 2 + 2! + f (n) (a) n! (b a) n + f (n+1) (c) (b a)n+1 (n + 1)!

53 21 Spesialtilfelle Teorem (Mellomverdisatsen) 1 Gitt en funksjon f og dens første-deriverte f er kontinuerlige på et lukket intervall mellom a og b.

54 21 Spesialtilfelle Teorem (Mellomverdisatsen) 1 Gitt en funksjon f og dens første-deriverte f er kontinuerlige på et lukket intervall mellom a og b. 2 Da finnes et punkt c mellom a og b slik at

55 21 Spesialtilfelle Teorem (Mellomverdisatsen) 1 Gitt en funksjon f og dens første-deriverte f er kontinuerlige på et lukket intervall mellom a og b. 2 Da finnes et punkt c mellom a og b slik at f(b) = f(a) + f (c)(b a)

56 22 Taylors teorem (og praksis) Teorem (Taylors teorem) 1 En funksjon f har alle ordens deriverte i et intervall I som inneholder a

57 22 Taylors teorem (og praksis) Teorem (Taylors teorem) 1 En funksjon f har alle ordens deriverte i et intervall I som inneholder a 2 Da gjelder at f(x) = P n (x) + R n (x).

58 22 Taylors teorem (og praksis) Teorem (Taylors teorem) 1 En funksjon f har alle ordens deriverte i et intervall I som inneholder a 2 Da gjelder at f(x) = P n (x) + R n (x). P n (x) er taylorpolynom for f og restleddet er gitt ved der c ligger mellom a og x. R n (x) = f (n+1) (c) (x a)n+1 (n + 1)!

59 22 Taylors teorem (og praksis) Teorem (Taylors teorem) 1 En funksjon f har alle ordens deriverte i et intervall I som inneholder a 2 Da gjelder at f(x) = P n (x) + R n (x). P n (x) er taylorpolynom for f og restleddet er gitt ved der c ligger mellom a og x. f(x) = f(a) + f (a)(a b) + f (a) 2! R n (x) = f (n+1) (c) (x a)n+1 (n + 1)! (a b) f (n) (a) (a b) n + R n (x) n!

60 23 Et eksempel e = e 1 = ! n! + R n(1)

61 23 Et eksempel e = e 1 = ! n! + R n(1) R n (1) < e (n + 1)! (< 1 som oftest:) n!

62 23 Et eksempel e = e 1 = ! n! + R n(1) R n (1) < e (n + 1)! (< 1 som oftest:) n! Matematisk nøtt: Kan e skrives som en brøk?

63 24 Estimering av restleddet Teorem (Restledds-estimerings teoremet) M positiv konstant. f (n+1) (t) M for alle t mellom a og x da tilfredstiller restleddet ulikheten Anvendelser: R n (x) M x a n+1 (n + 1)!

64 24 Estimering av restleddet Teorem (Restledds-estimerings teoremet) M positiv konstant. f (n+1) (t) M for alle t mellom a og x da tilfredstiller restleddet ulikheten Anvendelser: R n (x) M x a n+1 (n + 1)! Taylor rekken for e x konvergerer mot e x for alle reelle tall x.

65 24 Estimering av restleddet Teorem (Restledds-estimerings teoremet) M positiv konstant. f (n+1) (t) M for alle t mellom a og x da tilfredstiller restleddet ulikheten Anvendelser: R n (x) M x a n+1 (n + 1)! Taylor rekken for e x konvergerer mot e x for alle reelle tall x. Taylor rekken for cos x konvergerer mot cos x for alle reelle tall x.

66 24 Estimering av restleddet Teorem (Restledds-estimerings teoremet) M positiv konstant. f (n+1) (t) M for alle t mellom a og x da tilfredstiller restleddet ulikheten Anvendelser: R n (x) M x a n+1 (n + 1)! Taylor rekken for e x konvergerer mot e x for alle reelle tall x. Taylor rekken for cos x konvergerer mot cos x for alle reelle tall x. Taylor rekken for sin x konvergerer mot sin x for alle reelle tall x.

67 25 Anvendelser av taylorrekker 1 sin x Skriv dx som en potensrekke. x

68 25 Anvendelser av taylorrekker 1 sin x Skriv dx som en potensrekke. x 2 Estimer Si(1) = 1 sin x 0 x dx med feil mindre enn 0,

69 25 Anvendelser av taylorrekker 1 sin x Skriv dx som en potensrekke. x 2 Estimer Si(1) = 1 0 sin x ln(1 + x 2 ) 3 Regn ut lim x x 0 x 3 sin x x dx med feil mindre enn 0,

70 25 Anvendelser av taylorrekker 1 sin x Skriv dx som en potensrekke. x 2 Estimer Si(1) = 1 0 sin x ln(1 + x 2 ) 3 Regn ut lim x x 0 1 sin x x sin x x dx med feil mindre enn 0, x 3 dx = C + x 1 3 3! x ! x 5

71 25 Anvendelser av taylorrekker 1 sin x Skriv dx som en potensrekke. x 2 Estimer Si(1) = 1 0 sin x ln(1 + x 2 ) 3 Regn ut lim x x 0 sin x x dx med feil mindre enn 0, x 3 1 sin x dx = C + x 1 x 3 3! x ! x 5 2 Si(1) = 1 sin x 0 x dx ! ! 1 7 7! = 0,

72 25 Anvendelser av taylorrekker 1 sin x Skriv dx som en potensrekke. x 2 Estimer Si(1) = 1 0 sin x ln(1 + x 2 ) 3 Regn ut lim x x 0 sin x x dx med feil mindre enn 0, x 3 1 sin x dx = C + x 1 x 3 3! x ! x 5 2 Si(1) = 1 sin x 0 x dx ! ! 1 7 7! = 0, sin x 3 lim 1 x ln(1+x2 ) x 0 = 1 x 3 3

73 26 i

74 26 i Løs likningen x = 0

75 26 i Løs likningen x = 0 Løsningene er x = ±i

76 26 i Løs likningen x = 0 Løsningene er x = ±i i = 1

77 27 Eulers identitet e 1 x = cos x + 1 sin x e i x = cos x + i sin x e i π = 1

78 28 Bevis av Taylors teorem Anvend rolles teorem. Oppgave 1 (vanskelig): Bevis Taylors teorem uten å se i boka.

79 28 Bevis av Taylors teorem Anvend rolles teorem. Oppgave 1 (vanskelig): Bevis Taylors teorem uten å se i boka. Oppgave 2 (lettere): Finn ideen i beviset av Taylors teorem (ved å se i boka).

80 28 Bevis av Taylors teorem Anvend rolles teorem. Oppgave 1 (vanskelig): Bevis Taylors teorem uten å se i boka. Oppgave 2 (lettere): Finn ideen i beviset av Taylors teorem (ved å se i boka). Oppgave 3 (triviell): Finn en unskyldning til ikke å forstå teoremet.

Potensrekker Forelesning i Matematikk 1 TMA4100

Potensrekker Forelesning i Matematikk 1 TMA4100 Potensrekker Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 11. november 2011 Kapittel 8.8. Taylorrekker og Maclaurinrekker 3 Taylor-polynomer Definisjon (Taylorpolynomet

Detaljer

Konvergenstester Forelesning i Matematikk 1 TMA4100

Konvergenstester Forelesning i Matematikk 1 TMA4100 Konvergenstester Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 1. november 2011 Kapittel 8.6. Alternerende rekker Absolutt og betinget konvergens 3 Alternerende rekker

Detaljer

Potensrekker Forelesning i Matematikk 1 TMA4100

Potensrekker Forelesning i Matematikk 1 TMA4100 Potensrekker Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 15. november 2011 Kapittel 8.9. Konvergens av Taylorrekker 3 i 3 i Løs likningen x 2 + 1 = 0 3 i Løs likningen

Detaljer

Konvergenstester Forelesning i Matematikk 1 TMA4100

Konvergenstester Forelesning i Matematikk 1 TMA4100 Konvergenstester Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 1. november 2011 Kapittel 8.3. Integrasjonstesten 3 Ikke-avtagende delsummer Husker at n-te delsum av

Detaljer

Seksjonene 9.6-7: Potensrekker og Taylor/Maclaurinrekker

Seksjonene 9.6-7: Potensrekker og Taylor/Maclaurinrekker Seksjonene 9.6-7: Potensrekker og Taylor/Maclaurinrekker Andreas Leopold Knutsen 14. februar 2012 Funksjonsrekker En rekke på formen fn(x) der fn er en funksjon, kalles en n=1 funksjonsrekke. For alle

Detaljer

= x lim n n 2 + 2n + 4

= x lim n n 2 + 2n + 4 NTNU Institutt for matematiske fag TMA400 Matematikk høsten 20 Løsningsforslag - Øving Avsnitt 8.7 6 Potensrekken konvergerer opplagt for x = 0, så i drøftingen nedenfor antar vi x 0. Vi vil bruke forholdstesten

Detaljer

Seksjonene 9.6-7: Potensrekker og Taylor/Maclaurinrekker

Seksjonene 9.6-7: Potensrekker og Taylor/Maclaurinrekker Seksjonene 9.6-7: Potensrekker og Taylor/Maclaurinrekker Andreas Leopold Knutsen 15. februar 2010 Funksjonsrekker En rekke på formen f n (x) der f n er en funksjon, kalles en funksjonsrekke. For alle x

Detaljer

Rekker, Konvergenstester og Feilestimat

Rekker, Konvergenstester og Feilestimat NTNU December 8, 2012 Oversikt 1 2 3 4 5 6 For å forstå, må vi først forstå potensrekker For å forstå potensrekker, må vi først forstå rekker. For å forstå rekker, må vi først forstå følger. Definisjon

Detaljer

Oppsummering TMA4100. Kristian Seip. 26./28. november 2013

Oppsummering TMA4100. Kristian Seip. 26./28. november 2013 Oppsummering TMA4100 Kristian Seip 26./28. november 2013 Forelesningene 26./28. november Disse forelesningene er et forsøk på å se de store linjer og sammenhengen mellom de ulike deltemaene i TMA4100 delvis

Detaljer

Oppsummering TMA4100. Kristian Seip. 17./18. november 2014

Oppsummering TMA4100. Kristian Seip. 17./18. november 2014 Oppsummering TMA4100 Kristian Seip 17./18. november 2014 Forelesningene 17./18. november Disse forelesningene er et forsøk på å se de store linjer og sammenhengen mellom de ulike deltemaene i TMA4100 delvis

Detaljer

Potensrekker. Binomialrekker

Potensrekker. Binomialrekker Potensrekker Potensrekker er rekker på formen: Potensrekker kan brukes på en rekke områder for å finne tilnærmede eller eksakte løsninger på problemer som ellers kanskje må løses numerisk eller krever

Detaljer

Taylor- og Maclaurin-rekker

Taylor- og Maclaurin-rekker Taylor- og Maclaurin-rekker Forelest: Okt, 004 Potensrekker er funksjoner Vi så at noen funksjoner vi kjenner på andre måter kan skrives som funksjoner, for eksempel: = + t + t + t 3 + + t n + t e x =

Detaljer

TMA4100 Matematikk 1 for MTDESIG, MTIØT-PP, MTMART og MTPROD høsten 2010

TMA4100 Matematikk 1 for MTDESIG, MTIØT-PP, MTMART og MTPROD høsten 2010 TMA4100 Matematikk 1 for MTDESIG, MTIØT-PP, MTMART og MTPROD høsten 2010 Toke Meier Carlsen Institutt for matematiske fag 28. oktober 2010 2 Fremdriftplan I går 7.7 Uegentlige integraler 8.1 Følger I dag

Detaljer

Løsningsforslag Eksamen i MA1102/MA6102 Grunnkurs i analyse II 17/

Løsningsforslag Eksamen i MA1102/MA6102 Grunnkurs i analyse II 17/ Løsningsforslag Eksamen i MA0/MA60 Grunnkurs i analyse II 7/ 008 Oppgave y = y +, y(0) = 0 a) n n y n y = n y n + y = y y n+ 0 0 0 / / / / / 5/4 / 5/8 9/8 9/8 så Eulers metode med steglengde / gir oss

Detaljer

1.1.1 Rekke med konstante ledd. En rekke med konstante ledd er gitt som. a n (1) n=m

1.1.1 Rekke med konstante ledd. En rekke med konstante ledd er gitt som. a n (1) n=m Formelsamling og tabeller FO020E Matte 2000 for elektroprogrammet 1 Matematikk 1.1 Denisjoner av ulike typer polynomer og rekker 1.1.1 Rekke med konstante ledd En rekke med konstante ledd er gitt som a

Detaljer

Følger og rekker. Department of Mathematical Sciences, NTNU, Norway. November 10, 2014

Følger og rekker. Department of Mathematical Sciences, NTNU, Norway. November 10, 2014 Department of Mathematical Sciences, NTNU, Norway November 10, 2014 Forelesning (03.01.2014): kap 9.1 og 9.2 Beskrivelse av følger eksempler og definisjon Egenskaper med følger Grenseverdi for følger (og

Detaljer

Derivasjon ekstremverdier Forelesning i Matematikk 1 TMA4100

Derivasjon ekstremverdier Forelesning i Matematikk 1 TMA4100 Derivasjon ekstremverdier Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 6. september 20 Kapittel 3.. Hyperbolske funksjoner 3 Hyperbolske funksjoner Definisjon (Grunndefinisjoner)

Detaljer

Matematikk 1. Oversiktsforelesning. Lars Sydnes November 25, Institutt for matematiske fag

Matematikk 1. Oversiktsforelesning. Lars Sydnes November 25, Institutt for matematiske fag Matematikk 1 Oversiktsforelesning Lars Sydnes sydnes@math.ntnu.no Institutt for matematiske fag November 25, 2009 LS (IMF) tma4100rep November 25, 2009 1 / 21 Matematikk 1 Hovedperson Relle funksjoner

Detaljer

Ekstremverdier Mellomverdisatsen Forelesning i Matematikk 1 TMA4100

Ekstremverdier Mellomverdisatsen Forelesning i Matematikk 1 TMA4100 Ekstremverdier Mellomverdisatsen Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 9. september 2011 Kapittel 4.1. Funksjoners ekseremverdier fra og med lokale ekstrema

Detaljer

Oppsummering TMA4100. Kristian Seip. 16./17. november 2015

Oppsummering TMA4100. Kristian Seip. 16./17. november 2015 Oppsummering TMA4100 Kristian Seip 16./17. november 2015 Forelesningene 17./18. november Denne forelesningen beskriver de store linjer og sammenhengen mellom de ulike deltemaene i TMA4100 noen tips for

Detaljer

Løsningsforslag til Mat112 Obligatorisk Oppgave, våren Oppgave 1

Løsningsforslag til Mat112 Obligatorisk Oppgave, våren Oppgave 1 Løsningsforslag til Mat2 Obligatorisk Oppgave, våren 206 Oppgave Avgjør om følgende rekker er konvergente: (a) n + n n + n + Løsning: rekken lim : n n + n n + n + Vi bruker grensesammenligningstesten mhp.

Detaljer

Derivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 2. september 2011

Derivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 2. september 2011 Derivasjon Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 2. september 20 Kapittel 3.7. Derivasjon av inverse funksjoner 3 Derivasjon av inverse til deriverbare funksjoner

Detaljer

MA1102 Grunnkurs i analyse II Vår 2019

MA1102 Grunnkurs i analyse II Vår 2019 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA112 Grunnkurs i analyse II Vår 219 8.4.1 Vi skal finne lengden til kurven x = 3t 2, y = 2t 3 der t 1. Som boka beskriver på

Detaljer

Oversikt over Matematikk 1

Oversikt over Matematikk 1 1 Oversikt over Matematikk 1 Induksjon Grenser og kontinuitet Skjæringssetningen Eksistens av ekstrempunkt Elementære funksjoner Derivasjon Sekantsetningen Integrasjon Differensialligninger Kurver i planet

Detaljer

MAT Grublegruppen Uke 37

MAT Grublegruppen Uke 37 MAT00 - Grublegruppen Uke 37 Jørgen O. Lye Bemerkning: Mye av stoffet i dette notatet er å finne i Kalkulus, kapittel. Dette kapittelet er leselig etter man vet hva følger er, men er ikke pensum før i

Detaljer

UNIVERSITETET I BERGEN

UNIVERSITETET I BERGEN UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i emnet MAT - Grunnkurs i Matematikk II Torsdag 4. juni 05, kl. 09:00-4:00 Bokmål Tillatte hjelpemiddel: Enkel kalkulator i samsvar

Detaljer

Kontinuitet og derivasjon Forelesning i Matematikk 1 TMA4100

Kontinuitet og derivasjon Forelesning i Matematikk 1 TMA4100 Kontinuitet og derivasjon Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 25. august 2010 2 Dagens pensum I dag vil vi se på følgende: Kontinuerlige funksjoner Den deriverte

Detaljer

Forelesning Matematikk 4N

Forelesning Matematikk 4N Forelesning Matematikk 4N Hans Jakob Rivertz Institutt for matematiske fag 11. september 2006 2 Den høyrederiverte og venstrederiverte Definisjon Den høyrederiverte til en funksjon f(x) i punktet x er

Detaljer

MAT jan jan feb MAT Våren 2010

MAT jan jan feb MAT Våren 2010 MAT 1012 Våren 2010 Mandag 25. januar 2010 Forelesning Vi fortsetter med å se på det bestemte integralet, bl.a. på hvordan vi kan bruke numeriske beregninger til å bestemme verdien når vi ikke nødvendigvis

Detaljer

1 Mandag 1. februar 2010

1 Mandag 1. februar 2010 Mandag. februar 200 I dag skal vi fortsette med rekkeutviklinger som vi begynte med forrige uke. Vi skal se på litt mer generell rekker og vurdere når de konvergerer, bl.a. gi et enkelt kriterium. Dette

Detaljer

Løsningsforslag eksamen 18/ MA1102

Løsningsforslag eksamen 18/ MA1102 Løsningsforslag eksamen 8/5 009 MA0. Dette er en alternerende rekke, der leddene i størrelse går monotont mot null, så alternerenderekketesten gir oss konvergens. (Vi kan også vise konvergens ved å vise

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT111 Prøveeksamen Eksamensdag: 5. juni 21. Tid for eksamen: 1. 13.3. Oppgavesettet er på 9 sider. Vedlegg: Tillatte hjelpemidler:

Detaljer

Generelle teoremer og definisjoner MA1102 Grunnkurs i analyse II - NTNU

Generelle teoremer og definisjoner MA1102 Grunnkurs i analyse II - NTNU Generelle teoremer og definisjoner MA110 Grunnkurs i analyse II - NTNU Lærebok: Kalkulus, Universitetsforlaget, 006, 3. utgave av Tom Lindstrøm Jonas Tjemsland 9. april 015 3 Komplekse tall 3.1 Regneregler

Detaljer

TMA4100 Matematikk1 Høst 2009

TMA4100 Matematikk1 Høst 2009 TMA400 Matematikk Høst 2009 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 2 8926 Vi serieutvikler eksponentialfunksjonen e u om u 0 og får e u + u +

Detaljer

Første og andrederivasjons testen Anvendt optimering Forelesning i Matematikk 1 TMA4100

Første og andrederivasjons testen Anvendt optimering Forelesning i Matematikk 1 TMA4100 Første og andrederivasjons testen Anvendt optimering Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 13. september 2011 Kapittel 4.3. Monotone funksjoner og førstederivasjons-testen

Detaljer

x 3 x x3 x 0 3! x2 + O(x 7 ) = lim 1 = lim Denne oppgaven kan også løses ved hjelp av l Hôpitals regel, men denne må da anvendes tre ganger.

x 3 x x3 x 0 3! x2 + O(x 7 ) = lim 1 = lim Denne oppgaven kan også løses ved hjelp av l Hôpitals regel, men denne må da anvendes tre ganger. TMA400 Høst 0 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag 4..4 Vi bruker Taylor-polynom til å løse denne oppgaven. Taylor-polynomet Maclaurinpolynomet til sin x om x =

Detaljer

Løsningsforslag eksamen i TMA4100 Matematikk desember Side 1 av 7

Løsningsforslag eksamen i TMA4100 Matematikk desember Side 1 av 7 Løsningsforslag eksamen i TMA4 Matematikk 2. desember 23. Side av 7 Oppgave Løs initialverdiproblemet y (2/x)y, y() 2. Løsning: y (2/x)y er en førsteordens lineær differensialligning. Vi finner en løsning

Detaljer

Velkommen til eksamenskurs i matematikk 1

Velkommen til eksamenskurs i matematikk 1 Velkommen til eksamenskurs i matematikk 1 Haakon C. Bakka Institutt for matematiske fag 4.-5. desember 2010 Program I dag og i morgen skal vi holde på fra 10-16 med en pause fra 13-14. Vi skal gjennom:

Detaljer

Uendelige rekker. Konvergens og konvergenskriterier

Uendelige rekker. Konvergens og konvergenskriterier Uendelige rekker. Konvergens og konvergenskriterier : Et absolutt nødvendig, men ikke tilstrekkelig vilkår for konvergens er at: lim 0 Konvergens vha. delsummer :,.,,,. I motsatt fall divergerer rekka.

Detaljer

Fasit til utvalgte oppgaver MAT1100, uka 15/11-19/11

Fasit til utvalgte oppgaver MAT1100, uka 15/11-19/11 Fasit til utvalgte oppgaver MAT uka 5/-9/ Øyvind Ryan oyvindry@ifi.uio.no) November Oppgave 9.. Vi skriver 5x 5 x )x ) A x B x og ser at vi må løse likningene Ax ) Bx ) x )x ) A B 5 A B 5. A B)x A B x

Detaljer

Mål og innhold i Matte 1

Mål og innhold i Matte 1 Mål og innhold i Institutt for matematiske fag 1. november 2013 Målet med denne oversikten er at vi skal se hvor vi er i pensum, og at du skal kunne finne hva du kan/ikke kan. Jeg vil i tillegg vise hva

Detaljer

Newtons metode - Integrasjon Forelesning i Matematikk 1 TMA4100

Newtons metode - Integrasjon Forelesning i Matematikk 1 TMA4100 Newtons metode - Integrasjon Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 20. september 2011 Kapittel 4.7. Newtons metode 3 Eksakt løsning Den eksakte løsningen av

Detaljer

Eksamensoppgave i MA1102/6102 Grunnkurs i analyse II

Eksamensoppgave i MA1102/6102 Grunnkurs i analyse II Institutt for matematiske fag Eksamensoppgave i MA1102/6102 Grunnkurs i analyse II Faglig kontakt under eksamen: Magnus Landstad Tlf: Eksamensdato: 6. juni 2017 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte

Detaljer

Løsningsforslag. Avgjør om følgende rekker konvergerer. Finn summen til de rekkene som konvergerer. a) 2 2n /3 n

Løsningsforslag. Avgjør om følgende rekker konvergerer. Finn summen til de rekkene som konvergerer. a) 2 2n /3 n Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering Innleveringsfrist Tirsdag. februar 203 kl. 0:30 Antall oppgaver: 9 Løsningsforslag Avgjør om følgende rekker konvergerer. Finn summen

Detaljer

2 3 2 t der parameteren t kan være et vilkårlig reelt tall. i) Finn determinanten til M. M =

2 3 2 t der parameteren t kan være et vilkårlig reelt tall. i) Finn determinanten til M. M = Oppgave a) Løs likningssystemet x + 3x + x 3 = x + x 3 = 0 3x + x + 3x 3 = 8 Svar: Rekkereduksjon av totalmatrisen gir 0 0 0 0 7 0 0 0 0 Det betyr at løsningen er gitt ved x +x 3 = 0, x = 7 og x 3 en fri

Detaljer

Taylorpolynom (4.8) f en funksjon a et punkt i definisjonsmengden til f f (minst) n ganger deriverbar i a Da er Taylorpolynomet til f om a

Taylorpolynom (4.8) f en funksjon a et punkt i definisjonsmengden til f f (minst) n ganger deriverbar i a Da er Taylorpolynomet til f om a Taylorpolynom (4.8) f en funksjon a et punkt i definisjonsmengden til f f (minst) n ganger deriverbar i a Da er Taylorpolynomet til f om a P n (x) = f (a) + f (a)(x a) + f (a) 2 (x a)2 + + f (n) (a) (x

Detaljer

Løsningsforslag: Eksamen i MAT111 - Grunnkurs i Matematikk I

Løsningsforslag: Eksamen i MAT111 - Grunnkurs i Matematikk I Universitetet i Bergen Matematisk institutt Bergen, 8. desember 006. Bokmål Løsningsforslag: Eksamen i MAT - Grunnkurs i Matematikk I Mandag desember 8, 006, kl. 09-4. Oppgave Gitt funksjonen f(x) = ln(

Detaljer

Institutionen för Matematik, KTH

Institutionen för Matematik, KTH Institutionen för Matematik, KTH Lösningsforslag till tentamen, 200-2-7, kl. 8.00-.00. 5B04, Envariabel. Uppgift. Den karakteristiske ligningen r 2 r + 2 0 kan omskrives som (r )(r 2) 0. Den generelle

Detaljer

Andre forelesning Forelesning i Matematikk 1 TMA4100

Andre forelesning Forelesning i Matematikk 1 TMA4100 Andre forelesning Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 20. august 2010 Induksjon Pensumlitteratur: Notat 3 Induksjon Brukes til å bevise formler og setninger.

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Forelesning 9 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 9 Derivasjon I dagens forelesning skal vi se på følgende: 1 Tilnærminger til små endringer. 2 Vekstfart.

Detaljer

Velkommen til oversiktsforelesninger i Matematikk 1. med Jørgen Endal

Velkommen til oversiktsforelesninger i Matematikk 1. med Jørgen Endal Velkommen til oversiktsforelesninger i Matematikk 1 med Jørgen Endal Nytt tema: Følger, rekker, og potensrekker (kap. 9.1 9.7) Nytt tema: Følger, rekker, og potensrekker (kap. 9.1 9.7) Forelesning 1 (kap.

Detaljer

Anvendelser av potensrekker

Anvendelser av potensrekker Anvendelser av potensrekker Forelest: 6 Okt, 2004 Vi kan bare skrape på toppen av isfjellet som er anvendelsene av potensrekker En spesielt viktig anvendelse er innenfor enhver form for differensialligninger

Detaljer

MA1102 Grunnkurs i Analyse II Vår 2015

MA1102 Grunnkurs i Analyse II Vår 2015 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA112 Grunnkurs i Analyse II Vår 215 Løsningsforslag Øving 5 11.3:3 f n (x) = 2n+1 x? = x 1 2n+1. (Det er muligens en forskjell

Detaljer

f =< 2x + z/x, 2y, 4z + ln(x) >.

f =< 2x + z/x, 2y, 4z + ln(x) >. MA 40: Analyse Uke 48, 00 http://home.hia.no/ aasvaldl/ma40 H0 Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag Oppgave.5: 5. Vi har gitt funksjon f(x, y) = x + y z + z ln(x) og punkt

Detaljer

arbeid - massesenter - Delvis integrasjon Forelesning i Matematikk 1 TMA4100

arbeid - massesenter - Delvis integrasjon Forelesning i Matematikk 1 TMA4100 arbeid - massesenter - Delvis integrasjon Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 11. oktober 2011 Kapittel 6.6. Arbeid 3 Arbeid definisjon Definisjon (Arbeid

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT1100 Kalkulus Eksamensdag: Fredag 14. oktober 2016 Tid for eksamen: 13.00 15.00 Oppgavesettet er på 5 sider. Vedlegg: Svarark,

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA400 Matematikk Høst 04 Løsningsforslag Øving 04 30 For å vise at f er en injektiv one-to-one funksjon, ser vi på den deriverte,

Detaljer

Mål og innhold i Matte 1

Mål og innhold i Matte 1 Mål og innhold i Institutt for matematiske fag 15. november 2013 på Målet med denne oversikten er at vi skal se hvor vi er i pensum, og at du skal kunne finne hva du kan/ikke kan. Jeg vil i tillegg vise

Detaljer

Integrasjon Forelesning i Matematikk 1 TMA4100

Integrasjon Forelesning i Matematikk 1 TMA4100 Integrasjon Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 21. oktober 2011 Kapittel 7.4. Delbrøksoppspalting og Integrasjon av rasjonale funksjoner 3 Integrasjon av

Detaljer

Forelesning Matematikk 4N

Forelesning Matematikk 4N Forelesning Matematikk 4N Hans Jakob Rivertz Institutt for matematiske fag 18. september 2006 2 Komplekse fourier rekker (10.5) Målet med denne leksjonen er vise hvordan man skrive fourier rekkene på kompleks

Detaljer

Mål og innhold i Matte 1

Mål og innhold i Matte 1 Mål og innhold i Institutt for matematiske fag på 19. oktober 2013 Målet med denne oversikten er at vi skal se hvor vi er i pensum, og at du skal kunne finne hva du kan/ikke kan. Jeg vil i tillegg vise

Detaljer

Løsningsforslag til Eksamen i MAT111

Løsningsforslag til Eksamen i MAT111 Universitetet i Bergen Matematisk institutt Bergen, 9. desember 25. Bokmål Løsningsforslag til Eksamen i MAT Mandag 9. desember 25, kl. 9-. Dette er kun et løsningsforslag. Oppgave a) Betrakt de to komplekse

Detaljer

Løsningsforslag Eksamen M100 Høsten 1998

Løsningsforslag Eksamen M100 Høsten 1998 Løsningsforslag Eksamen M00 Høsten 998 Oppgave { x y = f(x) = + x + a hvis x ln( + x ) x hvis < x lim f(x) = f( ) = + a = a x lim f(x) = ln( + x ( ) ) ( ) = ln + For at f(x) skal være kont. i x = må lim

Detaljer

Matematikk 1 (TMA4100)

Matematikk 1 (TMA4100) Matematikk 1 (TMA4100) Forelesning 6: Derivasjon Eirik Hoel Høiseth Stipendiat IMF NTNU 22. august, 2012 Stigningstallet i et punkt Stigningstallet i et punkt Vi vender nå tilbake til problemet med å finne

Detaljer

NTNU Institutt for matematiske fag. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 8. Oppgave 1. Oppgave 2

NTNU Institutt for matematiske fag. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 8. Oppgave 1. Oppgave 2 NTNU Institutt for matematiske fag TMA4 Matematikk høsten Løsningsforslag - Øving 8 Oppgave b. Vi har at f() > og f(π/) π /6

Detaljer

Areal mellom kurver Volum Forelesning i Matematikk 1 TMA4100

Areal mellom kurver Volum Forelesning i Matematikk 1 TMA4100 Areal mellom kurver Volum Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 27. september 20 Kapittel 5.6. Substitusjon og arealet mellom kurver 3 Areal mellom kurver Problem

Detaljer

Eksamen i emnet MAT111/M100 - Grunnkurs i matematikk I Mandag 15. desember 2003, kl. 09-13(15) LØYSINGSFORSLAG OPPGÅVE 2:

Eksamen i emnet MAT111/M100 - Grunnkurs i matematikk I Mandag 15. desember 2003, kl. 09-13(15) LØYSINGSFORSLAG OPPGÅVE 2: Eksamen i emnet MAT/M00 - Grunnkurs i matematikk I Mandag 5. desember 2003, kl. 09-3(5) LØYSINGSFORSLAG Finn dei deriverte til i) f(x) = x 2 ln x OPPGÅVE : exp(u 2 )du, x, ii) f(x) = x cos(x). i) d x 2

Detaljer

Løsningsforslag, Ma-2610, 18. februar 2004

Løsningsforslag, Ma-2610, 18. februar 2004 Løsningsforslag, Ma-60, 8. februar 004 For sensor og kandidater.. Lineær uavhengighet Avgjør hvorvidt de følgende funksjonene er lineært uavhengige på den reelle tallinja: f(x) x g(x) 3x h(x) 5x 8x Svaralternativ

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger Eksamensdag: Torsdag 10 januar 2008 Tid for eksamen: 9:00 12:00 Oppgavesettet er på 6

Detaljer

Eksamensoppgave i MA1101 Grunnkurs i analyse

Eksamensoppgave i MA1101 Grunnkurs i analyse Institutt for matematiske fag Eksamensoppgave i MA1101 Grunnkurs i analyse Faglig kontakt under eksamen: Kari Hag Tlf: 48 30 19 88 Eksamensdato: 15. oktober 018 Eksamenstid (fra til): 17:30 19:00 Hjelpemiddelkode/Tillatte

Detaljer

Figur 2: Fortegnsskjema for g (x)

Figur 2: Fortegnsskjema for g (x) Løsningsforslag Eksamen M00 Våren 998 Oppgave a) g) = e ) = e ) Figur : Fortegnsskjema for g) g) > 0 for < 0 og > og g) < 0 for 0 <

Detaljer

MA1102 Grunnkurs i analyse II Vår 2014

MA1102 Grunnkurs i analyse II Vår 2014 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag MA Grunnkurs i analyse II Vår 4 Løsningsforslag Øving 9 7.3.b Med f() = tan +, så er f () = cos () på intervallet ( π/, π/).

Detaljer

UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Eksamen i MAT111 Grunnkurs i matematikk I Løsningsforslag

UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Eksamen i MAT111 Grunnkurs i matematikk I Løsningsforslag UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i MAT Grunnkurs i matematikk I Løsningsforslag Onsdag 9. mai, kl. 9. 4. Bokmål Oppgave a) La R være området mellom kurvene Finn

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Forelesning 11 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 11 Transcendentale funksjoner Vi begynner nå på temaet transcendentale funksjoner. I dagens forelesning

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT-INF 11L Programmering, modellering, og beregninger. Eksamensdag: Fredag 5. Desember 214. Tid for eksamen: 9: 13:. Oppgavesettet

Detaljer

Flere anvendelser av derivasjon

Flere anvendelser av derivasjon Flere anvendelser av derivasjon Department of Mathematical Sciences, NTNU, Norway September 30, 2014 Forelesning 17.09.2014 Fikspunkt-iterasjon Newtons metode Metoder for å finne nullpunkter av funksjoner:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT00 Kalkulus Eksamensdag: Fredag 9. oktober 205 Tid for eksamen: 5.00 7.00 Oppgavesettet er på 5 sider. Vedlegg: Svarark, formelsamling.

Detaljer

Høgskolen i Agder Avdeling for realfag EKSAMEN

Høgskolen i Agder Avdeling for realfag EKSAMEN Høgskolen i Agder Avdeling for realfag EKSAMEN Emnekode: MA 40 Emnenavn: Analyse Dato: 9. desember 999 Varighet: 09.00-5.00 Antall sider inklusivt forside: Tillatte hjelpemidler: Merknader: 2 Alle, også

Detaljer

UNIVERSITETET I BERGEN

UNIVERSITETET I BERGEN Bokmål UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Løsningsforslag til Eksamen i emnet MAT - Grunnkurs i matematikk I Torsdag 22. mai 28, kl. 9-4. Dette er kun et løsningsforslag.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT Kalkulus og lineær algebra Eksamensdag: Onsdag 9 mai 9 Tid for eksamen: 4:3 8:3 Oppgavesettet er på 7 sider Vedlegg: Tillatte

Detaljer

Derivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 30. august 2011

Derivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 30. august 2011 Derivasjon Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 30. august 2011 Kapittel 3.3. Enringsrate 3 Enrings rate hastighet og akselersjon Definisjon Hvis s(t) er

Detaljer

Eksamensoppgave i MA1101/MA6101 Grunnkurs i analyse I. LØSNINGSFORSLAG

Eksamensoppgave i MA1101/MA6101 Grunnkurs i analyse I. LØSNINGSFORSLAG Institutt for matematiske fag Eksamensoppgave i MA/MA6 Grunnkurs i analyse I. LØSNINGSFORSLAG Faglig kontakt under eksamen: John Erik Fornæss /Kari Hag Tlf: 464944/483988 Eksamensdato: 8. desember 5 Eksamenstid

Detaljer

EKSAMENSOPPGAVER FOR TMA4120 MATEMATIKK 4K H-03 Del B: Kompleks analyse

EKSAMENSOPPGAVER FOR TMA4120 MATEMATIKK 4K H-03 Del B: Kompleks analyse Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag EKSAMENSOPPGAVER FOR TMA4 MATEMATIKK 4K H-3 Del B: Kompleks analyse Oppgave B- a) Finn de singulære punktene til funksjonen

Detaljer

Integrasjon Fundamentalteoremet Substitusjon Forelesning i Matematikk 1 TMA4100

Integrasjon Fundamentalteoremet Substitusjon Forelesning i Matematikk 1 TMA4100 Integrsjon Fundmentlteoremet Substitusjon Forelesning i Mtemtikk 1 TMA4100 Hns Jkob Rivertz Institutt for mtemtiske fg 23. september 2011 2 Mtemtisk induksjon Alle elefnter er ros! Vil bevise P n Alle

Detaljer

IR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer

IR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer Eksamen 8. desember 16 Eksamenstid 4 timer IR151 Matematikk 1 Bokmål Hvis du blir ferdig med oppgavene under del 1 før kl. 11., så kan og bør du starte på del uten bruk av hjelpemidler. Du kan bare bruke

Detaljer

Løsningsforslag. og B =

Løsningsforslag. og B = Prøve i Matte Dato: vår 5 ENDRE Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver ar lik vekt. Oppgave a Gitt matrisene A regn ut A + B, AB. Løsningsforslag 4 og B 7 5 Vi

Detaljer

I = (x 2 2x)e kx dx. U dv = UV V du. = x 1 1. k ekx x 1 ) = x k ekx 2x dx. = x2 k ekx 2 k. k ekx 2 k I 2. k ekx 2 k 1

I = (x 2 2x)e kx dx. U dv = UV V du. = x 1 1. k ekx x 1 ) = x k ekx 2x dx. = x2 k ekx 2 k. k ekx 2 k I 2. k ekx 2 k 1 TMA4 Høst 6 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 6 6..4 Vi skal evaluere det ubestemte integralet I = ( e k. Vi starter med å dele opp integralet

Detaljer

Innlevering Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Onsdag 15. november 2017 kl 14:30 Antall oppgaver: 8

Innlevering Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Onsdag 15. november 2017 kl 14:30 Antall oppgaver: 8 Innlevering Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Onsdag 15. november 017 kl 14:30 Antall oppgaver: 8 1 Deriver følgende funksjoner a) ( x) b) (3 5x) 6 c) x x + 3 d) x ln

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT-INF 1100L Programmering, modellering, og beregninger. Eksamensdag: Fredag 2. Desember 2016. Tid for eksamen: 9:00 13:00.

Detaljer

EKSAMEN I EMNET Løsning: Mat Grunnkurs i Matematikk I Mandag 14. desember 2015 Tid: 09:00 14:00

EKSAMEN I EMNET Løsning: Mat Grunnkurs i Matematikk I Mandag 14. desember 2015 Tid: 09:00 14:00 Universitetet i Bergen Det matematisk naturvitenskapelige fakultet Matematisk institutt Side 1 av 7 BOKMÅL EKSAMEN I EMNET Mat 111 - Grunnkurs i Matematikk I Mandag 14. desember 15 Tid: 9: 14: Tillatte

Detaljer

UNIVERSITETET I BERGEN

UNIVERSITETET I BERGEN BOKMÅL MAT - Høst 03 UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i emnet MAT Grunnkurs i Matematikk I Mandag 6. desember 03, kl. 09- Tillatte hjelpemidler: Lærebok ( Calculus

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger del 1 Eksamensdag: Tirsdag 7. desember 2004 Tid for eksamen: 14:30 17:30 Oppgavesettet

Detaljer

EKSAMEN. Om eksamen. EMNE: MA2610 FAGLÆRER: Svein Olav Nyberg, Morten Brekke. Klasser: (div) Dato: 18. feb Eksamenstid:

EKSAMEN. Om eksamen. EMNE: MA2610 FAGLÆRER: Svein Olav Nyberg, Morten Brekke. Klasser: (div) Dato: 18. feb Eksamenstid: . EKSAMEN EMNE: MA61 FAGLÆRER: Svein Olav Nyberg, Morten Brekke Klasser: (div) Dato: 18. feb. 4 Eksamenstid: 9 1 Eksamensoppgaven består av følgende: Antall sider (ink. forside): 8 Antall oppgaver: 5 Antall

Detaljer

EKSAMENSOPPGAVER FOR TMA4120 MATEMATIKK 4K H-03 Del B: Kompleks analyse

EKSAMENSOPPGAVER FOR TMA4120 MATEMATIKK 4K H-03 Del B: Kompleks analyse Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 5. juni 3 EKSAMENSOPPGAVER FOR TMA4 MATEMATIKK 4K H-3 Del B: Kompleks analyse Oppgave B- a) Finn de singulære punktene

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA400 Matematikk, høst 203 Forelesning 2 www.ntnu.no TMA400 Matematikk, høst 203, Forelesning 2 Transcendentale funksjoner I dagens forelesning skal vi se på følgende: Den naturlige logaritmen. 2 Eksponensialfunksjoner.

Detaljer

Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010

Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010 Oppgave 1 Løs ulikheten x + 6 5 x + 2 Strategien er å

Detaljer

Løsningsforslag Eksamen M100 Våren 2002

Løsningsforslag Eksamen M100 Våren 2002 Løsningsforslag Eksamen M00 Våren 00 Oppgave Evaluerer grensen cos( ) 0 ( sin( ) ) 0 6 0 6 5 0 sin( ) 0 sin( ) = Har brukt l Hôpitals regel (derivert teller og nevner hver for seg) i første og tredje overgang.

Detaljer

SIF5003 Matematikk 1, 5. desember 2001 Løsningsforslag

SIF5003 Matematikk 1, 5. desember 2001 Løsningsforslag SIF5003 Matematikk, 5. desember 200 Oppgave For den første grensen får vi et /-uttrykk, og bruker L Hôpitals regel markert ved =) : lim 0 + ln ln sin 0 + cos sin 0 + cos sin ) =. For den andre får vi et

Detaljer

TMA4135 Matematikk 4D Høst 2014

TMA4135 Matematikk 4D Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA435 Matematikk 4D Høst 04 Eksamen. desember 04 Integralet er en konvolusjon, så vi har Laplace-transformasjon gir yt) y cos)t)

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, øst 2013 Forelesning 7 www.ntnu.no TMA4100 Matematikk 1, øst 2013, Forelesning 7 Derivasjon Denne uken skal vi begynne på tema 2 om derivasjon. I dagens forelesning skal vi se på

Detaljer