ST1201 Statistiske metoder
|
|
|
- Tine Martinsen
- 8 år siden
- Visninger:
Transkript
1 ST Statistiske metoder Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsforslag - Eksame desember Oppgave a) Dette er e ANOVA-tabell for k-utvalg med k 4 og j 6 for j,,3,4. De fullstedige ANOVA-tabelle blir der og Kilde df SS MS F Betog k Error Total SSTR MSTR , MSE SSE , SSTOT SSTR+SSE F MSTR MSE Testobservatore F relaterer seg til hypotesee H : µ µ µ 3 µ 4 mot H : ikke slik, der µ i, for i,,3,4, er forvetet opptatt fuktighet for betog av type ummer i. Når H er riktig er F Fisher fordelt med 3 og frihetsgrader. Fier kritisk verdi for α.5 fra tabell til å være f.5,3, 3.. Beslutigsregele blir dermed at vi skal forkaste H år F > 3.. Betogdataee gav F.9 < 3. slik at koklusjoe blir at vi skal ikke forkaste H. eksdesl August, Side
2 ST Statistiske metoder b) E to-utvalgt-test baserer seg på at ma har observasjoer av stokastiske variablerx,...,x og Y,...,Y m der alle X i -er og Y i er uavhegige av hveradre, Ma beytter da testobervatore X i Nµ X,σ ) og Y i Nµ Y,σ ). T X Ȳ Sp + m) som er Studet t-fordelt med +m frihetsgrader år H : µ X µ Y er riktig. Variasestimatore SP er gitt ved formele S p )S X +m )S Y +m Vi lar X i -ee og Y i -ee være heholdsvis data for betog av type 3 og 4. Ved å beytte oppgitte verdier for SX og S Y i tabelle på første side av oppgavesettet får ma s P , t ) Ma må her beytte e tosidig test slik at kritisk verdi blir tα,+m t.5,.8. Beslutigsregele blir dermed at ma skal forkaste H dersom T <.8 eller T >.8. Vi observerte t 3.53 >.8, slik at koklusjoe blir at vi forkaster H. Det er ikke urimelig at vi i pukt a) kokluderer med at det ikke er sigifikat forskjell mellom forvetigsverdiee til de fire utvalgee, mes vi her i pukt b) kokluderer med at det er sigifikat forskjell mellom forvetigsverdiee til utvalg 3 og 4. Vi ka spesielt legge merke til at vi her i pukt b) sammeliger de to av de fire utvalgee som har størst avvik i gjeomsittsverdi. Vi ka også legge merke til at empirisk varias for utvalg ummer er betydelig større e for de adre tre utvalgee. ANOVA-aalyse baserer seg som kjet på atagelse om lik varias for alle utvalg. De store empiriske variase for utvalg ummer vil dermed føre til at estimatert pooled ) varias i ANOVA-aalyse blir betydelig større e tilsvarede størrelse i t-teste. Oppgave a) Rimelighetsfuksjoe blir her Lp) f Y y;p) m y ) p y p) m y. eksdesl August, Side
3 ST Statistiske metoder Log-rimelilighetsfuksjoe blir dermed m lp) llp) l y ) +y lp+m y)l p). Deriverer og setter lik ull: l p) + y p +m y p ) y p m y p y p) pm y) y yp pm py p y m. Dermed får vi at SME blir p Y m. Side vi ku har e parameter vi skal estimaere, og ku har e observasjo, fier ma mometestimatore ved å sette forvetet verdi for Y lik observert verdi for Y. Side EY mp får vi m p Y p Y m. b) E estimator θ for e parameter θ er e beste estimator hvis de er forvetigsrett og har mist like lite varias som ehver ae forvetigsrett estimator. For å vise at e estimator er e beste estimator ka ma sjekke at de er forvetigsrett og sjekke at variase til estimatore er lik Cramér-Raos edre grese for forveitigsrette estimatorer. For p har vi Y E p E EY m m mp m p, og Y VarY Var p Var m m mp p) m p p) m. Reger ut Cramér-Raos edre grese, Starter med ) m lf Y y;p) l +y lp+m y)l p). y Deriverer to gager med hesy på p: lf Y y;p) p y p + m y p ) y p m y p, lf Y y;p) p y p m y m y ) p) p) y p. eksdesl August, Side 3
4 ST Statistiske metoder Tar forvetigsverdie, lfy y;p) m y E E p p) y p m EY p) EY p m mp p) mp p m p m p m p+p) p p) m p p). Cramé-Raos edre grese for varias av forvetigsrette estimatorer blir dermed hvor vi beytter at p er basert på ku stokastiske variabler), { E lf Y Y;θ) θ } p p) m. Vi ser dermed at p var forvetigsrett og at variase for p er lik Cramér-Raos edre grese. Dermed er p e beste estimator for p. c) Vi ser at θ er forvetigsskjev fordi E θ E Y Y EY EY m m mp mp p)+mp) m Vi ser at θ er assymptotisk forvetigsrett fordi m lim θ E lim m m m θ mp VarY+EY m mp p p)+mp m )p p) m m θ θ. Vi ser at vi får e forvetigsrett estimator med å dele θ på m )/m. De forvetigsrette estimatore blir dermed Oppgave 3 a) Rimelighetsfuksjoe blir Lα,β) θ θ m m θ. my Y ). m m { exp } π σ σ y i α βx i x)). eksdesl August, Side 4
5 ST Statistiske metoder Logrimelighetsfuksjoe blir lα,β) lπ) lσ σ y i α βx i x)) lπ) lσ σ y i α βx i x)). Partiellderiverer med hesy på α og setter lik ull, l α σ y i α βx i x)) ) y i α β x i x) α y i, hvor vi har beyttet at x i x). Partiellderiverer så med hesy på β og setter lik ull, l β σ y i α βx i x)) x i x)) y i x i x) α x i x) β x i x) β x i x)y i x i x), hvor vi igje har beyttet at x i x). Sasylighetsmaksimerigsestimoree for α og β er dermed gitt ved α Ȳ Y i og β x i x)y i x i x). Ved å beytte at Y,...,Y er uavhegige får vi Var β Var x i x)y i x i x) Var x i x)y i x i x) ) Varx i x)y i x i x) ) x i x) VarY i x i x) ) x i x) σ x i x) ) σ x i x) x i x) ) σ x i x). eksdesl August, Side 5
6 ST Statistiske metoder b) β er e lieærkombiasjo avy i -ee som er uavhegige og ormalfordelte variabler. Dermed blir også β ormalfordelt, dvs. σ β ) N β, x i x). Dermed har vi også at slik at β β P z a β β N,) σ x i x) za σ x i x) a Løser hver ulikhet med hesy på β. Starter med de første, za β β σ β za σ x i x) β β σ +za x i x) β x i x) β β za σ x i x) β β +za Må dermed også ha at σ P β za x i x) β β +za σ x i x) β β za σ x i x) ) a. Et a) % kofidesitervall for β blir dermed σ β za x i x),β +z σ a x i x). σ x i x) c) For å fie et prediksjositervall tar vi utgagspukt i α+ βx x) Y. eksdesl August, Side 6
7 ST Statistiske metoder Dee vil være ormalfordelt fordi det er e lieærkombiasjo av uavhegige ormalfordelte variabler, emlig Y,...,Y og Y. Dette ka vi se ved å sette i i uttrykket over hva vi i pukt a) fat for α og β. Forvetigsverdie til dette uttrykket blir E α+ βx x) Y E α+e β x x) EY α+βx x) α+βx x)). Side Y åpebart er uavhegig av α og β får vi for tilhørede varias Var α+ βx x) Y Var α+ βx x) + VarY ut Cov får vi at Var α+var βx x) Var α+x x) Var β +Cov α, βx x) +x x)cov Fra oppgavetekste har vi uttrykk for Var α og Var β α, β α, β + VarY + VarY, og VarY σ. Treger å rege. Ved å beytte at CovY i,y j VarY i σ dersom i j og lik hvis i j x i x) Dermed får vi at Var α+ βx x) Y og dermed også Cov α, β Cov x i x) x i x) Y i, j j j x j x)y j x i x) CovY i,x j x)y j x j x)covy i,y j x i x)σ σ x i x) x i x). σ + σ x x) x i x) +σ σ + + x x) ) x i x), α+ βx x) Y N,σ + + x x) )) x i x) og σ α+ βx x) Y ) N,), + + x x) x i x) eksdesl August, Side 7
8 ST Statistiske metoder slik at P z a α+ βx x) Y ) z a + + x x) a. x i x) σ Løser så hver ulikhet hver for seg med hesy på Y og setter deretter ulikhetee samme igje med Y alee i midte, og får P α+ βx x) za σ + + x x) ) x i x) Y α+ βx x)+za Et a) % prediksjositervall for Y blir dermed α+ βx x) za σ σ + + x x) x i x) ) ) a. + + x x) ), α+ x i x) βx x)+za σ + + x x) ) x i x). Vi ser at prediksjositervallet blir kortest år x x, dvs. år x x. eksdesl August, Side 8
ST1201 Statistiske metoder
ST20 Statistiske metoder Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsforslag - Eksame desember 2005 Oppgave a Ma beyttet radomisert blokkdesig. I situasjoe har ma k =
Oppgave 1 a) Minste kvadraters metode tilpasser en linje til punktene ved å velge den linja som minimerer kvadratsummen. x i (y i α βx i ) = 0, SSE =
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalte oppgaver 2, blokk II Løsigsskisse Oppgave a Miste kvadraters metode tilpasser e lije til puktee ved å velge de lija som
TMA4245 Statistikk Eksamen mai 2017
TMA445 Statistikk Eksame mai 07 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsskisse Oppgave a Når vi reger ut disse tre sasylighetee må ma huske på at de mulige verdiee
Løsningsforslag (ST1201/ST , kontinuasjonseksamen) ln L. X i = 2n.
Løsgsforslag ST20/ST620 205, kotuasjoseksame. a Rmelghetsfuksjoe blr Logartme Derverer Løser lgge Løsge er SME: L = 2 e l L = 2 l X X. X + l X. l L = 2 + 2 X = 2. ˆ = 2 X. X. b Her ka ma beytte trasformasjosformele,
LØSNINGSFORSLAG TILEKSAMEN I FAG TMA4240/TMA4245 STATISTIKK 10. august 2005
Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 8 LØSNINGSFORSLAG TILEKSAMEN I FAG TMA440/TMA445 STATISTIKK 0. august 005 Oppgave Smeltepuktsbestemmelse a) Vi jobber i dette
TMA4240 Statistikk 2014
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer 2, blokk II Løsigsskisse Oppgave a µ populasjosgjeomsitt, dvs. eit gjeomsitt for alle bilae som køyrer på vegstrekige
TMA4245 Statistikk Vår 2015
TMA4245 Statistikk Vår 2015 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer 12, blokk II Oppgave 1 Kari har ylig kjøpt seg e y bil. Nå øsker hu å udersøke biles besiforbruk
Løsningsforsalg til første sett med obligatoriske oppgaver i STK1110 høsten 2018
Løsigsforsalg til første sett med obligatoriske oppgaver i STK1110 høste 2018 Oppgave 1 (a Et 100(1 α% kofidesitervall for forvetigsverdie µ er gitt ved formel (8.15 på side 403 i læreboka. For situasjoe
LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK 5.august 2004
Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 0 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK 5.august 2004 Oppgave Foruresig X er e stokastisk variabel som agir
ECON240 Statistikk og økonometri
ECON240 Statistikk og økoometri Arild Aakvik, Istitutt for økoomi 1 Mellomregig MKM Model: Y i = a i + bx i + e i MKM-estimator for b: b = = Xi Y i 1 Xi Yi Xi 1 ( X i ) 2 (Xi X)(Y i Ȳi) (Xi X) 2 hvor vi
X = 1 5. X i, i=1. som vil være normalfordelt med forventningsverdi E( X) = µ og varians Var( X) = σ 2 /5. En rimelig estimator for variansen er
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalte oppgaver 11, blokk II Løsigsskisse Oppgave 1 a) E rimelig estimator for forvetigsverdie µ er gjeomsittet X = 1 X i, som
Løsningsforsalg til første sett med obligatoriske oppgaver i STK1110 høsten 2015
Løsigsforsalg til første sett med obligatoriske oppgaver i STK1110 høste 2015 Oppgave 1 (a Et 100(1 α% kofidesitervall for forvetigsverdie µ er gitt ved formel (8.15 på side 403 i læreboka. For situasjoe
TMA4240 Statistikk Høst 2015
Høst 205 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer, blokk II Løsigsskisse Oppgave a) X bi(, p) fordi: Udersøker uavhegige delar av DNA-strukture. Fi for kvar del
TMA4240 Statistikk Høst 2015
Høst 205 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer 2, blokk II Løsigsskisse Oppgave a - β agir biles besiforbruk i liter/mil - Rimelig med α 0 fordi med x 0 ige
H 1 : µ 1 µ 2 > 0. t = ( x 1 x 2 ) (µ 1 µ 2 ) s p. s 2 p = s2 1 (n 1 1) + s 2 2 (n 2 1) n 1 + n 2 2
TMA4245 Statistikk Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b4 Løsigsskisse Oppgave 1 Vi øsker å fie ut om et ytt serum ka stase leukemi. 5 mus får serumet, 4
LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004
Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 0 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Oppgave Midtveiseksame a) X er e stokastisk variabel
Løsningsforslag ST1101/ST6101 kontinuasjonseksamen 2018
Løsigsforslag ST/ST6 kotiuasjoseksame Oppgave a Defier hedelsee R, B, B rød kule i første trekig, blå kule i adre trekig, blå kule i tredje trekig. Vi skal fie PR B B for to ulike situasjoer. Geerelt vet
) = P(Z > 0.555) = > ) = P(Z > 2.22) = 0.013
TMA4240 Statistikk Vår 2008 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b5 Løsigsskisse Oppgave 1 a) X 1,...,X 16 er u.i.f. N(80,18 2 ). Setter Y = X. i) P(X 1 >
Introduksjon. Hypotesetesting / inferens (kap 3) Populasjon og utvalg. Populasjon og utvalg. Populasjonsvarians
Hypotesetestig / iferes (kap ) Itroduksjo Populasjo og utvalg Statistisk iferes Utvalgsfordelig (samplig distributio) Utvalgsfordelige til gjeomsittet Itroduksjo Vi øsker å få iformasjo om størrelsee i
TMA4245 Statistikk. Øving nummer 12, blokk II Løsningsskisse. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag
Vår 205 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer 2, blokk II Løsigsskisse Oppgave a - β agir biles besiforbruk i liter/mil - Rimelig med α 0 fordi med x 0 ige
TMA4240 Statistikk Høst 2016
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalt øvig 8 Løsigsskisse Oppgave 1 a) Simuler 1000 datasett i MATLAB. Hvert datasett skal bestå av 100 utfall fra e ormalfordelig
LØSNING, EKSAMEN I STATISTIKK, TMA4240, DESEMBER Anta at sann porøsitet er r. Måling med utstyret gir da X n(x; r, 0,03).
LØSNING, EKSAMEN I STATISTIKK, TMA440, DESEMBER 006 OPPGAVE 1 Ata at sa porøsitet er r. Målig med utstyret gir da X (x; r, 0,03). a) ( ) X r P(X > r) P 0,03 > 0 P(Z > 0) 0,5. ( X r P(X r > 0,05) P 0,03
Løsningsforslag Oppgave 1
Løsigsforslag Oppgave 1 a X i µ 0 σ X i µ 0 2 σ 2, i 1,..., er uavhegige og stadard N0, 1 fordelte. Da er, i 1,..., uavhegige og χ 2 -fordelte med e frihetsgrad. Da er summe χ 2 -fordelt med atall frihetsgrader
TMA4240 Statistikk Høst 2016
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalt øvig 11 Løsigsskisse Oppgave 1 a) E rimelig estimator for forvetigsverdie µ er gjeomsittet X = 1 X i, som vil være ormalfordelt
211.7% 2.2% 53.0% 160.5% 30.8% 46.8% 17.2% 11.3% 38.7% 0.8%
Prøve-eksame II MET 1190 Statistikk Dato 31. mai 2019 kl 1100-1400 Alle svar skal begrues. Når besvarelse evalueres, blir det lagt vekt på at framgagsmåte og resultat preseteres så klart, presist og kortfattet
Statistikk og økonomi, våren 2017
Statistikk og økoomi, våre 07 Obligatorisk oppgave 6 Løsigsforslag Oppgave E terig kastes 0 gager, og det registreres hvor mage 6-ere som oppås i løpet av disse 0 kastee. Vi ka kalle atall 6-ere i løpet
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-aturviteskapelige fakultet Eksame i: STK11 Sasylighetsregig og statistisk modellerig. LØSNINGSFORSLAG Eksamesdag: Fredag 9. jui 217. Tid for eksame: 9. 13.. Oppgavesettet
ÅMA110 Sannsynlighetsregning med statistikk, våren 2008 Kp. 6, del 5
ÅMA110 Sasylighetsregig med statistikk, våre 2008 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 26. mars Bjør H. Auestad Kp. 6: Hypotesetestig del 5 1/ 53
ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 4
ÅMA11 Sasylighetsregig med statistikk, våre 21 Kp. 6, del 4 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 22. mars Bjør H. Auestad Kp. 6: Hypotesetestig del 4 1/ 29 Bjør
TMA4245 Statistikk Eksamen 9. desember 2013
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag TMA4245 Statistikk Eksame 9. desember 2013 Oppgave 1 I kortspillet Blackjack får ma de høyeste geviste hvis de to første kortee ma
Løsningsforslag ST2301 øving 3
Løsigsforslag ST2301 øvig 3 Kapittel 1 Exercise 11 Et utvalg på 100 idivider trekkes fra e populasjo med tilfeldig parrig. Det ble observert AA 63 idivider av geotype AA, Aa 27, og aa 10. Lag et 95 % kofidesitervall
Lineær regresjonsanalyse (13.4)
2 Kap. 13: Lieær korrelasjos- og regresjosaalyse ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for matematiske fag Kap. 13.1-13.3: Lieær korrelasjosaalyse. Disse avsitt er ikke pesum, me de lieære
TMA4245 Statistikk Eksamen august 2014
Norges teksk-aturvteskapelge uverstet Isttutt for matematske fag Løsgssksse Oppgave a) Y 5 PY > 53) PY 53) P ) 53 5 Φ5) 933 668 Vekte av e fylt flaske, X + Y, er e leærkombasjo av uavhegge ormalfordelte
Konfidensintervall. Notat til STK1110. Ørnulf Borgan, Ingrid K. Glad og Anders Rygh Swensen Matematisk institutt, Universitetet i Oslo.
Kofidesitervall Notat til STK1110 Ørulf Borga, Igrid K. Glad og Aders Rygh Swese Matematisk istitutt, Uiversitetet i Oslo August 2007 Formål E valig metode for å agi usikkerhete til et estimat er å berege
TMA4245 Statistikk. Øving nummer b5. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag
TMA4245 Statistikk Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b5 Oppgave 1 Eksame mai 2001, oppgave 1 av 4 Vi ser på kosetrasjoe av et giftstoff i havbue like utefor
STK1100 våren 2017 Estimering
STK1100 våre 017 Estimerig Svarer til sidee 331-339 i læreboka Ørulf Borga Matematisk istitutt Uiversitetet i Oslo 1 Politisk meigsmålig Spør et tilfeldig utvalg på 1000 persoer hva de ville ha stemt hvis
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdelig for tekologi Målform: Bokmål Eksamesdato: 5 jui 2015 Varighet/eksamestid: Emekode: 3 timer TALM1005 Emeav: Statistikk og Økoomi statistikkdele Klasser: Logistikk 1 Kjemi
UNIVERSITETET I OSLO
Eksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet STK1110 FASIT. Eksamensdag: Tirsdag 11. desember 2012. Tid for eksamen: 14.30 18.30. Oppgavesettet er på 5 sider. Vedlegg: Tillatte
Estimering 1 -Punktestimering
Estimerig 1 -Puktestimerig Dekkes av kap. 8, 9.1-9.3 og 9.15/9.14. Vi har til å settpå e rekke forskjellige sasylighetsfordeliger og sett hvorda disse ka brukes til å modellere mage forskjellige typer
Oppgave 1. (i) Hva er sannsynligheten for at det øverste kortet i bunken er et JA-kort?
ECON EKSAMEN 8 VÅR TALLSVAR Oppgave Vi har e kortstokk beståede av 6 kort. På av disse står det skrevet JA på forside mes det står NEI på forside av de adre kortee. Hvis ma får se kortet med bakside vedt
Estimering 2. -Konfidensintervall
Estimerig 2 -Kofidesitervall Dekkes av kap. 9.4-9.5, 9.10, 9.12 og forelesigsotatee. Dersom forsøket gjetas mage gager vil (1 α)100% av itervallee [ ˆΘ L, ˆΘ U ] ieholde de ukjete parametere θ (som er
TMA4100 Matematikk 1 Høst 2014
Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag TMA400 Matematikk Høst 04 Løsigsforslag Øvig 3 Review Exercises, side 454 Vi starter med å tege e figur av e skål med va: z A(z)
Kort repetisjon fra kapittel 4. Oppsummering kapittel ST0202 Statistikk for samfunnsvitere. Betinget sannsynlighet og trediagram
2 Kort reetisjo fra kaittel 4 Betiget sasylighet og trediagram Eksemel: Fra e oulasjo av idrettsfolk trekkes e erso tilfeldig og testes for doig. De iteressate hedelsee er D=ersoe er doet, A=teste er ositiv.
EKSAMEN. Oppgavesettet består av 5 oppgaver, hvor vekten til hver oppgave er angitt i prosent i oppgaveteksten. Alle oppgavene skal besvares.
EKSAMEN Emekode: SFB12003 Eme: Metodekurs II: Samfusviteskapelig metode og avedt statistikk Dato: 2.6.2014 Eksamestid: kl. 09.00 til kl. 13.00 Hjelpemidler: Kalkulator Faglærer: Bjørar Karlse Kivedal Eksamesoppgave:
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdelig for tekologi Målform: Bokmål Eksamesdato: 19 des. 2014 Varighet/eksamestid: Emekode: 3 timer TALM1005 Emeav: Statistikk og Økoomi statistikkdele Klasser: Logistikk 1 Kjemi
MOT310 Statistiske metoder 1, høsten 2011
MOT310 Statistiske metoder 1, høste 2011 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 24. august, 2011 Bjør H. Auestad Itroduksjo og repetisjo 1 / 32 Repetisjo; 9.1,
Oppgaven består av 9 delspørsmål, A,B,C,., som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom <<.. >>.
ECON 130 EKSAMEN 008 VÅR - UTSATT PRØVE SENSORVEILEDNING Oppgave består av 9 delspørsmål, A,B,C,., som abefales å veie like mye, Kommetarer og tallsvar er skrevet i mellom . Oppgave 1 Ved e spørreudersøkelse
Estimering 1 -Punktestimering
Estimerig 1 -Puktestimerig Dekkes av kap. 8, 9.1-9.3 og 9.15/9.14. Vi har til å settpå e rekke forskjellige sasylighetsfordeliger og sett hvorda disse ka brukes til å modellere mage forskjellige typer
Kap. 9: Inferens om én populasjon
2 ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for matematiske fag Ka. 9: Iferes om é oulasjo Hvis σ er ukjet bytter vi ut σ med s i Ny observator blir t = x μ s/ z = x μ σ/ der s = Σx 2 (Σx)
Eksamensoppgave i ST1201/ST6201 Statistiske metoder
Institutt for matematiske fag Eksamensoppgave i ST1201/ST6201 Statistiske metoder Faglig kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: 20. desember 2016 Eksamenstid (fra til): 09:00
LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK Mandag 12. desember 2011
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK Mandag 12. desember 2011 Oppgave 1 Oljeleting a) Siden P(A
MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 8 (s. 1) Oppgaver fra boka:
MOT30 Statistiske metoder, høsten 2006 Løsninger til regneøving nr. 8 (s. ) Oppgaver fra boka: Oppgave.5 (.3:5) ) Først om tolking av datautskriften. Sammendrag gir følgende informasjon: Multippel R =R,
Kap. 9: Inferens om én populasjon
2 ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for matematiske fag Ka. 9: Iferes om é oulasjo Hvis σ er ukjet bytter vi ut σ med s i Ny observator blir t = x μ s/ z = x μ σ/ der s = Σx 2 (Σx)
MA1102 Grunnkurs i analyse II Vår 2019
Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag MA0 Grukurs i aalyse II Vår 09 9 Vi har rekke Dette er e geometrisk rekke som beskrevet på side 50 i læreboka, med x (side ) Spesielt
ÅMA110 Sannsynlighetsregning med statistikk, våren 2008 Kp. 6, del 5
ÅMA110 Sasylighetsregig med statistikk, våre 2008 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 3. april Bjør H. Auestad Kp. 6: Hypotesetestig del 5 1/ 56
Repetisjon; 9.1, 9.2, 9.3, 9.4, 9.5, og Repetisjon; 9.1, 9.2, 9.3, 9.4, 9.5, og 9.10
Repetisjo; 9.1, 9.2, 9.3, 9.4, 9.5, og 9.10 og Geerell defiisjo av : Situasjo: Data x 1,...,x ;utfallav:x 1,...,X ; u.i.f. tilfeldige variable Ukjet parameter i fordelige til X i ee: θ Dersom L og U L
Eksamensoppgave i ST1201/ST6201 Statistiske metoder
Institutt for matematiske fag Eksamensoppgave i ST1201/ST6201 Statistiske metoder Faglig kontakt under eksamen: Tlf: Eksamensdato: august 2015 Eksamenstid (fra til): Hjelpemiddelkode/Tillatte hjelpemidler:
MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: n + (x 0 x) 2 σ2
MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: Oppgave 11.27 (11.6:13) Modell: Y i = α + βx i + ε i der ε 1,..., ε n u.i.f. N(0, σ 2 ). Skal finne konfidensintervall
EKSAMEN I TMA4245 Statistikk
Noregs tekisk aturvitskaplege uiversitet Istitutt for matematiske fag Side 1 av 5 Fagleg kotakt uder eksame: Turid Follestad (98 06 68 80/73 59 35 37) Hugo Hammer (45 21 01 84/73 59 77 74) Eirik Mo (41
n 2 +1) hvis n er et partall.
TMA445 Statistikk Vår 04 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer, blokk II Oppgave Mediae til et datasett, X, er de midterste verdie. Hvis vi har stokastiske
11,7 12,4 12,8 12,9 13,3.
TMA4240 Statistikk Vår 2008 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b6 Oppgave 1 Eksame mai 2001, oppgave 1 av 4 Vi ser på kosetrasjoe av et giftstoff i havbue
Oppgave 1. Vi må forutsette at dataene kommer fra uavhengige og normalfordelte tilfeldige variable,
MOT30 Statistiske metoder Løsningsforslag til eksamen vår 0 s. Oppgave a Vi har x = 6. og x i x = 4.6. Herav s x = n Et 90% kondensintervall er gitt ved x i x = 4.6 = 0.89 6 SX X t 0.056 X + t S X 0.056
ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 4. Hypotesetesting, del 4
ÅMA11 Sasylighetsregig med statistikk, våre 27 Kp. 6, del 4 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 19. mars Bjør H. Auestad Kp. 6: Hypotesetestig del 4 1/ 27 Bjør
Løsningsforslag for andre obligatoriske oppgave i STK1100 Våren 2007 Av Ingunn Fride Tvete og Ørnulf Borgan
Løsigsforslag for adre obligatoriske oppgave i STK11 Våre 27 Av Igu Fride Tvete ([email protected]) og Ørulf Borga ([email protected]). NB! Feil ka forekomme. NB! Sed gjere e mail hvis du fier e feil! Oppgave
Kapittel 8: Estimering
Kaittel 8: Estimerig Estimerig hadler kort sagt om hvorda å aslå verdie å arametre som,, og dersom disse er ukjete. like arametre sier oss oe om oulasjoe vi studerer (dvs om alle måliger av feomeet som
Rep.: generelle begrep og definisjoner Kp. 10.1, 10.2 og 10.3
Kp. 1, oversikt ; oversikt, t- ; oversikt ; stor ; Hypoteseig; ett- og to-utvalg Rep.: geerelle begrep og defiisjoer Kp. 1.1, 1.2 og 1.3 Rep.: ett-utvalgser for μ (...), p Kp. 1 og 1.8 Nytt: ett-utvalgs
Løsningsforslag andre obligatoriske oppgave i STK 1110 høsten 2014
Løsigsforslag adre obligatoriske oppgave i STK 1110 høste 2014 Oppgave 1 Vi har 10 måliger av kroppstemperatur for friske kvier x 1,x 2,...,x 10 og 10 måliger for friske me y 1,y 2,...,y 10 a) Vi lager
2. Hypotesetesting i ulike sitausjoner: i. for forventingen, μ, i målemodellen med normalantakelse og kjent varians, σ 2.
Oversikt 1. Hva er hypotesetestig? 2. i ulike sitausjoer: i. for forvetige, μ, med ormalatakelse og kjet varias, σ 2. ii. for forvetige, μ, med stor og ormaltilærmig (variase, σ 2, ukjet). iii. for suksessasylighete,
LØSNING: Eksamen 28. mai 2015
LØSNING: Eksame 28. mai 2015 MAT110 Statistikk 1, vår 2015 Oppgave 1: revisjo ) a) Situasjoe som beskrives i oppgave ka modelleres med e ure. I dee ure er fordelige kjet, M atall bilag med feil og N 100
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Øvelsesoppgave i: ECON30 Statistikk HØST 004 Dato for utleverig: Fredag 5. oktober 004 Frist for ileverig: Osdag 7. oktober 004, seest kl. 5.00 Ileverigssted: Ekspedisjoskotoret,.
Tentative solutions to TMA4240 Statistics, December 18, 2010
Norwegia Uiversity of Sciece ad Techology Departmet of Mathematical Scieces Page of 9 Tetative solutios to TMA440 Statistics, December 8, 00 Problem Hay fever ad eczema a) If E ad H are idepedet evets,
KLMED8004 Medisinsk statistikk. Del I, høst Estimering. Tidligere sett på. Eksempel hypertensjon
Tidligere sett på KLMED8004 Medisisk statistikk Del I, høst 008 Estimerig Hvorda kjete sasylighetsfordeliger (biomialfordelig, ormalfordelig) med kjete populasjosparametrer (forvetig, varias osv.) ka gi
