MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: n + (x 0 x) 2 σ2

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: n + (x 0 x) 2 σ2"

Transkript

1 MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: Oppgave (11.6:13) Modell: Y i = α + βx i + ε i der ε 1,..., ε n u.i.f. N(0, σ 2 ). Skal finne konfidensintervall for forventa mengde konvertert sukker ved temperatur x 0 = 1.6, dvs finne konfidensintervall for µ Y x0 = α + βx 0. Estimator: ˆµ Y x0 = A + Bx 0 E(ˆµ Y x0 ) = E(A) + E(B)x 0 = α + βx 0 = µ Y x0 Var(ˆµ Y x0 ) = Var(A + Bx 0 ) = Var(Ȳ B x + Bx 0) = Var(Ȳ + B(x 0 x)) uavh = Var(Ȳ ) + (x 0 x) 2 Var(B) = σ2 n + (x 0 x) 2 σ2 T = ˆµ Y x0 µ Y x0 S 1 n + (x 0 x) 2 1 t n 2 Merk, n 2 frihetsgrader p.g.a. vi nå har en modell med to parametre i forventingsverdien. P ( t γ/2,n 2 T t γ/2,n 2 ) = 1 γ ˆµ Y x0 µ Y x0 P ( t γ/2,n 2 S 1 + (x t γ/2,n 2 ) = 1 γ n 0 x) P (ˆµ Y x0 t γ/2,n 2 S n + (x 0 x) 1 2 µ Y x0 1 ˆµ Y x0 + t γ/2,n 2 S n + (x 0 x) 1 2 ) = 1 γ Tallsvar: Fra 11.3:3 har vi at a = og b = 1.809, dvs ˆµ Y 1.6 = a + b 1.6 = = 9.31, fra 11.6:5 har vi at s = 0.40 = og = 1.1, og videre blir (x 0 x) 2 = ( ) 2 = 0.01 og t 0.025,9 = Dvs et 95% konfidensintervall for µ Y 1.6 er gitt ved: [ , ] = [8.86, 9.76] Vi går nå videre og finner prediksjonsintervall for mengden konvertert sukker i ett forsøk ved x 0 = 1.6, dvs finner prediksjonsintervall for Y 0 = α + βx 0 + ε. Tar utgangspunkt i: ˆµ Y x0 Y 0 E(ˆµ Y x0 Y 0 ) = E(A + Bx 0 ) E(Y 0 ) = α + βx 0 (α + βx 0 ) = 0 Var(ˆµ Y x0 Y 0 ) uavh = Var(ˆµ Y x0 ) + Var(Y 0 ) = σ2 n + (x 0 x) 2 σ2 + σ 2 T = ˆµ Y x0 Y 0 S n + (x 0 x) 2 1 t n 2

2 MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 7 (s. 2) P ( t γ/2,n 2 T t γ/2,n 2 ) = 1 γ ˆµ Y x0 Y 0 P ( t γ/2,n 2 S (x t γ/2,n 2 ) = 1 γ n 0 x) 2 1. P (ˆµ Y x0 t γ/2,n 2 S n + (x 0 x) 1 2 Y 0 ˆµ Y x0 + t γ/2,n 2 S n + (x 0 x) 1 2 ) = 1 γ Tallsvar: Innsatt samme tall som over gir dette følgende 95% prediksjonsintervall for Y 0 : [ , ] = [7.81, 10.81] Oppgave (11.9:1) Modell: Y i = βx i + ε i (dvs α = 0) a) La estimert regresjonslinje være ŷ = bx. Minste kvadratsumsestimat for β er det estimatet b som minimerer: SSE = (y i ŷ i ) 2 = (y i bx i ) 2 SSE b = 2(y i bx i )( x i ) = 0 y i x i b x 2 i = 0 b = n x i y i n x 2 i b) b = 6 x i y i 6 x 2 i = = dvs ŷ = 2.003x Vi skal teste Oppgave (11.9:4) H 0 : β = 0 mot H 1 : β 0 i modellen Y i = α + βx i + ε i ved bruk av variansanlyse. Vi har da at vi forkaster H 0 dersom F = SSR/1 SSE/(n 2) = MSR MSE f γ,1,n 2 Dvs på 5% nivå dersom F f 0.05,1,9 = Denne oppgaven er det aller lettest å løse ved å bruke Excel til å regne ut variansanalysetabellen, men den er også fullt mulig å gjøre for hånd (se under). Se Excel-utskriften (som du finner på Excel-sidene til faget). Se i løsningsforslaget til forrige øving hvordan datautskriften til

3 MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 7 (s. 3) en regresjonsmodell skal tolkes. Ut fra plottet over sammenhørende verdier av temperatur og sukker ser det ut for å være en sammenheng mellom det to variablene. Fra datautskriften (F under ) har vi at f obs = 9.00, dvs vi forkaster H 0. Alternativt kunne vi gått direkte inn i datautskriften og lest ut p-verdien for testen Signifikans-F. Vi ser at testen har p-verdi=0.015 som er lavere enn 0.05, dvs vi forkaster H 0 på 5% nivå. Det er også fullt mulig å regne ut de nødvendige kvadratsummene SSE = n (Y i Ŷi) 2 og SSR = n (Ŷi Ȳ )2 for hånd. I oppgave 11.6:5 på forrige øving regnet vi ut at SSE = 11 (y i ŷ i ) 2 = 11 e 2 i = 3.60 og en tilsvarende utregning gir at SSR = 11 (ŷ i ȳ) 2 = 11 ( x i 9.127) 2 = 3.60 (ved en tilfeldighet samme som SSE) der ŷ i og ȳ ble regnet ut i oppgave 11.3:3 på forrige øving. Vi får da at f obs = dvs vi forkaster H 0 på 5% nivå. SSR/1 SSE/(11 2) = 3.60/1 3.60/9 = 9.00 > f 0.05,1,9 = 5.12, Med alle fire x-variable i modellen: Regression Statistics Multiple R 0,5494 R Square 0,3019 Adjusted R Square 0,2904 Standard Error 0,8582 Observations 248 Oppgave 1 ANOVA df SS MS F Significance F Regression 4 77, , ,2692 0,0000 Residual ,9567 0,7364 Total ,3403 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Intercept 5,6324 1,5136 3,7212 0,0002 2,6509 8,6138 alder 0,0290 0,0033 8,8948 0,0000 0,0226 0,0354 kjønn -0,0383 0,1587-0,2412 0,8096-0,3508 0,2742 høyde -0,0147 0,0092-1,6015 0,1106-0,0329 0,0034 vekt 0,0105 0,0056 1,8877 0,0603-0,0005 0,0215

4 MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 7 (s. 4) Med kun alder: Multippel R 0,5360 R-kvadrat 0,2873 Justert R-kvadrat 0,2844 Standardfeil 0,8618 Regresjon 1 73, , ,1471 0,0000 Residualer ,7039 0,7427 Skjæringspunkt 3,7638 0, ,6141 0,0000 3,4626 4,0650 alder 0,0306 0,0031 9,9573 0,0000 0,0245 0,0366 Med kun kjønn: Multippel R 0,0227 R-kvadrat 0,0005 Justert R-kvadrat -0,0035 Standardfeil 1,0205 Regresjon 1 0,1316 0,1316 0,1264 0,7225 Residualer ,2087 1,0415 Skjæringspunkt 5,2089 0, ,3767 0,0000 5,0269 5,3909 kjønn -0,0461 0,1296-0,3555 0,7225-0,3014 0,2092

5 MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 7 (s. 5) Med kun høyde: Multippel R 0,1881 R-kvadrat 0,0354 Justert R-kvadrat 0,0314 Standardfeil 1,0026 Regresjon 1 9,0668 9,0668 9,0201 0,0029 Residualer ,2735 1,0052 Skjæringspunkt 8,8415 1,2190 7,2533 0,0000 6, ,2424 høyde -0,0212 0,0071-3,0034 0,0029-0,0351-0,0073 Med kun vekt: Multippel R 0,0348 R-kvadrat 0,0012 Justert R-kvadrat -0,0028 Standardfeil 1,0202 Regresjon 1 0,3106 0,3106 0,2984 0,5854 Residualer ,0297 1,0408 Skjæringspunkt 4,9801 0, ,0507 0,0000 4,2285 5,7317 vekt 0,0028 0,0052 0,5463 0,5854-0,0074 0,0130

Kp. 11 Enkel lineær regresjon (og korrelasjon) Kp. 11 Regresjonsanalyse; oversikt

Kp. 11 Enkel lineær regresjon (og korrelasjon) Kp. 11 Regresjonsanalyse; oversikt Bjørn H. Auestad Kp. 11: Regresjonsanalyse 1 / 57 Kp. 11 Regresjonsanalyse; oversikt 11.1 Introduction to Linear Regression 11.2 Simple Linear Regression 11.3 Least Squares and the Fitted Model 11.4 Properties

Detaljer

+ S2 Y ) 2. = 6.737 6 (avrundet nedover til nærmeste heltall) n Y 1

+ S2 Y ) 2. = 6.737 6 (avrundet nedover til nærmeste heltall) n Y 1 Løsningsforslag for: MOT10 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 6. november 007 TILLATTE HJELPEMIDLER: Kalkulator: HP0S, Casio FX8 eller TI-0 Tabeller og formler i statistikk (Tapir forlag) MERKNADER:

Detaljer

10.1 Enkel lineær regresjon Multippel regresjon

10.1 Enkel lineær regresjon Multippel regresjon Inferens for regresjon 10.1 Enkel lineær regresjon 11.1-11.2 Multippel regresjon 2012 W.H. Freeman and Company Denne uken: Enkel lineær regresjon Litt repetisjon fra kapittel 2 Statistisk modell for enkel

Detaljer

OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 6 SIDER MERKNADER: Alle deloppgaver vektlegges likt.

OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 6 SIDER MERKNADER: Alle deloppgaver vektlegges likt. EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 08. mai 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir forlag) OPPGAVESETTET

Detaljer

Oppgave 1 (25 %) Resultater fra QM: a) Maximin = 0 ved ikke å lansere. b) Maximax = 27000000 for produkt 2.

Oppgave 1 (25 %) Resultater fra QM: a) Maximin = 0 ved ikke å lansere. b) Maximax = 27000000 for produkt 2. Oppgave 1 (25 %) Resultater fra QM: a) Maximin = 0 ved ikke å lansere. b) Maximax = 27000000 for produkt 2. c) EMV max = 1000000 * 0.8 + 27000000 * 0.2 = 4600000 for produkt 2. d) 0.2 * 27000000 4600000

Detaljer

Oppgave 1. T = 9 Hypotesetest for å teste om kolesterolnivået har endret seg etter dietten: T observert = 2.16 0

Oppgave 1. T = 9 Hypotesetest for å teste om kolesterolnivået har endret seg etter dietten: T observert = 2.16 0 Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 08. mai 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir

Detaljer

Oppgave 1. og t α/2,n 1 = 2.262, så er et 95% konfidensintervall for µ D (se kap 9.9 i læreboka): = ( 0.12, 3.32).

Oppgave 1. og t α/2,n 1 = 2.262, så er et 95% konfidensintervall for µ D (se kap 9.9 i læreboka): = ( 0.12, 3.32). Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 16. november 2009 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir

Detaljer

Institutt for økonomi og administrasjon

Institutt for økonomi og administrasjon Fakultet for samfunnsfag Institutt for økonomi og administrasjon Statistiske metoder Bokmål Dato: Torsdag 19. desember Tid: 4 timer / kl. 9-13 Antall sider (inkl. forside): 8 Antall oppgaver: 3 Oppsettet

Detaljer

Fra krysstabell til regresjon

Fra krysstabell til regresjon Fra krysstabell til regresjon La oss si at vi er interessert i å undersøke i hvilken grad arbeidstid er avhengig av utdanning. Vi har ca. 3200 observasjoner (dvs. arbeidstakere som er spurt). For hver

Detaljer

SOS1120 Kvantitativ metode. Regresjonsanalyse. Lineær sammenheng II. Lineær sammenheng I. Forelesningsnotater 11. forelesning høsten 2005

SOS1120 Kvantitativ metode. Regresjonsanalyse. Lineær sammenheng II. Lineær sammenheng I. Forelesningsnotater 11. forelesning høsten 2005 SOS1120 Kvantitativ metode Regresjonsanalyse Forelesningsnotater 11. forelesning høsten 2005 Per Arne Tufte Lineær sammenheng I Lineær sammenheng II Ukelønn i kroner 4000 3500 3000 2500 2000 1500 1000

Detaljer

Forelesning 13 Regresjonsanalyse

Forelesning 13 Regresjonsanalyse Forelesning 3 Regresjonsanalyse To typer bivariat analyse: Bivariat tabellanalyse: Har enhetenes verdi på den uavhengige variabelen en tendens til å gå sammen med bestemte verdier på den avhengige variabelen?

Detaljer

HØGSKOLEN I STAVANGER

HØGSKOLEN I STAVANGER EKSAMEN I: MOT310 STATISTISKE METODER VARIGHET: 4 TIMER DATO: 27. FEBRUAR 2004 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 5

Detaljer

Oppgave 1. Det oppgis at dersom y ij er observasjon nummer j fra laboratorium i så er SSA = (y ij ȳ i ) 2 = 3.6080.

Oppgave 1. Det oppgis at dersom y ij er observasjon nummer j fra laboratorium i så er SSA = (y ij ȳ i ) 2 = 3.6080. EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 28. FEBRUAR 2005 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV 4 OPPGAVER PÅ

Detaljer

Oppgave 13.1 (13.4:1)

Oppgave 13.1 (13.4:1) MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 11 (s. 1) Modell: Oppgave 13.1 (13.4:1) Y ij = µ i + ε ij, der ε ij uavh. N(0, σ 2 ) Boka opererer her med spesialtilfellet der man

Detaljer

år i 1 2 3 4 5 6 7 8 9 alder x i 37 38 39 40 41 42 43 44 45 tid y i 45.54 41.38 42.50 38.80 41.26 37.20 38.19 38.05 37.45 i=1 (x i x) 2 = 60, 9

år i 1 2 3 4 5 6 7 8 9 alder x i 37 38 39 40 41 42 43 44 45 tid y i 45.54 41.38 42.50 38.80 41.26 37.20 38.19 38.05 37.45 i=1 (x i x) 2 = 60, 9 TMA424 Statistikk Vår 214 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 11, blokk II Oppgave 1 Matlabkoden linearreg.m, tilgjengelig fra emnets hjemmeside, utfører

Detaljer

Eksamen i : STA-1002 Statistikk og. Eksamensdato : 26. september 2011. Sted : Administrasjonsbygget. Tillatte hjelpemidler : - Godkjent kalkulator

Eksamen i : STA-1002 Statistikk og. Eksamensdato : 26. september 2011. Sted : Administrasjonsbygget. Tillatte hjelpemidler : - Godkjent kalkulator Side 1 av 11 sider EKSAMENSOPPGAVE I STA-1002 Eksamen i : STA-1002 Statistikk og sannsynlighet 2 Eksamensdato : 26. september 2011. Tid : 09-13. Sted : Administrasjonsbygget. Tillatte hjelpemidler : -

Detaljer

HØGSKOLEN I STAVANGER

HØGSKOLEN I STAVANGER EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 25. NOVEMBER 2003 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ

Detaljer

Eksamensoppgave i ST3001

Eksamensoppgave i ST3001 Det medisinske fakultet Institutt for kreftforskning og molekylær medisin Eksamensoppgave i ST3001 fredag 25. mai 2012, kl. 9.00 13:00 Antall studiepoeng: 7.5 Tillatte hjelpemidler: Kalkulator og alle

Detaljer

Sammenlikninger av gjennomsnitt. SOS1120 Kvantitativ metode. Kan besvare to spørsmål: Sammenlikning av to gjennomsnitt

Sammenlikninger av gjennomsnitt. SOS1120 Kvantitativ metode. Kan besvare to spørsmål: Sammenlikning av to gjennomsnitt SOS1120 Kvantitativ metode Forelesningsnotater 10. forelesning høsten 2005 Per Arne Tufte Sammenlikninger av gjennomsnitt Sammenlikner gjennomsnittet på avhengig variabel for ulike grupper av enheter Kan

Detaljer

SPIQ. Bruk av enkle statistiske metoder i prosessforbedring. Software Process Improvement for better Quality

SPIQ. Bruk av enkle statistiske metoder i prosessforbedring. Software Process Improvement for better Quality SPIQ Software Process Improvement for better Quality SAMMENSTILL ANALYSER GJENNOMFØR KARAKTERISER SETT MÅL PLANLEGG Bruk av enkle statistiske metoder i prosessforbedring Versjon:...V1.0 Dato:...98-09-11

Detaljer

MOT310 Statistiske metoder 1, høsten 2010 Løsninger til regneøving nr. 11 (s. 1) der

MOT310 Statistiske metoder 1, høsten 2010 Løsninger til regneøving nr. 11 (s. 1) der MOT310 Statistiske metoder 1, høsten 2010 Løsninger til regneøving nr. 11 (s. 1) Oppgave 13.1 Modell: Y ij = µ i + ε ij, der ε ij uavh. N(0, σ 2 ) Boka opererer her med spesialtilfellet der man har like

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: Bio 2150A Biostatistikk og studiedesign Eksamensdag: 6. desember 2013 Tid for eksamen: 14:30-17:30 (3 timer) Oppgavesettet er

Detaljer

Andre sett med obligatoriske oppgaver i STK1110 høsten 2010

Andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Dette er det andre settet med obligatoriske oppgaver i STK1110 høsten 2010. Oppgavesettet består av fire oppgaver. Det er valgfritt om du vil

Detaljer

Høye skårer indikerer høye nivåer av selvkontroll.

Høye skårer indikerer høye nivåer av selvkontroll. Psykologisk institutt PSY2012 Forskningsmetodologi III: Statistisk analyse, design og måling Eksamen vår 2015 Skriftlig skoleeksamen tirsdag 19. mai, 09:00 (4 timer) Resultater publiseres 10. juni Kalkulator

Detaljer

Løsningsforslag øving 9, ST1301

Løsningsforslag øving 9, ST1301 Løsningsforslag øving 9, ST1301 Oppgave 1 Regresjon. Estimering av arvbarhet. a) Legg inn din egen høyde, din mors høyde, din fars høyde, og ditt kjønn via linken på fagets hjemmeside 1. Last så ned dataene

Detaljer

Std. Error. ANOVA b. Sum of Squares df Square F Sig. 54048,151 2 27024,075 327,600,000 263063,943 3189 82,491 317112,094 3191.

Std. Error. ANOVA b. Sum of Squares df Square F Sig. 54048,151 2 27024,075 327,600,000 263063,943 3189 82,491 317112,094 3191. Samspill i regresjon Variables Entered/Removed b Variables Variables Entered Removed Method Kjønn,, Enter hjemmebo ende a a. All requested variables entered. Summary Std. Error Adjusted R of the R R Square

Detaljer

Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder

Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder Psykologisk institutt Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder Faglig kontakt under eksamen: Martin Rasmussen Tlf.: 73 59 19 60 Eksamensdato: 12.12.13 Eksamenstid

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON2130 - Statistikk 1 Eksamensdag: 19.06.2014 Tid for eksamen: kl. 09:00 12:00 Oppgavesettet er på 4 sider UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Tillatte hjelpemidler: Alle trykte

Detaljer

EKSAMEN I FAG TMA4255 ANVENDT STATISTIKK

EKSAMEN I FAG TMA4255 ANVENDT STATISTIKK Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Bo Lindqvist Tlf. 975 89 418 BOKMÅL EKSAMEN I FAG TMA4255 ANVENDT STATISTIKK Onsdag

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 20. mars Bjørn H. Auestad Kp. 6: Hypotesetesting

Detaljer

Multisample Inference del 2 (Rosner )

Multisample Inference del 2 (Rosner ) Multisample Inference del (Rosner.5.7) Inger Johanne Baen Enhet for anvendt linis forsning, NTNU og Avdeling for forebyggende helsearbeid, SINTEF Inference oversettes med Sluttsats inference n. a. The

Detaljer

Sentralverdi av dataverdi i et utvalg Vi tenker oss et utvalg med datapar. I vårt eksempel har vi 5 datapar.

Sentralverdi av dataverdi i et utvalg Vi tenker oss et utvalg med datapar. I vårt eksempel har vi 5 datapar. Statistisk behandling av kalibreringsresultatene Del 4. v/ Rune Øverland, Trainor Elsikkerhet AS Denne artikkelserien handler om statistisk behandling av kalibreringsresultatene. Dennne artikkelen tar

Detaljer

Lineære modeller i praksis

Lineære modeller i praksis Lineære modeller Regresjonsmodeller med Forskjellige spesialtilfeller Uavhengige variabler Én binær variabel Analysen omtales som Toutvalgs t-test én responsvariabel: Y én eller flere uavhengige variabler:

Detaljer

Regresjon med GeoGebra

Regresjon med GeoGebra Praksis og Teori Askim videregående skole 14.08.14 1 Lærplanmål 2 Punkter og Lister 3 Regresjon 4 Teori 5 Nytt verktøy Læreplanmål i 2P Modellering gjere målingar i praktiske forsøk og formulere matematiske

Detaljer

TMA4240 Statistikk Høst 2009

TMA4240 Statistikk Høst 2009 TMA4240 Statistikk Høst 2009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b7 Oppgave 1 Automatisert laboratorium Eksamen november 2002, oppgave 3 av 3 I eit

Detaljer

TMA4240 Statistikk Høst 2012

TMA4240 Statistikk Høst 2012 TMA424 Statistikk Høst 212 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving blokk II Oppgave 1 Oppgave 11.3 fra læreboka. Oppgave 2 Oppgave 11.19 fra læreboka. Oppgave

Detaljer

Eksamensoppgave i PSY2017/PSYPRO4317. Statistikk og kvantitative forskningsmetoder. Psykologisk institutt

Eksamensoppgave i PSY2017/PSYPRO4317. Statistikk og kvantitative forskningsmetoder. Psykologisk institutt 1 Psykologisk institutt Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder Faglig kontakt under eksamen: Christian Klöckner Tlf.: 73 59 19 60 Eksamensdato: 29.05.2015 Eksamenstid

Detaljer

Klassisk ANOVA/ lineær modell

Klassisk ANOVA/ lineær modell Anvendt medisinsk statistikk, vår 008: - Varianskomponenter - Sammensatt lineær modell med faste og tilfeldige effekter - Evt. faktoriell design Eirik Skogvoll Overlege, Klinikk for anestesi og akuttmedisin

Detaljer

PSY2012 Forskningsmetodologi III: Statistisk analyse, design og måling Eksamen vår 2014

PSY2012 Forskningsmetodologi III: Statistisk analyse, design og måling Eksamen vår 2014 Psykologisk institutt PSY2012 Forskningsmetodologi III: Statistisk analyse, design og måling Eksamen vår 2014 Skriftlig skoleeksamen fredag 2. mai, 09:00 (4 timer). Kalkulator uten grafisk display og tekstlagringsfunksjon

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK 1000 Innføring i anvendt statistikk. Eksamensdag: Mandag 4. desember 2006. Tid for eksamen: 14.30 17.30. Oppgavesettet er

Detaljer

2. Hva er en sampelfordeling? Nevn tre eksempler på sampelfordelinger.

2. Hva er en sampelfordeling? Nevn tre eksempler på sampelfordelinger. H12 - Semesteroppgave i statistikk - sensurveiledning Del 1 - teori 1. Gjør rede for resonnementet bak ANOVA. Enveis ANOVA tester om det er forskjeller mellom gjennomsnittene i tre eller flere populasjoner.

Detaljer

Analyse med uavhengige variabler på nominal- /ordinalnivå

Analyse med uavhengige variabler på nominal- /ordinalnivå Analyse med uavhengige varialer på nominal- /ordinalnivå Hvordan rue varialer på nominalnivå (eventuelt ordinalnivå) som har flere enn to verdier i en regresjonsanalyse? Svar: omoder til dummyvarialer

Detaljer

Regler i statistikk STAT 100

Regler i statistikk STAT 100 TORIL FJELDAAS RYGG - VÅREN 2010 Regler i statistikk STAT 100 Innhold side Sannsynlighetsregning 3 - Uttrykk 3 - Betinget sannsynlighet 4 - Regler for sannsynlighet 4 - Bayes teorem 4 - Uavhengige begivenheter

Detaljer

Multippel lineær regresjon

Multippel lineær regresjon Regresjon Multippel lineær regresjon Inger Johanne Bakken Enhet for anvendt klinisk forskning, NTNU Og Avdeling for forebyggende helsearbeid, SINTEF Tilpasse en funksjon til ett sett observasjoner Minst

Detaljer

Eksamensoppgave i TMA4245 Statistikk

Eksamensoppgave i TMA4245 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4245 Statistikk Faglig kontakt under eksamen: Håkon Tjelmeland Tlf: 48 22 18 96 Eksamensdato:??. august 2014 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1120 Statistiske metoder og dataanalyse 2. Eksamensdag: Mandag 30. mai 2005. Tid for eksamen: 14.30 17.30. Oppgavesettet er

Detaljer

Ordinær lineær regresjon (OLR) Deming, uvektet og vektet

Ordinær lineær regresjon (OLR) Deming, uvektet og vektet Ordinær lineær regresjon (OLR) Deming, uvektet og vektet Passing og Bblk Bablok Pål Rustad Norsk Klinisk-kjemisk Kvalitetssikring Fürst Medisinsk Laboratorium NKK-møtet 2010 Tromsø Lineær regresjon Wikipedia

Detaljer

SKOLEEKSAMEN I. SOS1120 Kvantitativ metode. 13. desember 2012 4 timer

SKOLEEKSAMEN I. SOS1120 Kvantitativ metode. 13. desember 2012 4 timer SKOLEEKSAMEN I SOS1120 Kvantitativ metode 13. desember 2012 4 timer Det er lov å bruke ikke-programmerbar kalkulator som hjelpemiddel Sensur for eksamen faller 11.januar kl. 14.00. Sensuren publiseres

Detaljer

Kp. 13. Enveis ANOVA

Kp. 13. Enveis ANOVA -tabell Bjørn H. Auestad Kp. 13: Én-faktor eksperiment 1 / 13 Kp. 13: Én-faktor -tabell 13.1 Analysis-of-Variance Technique 13.2 The Strategy of Experimental Design 13.3 One-Way Analysis of Variance: Completely

Detaljer

Faktor - en eksamensavis utgitt av ECONnect

Faktor - en eksamensavis utgitt av ECONnect Faktor - en eksamensavis utgitt av ECONnect Eksamensbesvarelse: SØK1004 Statistikk for økonomer Eksamen: Våren 2010 Antall sider: 7 SØK1004 Eksamensbesvarelse Om ECONnect: ECONnect er en frivillig studentorganisasjon

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK Mandag 12. desember 2011

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK Mandag 12. desember 2011 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK Mandag 12. desember 2011 Oppgave 1 Oljeleting a) Siden P(A

Detaljer

Eksamensoppgave i PSY3100 Forskningsmetode - Kvantitativ

Eksamensoppgave i PSY3100 Forskningsmetode - Kvantitativ Psykologisk institutt Eksamensoppgave i PSY3100 Forskningsmetode - Kvantitativ Faglig kontakt under eksamen: Mehmet Mehmetoglu Tlf.: 73 59 19 60 Eksamensdato: 23.05.2014 Eksamenstid (fra-til): 09:00 13:00

Detaljer

Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder

Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder Psykologisk institutt Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder Faglig kontakt under eksamen: Eva Langvik Tlf.: Psykologisk institutt 73591960 Eksamensdato: 21.5.2013

Detaljer

EKSAMEN I FAG TMA4275 LEVETIDSANALYSE Mandag 27. mai 2013 Tid: 09:00 13:00

EKSAMEN I FAG TMA4275 LEVETIDSANALYSE Mandag 27. mai 2013 Tid: 09:00 13:00 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 Faglig kontakt under eksamen: Bo Lindqvist 975 89 418 EKSAMEN I FAG TMA4275 LEVETIDSANALYSE Mandag 27. mai 2013

Detaljer

EXSAM PROBLEM 1. Universitetet i Agder (University of Agder) Fakultet for økonomi og samfunnsfag (Faculty of Economics and Social Sciences)

EXSAM PROBLEM 1. Universitetet i Agder (University of Agder) Fakultet for økonomi og samfunnsfag (Faculty of Economics and Social Sciences) 1 Universitetet i Agder (University of Agder) Fakultet for økonomi og samfunnsfag (Faculty of Economics and Social Sciences) EXSAM Course code: BE-34 Course name: Statistics and finance Date: 29. November

Detaljer

Eksamensoppgave i TMA4275 Levetidsanalyse

Eksamensoppgave i TMA4275 Levetidsanalyse Institutt for matematiske fag Eksamensoppgave i TMA4275 Levetidsanalyse Faglig kontakt under eksamen: Bo Lindqvist Tlf: 975 89 418 Eksamensdato: Lørdag 31. mai 2014 Eksamenstid (fra til): 09:00-13:00 Hjelpemiddelkode/Tillatte

Detaljer

NTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap

NTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap NTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap EKSAMENSOPPGAVE IDRSA004 Faglig kontakt under eksamen: Arve Hjelseth (7359562) Eksamensdato: 0.2.08

Detaljer

Analyse av kontinuerlige data. Intro til hypotesetesting. 21. april 2005. Seksjon for medisinsk statistikk, UIO. Tron Anders Moger

Analyse av kontinuerlige data. Intro til hypotesetesting. 21. april 2005. Seksjon for medisinsk statistikk, UIO. Tron Anders Moger Intro til hypotesetesting Analyse av kontinuerlige data 21. april 2005 Tron Anders Moger Seksjon for medisinsk statistikk, UIO 1 Repetisjon fra i går: Normalfordelingen Variasjon i målinger kan ofte beskrives

Detaljer

EKSAMENSOPPGAVE I IDRSA1004 Samfunnsvitenskapelig forskningsmetode og analyse

EKSAMENSOPPGAVE I IDRSA1004 Samfunnsvitenskapelig forskningsmetode og analyse NTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap EKSAMENSOPPGAVE I IDRSA1004 Samfunnsvitenskapelig forskningsmetode og analyse Faglig kontakt under

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. BtG207 EKSAMENSDATO: 11. juni 2007. KLASSE: HIS 05 08. TID: kl. 8.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 5 (innkl. forside)

Detaljer

KLMED 8006 Anvendt medisinsk statistikk - Vår 2009 Repeterte målinger

KLMED 8006 Anvendt medisinsk statistikk - Vår 2009 Repeterte målinger KLMED 8006 Anvendt medisinsk statistikk - Vår 2009 Repeterte målinger Arnt Erik Tjønna og Eirik Skogvoll Institutt for sirkulasjon og bildediagnostikk, Det medisinske fakultet, NTNU Bakgrunn Inaktivitet

Detaljer

Formelsamling V-2014 MAT110. Statistikk 1. Per Kristian Rekdal

Formelsamling V-2014 MAT110. Statistikk 1. Per Kristian Rekdal Formelsamling V-2014 MAT110 Statistikk 1 Per Kristian Rekdal 2 Forord Dette er formelsamlingen i emnet MAT110 Statistikk 1 ved høgskolen i Molde. Formlene i denne formelsamlingen er stort sett de formlene

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: Bio 2150 Biostatistikk og studiedesign Eksamensdag: 5. desember 2014 Tid for eksamen: 14:30-18:30 (4 timer) Oppgavesettet er

Detaljer

EKSAMEN I TMA4240 Statistikk

EKSAMEN I TMA4240 Statistikk Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Henning Omre (909 37848) Mette Langaas (988 47649) EKSAMEN I TMA4240 Statistikk 18.

Detaljer

Multisample Inference del 2 (Rosner 12.5 12.7) Øyvind Salvesen

Multisample Inference del 2 (Rosner 12.5 12.7) Øyvind Salvesen Multisample Inference del 2 (Rosner 12.5 12.7) Øyvind Salvesen Enhet for anvendt klinisk forskning, NTNU Inference oversettes med slutning inference n. a. The act or process of deriving logical conclusions

Detaljer

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår 2003. Erling Berge Institutt for sosiologi og statsvitenskap NTNU

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår 2003. Erling Berge Institutt for sosiologi og statsvitenskap NTNU SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår 2003 Erling Berge Institutt for sosiologi og statsvitenskap NTNU Vår 2004 Erling Berge 2004 1 Forelesing IV Multivariat

Detaljer

Logistisk regresjon 2

Logistisk regresjon 2 Logistisk regresjon 2 SPSS Utskrift: Trivariat regresjon a KJONN UTDAAR Constant Variables in the Equation B S.E. Wald df Sig. Exp(B) -,536,3 84,56,000,25,84,08 09,956,000,202 -,469,083 35,7,000,230 a.

Detaljer

EKSAMEN I FAG TMA4240/TMA4245 STATISTIKK

EKSAMEN I FAG TMA4240/TMA4245 STATISTIKK Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: John Tyssedal 41 64 53 76 EKSAMEN I FAG TMA4240/TMA4245 STATISTIKK Lørdag 10. august

Detaljer

Forelesning 13 Analyser av gjennomsnittsverdier. Er inntektsfordelingen for kvinner og menn i EU-undersøkelsen lik?

Forelesning 13 Analyser av gjennomsnittsverdier. Er inntektsfordelingen for kvinner og menn i EU-undersøkelsen lik? 2 verdier Forelesning 13 Analyser av gjennomsnittsverdier Valg av type statistisk generalisering i bivariat analyse er avhengig av hvilke variabler vi har Avhengig variabel kategorivariabel kontinuerlig

Detaljer

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat 03. Erling Berge Institutt for sosiologi og statsvitenskap NTNU

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat 03. Erling Berge Institutt for sosiologi og statsvitenskap NTNU SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat 03 Erling Berge Institutt for sosiologi og statsvitenskap NTNU Haust 2004 Erling Berge 2004 1 Forelesing III Multivariat regresjon

Detaljer

> 6 7 ) = 1 Φ( 1) = 1 0.1587 = 0.8413 P (X < 7 X < 8) P (X < 8) < 7 6 1 ) < 8 6 1 ) = Φ(2) = 0.8413

> 6 7 ) = 1 Φ( 1) = 1 0.1587 = 0.8413 P (X < 7 X < 8) P (X < 8) < 7 6 1 ) < 8 6 1 ) = Φ(2) = 0.8413 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 Oppgave Sykkelruter a) P (Y > 6) P (Y > 6) P ( Y 7 > 6 7 ) Φ( ) 0.587 0.843 b) Hypoteser: H 0 : µ µ 2 H : µ < µ 2

Detaljer

Regresjonsmodeller. HEL 8020 Analyse av registerdata i forskning. Tom Wilsgaard

Regresjonsmodeller. HEL 8020 Analyse av registerdata i forskning. Tom Wilsgaard Regresjonsmodeller HEL 8020 Analyse av registerdata i forskning Tom Wilsgaard Intro Mye forskning innen medisin og helsefag dreier seg om å studere assosiasjonen mellom en eller flere eksponeringsvariabler

Detaljer

Prøveeksamen i STK3100/4100 høsten 2011.

Prøveeksamen i STK3100/4100 høsten 2011. Prøveeksamen i STK3100/4100 høsten 2011. Oppgave 1 (a) Angi tetthet/punktsannsynlighet for eksponensielle klasser med og uten sprednings(dispersjons)ledd. Nevn alle fordelingsklassene du kjenner som kan

Detaljer

SOS 31 MULTIVARIAT ANALYSE

SOS 31 MULTIVARIAT ANALYSE 1 SOS 31 MULTIVARIAT ANALYSE Eksamensdag: Tysdag 28 november 1995 Eksamensstad: Dragvoll, paviljong C, rom 102 Tid til eksamen: 6 timar Vekttal: 4 Talet på sider med nynorsk: 7 Sensurdato: 20 desember

Detaljer

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Ved sensuren teller alle delspørsmål likt.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Ved sensuren teller alle delspørsmål likt. Eksamen i: MET040 Statistikk for økonomer Eksamensdag: 4 november 2008 Tid for eksamen: 09.00-13.00 Oppgavesettet er på 4 sider. Tillatte hjelpemidler: Alle trykte eller egenskrevne hjelpemidler og kalkulator.

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Underveiseksamen i: STK1000 Innføring i anvendt statistikk. Eksamensdag: Onsdag 13/10, 2004. Tid for eksamen: Kl. 09.00 11.00. Vedlegg:

Detaljer

Bakgrunn. KLMED 8006 Anvendt medisinsk statistikk - Vår 2008 Repeterte målinger. Overvekt: løp for livet

Bakgrunn. KLMED 8006 Anvendt medisinsk statistikk - Vår 2008 Repeterte målinger. Overvekt: løp for livet KLMED 8006 Anvendt medisinsk statistikk - Vår 2008 Repeterte målinger Arnt Erik Tjønna og Eirik Skogvoll Institutt for sirkulasjon og bildediagnostikk, Det medisinske fakultet, NTNU Bakgrunn Inaktivitet

Detaljer

Forelesning 9 STK3100

Forelesning 9 STK3100 Poissonfordelingen: Forelesning 9 STK3100 20. oktober 2007 S. O. Samuelsen Plan for forelesning: 1. Poissonregresjon 2. Overspredning 3. Quasi-likelihood 4. Andre GLM-er Poissonfordelingen kan oppstå ved

Detaljer

OPPGAVE 1 MA Universitetet i Agder Institutt for matematiske fag EKSAMEN. Emnekode: MA-202 Emnenavn: Statistikk 2

OPPGAVE 1 MA Universitetet i Agder Institutt for matematiske fag EKSAMEN. Emnekode: MA-202 Emnenavn: Statistikk 2 Universitetet i Agder Institutt for matematiske fag MA-202 1 EKSAMEN Emnekode: MA-202 Emnenavn: Statistikk 2 Dato: 24. mai 2012 Varighet: 0900 1400 Antall sider inkl. forside: 7 Tillatte hjelpemidler:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: Bio 2150A Biostatistikk Eksamensdag: 5. desember 2011 Tid for eksamen: 09:00-12:00 (3 timer) Oppgavesettet er på 6 sider Vedlegg:

Detaljer

Eksamensoppgave i TMA4240 Statistikk

Eksamensoppgave i TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Jo Eidsvik og Arild Brandrud Næss Tlf: 90 12 74 72 og 99 53 82 94 Eksamensdato: 9. desember 2013 Eksamenstid

Detaljer

Sensorveiledning til eksamensoppgave i SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap

Sensorveiledning til eksamensoppgave i SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Institutt for sosiologi og statsvitenskap Sensorveiledning til eksamensoppgave i SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Generell informasjon: I høstsemesteret 2014 ble det ikke gitt

Detaljer

Forelesning 5 STK3100/4100

Forelesning 5 STK3100/4100 Forelesning 5 STK3100/4100 p. 1/4 Forelesning 5 STK3100/4100 27. september 2012 Presentasjon laget av S. O. Samuelsen (modifisert av Geir H12) Plan for forelesning: 1. Poissonfordeling 2. Overspredning

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1120 Statistiske metoder og dataanalyse 2. Eksamensdag: Tirsdag 2. juni 2009. Tid for eksamen: 14.30 17.30. Oppgavesettet

Detaljer

SENSORVEILEDNING FOR EKSAMENSOPPGAVEN I SVSOS107 VÅREN 2002

SENSORVEILEDNING FOR EKSAMENSOPPGAVEN I SVSOS107 VÅREN 2002 SENSORVEILEDNING FOR EKSAMENSOPPGAVEN I SVSOS107 VÅREN 2002 Generell informasjon Dette er den siste eksamensoppgaven under overgangsordningen mellom gammelt og nytt pensum i SVSOS107. Eksamensoppgaven

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i STK1000 Innføring i anvendt statistikk. Eksamensdag: Onsdag 7. oktober 2009. Tid for eksamen: 15:00 17:00. Oppgavesettet er på

Detaljer

Markedsrapport. November 2009

Markedsrapport. November 2009 Markedsrapport November 2009 Utvikling i oktober S&P 500 0,6 % FTSE ALL World 0,3 % Oslo Børs 3,9 % FTSE Emerging 1,2 % Brent Spot 9,3 % Kilde: Bloomberg Markedene begynte måneden opp for så å falle noe

Detaljer

BIO2150 Biostatistikk og studiedesign. Ordliste

BIO2150 Biostatistikk og studiedesign. Ordliste BIO2150 Biostatistikk og studiedesign Ordliste Forord Denne ordlisten inneholder forklaringer på statistiske og andre matematiske ord og uttrykk som brukes i forelesningene i BIO2150 ved Biologisk institutt,

Detaljer

SKOLEEKSAMEN 29. september 2006 (4 timer)

SKOLEEKSAMEN 29. september 2006 (4 timer) EKSAMEN I SOS400 KVANTITATIV METODE SKOLEEKSAMEN 9. september 006 (4 timer) Ikke-programmerbar kalkulator er tillatt under eksamen. Ingen andre hjelpemidler er tillatt. Sensuren faller fredag 0. oktober

Detaljer

EXAMINATION PAPER. Exam in: STA-3300 Date: Wednesday 27. November 2013 Time: Kl 09:00 13:00 Place: Åsgårdsv. 9. - All printed and written

EXAMINATION PAPER. Exam in: STA-3300 Date: Wednesday 27. November 2013 Time: Kl 09:00 13:00 Place: Åsgårdsv. 9. - All printed and written EXAMINATION PAPER Exam in: STA-3300 Date: Wednesday 27. November 203 Time: Kl 09:00 3:00 Place: Åsgårdsv. 9 Approved aids: - Calculator - All printed and written The exam contains 20 pages included this

Detaljer

1 10-2: Korrelasjon. 2 10-3: Regresjon

1 10-2: Korrelasjon. 2 10-3: Regresjon 1 10-2: Korrelasjon 2 10-3: Regresjon Example Krysser y-aksen i 1: b 0 = 1 Stiger med 2 hver gang x øker med 1: b 1 = 2 Formelen til linja er derfor y = 1 + 2x Eksempel Example Vi lar fem personer se en

Detaljer

Forelesning 9 Kjikvadrattesten. Kjikvadrattest for bivariate tabeller (klassisk variant) Når kan vi forkaste H 0?

Forelesning 9 Kjikvadrattesten. Kjikvadrattest for bivariate tabeller (klassisk variant) Når kan vi forkaste H 0? Forelesning 9 Kjikvadrattesten Kjikvadrattesten er den mest benyttede metoden for å utføre statistiske generaliseringer fra bivariate tabeller. Kjikvadrattesten brukes til å teste nullhypotesen om at det

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Underveiseksamen i : BIO2150 Biostatistikk og studiedesign Eksamensdag: 9. oktober 2013 Tid for eksamen: kl. 11:00 14:00 (3 timer) Oppgavesettet

Detaljer

Verdens statistikk-dag. Signifikanstester. Eksempel studentlån. http://unstats.un.org/unsd/wsd/

Verdens statistikk-dag. Signifikanstester. Eksempel studentlån. http://unstats.un.org/unsd/wsd/ Verdens statistikk-dag http://unstats.un.org/unsd/wsd/ Signifikanstester Ønsker å teste hypotese om populasjon Bruker data til å teste hypotese Typisk prosedyre Beregn sannsynlighet for utfall av observator

Detaljer

EKSAMEN I PSY3100 FORSKNINGSMETODE KVANTITATIV HØSTEN 2012

EKSAMEN I PSY3100 FORSKNINGSMETODE KVANTITATIV HØSTEN 2012 NTNU Fakultet for samfunnsvitenskap og teknologiledelse Psykologisk institutt EKSAMEN I PSY3100 FORSKNINGSMETODE KVANTITATIV HØSTEN 2012 DATO: 12.12.12 Studiepoeng: 7,5 Sidetall bokmål 4 Tillatte hjelpemidler:

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Underveiseksamen i: STK1000 Innføring i anvendt statistikk. Eksamensdag: Onsdag 28/3, 2007. Tid for eksamen: Kl. 09.00 11.00. Tillatte hjelpemidler:

Detaljer

Kort innføring i SPSS

Kort innføring i SPSS Kort innføring i SPSS Oppstart og datasett Gjør følgende for å starte opp SPSS og få fram European Social Survey: Finn Min datamaskin Finn SV-info på Luna Velg ISS Velg SOS1002. Dobbeltklikk deretter på

Detaljer

Systemidentifikasjon Oppgaver

Systemidentifikasjon Oppgaver Telemark University College Department of Electrical Engineering, Information Technology and Cybernetics Systemidentifikasjon Oppgaver HANS-PETTER HALVORSEN, 2012.03.16 Faculty of Technology, Postboks

Detaljer

EKSAMEN I TMA4245 Statistikk

EKSAMEN I TMA4245 Statistikk Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Turid Follestad (98 06 68 80/73 59 35 37) Hugo Hammer (45 21 01 84/73 59 77 74) Eirik

Detaljer

Faktor - en eksamensavis utgitt av ECONnect

Faktor - en eksamensavis utgitt av ECONnect Faktor - en eksamensavis utgitt av ECONnect Eksamensbesvarelse: SØK3001 Økonometri I Eksamen: Vår 2011 Antall sider: 20 SØK3001 - Eksamensbesvarelse Om ECONnect: ECONnect er en frivillig studentorganisasjon

Detaljer