Rep.: generelle begrep og definisjoner Kp. 10.1, 10.2 og 10.3
|
|
- Ludvik Andreassen
- 8 år siden
- Visninger:
Transkript
1 Kp. 1, oversikt ; oversikt, t- ; oversikt ; stor ; Hypoteseig; ett- og to-utvalg Rep.: geerelle begrep og defiisjoer Kp. 1.1, 1.2 og 1.3 Rep.: ett-utvalgser for μ (...), p Kp. 1 og 1.8 Nytt: ett-utvalgs for ; Kp. 1.1 Nytt: to-utvalgser for μ X vs. μ Y (...), p 1 vs p 2 og σx 2 vs. σ2 Y Kp. 1.5, 1.9 og : (grafisk) Nytt: Choice of sample size, : Case study 1.15: Potetial miscoceptios ad... Bjør H. Auestad Kp. 1: Hypoteseig 1 / 32 Hypoteseig, ; oversikt, t- ; oversikt ; stor ; Statistisk iferes : Trekke koklusjoer på bakgru av data med statistisk usikkerhet. Metode: Hypoteseig Begrep / tema: ull- og alterativhypotese (esidig / tosidig) størrelse (observator), ullfordelig kritisk verdi, forkastigsområde sigifiaksivå styrke, styrkefuksjo p-verdi hypotese vs. kofidesitervall Disse to begrepee repeteres samme med gjeomgag av toutvalgser. Bjør H. Auestad Kp. 1: Hypoteseig 2 / 32
2 Hypoteseig, ; oversikt, t- ; oversikt ; stor ; Eksempel på problemstillig: 1 ph-måliger: 6., 5.59, 5.74, 3.43, 5.3, 6.48, 5.15, 4.28, 4.52, 6.2; Gjeomsitt: ph-data Modell: måligee oppfattes som utfall av 1 u.i.f. tilfeldigevariable X 1,...,X 1. E(X i )=μ: virkelig ph, ukjet størrelse 5.27 er et estimat av μ med statistisk usikkerhet! Ka vi hevde at μ<6.?? Bjør H. Auestad Kp. 1: Hypoteseig 3 / 32 Hypoteseig, ; oversikt, t- ; oversikt ; stor ; Vi betrakter våre data som utfall av tilfeldige variable (X 1,...,X 1 ). Atas u.i.f. og ormalfordelte. Forvetige, μ, kjeer vi ikke. (Var(X i )= =1atas å være riktig, kjet.) Tyder dataee (klart) på at μ<6? Ka dataee med rimelighet sees på som utfall av N (6, 1)-tetthete (heltrukket lije, μ =6)? Eller må vi bruke μ<6 for å få det til å virke rimelig? (Jf. f.eks. tetthet med prikket lije.) Bjør H. Auestad Kp. 1: Hypoteseig 4 / 32
3 Hypoteseig, ; oversikt, t- ; oversikt ; stor ; Spørsmålet besvares ved å e H : μ =6 mot H 1 : μ<6 Vi baserer oss på gjeomsittsresultatet 5.27 Omfaget av statistisk usikkerhet i estimatet 5.27, gjespeiles av variase eller fordelige til gjeomsittet av X 1,...,X 1,dvs.:X. Nullfordelig til X: N (6,.1) (Var(X) = σ2 = 1 1 ) (Normalatakelse og kjet =1.) Er 5.27 et rimelig utfall av X dersom μ =6? N (6,.1) tetthet Nullfordelige: størrelse si fordelig uder H Bjør H. Auestad Kp. 1: Hypoteseig 5 / 32 Hypoteseig, ; oversikt, t- ; oversikt ; stor ; Test (på stadardisert form) (m/sig.ivå α) for: H : μ =6 mot H 1 : μ<6 Forkast H dersom Z = X z α størrelse: Z ullfordelig: Z N(, 1) Beskriver hva som er rimelig utfall av størrelse dersom H er riktig! kritisk verdi: z α Skisse av N (, 1)-fordelig og forkastigsområde. z α }{{}}{{} Forkastigsområde Akseptområde Bjør H. Auestad Kp. 1: Hypoteseig 6 / 32
4 Hypoteseig, ; oversikt, t- ; oversikt ; stor ; Eksempelet: 1 ph-måliger med gjeomsitt: 5.27; ormalatakelse med kjet varias lik 1. Test (m/ sig.ivå α =.5) for H : μ =6. mot H 1 : μ<6. Forkast H dersom Z = X z.5 = Alterativt (X som størrelse): 1 Forkast H dersom X = Bjør H. Auestad Kp. 1: Hypoteseig 7 / 32 Hypoteseig, ; oversikt, t- ; oversikt ; stor ; Gjeomførig/koklusjo: Utfall av: X Koklusjo: Forkast H : = 2.31 < z.5 = Alterativt: 1 Data: utfall av X: 5.27 < kritisk verdi = = Koklusjo: Forkast H Bjør H. Auestad Kp. 1: Hypoteseig 8 / 32
5 Hypoteseig, ; oversikt, t- ; oversikt ; stor ; Def.: Sigifikasivå til = P (forkaste H H riktig) Sigifikasivået er sasylighete at utfallet faller i forkastigsområdet ved e tilfeldighet (og at vi kokluderer med H 1 ), år i virkelghete H er riktig. α er sigifikasivået. I eksempelet: Forkast H dersom Z = X z α Skisse av N (, 1)-fordelig og forkastigsområde. α velges lite, valigvis.1,.5,.25,... Bjør H. Auestad Kp. 1: Hypoteseig 9 / 32 Hypoteseig, ; oversikt ; oversikt, t- ; oversikt ; stor ; Vi må repetere for μ i situasjoee: Med ormalatakelse og kjet, Med ormalatakelse og ute kjet (t-), Ute ormalatakelsetake og ute kjet,memedstor, og vi må repetere for p med stor. Bjør H. Auestad Kp. 1: Hypoteseig 1 / 32
6 Hypoteseig, ; oversikt, t- ; oversikt ; stor ; Eksempel: 1blodsukkeriholdmåliger: 4.1, 5.1, 4.3, 3.8, 3.7, 5.2, 4.5, 4.8, 3.6, 4.4 Øsker å e H : μ =4. mot H 1 : μ>4. Vi atar at: De =1måligee: x 1,...,x ; ka betraktes som utfall av: X 1,...,X, u.i.f. tilfeldige variable, der E(X i )=μ og Var(X i )=, i =1,...,,ogder X i er ormalfordelt og er ukjet. 2 = 1 Variase,, estimeres med: = = 1 i=1 (X i X) 2 Bjør H. Auestad Kp. 1: Hypoteseig 11 / 32 Hypoteseig, ; oversikt, t- ; oversikt ; stor ; Vil e: H : μ =4 mot H 1 : μ>4 Uder H er (størrelse, ullfordelig) T = X 4 1 t(9) (jf. def. av t-fordelig) Forkaster H dersom μ = X peker klart i retig av at H 1 er korrekt. Test (sig.ivå α):.5.3 f9(x) Forkast H dersom.2.1 T t α, t(9) tetthettetth Bjør H. Auestad Kp. 1: Hypoteseig 12 / 32
7 Hypoteseig, ; oversikt, t- ; oversikt ; stor ; Gjeomførig av på 5% ivå: Sig.ivå, α =.5 t.5,9 =1.83 Data: (Gj.s. = 4.35, emp. varias =.3183) Utfall av: X 4 1 : =1.962 Side >t.5,9 =1.83, ka vi forkaste H. Dataee tyder på at virkelig blodsukkerihold, μ, er større e 4. Bjør H. Auestad Kp. 1: Hypoteseig 13 / 32 Hypoteseig, ; oversikt, t- ; oversikt ; stor ; Oppsummerig, t-er Modell: måliger: x 1,...,x ; betraktes som utfall av: X 1,...,X, u.i.f. tilfeldige variable E(X i )=μ og Var(X i )=, i =1,..., X i ormalfordelt og σ 2 ukjet. Estimator for variase: = = 1 = 1 i=1 ( Xi X ) 2 Bjør H. Auestad Kp. 1: Hypoteseig 14 / 32
8 Hypoteseig, ; oversikt, t- ; oversikt ; stor ; Test (sig.ivå α) for: H : μ = μ mot H 1 : μ<μ Forkast H dersom t α, Skisse av t-fordelig og forkastigsområde. Test (sig.ivå α) for: H : μ = μ mot H 1 : μ>μ Forkast H dersom t α, Skisse av t-fordelig og forkastigsområde. Bjør H. Auestad Kp. 1: Hypoteseig 15 / 32 Hypoteseig, ; oversikt, t- ; oversikt ; stor ; Test (sig.ivå α) for: H : μ = μ mot H 1 : μ μ Forkast H dersom t α/2, 1, eller t α/2, Skisse av t-fordelig og forkastigsområde. Bjør H. Auestad Kp. 1: Hypoteseig etes 16 / 32
9 Hypoteseig, ; oversikt, t- ; oversikt ; stor ; Eksempel (to-sidig t-): Hardhet til et spesielt stål blir udersøkt; seks måliger (i kg/mm 2 ): 351, 322, 297, 291, 354, 322. Gjeomsitt: itt: 322.8; estimert varias (empirisk varias): Ma er iteressert i om hardhete er forskjelig fra 3 kg/mm 2. Tyder resultateepåa hardhete er ulik 3? Modell med ormalatakelse; ukjet varias. Estimator for variase: = 1 ( Xi X ) 2 = σ Forvetige, μ: virkelig hardhet 1 i=1 Vil e: H : μ = 3 mot H 1 : μ 3 Bjør H. Auestad Kp. 1: Hypoteseig 17 / 32 Hypoteseig, ; oversikt, t- ; oversikt ; stor ; Vil e: H : μ = 3 mot H 1 : μ 3 Uder H er (størrelse, ullfordelig) T = X 3 6 t( 1) Forkaster H dersom μ = X peker klart i retig av at H 1 er korrekt. Test (sig.ivå α): Forkast H dersom T t α/2, 1 eller T t α/2, Skisse av t(5)-fordelig. Bjør H. Auestad Kp. 1: Hypoteseig 18 / 32
10 Hypoteseig, ; oversikt, t- ; oversikt ; stor ; Gjeomførig av på 5% ivå: Sig.ivå, α =.5 α/2 =.25; t.25,5 =2.57 Data: Utfallav: X 3 6 : =2.13 Side 2.13 t.25,5 = (og 2.13 t.25,5 = 2.57), ka vi ikke forkaste H. Det er ikke grulag i dataee for å.3.2 hevde at virkelig hardhet, μ, er ulik 3 kg/mm Bjør H. Auestad Kp. 1: Hypoteseig 19 / 32 Hypoteseig, ; oversikt ; oversikt, t- ; oversikt ; stor ; Vi må repetere for μ i situasjoee: Med ormalatakelse og kjet, Med ormalatakelse og ute kjet (t-), Ute ormalatakelse og ute kjet,memedstor, og vi må repetere for p med stor. Bjør H. Auestad Kp. 1: Hypoteseig 2 / 32
11 Hypoteseig, ; stor ; oversikt, t- ; oversikt ; stor ; Modell: måliger: x 1,...,x ; betraktes som utfall av: X 1,...,X, u.i.f. tilfeldige variable E(X i )=μ og Var(X i )=, i =1,...,. (og μ ) ukjet; (ige forutsetig om fordelig til X i ee eller om kjet varias) Vi har at (SGT) tilærmet er: X μ N(, 1) : = = 1 1 i=1 ( Xi ) 2 X Basert på dette, får vi ee... Bjør H. Auestad Kp. 1: Hypoteseig 21 / 32 Hypoteseig, ; stor ; oversikt, t- ; oversikt ; stor ; Test (til. sig.ivå α) for: H : μ = μ mot H 1 : μ<μ Forkast H dersom.3.2 z α Skisse av N (, 1)-fordelig og forkastigsområde. Test (til. sig.ivå α) for: H : μ = μ mot H 1 : μ>μ Forkast H dersom z α Skisse av N (, 1)-fordelig og forkastigsområde. Bjør H. Auestad Kp. 1: Hypoteseig 22 / 32
12 Hypoteseig, ; stor ; oversikt, t- ; oversikt ; stor ; Test (til. sig.ivå α) for: H : μ = μ mot H 1 : μ μ Forkast H dersom z α/2, eller z α/ Skisse av N (, 1)-fordelig og forkastigsområde. Bjør H. Auestad Kp. 1: Hypoteseig 23 / 32 Hypoteseig, ; stor ; oversikt, t- ; oversikt ; stor ; Eksempel: E type tabletter ieholder et stoff R. Iholdet pr. tablett må helst ikke overstige 3 mg. I e kotroll ble iholdet i 5 tilfeldigig utvalgte tabletter registrert. Resultat t(x 1,...,x 5 ): Gjeomsitt: x =3.7; empirisk stadardavvik: s = i=1 (x x) 2 i =4. Oppgave: Gir dette grulag for å hevde at iholdet av R er mer e 3 mg? Formuler problemet som et hypoteseigsproblem, og gjeomfør e! Bruk sigifikasivåivå 1%. Bjør H. Auestad Kp. 1: Hypoteseig etes 24 / 32
13 Hypoteseig, ; oversikt, t- ; oversikt ; stor ; Statistisk iferes : Trekke koklusjoer på bakgru av data med statistisk usikkerhet. Metode: Hypoteseig Begrep / tema: ull- og alterativhypotese (esidig / tosidig) størrelse (observator), ullfordelig kritisk verdi, forkastigsområde sigifiaksivå hypotese vs. kofidesitervall Bjør H. Auestad Kp. 1: Hypoteseig 25 / 32 Hypoteseig, ; ; oversikt, t- ; oversikt ; stor ; Geerelt: La (L, U) være et (ev. tilærmet) 1(1 α)% kofidesitervall for parametere θ. Vi vil e H : θ = θ mot H 1 : θ θ Test: Forkast H dersom θ (L, U). Teste har sigifikasivå α (ev. tilærmet). Veldig god måte å gjeomføre (tosidige) er på! Obs.: dersom dette blir brukt for esidig får vi e ae sammeheg mellom itervallets kofidesgrad og sig.ivået til e. Bjør H. Auestad Kp. 1: Hypoteseig 26 / 32
14 Hypoteseig, ; oversikt, t- ; oversikt ; stor ; Eksempel: Hardhet til et spesielt stål blir udersøkt; seks måliger (i kg/mm 2 ): 351, 322, 297, 291, 354, 322. Gjeomsitt: 322.8; estimert varias (empirisk varias): Ma er iteressert i om hardhete er forskjelig fra 3 kg/mm 2. Tyder resultatee på at hardhete er ulik 3? Modell med ormalatakelse; ukjet varias. Estimator for variase: = = 1 ( 1 i=1 Xi X ) 2 Forvetige, μ: virkelig hardhet Vil e: H : μ = 3 mot H 1 : μ 3 Bjør H. Auestad Kp. 1: Hypoteseig 27 / 32 Hypoteseig, ; oversikt, t- ; oversikt ; stor ; Øsker å bruke 5% sigifikasivå. Gjeomfører vha. kofidesitervall; dvs., e er: Forkast H dersom et 95% kofidesitervall for μ ikke ieholder 3. Et 95% kofidesitervall for μ er gitt ved: ) S (X t 2.25,5 6, X + t.25,5 6 Bjør H. Auestad Kp. 1: Hypoteseig 28 / 32
15 Hypoteseig, ; oversikt, t- ; oversikt ; stor ; Et 95% kofidesitervall for μ er gitt ved: ) S (X t 2.25,5 6, X + t.25,5 6 Isatt data (Gj.s. = 322.8, emp. varias = 689.4, t.25,5 =2.571), blir utreget itervall: ( ) ( ) , = 295.2, 35 Koklusjo: Behold H side μ = 3 (295.2, 35) side μ = 3 er ieholdt i kofidesitervallet. Bjør H. Auestad Kp. 1: Hypoteseig 29 / 32 Hypoteseig, ; oversikt, t- ; oversikt ; stor ; Kofidesitervall ; begruelse Vil e: H : μ = μ mot H 1 : μ μ Test (sig.ivå α, orm.at., kjet ): Forkast H dersom z α/2 eller Er det samme som: Behold H dersom z α/2 og z α/2 z α/2...somerdetsammesom... Bjør H. Auestad Kp. 1: Hypoteseig 3 / 32
16 Hypoteseig, ; oversikt, t- ; oversikt ; stor ;...Behold H dersom z α/2...somerdetsammesom... X + z α/2 Som er det samme som: X z α/2 og μ og X z α/2 μ X + z α/2 z α/2 μ Dette siste betyr: behold H dersom μ 1(1 α)% kofidesitervall for μ. Bjør H. Auestad Kp. 1: Hypoteseig 31 / 32
Hypotesetesting, del 4
Oversikt, del 4 t-fordelig t-test t-itervall Del 5 Kofidesitervall vs. test p-verdi t-fordelig Rett på defiisjo: Utgagspuktet er målemodelle med ormalatakelse: X 1,...,X,u.i.f.tilf.var.derX i Nμ, σ 2 ).La
ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 4
ÅMA11 Sasylighetsregig med statistikk, våre 21 Kp. 6, del 4 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 22. mars Bjør H. Auestad Kp. 6: Hypotesetestig del 4 1/ 29 Bjør
ÅMA110 Sannsynlighetsregning med statistikk, våren 2008 Kp. 6, del 5
ÅMA110 Sasylighetsregig med statistikk, våre 2008 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 26. mars Bjør H. Auestad Kp. 6: Hypotesetestig del 5 1/ 53
ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 2
ÅMA11 Sasylighetsregig med statistikk, våre 27 Kp. 6, del 2 Bjør H. Auestad Istitutt for matematikk og aturviteskap 5. mars 21 Bjør H. Auestad Kp. 6: del 1/2 1/ 42 Bjør H. Auestad Kp. 6: del 1/2 2/ 42
2. Hypotesetesting i ulike sitausjoner: i. for forventingen, μ, i målemodellen med normalantakelse og kjent varians, σ 2.
Oversikt 1. Hva er hypotesetestig? 2. i ulike sitausjoer: i. for forvetige, μ, med ormalatakelse og kjet varias, σ 2. ii. for forvetige, μ, med stor og ormaltilærmig (variase, σ 2, ukjet). iii. for suksessasylighete,
ÅMA110 Sannsynlighetsregning med statistikk, våren 2006
ÅMA110 Sasylighetsregig med statistikk, våre 2006 Kp. 6, del 2 Bjør H. Auestad Kp. 6: Hypotesetesig del 2 1/ 38 Bjør H. Auestad Kp. 6: Hypotesetesig del 2 2/ 38 Oversikt 1. Hva er hypotesetestig? 2. Hypotesetestig
ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 5. Hypotesetesting, del 5
ÅMA11 Sasylighetsregig med statistikk, våre 7 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 26. mars Bjør H. Auestad Kp. 6: Hypotesetestig del 5 1/ 59 Bjør
ÅMA110 Sannsynlighetsregning med statistikk, våren 2008 Kp. 6, del 5
ÅMA110 Sasylighetsregig med statistikk, våre 2008 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 3. april Bjør H. Auestad Kp. 6: Hypotesetestig del 5 1/ 56
ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 5
ÅMA110 Sasylighetsregig med statistikk, våre 2006 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 3. april Bjør H. Auestad Kp. 6: Hypotesetestig del 5 1 / 56
ÅMA110 Sannsynlighetsregning med statistikk, våren 2007
ÅMA Sasylighetsregig med statistikk, våre 27 Kp. 6 (kp. 6) Tre deler av faget/kurset:. Beskrivede statistikk 2. Sasylighetsteori, sasylighetsregig 3. Statistisk iferes estimerig kofidesitervall hypotesetestig
ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Oppsummering
ÅMA110 Sasylighetsregig med statistikk, våre 2007 Oppsummerig Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 19. april Bjør H. Auestad Oppsummerig våre 2006 1 / 37 Oversikt
ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 4. Hypotesetesting, del 4
ÅMA11 Sasylighetsregig med statistikk, våre 27 Kp. 6, del 4 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 19. mars Bjør H. Auestad Kp. 6: Hypotesetestig del 4 1/ 27 Bjør
ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 5
ÅMA110 Sasylighetsregig med statistikk, våre 2010 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 12. april Bjør H. Auestad Kp. 6: Hypotesetestig del 4 1/ 59
MOT310 Statistiske metoder 1, høsten 2011
MOT310 Statistiske metoder 1, høste 2011 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 24. august, 2011 Bjør H. Auestad Itroduksjo og repetisjo 1 / 32 Repetisjo; 9.1,
Repetisjon; 9.1, 9.2, 9.3, 9.4, 9.5, og Repetisjon; 9.1, 9.2, 9.3, 9.4, 9.5, og 9.10
Repetisjo; 9.1, 9.2, 9.3, 9.4, 9.5, og 9.10 og Geerell defiisjo av : Situasjo: Data x 1,...,x ;utfallav:x 1,...,X ; u.i.f. tilfeldige variable Ukjet parameter i fordelige til X i ee: θ Dersom L og U L
Hypotesetesting, del 5
Oversikt, del 5 Kofidesitervall p-verdi Kofidesitervall E (tosidig test ka gjeomføres vha. av et kofidesitervall. For eksempel, dersom vi i målemodell 1 vil teste: H 0 : μ = μ 0 mot H 1 : μ μ 0, ka vi
Oversikt, del 5. Vi har sett på styrkefunksjon for ensidige tester. Eksempler (styrke, dimensjonering,...) Eksempler fra slutten av forrige uke
Hypotesetestig, del 4 oppsummerig fra Hypotesetestig, del 5 Kofidesitervall dimesjoerig Oversikt, del 5 Eksempler fra slutte av forrige uke Kofidesitervall p-verdi Eksempler Eksempler styrke, dimesjoerig,...
ÅMA110 Sannsynlighetsregning med statistikk, våren Estimering. Målemodellen. Konfidensintervall, innledning. Kp. 5 Estimering.
ÅMA0 Sasylighetsregig med statistikk våre 006 Kp. 5 Estimerig Estimerig. Målemodelle. Ihold:. (Pukt)Estimerig i biomisk modell (kp. 5.). Målemodelle... (kp. 5.3) 3. (Pukt)Estimerig i målemodelle (kp. 5.3)
Kap. 9: Inferens om én populasjon. Egenskaper ved t-fordelingen. ST0202 Statistikk for samfunnsvitere. I Kapittel 8 brukte vi observatoren
2 Kap. 9: Iferes om é populasjo I Kapittel 8 brukte vi observatore z = x μ σ/ for å trekke koklusjoer om μ. Dette krever kjet σ (urealistisk). ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for
Oppgave 1 Hardheten til en bestemt legering er undersøkt med åtte målinger og resultatene ble (i kg/mm 2 ) som i tabellen til høyre.
EKSAMEN I: ÅMA110 SANNSYNLIGHETSREGNING MED STATISTIKK VARIGHET: 4 TIMER DATO: 28. AUGUST 2010 BOKMÅL TILLATTE HJELPEMIDLER: KALKULATOR: HP30S, Casio FX82 eller TI-30 OPPGAVESETTET BESTÅR AV 3 OPPGAVER
MOT310 Statistiske metoder 1, høsten 2012
MOT310 Statistiske metoder 1, høste 2012 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 20. august, 2012 Bjør H. Auestad Itroduksjo og repetisjo 1 / 57 Iformasjo Litt om
ÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 5 Estimering. Målemodellen.
ÅMA0 Sasylighetsregig med statistikk, våre 0 Kp. 5 Estimerig. Målemodelle. Estimerig. Målemodelle. Ihold:. (Pukt)Estimerig i biomisk modell (kp. 5.). Målemodelle... (kp. 5.). (Pukt)Estimerig i målemodelle
Introduksjon. Hypotesetesting / inferens (kap 3) Populasjon og utvalg. Populasjon og utvalg. Populasjonsvarians
Hypotesetestig / iferes (kap ) Itroduksjo Populasjo og utvalg Statistisk iferes Utvalgsfordelig (samplig distributio) Utvalgsfordelige til gjeomsittet Itroduksjo Vi øsker å få iformasjo om størrelsee i
Oppgaver fra boka: Med lik men ukjent varians antatt har vi fra pensum at. t n1 +n 2 2 under H 0 (12 1) (12 1)
MOT30 Statistiske metoder, høste00 Løsiger til regeøvig r. 5 (s. ) Oppgaver fra boka: Oppgave 0.36 (0.0:8) Dekkslitasje X,..., X u.i.f. N(µ, σ ) og X,..., X u.i.f. N(µ, σ ) og alle variable er uavhegige.
X = 1 5. X i, i=1. som vil være normalfordelt med forventningsverdi E( X) = µ og varians Var( X) = σ 2 /5. En rimelig estimator for variansen er
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalte oppgaver 11, blokk II Løsigsskisse Oppgave 1 a) E rimelig estimator for forvetigsverdie µ er gjeomsittet X = 1 X i, som
ÅMA110 Sannsynlighetsregning med statistikk, våren Estimering. Målemodellen. Sannsynlighetsregning med statistikk. Kp. 5 Estimering.
ÅMA asylighetsregig med statistikk våre 008 Kp. 5 Estimerig Estimerig. Målemodelle. Ihold:. (ukt)estimerig i biomisk modell (kp. 5.). Målemodelle... (kp. 5.3) 3. (ukt)estimerig i målemodelle (kp. 5.3)
H 1 : µ 1 µ 2 > 0. t = ( x 1 x 2 ) (µ 1 µ 2 ) s p. s 2 p = s2 1 (n 1 1) + s 2 2 (n 2 1) n 1 + n 2 2
TMA4245 Statistikk Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b4 Løsigsskisse Oppgave 1 Vi øsker å fie ut om et ytt serum ka stase leukemi. 5 mus får serumet, 4
Eksempler fra slutten av forrige uke. Eksempler (styrke, dimensjonering,...) Eksempler fra slutten av forrige uke
Oversikt, del 5 Hypotesetestig, del 4 (oppsummerig fra Hypotesetestig, del 5 Kofidesitervall dimesjoerig Eksempler fra slutte av forrige uke Kofidesitervall p-verdi Eksempler Eksempler (styrke, dimesjoerig,...
TMA4240 Statistikk Høst 2015
Høst 205 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer, blokk II Løsigsskisse Oppgave a) X bi(, p) fordi: Udersøker uavhegige delar av DNA-strukture. Fi for kvar del
ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4
ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 27. mars Bjørn H. Auestad Kp. 6: Hypotesetesting
) = P(Z > 0.555) = > ) = P(Z > 2.22) = 0.013
TMA4240 Statistikk Vår 2008 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b5 Løsigsskisse Oppgave 1 a) X 1,...,X 16 er u.i.f. N(80,18 2 ). Setter Y = X. i) P(X 1 >
ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3
ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 20. mars Bjørn H. Auestad Kp. 6: Hypotesetesting
Estimering og hypotesetesting. Estimering og hypotesetesting. Estimering og hypotesetesting. Kapittel 10. Ett- og toutvalgs hypotesetesting
3 Estimerig og hypotesetestig Kapittel 10 Ett- og toutvalgs hypotesetestig TMA4240 H2006: Eirik Mo Feome Bilkjørig Høyde til studeter Estimator ˆp = X, X atall ˆµ = X gjeomsittlig høyde. som syes de er
TMA4240 Statistikk Høst 2016
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalt øvig 11 Løsigsskisse Oppgave 1 a) E rimelig estimator for forvetigsverdie µ er gjeomsittet X = 1 X i, som vil være ormalfordelt
Statistikk og økonomi, våren 2017
Statistikk og økoomi, våre 07 Obligatorisk oppgave 6 Løsigsforslag Oppgave E terig kastes 0 gager, og det registreres hvor mage 6-ere som oppås i løpet av disse 0 kastee. Vi ka kalle atall 6-ere i løpet
ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3
ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 20. mars Bjørn H. Auestad Kp. 6: Hypotesetesting
Kapittel 8: Estimering
Kaittel 8: Estimerig Estimerig hadler kort sagt om hvorda å aslå verdie å arametre som,, og dersom disse er ukjete. like arametre sier oss oe om oulasjoe vi studerer (dvs om alle måliger av feomeet som
Estimering 2. -Konfidensintervall
Estimerig 2 -Kofidesitervall Dekkes av kap. 9.4-9.5, 9.10, 9.12 og forelesigsotatee. Dersom forsøket gjetas mage gager vil (1 α)100% av itervallee [ ˆΘ L, ˆΘ U ] ieholde de ukjete parametere θ (som er
Introduksjon. Hypotesetesting / inferens (kap 3) Populasjon og utvalg. Populasjon og utvalg. Populasjonsvarians
Hypotesetestig / iferes (kap ) Itroduksjo Populasjo og utvalg Statistisk iferes Utvalgsfordelig (samplig distributio) Utvalgsfordelige til gjeomsittet «The hardest thig to teach i ay itroductory statistics
TMA4245 Statistikk Eksamen mai 2017
TMA445 Statistikk Eksame mai 07 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsskisse Oppgave a Når vi reger ut disse tre sasylighetee må ma huske på at de mulige verdiee
Emnenavn: Eksamenstid: 4 timer. Faglærer: Hans Kristian Bekkevard
EKSAMEN Emekode: SFB107111 Emeav: Metode 1, statistikk deleksame Dato: 7. mai 2018 Hjelpemidler: Godkjet kalkulator og vedlagt formelsamlig m/tabeller Eksamestid: 4 timer Faglærer: Has Kristia Bekkevard
Løsningsforsalg til første sett med obligatoriske oppgaver i STK1110 høsten 2018
Løsigsforsalg til første sett med obligatoriske oppgaver i STK1110 høste 2018 Oppgave 1 (a Et 100(1 α% kofidesitervall for forvetigsverdie µ er gitt ved formel (8.15 på side 403 i læreboka. For situasjoe
Oppgave 1. (i) Hva er sannsynligheten for at det øverste kortet i bunken er et JA-kort?
ECON EKSAMEN 8 VÅR TALLSVAR Oppgave Vi har e kortstokk beståede av 6 kort. På av disse står det skrevet JA på forside mes det står NEI på forside av de adre kortee. Hvis ma får se kortet med bakside vedt
LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK 5.august 2004
Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 0 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK 5.august 2004 Oppgave Foruresig X er e stokastisk variabel som agir
LØSNINGSFORSLAG TILEKSAMEN I FAG TMA4240/TMA4245 STATISTIKK 10. august 2005
Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 8 LØSNINGSFORSLAG TILEKSAMEN I FAG TMA440/TMA445 STATISTIKK 0. august 005 Oppgave Smeltepuktsbestemmelse a) Vi jobber i dette
ECON240 Statistikk og økonometri
ECON240 Statistikk og økoometri Arild Aakvik, Istitutt for økoomi 1 Mellomregig MKM Model: Y i = a i + bx i + e i MKM-estimator for b: b = = Xi Y i 1 Xi Yi Xi 1 ( X i ) 2 (Xi X)(Y i Ȳi) (Xi X) 2 hvor vi
Løsningsforslag Oppgave 1
Løsigsforslag Oppgave 1 a X i µ 0 σ X i µ 0 2 σ 2, i 1,..., er uavhegige og stadard N0, 1 fordelte. Da er, i 1,..., uavhegige og χ 2 -fordelte med e frihetsgrad. Da er summe χ 2 -fordelt med atall frihetsgrader
5 y y! e 5 = = y=0 P (Y < 5) = P (Y 4) = 0.44,
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalte oppgaver 9, blokk II Løsigsskisse Oppgave a) Vi lar her Y være atall fugler som kolliderer med vidmølla i løpet av de gitte
ÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro.
ÅMA Sasylighetsregig med statistikk, våre 6 Kp. 4 Kotiuerlige tilfeldige variable og ormaldelige Kotiuerlige tilfeldige variable, itro. (eller: Kotiuerlige sasylighetsdeliger) Vi har til å sett på diskrete
Løsningsforsalg til første sett med obligatoriske oppgaver i STK1110 høsten 2015
Løsigsforsalg til første sett med obligatoriske oppgaver i STK1110 høste 2015 Oppgave 1 (a Et 100(1 α% kofidesitervall for forvetigsverdie µ er gitt ved formel (8.15 på side 403 i læreboka. For situasjoe
Kap. 9: Inferens om én populasjon
2 ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for matematiske fag Ka. 9: Iferes om é oulasjo Hvis σ er ukjet bytter vi ut σ med s i Ny observator blir t = x μ s/ z = x μ σ/ der s = Σx 2 (Σx)
ÅMA110 Sannsynlighetsregning med statistikk, våren
ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 3. april Bjørn H. Auestad Kp. 6: Hypotesetesting
TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.
1 ECON130: EKSAMEN 013 VÅR - UTSATT PRØVE TALLSVAR. Det abefales at de 9 deloppgavee merket med A, B, teller likt uasett variasjo i vaskelighetsgrad. Svaree er gitt i
ÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro.
ÅMA0 Sasylighetsregig med statistikk, våre 008 Kp. 4 Kotiuerlige tilfeldige variable; Normalfordelig Kotiuerlige tilfeldige variable, itro. (eller: Kotiuerlige sasylighetsfordeliger) Vi har til å sett
211.7% 2.2% 53.0% 160.5% 30.8% 46.8% 17.2% 11.3% 38.7% 0.8%
Prøve-eksame II MET 1190 Statistikk Dato 31. mai 2019 kl 1100-1400 Alle svar skal begrues. Når besvarelse evalueres, blir det lagt vekt på at framgagsmåte og resultat preseteres så klart, presist og kortfattet
TMA4240 Statistikk Høst 2009
TMA440 Statistikk Høst 009 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b4 Løsigsskisse Oppgave Øsker å fie 99% kofidesitervall for µ µ år vi atar ormalfordeliger
ÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro.
ÅMA Sasylighetsregig med statistikk, våre Kp. 4 Kotiuerlige tilfeldige variable; Normalfordelig Kotiuerlige tilfeldige variable, itro. (eller: Kotiuerlige sasylighetsfordeliger) Vi har til å sett på diskrete
Kort repetisjon fra kapittel 4. Oppsummering kapittel ST0202 Statistikk for samfunnsvitere. Betinget sannsynlighet og trediagram
2 Kort reetisjo fra kaittel 4 Betiget sasylighet og trediagram Eksemel: Fra e oulasjo av idrettsfolk trekkes e erso tilfeldig og testes for doig. De iteressate hedelsee er D=ersoe er doet, A=teste er ositiv.
Kap. 9: Inferens om én populasjon
2 ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for matematiske fag Ka. 9: Iferes om é oulasjo Hvis σ er ukjet bytter vi ut σ med s i Ny observator blir t = x μ s/ z = x μ σ/ der s = Σx 2 (Σx)
Estimering og hypotesetesting. Estimering og hypotesetesting. Estimering og hypotesetesting. Kapittel 10. Ett- og toutvalgs hypotesetesting
3 Estimerig og hypotesetestig Kapittel 10 Ett- og toutvalgs hypotesetestig TMA445 V007: Eirik Mo Feome Bilkjørig Høyde til studeter Estimator ˆp = X, X atall ˆµ = X gjeomsittlig høyde. som syes de er flikere
Oppgave 1 a) Minste kvadraters metode tilpasser en linje til punktene ved å velge den linja som minimerer kvadratsummen. x i (y i α βx i ) = 0, SSE =
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalte oppgaver 2, blokk II Løsigsskisse Oppgave a Miste kvadraters metode tilpasser e lije til puktee ved å velge de lija som
KLMED8004 Medisinsk statistikk. Del I, høst Estimering. Tidligere sett på. Eksempel hypertensjon
Tidligere sett på KLMED8004 Medisisk statistikk Del I, høst 008 Estimerig Hvorda kjete sasylighetsfordeliger (biomialfordelig, ormalfordelig) med kjete populasjosparametrer (forvetig, varias osv.) ka gi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdelig for tekologi Målform: Bokmål Eksamesdato: 19 des. 2014 Varighet/eksamestid: Emekode: 3 timer TALM1005 Emeav: Statistikk og Økoomi statistikkdele Klasser: Logistikk 1 Kjemi
Emnenavn: Metode 1, statistikk deleksamen. Eksamenstid: 4 timer. Faglærer: Bjørnar Karlsen Kivedal
EKSAMEN Emekode: SFB10711 Emeav: Metode 1, statistikk deleksame Dato: 10. oktober 2018 Hjelpemidler: Godkjet kalkulator og vedlagt formelsamlig m/tabeller Eksamestid: 4 timer Faglærer: Bjørar Karlse Kivedal
Løsningsforslag til eksamen i STK desember 2010
Løsigsforslag til eksame i STK0 0. desember 200 Løsigsforslaget har med flere detaljer e det vil bli krevd til eksame. Oppgave a Det er tilpasset e multippel lieær regresjosmodell av forme β 0 + β x i
LØSNING, EKSAMEN I STATISTIKK, TMA4240, DESEMBER Anta at sann porøsitet er r. Måling med utstyret gir da X n(x; r, 0,03).
LØSNING, EKSAMEN I STATISTIKK, TMA440, DESEMBER 006 OPPGAVE 1 Ata at sa porøsitet er r. Målig med utstyret gir da X (x; r, 0,03). a) ( ) X r P(X > r) P 0,03 > 0 P(Z > 0) 0,5. ( X r P(X r > 0,05) P 0,03
TMA4240/4245 Statistikk 11. august 2012
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag TMA424/4245 Statistikk. august 22 Eksame - løsigsforslag Oppgave Vi har N Nµ,σ 2, µ 85 og X > 88. a X µ X > 88 σ > 88 µ Z > 88 85
TMA4245 Statistikk Eksamen august 2015
Eksame august 15 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsskisse Oppgave 1 a asylighetee blir og X > Z > 1 1 Z 1 Φ.3,.5 W > 5 X + Y > 5 b Forvetet samfuskostad blir
TMA4245 Statistikk Vår 2015
TMA4245 Statistikk Vår 2015 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer 12, blokk II Oppgave 1 Kari har ylig kjøpt seg e y bil. Nå øsker hu å udersøke biles besiforbruk
Konfidensintervall. Notat til STK1110. Ørnulf Borgan, Ingrid K. Glad og Anders Rygh Swensen Matematisk institutt, Universitetet i Oslo.
Kofidesitervall Notat til STK1110 Ørulf Borga, Igrid K. Glad og Aders Rygh Swese Matematisk istitutt, Uiversitetet i Oslo August 2007 Formål E valig metode for å agi usikkerhete til et estimat er å berege
Oppgaver fra boka: X 2 X n 1
MOT30 Statistiske metoder, høste 00 Løsiger til regeøvig r 3 (s ) Oppgaver fra boka: 94 (99:7) X,, X uif N(µ, σ ) og X,, X uif N(µ, σ ) og alle variable er uavhegige Atar videre at σ = σ = σ og ukjet Kodesitervall
Estimering 1 -Punktestimering
Estimerig 1 -Puktestimerig Dekkes av kap. 8, 9.1-9.3 og 9.15/9.14. Vi har til å settpå e rekke forskjellige sasylighetsfordeliger og sett hvorda disse ka brukes til å modellere mage forskjellige typer
ÅMA110 Sannsynlighetsregning med statistikk, våren 2011
ÅMA110 asylighetsregig med statistikk våre 011 Kp. 5 Estimerig 1 Estimerig. Målemodelle. Ihold: 1. (ukt)estimerig i biomisk modell (kp. 5.). Målemodelle... (kp. 5.3) 3. (ukt)estimerig i målemodelle (kp.
LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004
Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 0 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Oppgave Midtveiseksame a) X er e stokastisk variabel
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-aturviteskapelige fakultet Eksame i STK2120 Statistiske metoder og dataaalyse 2 Eksamesdag: Madag 6. jui 2011. Tid for eksame: 09.00 13.00. Oppgavesettet er på 5 sider.
ÅMA110 Sannsynlighetsregning med statistikk, våren 2007
ÅMA0 Sasylighetsregig med statistikk, våre 007 Kp. 4 Kotiuerlige tilfeldige variable; Normalfordelig Kotiuerlige tilfeldige variable, itro. (eller: Kotiuerlige sasylighetsfordeliger) Vi har til å sett
Estimering 1 -Punktestimering
Estimerig 1 -Puktestimerig Dekkes av kap. 8, 9.1-9.3 og 9.15/9.14. Vi har til å settpå e rekke forskjellige sasylighetsfordeliger og sett hvorda disse ka brukes til å modellere mage forskjellige typer
ÅMA110 Sannsynlighetsregning med statistikk, våren
ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Oppsummering Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 24. april Bjørn H. Auestad Oppsummering våren
STK1100 våren 2017 Estimering
STK1100 våre 017 Estimerig Svarer til sidee 331-339 i læreboka Ørulf Borga Matematisk istitutt Uiversitetet i Oslo 1 Politisk meigsmålig Spør et tilfeldig utvalg på 1000 persoer hva de ville ha stemt hvis
TMA4240 Statistikk Høst 2015
TMA4240 Statistikk Høst 2015 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer 12, blokk II I dee siste øvige fokuserer vi på lieær regresjo, der vi har kjete kovariater
TMA4240 Statistikk 2014
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer 2, blokk II Løsigsskisse Oppgave a µ populasjosgjeomsitt, dvs. eit gjeomsitt for alle bilae som køyrer på vegstrekige
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
Eksame i: ECON130 Statistikk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamesdag: 6.05.017 Sesur kugøres: 16.06.017 Tid for eksame: kl. 14:30 17:30 Oppgavesettet er på 6 sider Tillatte helpemidler: Alle
EKSAMEN. Oppgavesettet består av 5 oppgaver, hvor vekten til hver oppgave er angitt i prosent i oppgaveteksten. Alle oppgavene skal besvares.
EKSAMEN Emekode: SFB12003 Eme: Metodekurs II: Samfusviteskapelig metode og avedt statistikk Dato: 2.6.2014 Eksamestid: kl. 09.00 til kl. 13.00 Hjelpemidler: Kalkulator Faglærer: Bjørar Karlse Kivedal Eksamesoppgave:
Oversikt over konfidensintervall i Econ 2130
HG April 00 Oversikt over kofidesitervall i Eco 30 Merk at dee oversikte ikke er met å leses istedefor framstillige i Løvås, me som et supplemet. Løvås ieholder mage verdifulle kommetarer og eksempler.
ST1201 Statistiske metoder
ST20 Statistiske metoder Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsforslag - Eksame desember 2005 Oppgave a Ma beyttet radomisert blokkdesig. I situasjoe har ma k =
Econ 2130 uke 15 (HG) Poissonfordelingen og innføring i estimering
Eco 130 uke 15 (HG) Poissofordelige og iførig i estimerig 1 Poissofordelige (i) Tilærmig til biomialfordelige. Regel. ( Poissotilærmelse ) Ata Y ~ bi(, p) E( Y ) = p og var( Y ) = p(1 p). Hvis er stor
Oversikt over konfidensintervall i Econ 2130
1 HG Revidert april 011 Oversikt over kofidesitervall i Eco 130 Merk at dee oversikte ikke er met å leses istedefor framstillige i Løvås, me som et supplemet. Løvås ieholder mage verdifulle kommetarer
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdelig for tekologi Målform: Bokmål Eksamesdato: 5 jui 2015 Varighet/eksamestid: Emekode: 3 timer TALM1005 Emeav: Statistikk og Økoomi statistikkdele Klasser: Logistikk 1 Kjemi
ÅMA110 Sannsynlighetsregning med statistikk, våren Estimering. Målemodellen. Estimering. Målemodellen. Kp. 5 Estimering. Målemodellen.
ÅMA0 Sasylghetsregg med statstkk, våre 006 Kp. 5 Estmerg. Målemodelle. Estmerg. Målemodelle. Ihold:. (Pukt)Estmerg bomsk modell (kp. 5.). Målemodelle... (kp. 5.). (kp. 5.) 4. Estmere, estmat, estmator
TMA4240 Statistikk Høst 2016
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalt øvig 2 Løsigsskisse Oppgave a Miste kvadraters metode tilpasser e lije til puktee ved å velge de lija som miimerer kvadratsumme
TMA4245 Statistikk Eksamen 9. desember 2013
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag TMA4245 Statistikk Eksame 9. desember 2013 Oppgave 1 I kortspillet Blackjack får ma de høyeste geviste hvis de to første kortee ma
ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering
ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 21. april Bjørn H. Auestad Oppsummering våren
0.5 (6x 6x2 ) dx = [3x 2 2x 3 ] 0.9. n n. = n. ln x i + (β 1) i=1. n i=1
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer 9, blokk II Løsigsskisse Oppgave a The probability is.9.5 6x( x dx.9.5 (6x 6x dx [3x x 3 ].9.5.47. b The likelihood fuctio
EKSAMENSOPPGAVE. Mat-1060 Beregningsorientert programmering og statistikk
Fakultet for aturviteskap og tekologi EKSAMENSOPPGAVE Eksame i: (Kode og av) Dato: 05.1.017 Klokkeslett: 09:00-13:00 Sted: Åsgårdv 9 Mat-1060 Beregigsorietert programmerig og statistikk Tillatte hjelpemidler:
Løsningsforslag ST1101/ST6101 kontinuasjonseksamen 2018
Løsigsforslag ST/ST6 kotiuasjoseksame Oppgave a Defier hedelsee R, B, B rød kule i første trekig, blå kule i adre trekig, blå kule i tredje trekig. Vi skal fie PR B B for to ulike situasjoer. Geerelt vet
Løsning TALM1005 (statistikkdel) juni 2017
Løsig TALM1005 statistikkdel jui 2017 Oppgave 1 a Har oppgitt at sasyligte for at é harddisk svikter er p = 0, 037. Ifører hedelsee A : harddisk 1 svikter B : harddisk 2 svikter C : harddisk 3 svikter
TMA4240 Statistikk Eksamen desember 2015
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag TMA20 Statistikk Eksame desember 205 Løsigsskisse Oppgave a) De kumulative fordeligsfuksjoe til X, F (x) P (X x): F (x) P (X x) x
Modeller og parametre. STK Punktestimering - Kap 7. Eksempel støtfangere. Statistisk inferens. Binomisk fordeling. p X (x) = p x (1 p) n x
STK1100 - Puktestimerig - Kap 7 Geir Storvik Modeller og parametre Biomisk fordelig ( ) p X (x) = p x (1 p) x x Parameter: p Normalfordelig f X (x) = 1 2πσ e 1 2σ 2 (x µ) 2 11. april 2016 Parametre: µ,
Oppgaven består av 9 delspørsmål, A,B,C,., som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom <<.. >>.
ECON 130 EKSAMEN 008 VÅR - UTSATT PRØVE SENSORVEILEDNING Oppgave består av 9 delspørsmål, A,B,C,., som abefales å veie like mye, Kommetarer og tallsvar er skrevet i mellom . Oppgave 1 Ved e spørreudersøkelse
Forventningsverdi. MAT0100V Sannsynlighetsregning og kombinatorikk
MAT0100V Sasylighetsregig og kombiatorikk Forvetigsverdi Sasylighetsfordelige til e tilfeldig variabel X gir sasylighete for de ulike verdiee X ka ata Forvetig, varias og stadardavvik Tilærmig av biomiske