EKSAMEN Løsningsforslag

Størrelse: px
Begynne med side:

Download "EKSAMEN Løsningsforslag"

Transkript

1 8.5.5 EKSAMEN øigforlg Emekode: ITD5 ITD5 Dto: 8. mi 5 Hjelpemidler: Eme: Mtemtikk dre delekme Ekmetid: 9.. Fglærer: - To A-rk med vlgfritt ihold på begge ider. - Formelhefte. Chriti F Heide Klkultor er ikke tilltt. Ekmeoppgve: Oppgveettet betår v ek ider ikluiv dee foride to vedlegg. Kotroller t oppgveettet er komplett før du begyer å bevre pørmålee. Oppgveettet betår v 8 oppgver med i lt delpørmål. Ved eur vil lle delpørmål telle like mye. Der det er mulig kl du: vie utregiger hvord du kommer frm til vree begrue die vr elv om dette ikke er ekpliitt gt i hvert pørmål Seurdto:. jui 5 Krkteree er tilgjegelige for tudeter på tudetweb eet virkedger etter oppgitt eurfrit. Følg itrukjoer gitt på: ITD5 ITD5 Mtemtikk dre delekme mi 5 løig Side v

2 Oppgve Figure vier fukjoe y co co - -5 ) Fi relet v det krverte området ltå relet uder grfe til co fr = til der grfe kjærer -ke. Dette relet fier vi ved å itegrere co mellom der fukjoe kjærer - ke. Dette kjer der co = ltå ved A co d [i ] (i i ) b) Det krverte feltet rotere om y-ke. Fi volumet v det omdreiiglegemet om d frmkommer. Omkrete v et ifiiteimlt tyt yliderkll om y-ke vil være fordi rdiu vil være. Høyde til kllet vil være y = co. Arelet v dette yliderkllet er omkrete gger høyde vil følgelig være. Volumet v et likt yliderkll om hr e tykkele på d vil være. Volumet v hele omdreiiglegemet vil derfor være itegrlet v dv co d dette mellom : : O r A co V co d co d Her må vi bruke delvi itegrjo for å fie itegrlet (derom ikke det tår i formelmlige). Regele for delvi itegrjo k krive lik: u ' v d uv uv' d Vi velger u' co v = ITD5 ITD5 Mtemtikk dre delekme mi 5 løig Side v

3 om gir u = i v = Følgelig får vi V i i d ( i ) i i d [ co ] ( co ( ) ( co)) Oppgve ø differeilligige y' y Dee er ikke eprerbr me k vi løe ved å bruke metode med itegrerede fktor. Vi må ført brige de på tdrd form ved å dele lle ledd med : y' y Vi fier å e tiderivert til fktore for y: d l Side det er oppgitt t > treger vi ikke å t boluttverdie til følgelig hr vi t l l De itegrerede fktor fier vi ved å ekpoetiere dette dv: e l Vi k videre beytte regele l b l b på ekpoete får t dette er ITD5 ITD5 Mtemtikk dre delekme mi 5 løig Side v

4 e l e l Vi gger å hele differeilligige med om er de åklte itegrerede fktor får y' om etter ordig blir y y' y 6 Vetre ide k å forekle lik t vi k krive ligige lik: 6 ( y)' Vi itegrerer å begge ider med hey på : om gir 6 ( y)' d ( ) d y C Vi løer å med hey på y ved å gge hele ligige med : dv. y y C C 7 5 Oppgve ø differeilligige y' ' y' y med greebetigelee y ( ) 7 y '(). Dee differeilligige hr kotte koeffiieter vi k derfor bruke tekikke med krkteritik ligig. De krkteritike ligige er med løiger ITD5 ITD5 Mtemtikk dre delekme mi 5 løig Side v

5 ( ) ( ) Med to reelle løiger v de krkteritike ligige vil de geerelle (llmee) løige v differeilligige være (det er ikke gitt i oppgve hv de frie vribele heter å jeg velger å klle de ): y Ce C e Vi bruker å greebetigelee geerelle løige. gir: y( ) 7 y( ) 7 y' () for å fie kottee i de dv. eller C C e Ce C 7 C 7 C 7 For å kue bruke de dre greebetigele må vi derivere de geerelle løige: y' C e C e Setter vi å i betigele y' () får vi om gir C e Ce C C Setter vi å i det vi ft ovefor ltå C 7 C får vi om gir dv. følgelig C (7 C) C C 7 C C 7 5 øige blir derfor ITD5 ITD5 Mtemtikk dre delekme mi 5 løig Side 5 v

6 y e 5 e Oppgve Bruk lplcetrformjoe til å løe følgede iitilverdiproblem hvor ehetpul (Dirc delt): (t) er e y' ' y ( t) y ( ) y'() plcetrformerer vi ligige får vi Y Y Vi order dee lik t lle ledd med Y kommer på vetre ide rete på høyre ide: Y Y Vi etter Y utefor prete på vetre ide: ( ) Y Vi deler med ( ) på begge ider får Y Vi er t evere ikke hr reelle røtter (fordi ikke hr reelle løiger). Vi må derfor e om vi k bruke lplcetrformee til iu coiu for å fie y(t). Vi deler d opp uttrykket på følgede måte: Y Fr tbelle med lplcetrformjoer er vi t Dette betyr t (co t ) (i t ) co t ITD5 ITD5 Mtemtikk dre delekme mi 5 løig Side 6 v

7 i t Dv y(t) = cot i t Oppgve 5 Fi egeverdier tilhørede egevektorett til følgede mtrie: A Vi fier ført egeverdiee. Egeverdiee er de om er løiger v ligige. Vi fier ført dee determite: det( A I) det( A I) ( )( ) ( )( ) 5 Vi fier å de om gjør dee lik : om gir 5 ( 5) ( 5) Egeverdiee er følgelig 5 5 Egevektoree er de -vektorer om er ikke-trivielle løiger v ligigytemee I = A I A = Egevektorettet tilhørede : Koeffiietmtrie til dette ligigytemet er A I ITD5 ITD5 Mtemtikk dre delekme mi 5 løig Side 7 v

8 A I øige v ligigytemet = fier vi å ved elemetære rekkeoperjoer på dee koeffiietmtrie: ~ R ' R R ~ ' R ( ) R Her vil d kue være e fri vribel vi etter Førte rekke gir følgede ligig: om med gir Skrevet på vektorform blir dee løige: = Egevektorettet tilhørede : Koeffiietmtrie til dette ligigytemet er A I A I øige v ligigytemet = fier vi å ved elemetære rekkeoperjoer på dee koeffiietmtrie: ~ R ' R R k være e fri vribel vi etter t ITD5 ITD5 Mtemtikk dre delekme mi 5 løig Side 8 v

9 Førte rekke gir følgede ligig: dv. om med t gir t Skrevet på vektorform blir dee løige: t = t t t eller derom vi vil ugå brøker k vi krive (ide t er vilkårlig): = r r Oppgve 6 Gitt e mtrie A De reduerte trppforme til dee mtrie er ) Der koloevektoree i mtrie A e bi for R? Begru vret. For t koloevektoree i A kl de e bi må de være lieært uvhegige. Fordi e v rekkee i de reduerte trppeforme betår v bre uller vet vi t determite til A er. Dette iebærer t koloee i A ikke er lieært uvhegige de der derfor ikke e bi for R. Dette k ltertivt begrue med t ligigytemet A = hr ikke-trivielle løiger. b) Et vektorrom V er defiert ved ITD5 ITD5 Mtemtikk dre delekme mi 5 løig Side 9 v

10 ITD5 ITD5 Mtemtikk dre delekme mi 5 løig Side v V = Sp Merk t die vektoree er koloevektoree i mtrie A. Fi e bi for V. V er det vektorrommet om koloevektoree i A utpeer å klt koloerommet til A. E bi for dette rommet er de koloee i A om hr ledede elemeter i de reduerte trppforme (om ble oppgitt i pørmål ) ltå koloe. E bi for V er følgelig c) Fi e bi for ullrommet til mtrie A. Nullrommet til A er megde v lle løiger til ligigytemet A = e bi fier vi år vi kriver løigee på vektorform. Av de reduerte trpperforme til A om ltå er lik ut er vi t vi k velge om fri vribel vi etter. Fr rekke fier vi følgelig Fr rekke fier vi følgelig Fr rekke fier vi

11 ITD5 ITD5 Mtemtikk dre delekme mi 5 løig Side v følgelig Skrvet på vektorform blir dee løige E bi for ullrommet til A er derfor Oppgve 7 Begru t følgede uedelige rekke kovergerer fi umme: Dette er e geometrik rekke. Derom e ikke er dette direkte k e krive ut rekke lik: Vi er t et ledd delt på det foregåede lltid er k rekke er følgelig geometrik. Side k kovergerer rekke. Det førte leddet er umme er derfor 6 k S

12 Oppgve 8 Fi fourierrekke til de periodike fukjoe f (t) om hr periode om er gitt ved: f ( t) t t Vi k ført lge e kie v fukjoe for å h e ide om hvord de er ut: π π π π π t π Fourierrekke til e periodik fukjo er gitt ved f ( t) ~ co( t) b i( t med fourierkoeffiieter gitt ved f ( t) dt ) f ( t) co( t) dt f ( t) i( b t) dt Vår fukjo hr periode hlve periode vil følgelig være prmetere om igår i fourieritegrlee om er lik. Dee fukjoe er ymmetrik om.-ke (t-ke). vil derfor være. Dette vil vi å e derom vi reger ut : f ( ) d ( t) dt t ITD5 ITD5 Mtemtikk dre delekme mi 5 løig Side v

13 ( ) Så reger vi ut koeffiietee for coiu-leddee: ( t) co( t) Fukjoe vår er e odde fukjo (like fukjoer hr de egekpe t Coiu er e like fukjo (krkteriert ved t dt f ( t) f ( t) fukjo er e odde fukjo. Itegrlet v e odde fukjo fr uett hv p er. Itegrlet vårt vil derfor være lle Koeffiietee for iu-leddee er gitt ved b ( t) i( t) dt t i( t) dt f ( t) f ( t) ). E like gger e odde. t p Vi må bruke delvi itegrjo for å fie dette itegrlet. Vi velger o til t p vil være ). om gir u' i t u cot v t v' Vi får d b ) t ( cot) ( cot dt co ( )co( ) i t Fordi coiu er e like fukjo vil co( ) co. Dette bruker vi år vi reger ut de førte pretee uttrykket blir d b co co i i( ) Fordi iu er e odde fukjo vil dre pretee uttrykket blir d i( ) i. Dette bruker vi år vi reger ut de b co i ( i co i ) ITD5 ITD5 Mtemtikk dre delekme mi 5 løig Side v

14 Nå vet vi t å lege er et heltll (for ekempel er ). Det dre leddet blir derfor vi tår igje med t i i i i b co co vil vekle mellom etterom er heholdvi et prtll et oddetll (for ekempel er ). Vi k derfor krive co co co b ( ) Fourierrekke for fukjoe er derfor ( ) f ( t) ~ ( ) i( t) i( t) i t i t i t i t ITD5 ITD5 Mtemtikk dre delekme mi 5 løig Side v

EKSAMEN Ny og utsatt Løsningsforslag

EKSAMEN Ny og utsatt Løsningsforslag 7. april EKSAMEN Ny og utatt øigforlag Emekode: ITD Dato: 6. jauar Hjelpemidler: Eme: Matematikk adre delekame Ekametid: 9.. Faglærer: - To A-ark med valgfritt ihold på begge ider. - Formelhefte. Chritia

Detaljer

Eksamensoppgave i TALM1004 Matematikk 2

Eksamensoppgave i TALM1004 Matematikk 2 Ititutt for llmefg Ekmeoppgve i ALM4 Mtemtikk Fglig kotkt uder ekme: Kåre Bjørvik lf.: 9 77 898 Ekmedto: 5.5.7 Ekmetid (fr-til): 9. 4. Hjelpemiddelkode/illtte hjelpemidler: D (etemt, ekel klkultor tilltt)

Detaljer

Integrasjon. October 14, 2014. Department of Mathematical Sciences, NTNU, Norway. Integrasjon

Integrasjon. October 14, 2014. Department of Mathematical Sciences, NTNU, Norway. Integrasjon Deprtmet of Mthemticl Scieces, NTNU, Norwy Octoer 14, 2014 Forelesig 01.10.2014, 5.1, 5.2 Summer Arel uder grfe til e fuksjo som greseverdi til e summe Sigm otsjo L m og være heltll og m og l f være e

Detaljer

S2 kapittel 1 Rekker Utvalgte løsninger oppgavesamlingen

S2 kapittel 1 Rekker Utvalgte løsninger oppgavesamlingen Utvlgte løsiger oppgvesmlige S kpittel Rekker Utvlgte løsiger oppgvesmlige 0 Vi k prøve med differsemetode Differsee mellom leddee utover er 4,6,8, så det er rimelig t differse mellom femte og fjerde ledd

Detaljer

Matematikk for IT. Prøve 2 løsningsforslag. Torsdag 27. oktober 2016 S S F S F F S F S F S S F S F S F F F F S S F F

Matematikk for IT. Prøve 2 løsningsforslag. Torsdag 27. oktober 2016 S S F S F F S F S F S S F S F S F F F F S S F F Mtemtikk for IT Prøve løsigsforslg Torsdg 7 oktober 06 7 oktober 06 Oppgve ) Fi ved hjelp v shetstbeller om de to følgede smmestte utsg er logisk ekvivlete: i) p q ii) q p q) Utsg i): q p q S S F F S F

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGKOLEN I ØR-TRØNDELAG Avdelig for tekologi Målform: Eksmesdto: 3. mrs 03 Vrighet/eksmestid: Emekode: 3 timer ALM304V Emev: Mtemtikk 4 Klsse(r): tudiepoeg: Fglærer(e): (v og telefor på eksmesdge) Bygg,

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGKOLEN I ØR-TRØNDELAG Avdelig for tekologi Målform: Bokmål Eksmesdto: 5. jui 04 Vrighet/eksmestid: Emekode: 3 timer ALM304V Emev: Mtemtikk 4 Klsser: tudiepoeg: Bygg, Elektro, Mski, Kjemi, Logistikk,

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Målform: Eksmesdto: 5. jui 03 Vrighet/eksmestid: Emekode: 3 timer ALM304V Emev: Mtemtikk 4 Klsse(r): Studiepoeg: Fglærer(e): (v og telefor på eksmesdge) Bygg, Elektro, Mski, Kjemi,

Detaljer

Funksjoner. 1. Elementære funksjoner: 2. Derivasjon og integrasjon: b = lnb ln a b) ln(ab) = ln A + ln B, ln A = ln A ln B sin c) sin 2 x + cos 2 x

Funksjoner. 1. Elementære funksjoner: 2. Derivasjon og integrasjon: b = lnb ln a b) ln(ab) = ln A + ln B, ln A = ln A ln B sin c) sin 2 x + cos 2 x Fukjoer. Elemetære fukjoer: ) l y y e b log b lb l b) l(a l A + l B, l A l A l B B i c) i + co t co l A u ul A cot t c) i( ± y) i co y ± co i y, co( ± y) co co y m i i y d) i i co co co i co i e) t ± t

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-aturviteskapelige fakultet Eksame i MAT00 Matematikk I Eksamesdag: Fredag 4 jui 00 Tid for eksame: 0900 00 Oppgavesettet er på sider Vedlegg: Tillatte hjelpemidler:

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdelig for tekologi Målform: Bokmål Eksmesdto: 3. mrs 04 Vrighet/eksmestid: Emekode: 3 timer ALM304V Emev: Mtemtikk 4 Klsser: Studiepoeg: Bygg, Elektro, Mski, Kjemi, Logistikk,

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag ..4 EKSAMEN Løsigsforslag Emekode: ITF75 Dato: 6. desember Eme: Matematikk for IT Eksamestid: kl 9. til kl. Hjelpemidler: To A4-ark med valgfritt ihold på begge sider. Kalkulator er ikke tillatt. Faglærer:

Detaljer

TMA4100 Matematikk 1 Høst 2006

TMA4100 Matematikk 1 Høst 2006 TMA4 Mtemtikk Høst 26 Norges tekisk turviteskpelige uiversitet Istitutt for mtemtiske fg Løsigsforslg, vsluttede eksme 5.2.26 De første greseverdie er e uestemt form v type "/", og L Hopitls regel gir

Detaljer

Løsningsforslag Matematikk4N/4M, TMA4123/TMA4125, vår 2016

Løsningsforslag Matematikk4N/4M, TMA4123/TMA4125, vår 2016 Løigforlag MatematikkN/M, TMA/TMA5, vår 6 Oppgave Skriver om ligigytemet på valig måte Gau Seidel blir da Setter vi x, y, z får vi x y z y x z z x y 6 x y z y x z z x y 6 Dv,,,, x y z x y z 6 Oppgave Side

Detaljer

EKSAMEN Ny og utsatt

EKSAMEN Ny og utsatt EKSAMEN Ny og utsatt Emekode: ITF0705 Dato: 30. mai 04 Eme: Matematikk for IT Eksamestid: kl 09.00 til kl 3.00 Hjelpemidler: To A4-ark med valgfritt ihold på begge sider. Kalkulator er ikke tillatt. Faglærer:

Detaljer

Kapittel 3. Potensregning

Kapittel 3. Potensregning Kpittel. Potensregning I potensregning skriver vi tll som potenser og forenkler uttrykk som inneholder potenser. Dette kpitlet hndler blnt nnet om: Betydningen v potenser som hr negtiv eksponent eller

Detaljer

Odd Heir John Engeseth Håvard Moe Ørnulf Borgan BOKMÅL. Særtrykk. Matematikk 1T

Odd Heir John Engeseth Håvard Moe Ørnulf Borgan BOKMÅL. Særtrykk. Matematikk 1T Odd Heir Joh Egeseth Håvrd Moe Ørulf Borg BOKMÅL Særtrykk Mtemtikk T Odd Heir Joh Egeseth Håvrd Moe Ørulf Borg BOKMÅL Mtemtikk T Ihold Alger A Tllregig 7 B Tllmegder C Potesregig 0 D Store og små tll

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag 7. jauar 7 EKSAMEN Løsigsforslag Emekode: ITF75 Dato: 4. desember 6 Hjelpemidler: - To A4-ark med valgfritt ihold på begge sider. Emeav: Matematikk for IT Eksamestid: 9. 3. Faglærer: Christia F Heide Kalkulator

Detaljer

2 Algebra R2 Løsninger

2 Algebra R2 Løsninger Algebr R Løsiger. Tllfølger.... Tllrekker... 7. Uedelige geometriske rekker... 8. Iduksjosbevis... 55.5 Eksmesoppgver... 6 Øvigsoppgver og løsiger Stei Aese og Olv Kristese/NDLA Eksmesoppgvee er hetet

Detaljer

Sinus S2 > Følger og rekker. 01 Sinus S2 kap1 teoridel.indd :31:27

Sinus S2 > Følger og rekker. 01 Sinus S2 kap1 teoridel.indd :31:27 8 Sius S > Følger og rekker 0 Sius S kp teoridel.idd 8 05-04-0 5:3:7 Følger og rekker MÅL for opplærige er t eleve skl kue fie møstre i tllfølger og bruke dem til å summere edelige ritmetiske og geometriske

Detaljer

f '( x) 28x 6x 2 ( 2) x x 4(3t 2 s) 6s 2x 6(3t 2 s) 2t ln x 2ln y med bibetingelsen 2x y m. Her er m 0

f '( x) 28x 6x 2 ( 2) x x 4(3t 2 s) 6s 2x 6(3t 2 s) 2t ln x 2ln y med bibetingelsen 2x y m. Her er m 0 Fsit obligtorisk oppgve Oppgve (9 poeg) Deriver følgede fuksjoer med hes på lle rgumeter ) f ( ) 7 f '( ) 8 6 svr: b) Svr: g ( ) ( ) ( ) g ( ) ( ) ( ) c) h( ) f ( )( ) Svr: h( ) f '( )( ) f ( ) d) Svr:

Detaljer

Høgskolen i Agder Avdeling for realfag EKSAMEN. begrunn = grunngi beregn = rekn ut

Høgskolen i Agder Avdeling for realfag EKSAMEN. begrunn = grunngi beregn = rekn ut Høgskole i Agder Avdelig for relfg EKSAMEN Emekode: MA 410 Emev: Reell lyse Oppgver med forslg til løsiger Dto: 4. mi 000 Vrighet: 09.00-14.00 Atll sider iklusivt forside: Tilltte hjelpemidler: Alle Nyorsktekste

Detaljer

Løsningsforslag. Oppgavesettet består av 9 oppgaver med i alt 21 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye.

Løsningsforslag. Oppgavesettet består av 9 oppgaver med i alt 21 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye. .. Løsigsforslag Emekode: ITF7 Dato:. desember Eme: Matematikk for IT Eksamestid: kl. til kl. Hjelpemidler: To A4-ark med valgfritt ihold på begge sider. Faglærer: Christia F Heide Eksamesoppgave: Oppgavesettet

Detaljer

Integrasjon av trigonometriske funksjoner

Integrasjon av trigonometriske funksjoner Integrsjon v trigonometriske funksjoner øistein Søvik 3. november 15 I dette dokumentet skl jeg vise litt ulike integrsjonsteknikker og metoder for å utforske integrlene v (cos x) og (sin x). De bestemte

Detaljer

Dersom vi skriver denne reaksjonslikningen ved bruk av kjemiske tegn: side av likningen har vi ett hydrogen mens vi har to på høyre side.

Dersom vi skriver denne reaksjonslikningen ved bruk av kjemiske tegn: side av likningen har vi ett hydrogen mens vi har to på høyre side. Støkiometri (megdeforhold) Det er særs viktig i kjemie å vite om megdeforhold om stoffer. -E hodepie tablett er bra mot hodesmerter, ti passer dårlig. -E sukkerbit i kaffe fugerer, 100 er slitsomt. -100

Detaljer

2. Bestem nullpunktene til g.

2. Bestem nullpunktene til g. Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL 0. desember 007 EKSAMEN I MATEMATIKK Modul 5 studiepoeg Tid: 5 timer Oppgavesettet er på 9 sider (ikludert formelsamlig).

Detaljer

Læringsmål og pensum. Funksjoner hittil (1) Oversikt. Læringsmål Anonyme og rekursive funksjoner Funksjoner som inn-argumenter Subfunksjoner

Læringsmål og pensum. Funksjoner hittil (1) Oversikt. Læringsmål Anonyme og rekursive funksjoner Funksjoner som inn-argumenter Subfunksjoner 1 Lærigsmål og pesum TDT4105 Iformsjostekologi grukurs: Uke 44 Aoyme fuksjoer, fuksjosfuksjoer og rekursjo Lærigsmål Aoyme og rekursive fuksjoer Fuksjoer som i-rgumeter Subfuksjoer Pesum Mtlb, Chpter 10

Detaljer

Faktorisering. 1 Hva er faktorisering? 2 Hvorfor skal vi faktorisere? Per G. Østerlie Senter for IKT i utdanningen 11.

Faktorisering. 1 Hva er faktorisering? 2 Hvorfor skal vi faktorisere? Per G. Østerlie Senter for IKT i utdanningen 11. Fktorisering Per G. Østerlie Senter for IKT i utdnningen per@osterlie.no 11. mi 013 1 Hv er fktorisering? Vi må se på veret å fktorisere. Hv er det vi skl gjøre når vi fktoriserer? Svret er: å lge fktorer.

Detaljer

ARBEIDSHEFTE I MATEMATIKK

ARBEIDSHEFTE I MATEMATIKK ARBEIDSHEFTE I MATEMATIKK Temahefte r Hvorda du reger med poteser Detaljerte forklariger Av Matthias Loretze mattegriseforlag.com Opplsig: E potes er e forkortet skrivemåte for like faktorer. E potes består

Detaljer

Integrasjon Skoleprosjekt MAT4010

Integrasjon Skoleprosjekt MAT4010 Integrsjon Skoleprosjekt MAT4010 Tiin K. Kristinslund, Julin F. Rossnes og Torstein Hermnsen 19. mrs 2014 1 Innhold 1 Innledning 3 2 Integrsjon 3 3 Anlysens fundmentlteorem 7 4 Refernser 10 2 1 Innledning

Detaljer

x n = 1 + x + x 2 + x 3 + x x n + = 1 1 x

x n = 1 + x + x 2 + x 3 + x x n + = 1 1 x Potesrekker Forelest: 29. Sept, 2004 Vi lærte fra de geometriske rekkee at x = 1 + x + x 2 + x 3 + x 4 + + x + = 1 1 x så lege x < 1. For uttrykket til høyre er ikke oe aet e sum-formele for geometriske

Detaljer

Obligatorisk innlevering 2 - MA 109

Obligatorisk innlevering 2 - MA 109 Obligatorisk innlevering 2 - MA 9 Skriv fullt navn og studentnummer øverst på besvarelsen. Du skal bruke sifrene fra studentnummeret i besvarelsen. Studentnummeret ditt er E. Er studentnummeret ditt da

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag TMA400 Matematikk Høst 04 Løsigsforslag Øvig 3 Review Exercises, side 454 Vi starter med å tege e figur av e skål med va: z A(z)

Detaljer

MA1102 Grunnkurs i analyse II Vår 2019

MA1102 Grunnkurs i analyse II Vår 2019 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag MA0 Grukurs i aalyse II Vår 09 9 Vi har rekke Dette er e geometrisk rekke som beskrevet på side 50 i læreboka, med x (side ) Spesielt

Detaljer

MA1101 Grunnkurs Analyse I Høst 2017

MA1101 Grunnkurs Analyse I Høst 2017 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag MA0 Grukurs Aalyse I Høst 07 Løsigsforslag Øvig..b) Vi skriver om 7 = 4 4 7 Korollar.. gir at 7 4 er irrasjoal (side vi vet 7 4 er

Detaljer

EKSAMEN løsningsforslag

EKSAMEN løsningsforslag 05.0.08 EKSAMEN løsigsforslag Emekode: ITF0705 Dato: 5. desember 07 Hjelpemidler: - To A4-ark med valgfritt ihold på begge sider. Emeav: Matematikk for IT Eksamestid: 09.00 3.00 Faglærer: Christia F Heide

Detaljer

Fag: Matematikk 1T-Y for elever og privatister. Antall sider i oppgaven: 8 inklusiv forside og opplysningsside

Fag: Matematikk 1T-Y for elever og privatister. Antall sider i oppgaven: 8 inklusiv forside og opplysningsside Loklt gitt eksmen 2012 Eksmen Fg: Mtemtikk 1T-Y for elever og privtister Fgkode: MAT1006 Eksmensdto: 25. mi Antll sider i oppgven: 8 inklusiv forside og opplysningsside Eksmenstid: Hjelpemidler under eksmen:

Detaljer

Utvidet løsningsforslag Eksamen i TMA4100 Matematikk 1, 16/12 2008

Utvidet løsningsforslag Eksamen i TMA4100 Matematikk 1, 16/12 2008 Utvidet løsigsforslag Eksame i TMA4 Matematikk, 6/ 8 Oppgave i) Vi gjør substitusjoe u = si θ og får π/ [ u si θ cos θ dθ = u du = E ae løsigsmetode er π/ si θ cos θ dθ = π/ ] si θ dθ = 4 = 4 ( ( ) ( ))

Detaljer

Løsningsforslag til prøveeksamen i MAT1110, våren 2012

Løsningsforslag til prøveeksamen i MAT1110, våren 2012 Løsigsforslag til prøveeksame i MAT, våre Oppgave : Vi har A = 3 III+I I+II 3 ( )II 3 3 Legg merke til at A er de utvidede matrise til ligigssystemet. Vi ser at søyle 3 og 4 i de reduserte trappeforme

Detaljer

Løsningsforslag R2 Eksamen 04.06.2012. Nebuchadnezzar Matematikk.net Øistein Søvik

Løsningsforslag R2 Eksamen 04.06.2012. Nebuchadnezzar Matematikk.net Øistein Søvik Løsigsforslag R2 Eksame 6 Vår 04.06.202 Nebuchadezzar Matematikk.et Øistei Søvik Sammedrag De fleste forlagee som gir ut lærebøker til de videregåede skole, gir ut løsigsforslag til tidligere gitte eksameer.

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag 7 desember EKSAMEN Løsningsorslag Emnekode: ITD5 Dato: 6 desember Hjelpemidler: Emne: Matematikk ørste deleksamen Eksamenstid: 9 Faglærer: To A-ark med valgritt innhold på begge sider Formelhete Kalkulator

Detaljer

Løsning eksamen R1 våren 2010

Løsning eksamen R1 våren 2010 Løsig eksame R våre 00 Oppgave a) ) f ( ) l f ( ) ' l l l l f ( ) (l ) ) g( ) 4e g( ) 4 e ( ) 4 e ( ) g( ) 4( ) e b) ( ) 4 4 6 P ) P() 4 4 6 8 6 8 6 0 Divisjo med ( ) går opp. 4 4 6 : ( ) 8 4 4 8 6 8 6

Detaljer

Logaritmen til et tall er det vi må opphøye 10 i for å få tallet. Logaritmen til et tall a kan vi indirekte definere slik:

Logaritmen til et tall er det vi må opphøye 10 i for å få tallet. Logaritmen til et tall a kan vi indirekte definere slik: Logritme til et tll er det vi må opphøye 10 i for å få tllet. 10 2 = 100 Logritme til 100 er 2. log 100 = 2 10 3 = 1000 Logritme til 1000 er 3. log 1000 = 3 Logritme til et tll k vi idirekte defiere slik:

Detaljer

Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte.

Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte. Eksame 20.05.2009 REA3028 Matematikk S2 Nyorsk/Bokmål Bokmål Eksamesiformasjo Eksamestid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Bruk av kilder: Vedlegg: Framgagsmåte: Veiledig om vurderige: 5 timer:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det mtemtisk-turviteskpelige fkultet Eksme i: STK1110 Sttistiske metoder og dtlyse Løsigsforslg Eksmesdg: Tirsdg 18. desemer 2018 Tid for eksme: 09.00 13.00 Oppgvesettet er på 5 sider.

Detaljer

Det neste tallet er 11+5=16. d Vi får tallene i følgen ved å multiplisere det foregående tallet med 4.

Det neste tallet er 11+5=16. d Vi får tallene i følgen ved å multiplisere det foregående tallet med 4. Løiger til oppgvee i ok R kpittel 7 Følger og rekker Løiger til oppgvee i ok 7. Vi får tllee i følge ve å legge til et foregåee tllet. Det ete tllet er. Vi får tllee i følge ve å trekke fr et foregåee

Detaljer

Obligatorisk oppgave i MAT 1100, H-03 Løsningsforslag

Obligatorisk oppgave i MAT 1100, H-03 Løsningsforslag Oppgave : Obligatorisk oppgave i MAT, H- Løsningsforslag a) Vi skal regne ut dx. Substituerer vi u = x, får vi du = x dx. De xex nye grensene er gitt ved u() = = og u() = = 9. Dermed får vi: 9 [ ] 9 xe

Detaljer

Forkunnskaper i matematikk for fysikkstudenter. Derivasjon.

Forkunnskaper i matematikk for fysikkstudenter. Derivasjon. Defiisjo av derivert Vi har stor ytte av å vite hvor raskt e fuksjo vokser eller avtar Mer presist: Vi øsker å bestemme stigigstallet til tagete til fuksjosgrafe P Q Figure til vestre viser hvorda vi ka

Detaljer

Utkast til løsningsforslag til eksamen i emnet MAT 121 - Lineær algebra Utan ansvar for feil og mangler Mandag 31. mai 2010, kl. 09-14.

Utkast til løsningsforslag til eksamen i emnet MAT 121 - Lineær algebra Utan ansvar for feil og mangler Mandag 31. mai 2010, kl. 09-14. Utkast til løsningsforslag til eksamen i emnet MAT 2 - Lineær algebra Utan ansvar for feil og mangler Mandag 3. mai 2, kl. 9-4. Oppgave En bisverm flyr mellom to kuber, A og B, på dagtid, og hver bi blir

Detaljer

Kommentarer til oppgaver;

Kommentarer til oppgaver; Kapittel - Algebra Versjo: 11.09.1 - Rettet feil i 0, 1 og 70 og lagt i litt om GeoGebra-bruk Kommetarer til oppgaver; 0, 05, 10, 13, 15, 5, 9, 37, 5,, 5, 59, 1, 70, 7, 78, 80,81 0 a) Trykkfeil i D-koloe

Detaljer

Løsningsforslag. Oppgavesettet består av 16 oppgaver. Ved sensur vil alle oppgaver telle like mye med unntak av oppgave 6 som teller som to oppgaver.

Løsningsforslag. Oppgavesettet består av 16 oppgaver. Ved sensur vil alle oppgaver telle like mye med unntak av oppgave 6 som teller som to oppgaver. . mai 5 Løsigsforslag Emekode: ITF75 Dato: 5. desember 4 Eme: Matematikk for IT Eksamestid: kl 9. til kl 3. Hjelpemidler: To A4-ark med valgfritt ihold på begge sider. Kalkulator er ikke tillatt. Faglærer:

Detaljer

12 MER OM POTENSER POTENSER

12 MER OM POTENSER POTENSER Kpittel MER OM OTENSER OTENSER 3 rekker for å helgrdere de første kmpe. 3 3 9 rekker for å helgrdere de to første kmpee. 3 3 3 7 rekker for å helgrdere de tre første kmpee. 3 3 3 3 3 3 3 3 3 3 3 3 53 44

Detaljer

Kapittel 9 ALGEBRA. Hva er algebra?

Kapittel 9 ALGEBRA. Hva er algebra? Kpttel 9 ALGEBRA Hv er lger? Kpttel 9 ALGEBRA Alger Ekelt k v s t lger er å rege me okstver steet for tll. Når v løser lgger, står okstve (vlgvs for et estemt tll. Når v ruker lger tl å utlee formler eller

Detaljer

LØSNING: Eksamen 17. des. 2015

LØSNING: Eksamen 17. des. 2015 LØSNING: Eksame 17. des. 2015 MAT100 Matematikk, 2015 Oppgave 1: økoomi a I optimum av T Rx er dt Rx 0 1 som gir d Ix Kx 0 2 dix dix dkx dkx 0 3 4 dvs. greseitekt gresekostad, q.e.d. 5 b Gresekostad ekstrakostade

Detaljer

Løsningsforslag til øving 4

Løsningsforslag til øving 4 Høgsole i Gjøi d. for te., ø. og ledelse temti 5 Løsigsforslg til øig OPPGE det ( 8 Determite esisterer ie! K drtise mtriser e determit. i i detc ( i( i ( i( i ( i i i i 5i 5i i i er! Regereglee er de

Detaljer

NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME

NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME NORGES LANDBRUKSHØGSKOLE nstitutt for mtemtiske relfg og teknologi EKSAMEN FYS135 - ELEKTROMAGNETSME Eksmensdg: 12. desember 2003 Tid for eksmen: Kl. 14:00-17:00 (3 timer) Tilltte hjelpemidler: B2 - Enkel

Detaljer

R2 - Heldagsprøve våren 2013

R2 - Heldagsprøve våren 2013 Løsningsskisser HD R R - Heldgsprøve våren 0 Løsningsskisser Viktigste oppsummeringer: Må skrive med penn på eksmen! Slurv og regnefeil, både med tll og bokstver, er hovedproblemet. Beste måten å fikse

Detaljer

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 16. mai 2008

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 16. mai 2008 Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL 6. mai 008 EKSAMEN I MATEMATIKK Modul 5 studiepoeg Tid: 5 timer Oppgavesettet er på 8 sider (ikludert formelsamlig). Hjelpemidler:

Detaljer

FØLGER, REKKER OG GJENNOMSNITT

FØLGER, REKKER OG GJENNOMSNITT FØLGER, REKKER OG GJENNOMSNITT Espe B. Lagelad realfagshjoret.wordpress.com espebl@hotmail.com 9.mars 06 Iledig E tallfølge er e serie med tall som kommer etter hveradre i e bestemt rekkefølge. Kvadrattallee

Detaljer

Integralregning. Mål. for opplæringen er at eleven skal kunne

Integralregning. Mål. for opplæringen er at eleven skal kunne 8 Integrlregning Mål for opplæringen er t eleven skl kunne gjøre rede for definisjonen v estemt integrl som grense for en sum og uestemt integrl som ntiderivert eregne integrler v de sentrle funksjonene

Detaljer

Vi skal hovedsakelig ikke bestemme summen men om rekken konvergerer. det vil si om summen til rekken er et bestemt tall

Vi skal hovedsakelig ikke bestemme summen men om rekken konvergerer. det vil si om summen til rekken er et bestemt tall Kapittel 8 Oppsummerig-Rekker Rekker er summe til edelig eller uedelig mage ledd i e tallfølge. Potesrekker ka beyttes til å uttrykke vaskelige fuksjoer om et pukt. Ma ka skreddesy potesfuksjoer ved hjelp

Detaljer

Løsningsforslag til eksamen

Løsningsforslag til eksamen 7. jauar 6 Løsigsforslag til eksame Emekode: ITF75 Dato: 5. desember 5 Eme: Matematikk for IT Eksamestid: kl 9. til kl. Hjelpemidler: To A4-ark med valgfritt ihold på begge sider. Kalkulator er ikke tillatt.

Detaljer

2 Tallregning og algebra

2 Tallregning og algebra Tllregning og lger KATEGORI. Regnerekkefølge Oppgve.0 Regn uten digitlt hjelpemiddel. + ( + ) ( ) Oppgve. Regn uten digitlt hjelpemiddel. Oppgve. Regn ut med og uten digitlt hjelpemiddel. + (7 + ) ( 9)

Detaljer

x 1, x 2,..., x n. En lineær funksjon i n variable er en funksjon f(x 1, x 2,..., x n ) = a 1 x 1 + a 2 x a n x n,

x 1, x 2,..., x n. En lineær funksjon i n variable er en funksjon f(x 1, x 2,..., x n ) = a 1 x 1 + a 2 x a n x n, Introduksjon Velkommen til emnet TMA45 Mtemtikk 3, våren 9 Disse nottene inneholder det vi gjennomgår i forelesningene, og utgjør, smmen med lle øvingene, pensum for emnet Læreoken nefles som støttelittertur

Detaljer

Temahefte nr. 1. Hvordan du regner med hele tall

Temahefte nr. 1. Hvordan du regner med hele tall 1 ARBEIDSHEFTE I MATEMATIKK SNART MATTE EKSAMEN Hvordn du effektivt kn forberede deg til eksmen Temhefte nr. 1 Hvordn du regner med hele tll Av Mtthis Lorentzen mttegrisenforlg.com Opplysning: De nturlige

Detaljer

Algebra S2, Prøve 2 løsning

Algebra S2, Prøve 2 løsning Algebra S, Prøve løsig Del Tid: 90 mi Hjelpemidler: Skrivesaker Oppgave I rekkee edefor får du oppgitt a og e rekursiv formel for a. Du skal. skrive opp de fire første leddee og avgjøre om rekka er aritmetisk,

Detaljer

Løsning R2-eksamen høsten 2016

Løsning R2-eksamen høsten 2016 Løsig R-eksame høste 016 Tid: 3 timer Hjelpemidler: Valige skrivesaker, lijal med cetimetermål og vikelmåler er tillatt. Oppgave 1 (4 poeg) Deriver fuksjoee a) ( ) 3cos f( x) 3 six 6six f x x b) gx ( )

Detaljer

... ÅRSPRØVE 2014...

... ÅRSPRØVE 2014... Delprøve 1 Ashehoug ÅRSPRØVE 014 9. trinn.... ÅRSPRØVE 014... Nvn: Gruppe: DELPRØVE 1 uten hjelpemiler (39 poeng) Alle oppgvene i el 1 skl føres rett på rket. I noen oppgver er et en regnerute. Her skl

Detaljer

MAT 100A: Mappeeksamen 4

MAT 100A: Mappeeksamen 4 . november, MAT A: Mppeeksmen Løsningsforslg Oppgve ) Vi bruker produktregelen: f (x) x rctn x + x + x Siden x og rctn x hr smme fortegn, og x ldri er negtiv, er f (x) positiv overlt, bortsett fr t f ().

Detaljer

Løsningsforslag til eksamen i MAT111 Vår 2013

Løsningsforslag til eksamen i MAT111 Vår 2013 BOKMÅL MAT - Vår Løsningsforslag til eksamen i MAT Vår Oppgave Finn polarrepresentasjonen til i. i Skriv på formen x + iy. i Løsning Finner først modulus og argument til i: i = ( ) + ( ) = 4 = arg( ( )

Detaljer

Kapittel 4 Tall og algebra Mer øving

Kapittel 4 Tall og algebra Mer øving Kpittel 4 Tll og lger Mer øving Oppgve 1 d Oppgve 2 Se på uttrykket A = g h. Hv forteller de ulike okstvene? Se på uttrykket A = 2π. Hv står de ulike symolene for? Forklr hv vi mener med en vriel og en

Detaljer

MA 1410: Analyse Uke 48, aasvaldl/ma1410 H01. Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag

MA 1410: Analyse Uke 48, aasvaldl/ma1410 H01. Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag MA 40: Aalyse Uke 48, 00 http://home.hia.o/ aasvaldl/ma40 H0 Høgskole i Agder Avdelig for realfag Istitutt for matematiske fag Oppgave 8.7:. Vi har f(x) = cosh(x) = ex +e x. f(0) =. Derivasjo gir f (x)

Detaljer

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE Eme: Diskret matematikk Gruppe(r): Emekode: FO 019A Dato: 12.12.200 Faglig veileder: Ulf Uttersrud Eksamestid: 9-14 Eksamesoppgave består av: Atall sider

Detaljer

EKSAMEN. 1. klassene, ingenørutdanning og flexing. ANTALL SIDER UTLEVERT: 5(innkl. forside og 2 sider formelark)

EKSAMEN. 1. klassene, ingenørutdanning og flexing. ANTALL SIDER UTLEVERT: 5(innkl. forside og 2 sider formelark) KANDIDATNUMMER: EKSAMEN EMNENAVN: Mtemtikk EMNENUMMER: REA4 og REA4f EKSAMENSDATO:. ugust 9 KLASSE:. klssene, ingenørutdnning og fleing. TID: kl. 9... FAGANSVARLIG: Hns Petter Hornæs ANTALL SIDER UTLEVERT:

Detaljer

Differensligninger Forelesningsnotat i Diskret matematikk Differensligninger

Differensligninger Forelesningsnotat i Diskret matematikk Differensligninger Differesligiger Forelesigsotat i Diskret matematikk 017 Differesligiger I kapittel lærte vi om følger og rekker. Vi studerte både aritmetiske og geometriske følger og rekker. Noe følger og rekker er imidlertid

Detaljer

Avsnitt 8.1 i læreboka Differensligninger

Avsnitt 8.1 i læreboka Differensligninger Diskret Matematikk Fredag 6. ovember 015 Avsitt 8.1 i læreboka Differesligiger I kapittel lærte vi om følger og rekker. Vi studerte både aritmetiske og geometriske følger og rekker. Noe følger og rekker

Detaljer

Eksamen R2, Høsten 2010

Eksamen R2, Høsten 2010 Eksame R, Høste 00 Del Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave (6 poeg) a) Deriver fuksjoee ) f l f ( ) l l (l ) ) g( ) si cos f si

Detaljer

+ c ± ± π 2. Derivasjon (t n ) = nt n 1 (sin t) = cos t (cu) = cu (cos t) = sin t (u + v) = u + v (tan t) = 1. ( u

+ c ± ± π 2. Derivasjon (t n ) = nt n 1 (sin t) = cos t (cu) = cu (cos t) = sin t (u + v) = u + v (tan t) = 1. ( u Lineær lger og differenillikninger formelmling verjon 8 Alger,, c, x R Kvdrtetning: ( + = + + grder in co tn Kvdrtetning: ( = + Konjugtetningen: ( + ( = Kvdrtrotkonjugt: ( + ( = Komplekkonjugt: ( + i(

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 0 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Oppgave Midtveiseksame a) X er e stokastisk variabel

Detaljer

Løsningsforslag Eksamen 7. august 2006 TFY4250 Atom- og molekylfysikk

Løsningsforslag Eksamen 7. august 2006 TFY4250 Atom- og molekylfysikk Eksme TFY450 7. ugust 006 - løsigsforslg Oppgve Løsigsforslg Eksme 7. ugust 006 TFY450 Atom- og molekylfysikk. Grutilstde ψ (x hr ige ullpukter. Første eksiterte tilstd ψ (x hr ett ullpukt. Når potesilet

Detaljer

Terminprøve R2 Høsten 2014

Terminprøve R2 Høsten 2014 Termiprøve R Høste 04 Del Tid: 3 timer Hjelpemidler: Skrivesaker Oppgave (6 poeg) E flate i rommet er gitt ved likige: x 4x y 6y z 8z 0 0 a) Vis at puktet P3, 5, ligger på flate b) Vis at dette er e kuleflate

Detaljer

KOMPLEKSE TALL KARL K. BRUSTAD

KOMPLEKSE TALL KARL K. BRUSTAD KOMPLEKSE TALL KARL K BRUSTAD 1 Defiisjoer og otasjo Defiisjo 1 Et kompleks tall er et objekt på forme x + i der x og er reelle tall og kalles heholdsvis realdele og imagiærdele til det komplekse tallet

Detaljer

MA1102 Grunnkurs i Analyse II Vår 2017

MA1102 Grunnkurs i Analyse II Vår 2017 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag MA2 Grukurs i Aalyse II Vår 27 Løsigsforslag Øvig 7 2.5: For hvilke x kovergerer rekke? b) (2x) c) (l x) e) 2 si x 2 b) Dette er

Detaljer

Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte.

Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte. Eksame 20052009 REA3024 Matematikk R2 Nyorsk/Bokmål Bokmål Eksamesiformasjo Eksamestid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Bruk av kilder: Vedlegg: Framgagsmåte: Veiledig om vurderige: 5 timer:

Detaljer

S1 kapittel 6 Derivasjon Løsninger til oppgavene i boka

S1 kapittel 6 Derivasjon Løsninger til oppgavene i boka S kpittel 6 Derivsjon Løsninger til oppgvene i ok 6. c y x y x = = = = y x 4 5 9 4 y 5 6 x 4 = = = = y x y x = = = = 7 ( 5) 6 ( ) 8 6. f( x ) f( x ) 5 7 x x ( ) 4 = = = = 6. T( x) = 0,x +,0 T T = + = (0)

Detaljer

Øvinger uke 46 løsninger

Øvinger uke 46 løsninger Øviger uke 6 løsiger Oppgave Verdie av determiate er avgjørede for atall løsiger. ed e parameter i oppgave løer det seg å bestemme determiate først og fie ut for hvilke parameterverdier determiate er ull.

Detaljer

Uttrykket 2 kaller vi en potens. Eksponenten 3 forteller hvor mange ganger vi skal multiplisere grunntallet 2 med seg selv. Dermed er ) ( 2) 2 2 4

Uttrykket 2 kaller vi en potens. Eksponenten 3 forteller hvor mange ganger vi skal multiplisere grunntallet 2 med seg selv. Dermed er ) ( 2) 2 2 4 9.9 Potenslikninger Uttrykket kaller vi en potens. Eksponenten forteller hvor mange ganger vi skal multiplisere grunntallet med seg selv. Dermed er 8 Når vi skriver 5, betyr det at vi skal multiplisere

Detaljer

Løsningsforslag Eksamen MAT112 vår 2011

Løsningsforslag Eksamen MAT112 vår 2011 Løsigsforslag Eksame MAT vår OPPGAVE Gitt følge {a } defiert rekursivt ved a = 5, a + = a + 6, =,,, 3,.... (a) Vis (for eksempel ved iduksjo) at {a } er stregt avtagede og edtil begreset. (b) Avgjør om

Detaljer

DEL 1. Uten hjelpemidler 500+ er x

DEL 1. Uten hjelpemidler 500+ er x DEL 1 Ute hjelpemidler Oppgave 1 (18 poeg) 500 = + 8 er a) Vis at de deriverte til fuksjoe ( ) O O ( ) = 500+ 16 b) Deriver fuksjoee 1) f( ) = l( ) ) g( ) = e c) Vi har gitt polyomfuksjoe f( ) = 1 + 15

Detaljer

R1 kapittel 1 Algebra

R1 kapittel 1 Algebra Løsninger til oppgvene i ok R1 kpittel 1 Alger Løsninger til oppgvene i ok Oppgve 1.1 1 8 4 ( ) 15 5 (4 ) 7 1 7 ( ) d ( )( ) ( 4)( ) ( ) ( 4) ( )( 1) Oppgve 1. 49 7 ( 7)( 7) 5 5 5 5 1y 75 (4y 5) ( y) 5

Detaljer

M2, vår 2008 Funksjonslære Integrasjon

M2, vår 2008 Funksjonslære Integrasjon M, vår 008 Funksjonslære Integrsjon Avdeling for lærerutdnning, Høgskolen i Vestfold. pril 009 1 Arelet under en grf Vi begynner vår diskusjon v integrsjon, på smme måte som vi begynte med derivsjon, ved

Detaljer

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 22. mai EKSAMEN I MATEMATIKK 2 Modul 1 15 studiepoeng, fjernundervisning

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 22. mai EKSAMEN I MATEMATIKK 2 Modul 1 15 studiepoeng, fjernundervisning Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL mai 007 EKSAMEN I MATEMATIKK Modul 5 studiepoeg, fjerudervisig Tid: 5 timer Oppgavesettet er på 9 sider (ikludert formelsamlig)

Detaljer

Eksamen REA3028 S2, Våren 2010

Eksamen REA3028 S2, Våren 2010 Eksame REA308 S, Våre 010 Del 1 Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave 1 (6 poeg) a) Deriver fuksjoee: 1) f x x lx f x x lx x x f

Detaljer

1 Tallregning og algebra

1 Tallregning og algebra Tllregning og lger ØV MER. REGNEREKKEFØLGE Oppgve.0 6 d) ( : 6) Oppgve. ( ) ( ) ()() ( ) ( ) ( ) () (6 ) () d) ( ) 7() ( ) Oppgve. 6 ( ) d) Oppgve. Med ett ddisjonstegn, ett sutrksjonstegn, ett multipliksjonstegn

Detaljer

Eksamen 20.05.2009. REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen 20.05.2009. REA3024 Matematikk R2. Nynorsk/Bokmål Eksame 20052009 REA3024 Matematikk R2 Nyorsk/Bokmål Nyorsk Eksamesiformasjo Eksamestid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Bruk av kjelder: Vedlegg: Framgagsmåte: Rettleiig om vurderiga: 5 timar:

Detaljer

Terminprøve R2 Høsten 2014 Løsning

Terminprøve R2 Høsten 2014 Løsning Termiprøve R Høste 04 Løsig Del Tid: 3 timer Hjelpemidler: Skrivesaker Oppgave (6 poeg) E flate i rommet er gitt ved likige: x 4x y 6y z 8z 0 0 a) Vis at puktet P3, 5, ligger på flate Puktet P3, 5, ligger

Detaljer

DELPRØVE 2 (35 poeng)

DELPRØVE 2 (35 poeng) DELPRØVE 2 (35 poeng) På denne delprøven er lle hjelpemidler tilltt. Alle oppgvene i del 2 skl føres på eget rk. Før svrene oversiktlig, slik t det går tydelig frm hvordn du hr løst oppgvene. Bruk penn.

Detaljer

Oblig 2 - MAT1120. Fredrik Meyer 26. oktober 2009 = A = P1 1 A 1 P 1 A 1 A 2 = P 1. A k+1. A k P k

Oblig 2 - MAT1120. Fredrik Meyer 26. oktober 2009 = A = P1 1 A 1 P 1 A 1 A 2 = P 1. A k+1. A k P k Oblig 2 - MAT20 Fredri Meyer 26 otober 2009 Matrisee A i er defiert sli der P er e rotasjosmatrise som defierer i oppgave 2: A A 2 A + = A = P A P = P A P Oppgave Matrisee A i+ og A i er similære det fies

Detaljer