Løsningsforslag Eksamen 7. august 2006 TFY4250 Atom- og molekylfysikk
|
|
- Thor Arntsen
- 7 år siden
- Visninger:
Transkript
1 Eksme TFY ugust løsigsforslg Oppgve Løsigsforslg Eksme 7. ugust 006 TFY450 Atom- og molekylfysikk. Grutilstde ψ (x hr ige ullpukter. Første eksiterte tilstd ψ (x hr ett ullpukt. Når potesilet er edelig som her, må lle eergiegefuksjoer ψ(x være kotiuerlige, og det smme gjelder de deriverte, ψ (x = dψ(x/dx. For 0 < x < L hr de tidsuvhegige Schrödigerligige for. eksiterte tilstd ψ (x forme ψ = m h [V (x E ]ψ = mv 0 h ψ. Isettig v ψ = A si[k (x ] gir ψ = kψ, dvs k = h mv 0.. For x > L er V (x = V 0, og de tidsuvhegige Schrödigerligige tr forme De geerelle løsige er ψ = m h [V (x E ]ψ = mv 0 h ψ = k ψ. ψ (x = Ce k x + De k x (x > L, hvor koeffisiete D må settes lik ull fordi ψ skl være ormerr. For x < 0 er V (x = 5V 0, og vi hr tilsvrede De geerelle løsige er ψ = m h [V (x E ]ψ = 8mV 0 h ψ = (k ψ. ψ (x = C e k x + D e k x (x < 0, hvor koeffisiete D må settes lik ull fordi ψ skl være ormerr. For x > L er ψ (x = C exp( k x jevt vtgede mot ull for år x går mot uedelig. Fuksjoe k derfor ikke h oe ullpukt i dette området. [Kommetr: Det smme gjelder for lle ude eergiegetilstder i et potesil som dette.] Tilsvrede for x < 0. Følgelig må ullpuktet for eergiegetilstde ψ (x ligge i røområdet. [Kommetr: Det smme gjelder for lle ude eergiegetilstder i et potesil som dette.] c. Fr resulttee ovefor fier vi de reltive heligee ψ ψ = k for x > L og ψ ψ = k for x < 0, q.e.d. Etter dette lir prisippskisse v ψ (x omtret som følger:
2 Eksme TFY ugust løsigsforslg Nullpuktet (x = ligger litt til høyre for midte v røe, slik t origo ligger ærmere vestre ullpukt for siuse e puktet x = L ligger i forhold til høyre ullpukt for siuse. Dette fordi de reltive helige skl være doelt så stor i origo som for x = L. d. Prisippskisse v e evetuell ude tilstd ψ 4 (x med tre ullpukter er som følger: Fr dee ser vi t 3 λ 4 < L < λ 4. Side (3/λ 4 < L og L < λ, hr vi t (3/λ 4 < λ, dvs t e øvre skrke for λ 4 /λ er /3: λ 4 < λ 3. De tilsvrede edre skrke for k 4 /k er d 3/, som svrer til t E 4 E = k 4 k > (3/ = 9/4, dvs. E 4 > 9 4 E = 9 4 V 0. Me e tilstd med eergi større e rødyde V 0 k ikke være udet. eksisterer ltså ige 3.-eksiterte ude tilstd (med 3 ullpukter. Det Oppgve. Egeverdiligige Ĥlog Φ(φ = E log Φ(φ tr forme d Φ dφ = 0E log ( µr h Φ ν Φ E log = h ν. µr0 De geerelle løsige v dee er Φ = A si νφ + B cos νφ.
3 Eksme TFY ugust løsigsforslg 3 Kotiuitetsetigelsee Φ(0 = 0 og Φ(π = 0 gir hhvis B = 0 og si νπ = 0, som oppfylles v ν = m =,, 3,. De logitudile eergiegeverdiee og de tilhørede egefuksjoee er ltså Em log = h m ; Φ µr0 m (φ = A si mφ; m =,, 3,, q.e.d. For et rett rør hr vi e ordiær édimesjol oks med legde L = πr 0. Bølgefuksjoer på forme A si kx og kvtiserigsetigelse kl = π gir d k = π L = r 0 og E log = h k µ = h, =,, 3,, µr0 som er smme resultt som ovefor. [Hmilto-opertore Ĥlog oppgitt i oppgve ieærer ltså t vi egetlig ikke tr hesy til krumige v røret. Dette er e god tilærmelse så lege krumigsrdie er mye større e tverrsittsdimesjoe.]. Om vi kller de to trsversle evegelsesretigee for y- og z-retigee, k vi å ruke eergiegefuksjoer på produktform, ψ = Φ(φ si k y y si k z z, med kvtiserigsetigelsee k y L = y π og k z L = z π, der L = πr 0 /00. De to retigee idrr d til de totle eergie med eløpee E (y = h ky µ = h (00 µr0 y og E (z = h kz µ = h (00 µr0 z. De totle eergie for disse eergiegetilstdee lir dermed E m,y,z = h [ m + (00 µr0 y + (00 z ], m =,,, y =,,, z =,,. Ifølge Puli-prisippet er det plss til to spi- -prtikler (med spi hhvis opp og ed i hver romlig eergiegetilstd. De 0 fermioee vil derfor i grutilstde okkupere de romlige tilstdee med de 5 lveste eergiee. Eergiformele ovefor viser t dette er tilstdee med y = z = og m =,, 3, 4 og 5. De høyeste é-prtikkel-eergie er ltså E mx = h ( = h 005. µr0 µr0 c. For de sirkulære okse: Grutilstde (lvest eergi svrer til de lveste ullpuktsverdie i telle, som opptrer for m = 0 (dvs L z = 0 og = : E (0 = ( hπ(0 µr0 De tilhørede eergiegefuksjoe er = h µr = h µr ψ (0 = A (0 J 0 (.4048r/r 0.
4 Eksme TFY ugust løsigsforslg 4. eksiterte ivå svrer til de est lveste ullpuktsverdie, som er Π ( = for = og m = ± : E ( = h = h µr0 µr0 Til dette eergiivået hører det to egefuksjoer: ψ (± = A ( J (3.837r/r 0 e ±iφ. Rdkrvee for de hlvsirkelformede okse er t ψ skl være lik ull for r = r 0 og for φ lik ull og π. Det første krvet oppfylles v lle løsigee for de sirkulære okse. Det dre krvet (for φ lik ull og π oppfylles ikke v disse fuksjoee (side e imφ =. Dette ekskluderer eergiivåee for m = 0, d vi for hvert v disse hr re é løsig. For hvert v de dre ivåee hr vi derimot to løsiger, som går som e ±i m φ. Av disse k vi de lieærkomisjoe (e i m φ e i m φ /i = si m φ. Og dee oppfyller rdkrvet. For okse til høyre hr vi ltså for hvert v eergiivåee (som følger v telle, for m =,, é eergiegefuksjo: ψ (m (ψ (m ψ ( m /i J m (Π (m r/r 0 si mφ, m =,,. Grutilstde fier vi d for m = og = (Π ( = 3.837, og eergie er idetisk med eergie for. eksiterte ivå for de sirkulære okse. Oppgve 3. Vi hr t χ χ = ( + eiα =, så tilstde χ er ormert. Ssylighete for å måle S z = h er kvdrtet v projeksjoe v χ på χ +, dvs kvdrtet v øvre kompoet i spiore χ, ltså P + =. Tilsvrede fier vi t P =, slik t de to ssylighetee til smme er lik. E serie v måliger v S z vil gi e eksperimetell ekreftelse v disse to ssylighetee, me gir som vi ser ige iformsjo om vikele α. E målig v S z vil etterlte spiet i de egetilstde som svrer til de målte egeverdie, ltså i tilstde χ + dersom vi måler S z = + h, osv. (. For Puli-spiore χ + = er =, = 0 og 0 = 0, slik t spiretige ifølge de oppgitte formlee lir σ χ+ = ê x σ x + ê y σ y + ê z σ z = ê z, i overesstemmelse med etegelse spi opp. Tilsvrede fier vi for Puli-spiore χ t σ χ = ê z ( spi ed. For de oppgitte tilstde χ = (, med = /, = e iα /
5 Eksme TFY ugust løsigsforslg 5 hr vi t = = og = e iα. Med de oppgitte formlee fier vi t spiretige for dee er σ = ê x σ x + ê y σ y + ê z σ z = ê x cos α + ê y si α. Dee retigsvektore ligger som vi ser i xy-plet og der vikele α med x-kse. E serie måliger v S z vil ekrefte t S z og dermed også σ z er lik ull, dvs t σ må peke i e eller e retig i xy-plet. Me vikele α estemmes ikke ved målige v S z. Ved å preprere esemlet i tilstde χ igje og så måle S x vil vi få ekreftet t σ x = cos α. Ved å preprere ed e gg og så måle S y k vi få e ekreftelse på t σ y = si α, ltså e fullstedig ekreftelse på de eregede spiretige σ. (Dette er é måte å gjøre det på. c. Forvetigsverdie v kompoete σ S v spiet er lett å rege ut: σ S = σ S = σ h σ = h, idet σ er e vektor med legde. Hver ekelt målig v kompoete σ S v spiet vil i prisippet (i ete gi + h og etterlte spiet i e egetilstd til opertore σ S med egeverdi + h ( spi opp i forhold til retige σ (ii eller gi h og etterlte spiet i e egetilstd til opertore σ S med egeverdi h ( spi ed i forhold til retige σ. Side forvetigsverdie v σ S le fuet å være + h for de ktuelle tilstde, ser vi t ssylighete for tilfelle (ii er ødt å være lik ull. Koklusjoe er t tilstde χ som vi måler på må være e egetilstd til opertore σ S med egeverdie h. ( Forvetigsverdiee v σ x, σ y og σ z for tilstde χ = fier vi slik: osv. σ x = χ σ x χ = ( ( 0 0 = + = Re(, ( = ( (
FY2045/TFY4250 Kvantemekanikk I, løsning øving 10 1 LØSNING ØVING 10
FY45/TFY45 Kvntemeknikk I, løsning øving LØSNING ØVING Løsning oppgve Spinn. D åde χ + og χ i likhet med lle ndre spinorer er egentilstnder til enhetsmtrisen med egenverdi lik, hr vi Videre finner vi t
DetaljerLøsningsforslag Eksamen 30. mai 2007 FY2045 Kvantefysikk
Eksmen FY045 30. mi 007 - løsningsforslg 1 Oppgve 1 Løsningsforslg Eksmen 30. mi 007 FY045 Kvntefysikk. I grensen 0 er potensilet V x et enkelt okspotensil, V = V 0 for < x < 0 og uendelig ellers. Den
DetaljerLøsningsforslag Eksamen 10. august 2010 FY2045/TFY4250 Kvantemekanikk I
Eksame FY045/TFY450 10. august 010 - løsigsforslag 1 Oppgave 1 Løsigsforslag Eksame 10. august 010 FY045/TFY450 Kvatemekaikk I a. Bølgefuksjoe ψ for første eksiterte tilstad er (i likhet med ψ 4, ψ 6 osv)
DetaljerLøsningsforslag Eksamen 19. august 2005 TFY4250 Atom- og molekylfysikk
Eksmen TFY450 19. ugust 005 - løsningsforslg 1 Oppgve 1 Løsningsforslg Eksmen 19. ugust 005 TFY450 Atom- og molekylfysikk. For det oppgitte, symmetriske brønnpotensilet er bundne energiegentilstnder enten
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det mtemtisk-turviteskpelige fkultet Eksme i: STK1110 Sttistiske metoder og dtlyse Løsigsforslg Eksmesdg: Tirsdg 18. desemer 2018 Tid for eksme: 09.00 13.00 Oppgvesettet er på 5 sider.
DetaljerFY2045/TFY4250 Kvantemekanikk I, øving 10 1 ØVING 10
FY45/TFY45 Kvntemeknikk I, - øving ØVING Mesteprten v denne øvingen går ut på å gjøre seg kjent med spinn, men øvingen inneholder også en oppgve om koherente tilstnder. Denne er en fortsettelse v oppgve
DetaljerA.4 Utvikling i egenfunksjoner
TFY4250/FY2045 Tillegg 3 1 Tillegg 3: A.4 Utviklig i egefuksjoer a. Begrepet fullstedig sett eller basis) I tillegg 2 har vi gjort et ummer av at kvadratisk itegrerbare fuksjoerer er vektorer i et uedelig-dimesjoalt)
DetaljerEn partikkel med masse m befinner seg i et éndimensjonalt, asymmetrisk brønnpotensial
NORSK TEKST Side av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 7 59 8 67, eller 9755 EKSAMEN I TFY45 ATOM- OG MOLEKYLFYSIKK
Detaljerf '( x) 28x 6x 2 ( 2) x x 4(3t 2 s) 6s 2x 6(3t 2 s) 2t ln x 2ln y med bibetingelsen 2x y m. Her er m 0
Fsit obligtorisk oppgve Oppgve (9 poeg) Deriver følgede fuksjoer med hes på lle rgumeter ) f ( ) 7 f '( ) 8 6 svr: b) Svr: g ( ) ( ) ( ) g ( ) ( ) ( ) c) h( ) f ( )( ) Svr: h( ) f '( )( ) f ( ) d) Svr:
DetaljerEKSAMEN I FAG FASTE STOFFERS FYSIKK 2 Fakultet for fysikk, informatikk og matematikk Fredag 16. januar 1998 Tid:
Side av 4 Norges tekisk-aturviteskapelige uiversitet Istitutt for fysikk Faglig kotakt uder eksae: Nav: Ola Huderi Tlf.: 934 EKSAMEN I FAG 74435 - FASTE STOFFERS FYSIKK Fakultet for fysikk, iforatikk og
DetaljerTMA4100 Matematikk 1 Høst 2006
TMA4 Mtemtikk Høst 26 Norges tekisk turviteskpelige uiversitet Istitutt for mtemtiske fg Løsigsforslg, vsluttede eksme 5.2.26 De første greseverdie er e uestemt form v type "/", og L Hopitls regel gir
DetaljerFY2045 Kvantefysikk Løsningsforslag Eksamen 2. juni 2008
Eksamen FY045. juni 008 - løsningsforslag Oppgave FY045 Kvantefysikk øsningsforslag Eksamen. juni 008 a. Fra den tidsuavhengige Schrödingerligningen, [ h ] m x + V x ψx Eψx, finner vi at den relative krumningen
DetaljerS2 kapittel 1 Rekker Utvalgte løsninger oppgavesamlingen
Utvlgte løsiger oppgvesmlige S kpittel Rekker Utvlgte løsiger oppgvesmlige 0 Vi k prøve med differsemetode Differsee mellom leddee utover er 4,6,8, så det er rimelig t differse mellom femte og fjerde ledd
DetaljerTid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt.
Tid: 3 timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave (3 poeg) Deriver fuksjoee a) f( ) cos5 f 5 si5 0 si5 g e si Vi bruker produktregele for derivasjo,
DetaljerPotenser og rotstørrelser m m n m n a m n n n n m n m n n. cos x sin x 1, sin x (1 cos(2 x)), cos x (1 cos(2 x)), x x x x x x
Progr for llefg Høgskole i ør-trødelg FORMELARK 05 Mtetikk/Fysikk Eeuer TALM3003 Poteser og rotstørrelser,, ( b) b, ( ),, b b,, b b ( ) Trigooetri cos si, si ( cos( )), cos ( cos( )), 0 si( y) si cos y
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGKOLEN I ØR-TRØNDELAG Avdelig for tekologi Målform: Eksmesdto: 3. mrs 03 Vrighet/eksmestid: Emekode: 3 timer ALM304V Emev: Mtemtikk 4 Klsse(r): tudiepoeg: Fglærer(e): (v og telefor på eksmesdge) Bygg,
DetaljerLøsningsforslag til eksamen i TFY4170 Fysikk 2 Fysikk 2 Torsdag 2. desember 2004
NTNU Side 1 v 7 Institutt for fysikk Fkultet for nturvitenskp og teknologi Dette løsningsforslget er på 7 sider. Løsningsforslg til eksmen i TFY417 Fysikk Fysikk Torsdg. desember 4 Oppgve 1. Kvntemeknikk
DetaljerEksamen R2, Høsten 2010
Eksame R, Høste 00 Del Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave (6 poeg) a) Deriver fuksjoee ) f l f ( ) l l (l ) ) g( ) si cos f si
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Målform: Eksmesdto: 5. jui 03 Vrighet/eksmestid: Emekode: 3 timer ALM304V Emev: Mtemtikk 4 Klsse(r): Studiepoeg: Fglærer(e): (v og telefor på eksmesdge) Bygg, Elektro, Mski, Kjemi,
Detaljer5 y y! e 5 = = y=0 P (Y < 5) = P (Y 4) = 0.44,
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalte oppgaver 9, blokk II Løsigsskisse Oppgave a) Vi lar her Y være atall fugler som kolliderer med vidmølla i løpet av de gitte
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGKOLEN I ØR-TRØNDELAG Avdelig for tekologi Målform: Bokmål Eksmesdto: 5. jui 04 Vrighet/eksmestid: Emekode: 3 timer ALM304V Emev: Mtemtikk 4 Klsser: tudiepoeg: Bygg, Elektro, Mski, Kjemi, Logistikk,
DetaljerLøsning eksamen R2 våren 2010
Løsig eksame R våre 010 Oppgave 1 a) f( x) x cos3x f ( x) x cos 3x x cos 3x x cos 3x x si 3x 3x xcos 3x 3x si 3x b) 1) v v u v u 1 u x x 1 x 5 x 5 x 5xe dx 5x e 5 e dx xe e dx 5 5 1 5 5 x x x x xe e C
DetaljerLøsningsforslag til prøveeksamen i MAT1110, våren 2012
Løsigsforslag til prøveeksame i MAT, våre Oppgave : Vi har A = 3 III+I I+II 3 ( )II 3 3 Legg merke til at A er de utvidede matrise til ligigssystemet. Vi ser at søyle 3 og 4 i de reduserte trappeforme
DetaljerNORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET, INSTITUTT FOR FYSIKK. Utarbeidet av: Jon Andreas Støvneng
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET, INSTITUTT FOR FYSIKK Utarbeidet av: Jo Adreas Støveg LØSNINGSFORSLAG (8 SIDER) TIL EKSAMEN I FY1002 og TFY4160 BØLGEFYSIKK Fredag 3. desember 2010 kl. 0900-1300
DetaljerLøsningsforslag til øving 4
Høgsole i Gjøi d. for te., ø. og ledelse temti 5 Løsigsforslg til øig OPPGE det ( 8 Determite esisterer ie! K drtise mtriser e determit. i i detc ( i( i ( i( i ( i i i i 5i 5i i i er! Regereglee er de
DetaljerKondenserte fasers fysikk Modul 1
FYS40 Kodeserte fsers fysikk Modul Sidre Rem Bilde 8. februr 06 ppgve - Cl krystll At et uedelig lgt Cl gitter i e dimesjo. ) Velg e bsis for ehetcelle til dette gitteret. Svr: Bsise blir ett trium-io
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdelig for tekologi Målform: Bokmål Eksmesdto: 3. mrs 04 Vrighet/eksmestid: Emekode: 3 timer ALM304V Emev: Mtemtikk 4 Klsser: Studiepoeg: Bygg, Elektro, Mski, Kjemi, Logistikk,
DetaljerLØSNINGSFORSLAG TILEKSAMEN I FAG TMA4240/TMA4245 STATISTIKK 10. august 2005
Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 8 LØSNINGSFORSLAG TILEKSAMEN I FAG TMA440/TMA445 STATISTIKK 0. august 005 Oppgave Smeltepuktsbestemmelse a) Vi jobber i dette
DetaljerLøsningsforsalg til første sett med obligatoriske oppgaver i STK1110 høsten 2015
Løsigsforsalg til første sett med obligatoriske oppgaver i STK1110 høste 2015 Oppgave 1 (a Et 100(1 α% kofidesitervall for forvetigsverdie µ er gitt ved formel (8.15 på side 403 i læreboka. For situasjoe
DetaljerLøsningsforslag Eksamen 9. desember 2006 TFY4250 Atom- og molekylfysikk /FY2045 Kvantefysikk
Eksamen TFY450/FY045 9. esember 006 - løsningsforslag 1 Løsningsforslag Eksamen 9. esember 006 TFY450 Atom- og molekylfysikk /FY045 Kvantefysikk Oppgave 1 a. Grunntilstanen ψ 1 (x) har ingen nullpunkter.
DetaljerOdd Heir John Engeseth Håvard Moe Ørnulf Borgan BOKMÅL. Særtrykk. Matematikk 1T
Odd Heir Joh Egeseth Håvrd Moe Ørulf Borg BOKMÅL Særtrykk Mtemtikk T Odd Heir Joh Egeseth Håvrd Moe Ørulf Borg BOKMÅL Mtemtikk T Ihold Alger A Tllregig 7 B Tllmegder C Potesregig 0 D Store og små tll
Detaljer12 MER OM POTENSER POTENSER
Kpittel MER OM OTENSER OTENSER 3 rekker for å helgrdere de første kmpe. 3 3 9 rekker for å helgrdere de to første kmpee. 3 3 3 7 rekker for å helgrdere de tre første kmpee. 3 3 3 3 3 3 3 3 3 3 3 3 53 44
DetaljerLøsningsforsalg til første sett med obligatoriske oppgaver i STK1110 høsten 2018
Løsigsforsalg til første sett med obligatoriske oppgaver i STK1110 høste 2018 Oppgave 1 (a Et 100(1 α% kofidesitervall for forvetigsverdie µ er gitt ved formel (8.15 på side 403 i læreboka. For situasjoe
DetaljerBokmål OPPGAVE 1. a) Deriver funksjonene: b) Finn integralene ved regning: c) Løs likningen ved regning, og oppgi svaret som eksakte verdier: + =
OPPGAVE a) Deriver fuksjoee: ) f ( x) = 3six+ cosx ) gx ( ) = six cosx b) Fi itegralee ved regig: ) ) e 3e x d x l xd x Tips: l xdx= l xdx c) Løs likige ved regig, og oppgi svaret som eksakte verdier:
DetaljerLøsningsforslag til eksamen i TFY4170 Fysikk 2 Fysikk 2 Lørdag 8. august 2005
NTNU Side 1 av 5 Institutt for fysikk Fakultet for naturvitenskap og teknologi Løsningsforslag til eksamen i TFY4170 Fysikk Fysikk Lørdag 8. august 005 Merk: Hver del-oppgave teller like mye. Dette løsningsforslaget
DetaljerEksamen R2, Våren 2010
Eksame R, Våre 010 Del 1 Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave 1 a) Deriver fuksjoe gitt ved f x x cos 3 x b) Bestem itegralee 1)
Detaljerz z z b z a c z a c =
Noe kommetrer g uret-rekk, ullpukter og poler Teorem: Ehver fuksjo f(z) som er lytisk for R < z-z
DetaljerTMA4245 Statistikk Eksamen mai 2017
TMA445 Statistikk Eksame mai 07 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsskisse Oppgave a Når vi reger ut disse tre sasylighetee må ma huske på at de mulige verdiee
DetaljerPARENTESER Matematikerne har funnet på at i regneuttrykk kan vi bruke parenteser for å markere hvilken regneoperasjon som skal gjøres først.
Smmedrg kpittel SAMMENDRAG Dette er et smmedrg v det du hr rbeidet med om lgebr i Nummer 8, Nummer 9 og Nummer 10. Hvis du treger mer treig utover oppgvee i Nummer 10, fier du ekstr oppgver på elevettstedet.
Detaljer2 Algebra R2 Løsninger
Algebr R Løsiger. Tllfølger.... Tllrekker... 7. Uedelige geometriske rekker... 8. Iduksjosbevis... 55.5 Eksmesoppgver... 6 Øvigsoppgver og løsiger Stei Aese og Olv Kristese/NDLA Eksmesoppgvee er hetet
DetaljerVi skal hovedsakelig ikke bestemme summen men om rekken konvergerer. det vil si om summen til rekken er et bestemt tall
Kapittel 8 Oppsummerig-Rekker Rekker er summe til edelig eller uedelig mage ledd i e tallfølge. Potesrekker ka beyttes til å uttrykke vaskelige fuksjoer om et pukt. Ma ka skreddesy potesfuksjoer ved hjelp
DetaljerST1201 Statistiske metoder
ST Statistiske metoder Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsforslag - Eksame desember Oppgave a) Dette er e ANOVA-tabell for k-utvalg med k 4 og j 6 for j,,3,4.
Detaljer10 Mer generell formulering av kvantemekanikk
TFY4250/FY2045 Tillegg 10 - Mer geerell formulerig av kvatemekaikk 1 TILLEGG 10 10 Mer geerell formulerig av kvatemekaikk Hittil i dette kurset har vi arbeidet mest med posisjos-rom-formulerige av de kvatemekaiske
DetaljerFaglig kontakt under eksamen: Ingjald Øverbø, tlf , eller
NORSK TEKST Side av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 9702355 EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK
DetaljerLøsningsforslag til Eksamen i fag MA1103 Flerdimensjonal analyse
Norges teknisk nturvitenskpelige universitet Institutt for mtemtiske fg Side 1 v 5 Løsningsforslg til Eksmen i fg MA113 Flerdimensjonl nlyse 2.5.6 Oppgve 1 Vi hr f(x, y) = (4 x 2 y 2 )e x+y. ) Kritiske
DetaljerTFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 8. a = e m E
TFY414 Fysikk. Institutt for fysikk, NTNU. Høsten 16. Løsningsforslg til øving 8. Oppgve 1. ) C F = E = m Newtons. lov. Her er = e, så elektronets kselersjon blir = e m E ltså mot venstre. b) C Totlt elektrisk
DetaljerLøsningsforslag Eksamen 7. august 2006 TFY4215 Kjemisk fysikk og kvantemekanikk
Eksamen TFY4215 7. august 2006 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 7. august 2006 TFY4215 Kjemisk fysikk og kvantemekanikk a. Bundne tilstander i et symmetrisk éndimensjonalt potensial
DetaljerKOMPLEKSE TALL KARL K. BRUSTAD
KOMPLEKSE TALL KARL K BRUSTAD 1 Defiisjoer og otasjo Defiisjo 1 Et kompleks tall er et objekt på forme x + i der x og er reelle tall og kalles heholdsvis realdele og imagiærdele til det komplekse tallet
DetaljerYF kapittel 6 Lengder og vinkler Løsninger til oppgavene i læreboka
YF kpittel 6 Lengder og vinkler Løsninger til oppgvene i læreok Oppgve 601 Vi skl gå ett hkk mot høyre, og gnger derfor med 10. 14 cm 14 10 mm 140 mm c Vi skl gå to hkk mot høyre, og gnger derfor med 10
DetaljerMatematikk for IT. Prøve 2 løsningsforslag. Torsdag 27. oktober 2016 S S F S F F S F S F S S F S F S F F F F S S F F
Mtemtikk for IT Prøve løsigsforslg Torsdg 7 oktober 06 7 oktober 06 Oppgve ) Fi ved hjelp v shetstbeller om de to følgede smmestte utsg er logisk ekvivlete: i) p q ii) q p q) Utsg i): q p q S S F F S F
DetaljerUNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS14, Kvantefysikk Eksamensdag: 17. august 17 4 timer Lovlige hjelpemidler: Rottmann: Matematisk formelsamling, Øgrim og Lian:
Detaljer( ) 3 3 P a a a a. ( 3) ( 3) 3 ( 3) ( 3) b Px ( ) er delelig med x 3 dersom P( 3) 0. P( 3) 3a 3 0
Løsiger til oppgvee i ok S kpittel 7 Eksmestreig Løsiger til oppgvee i ok Ute hjelpemidler Oppgve E P ( ) P ( ) ( ) ( ) ( ) 7 9 7 7 P ( ) er delelig med dersom P( ) 0. P( ) 0 c Vi utfører polyomdivisjoe
DetaljerOppgave 1 a) Minste kvadraters metode tilpasser en linje til punktene ved å velge den linja som minimerer kvadratsummen. x i (y i α βx i ) = 0, SSE =
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalte oppgaver 2, blokk II Løsigsskisse Oppgave a Miste kvadraters metode tilpasser e lije til puktee ved å velge de lija som
DetaljerMatematikk for IT. Oblig 7 løsningsforslag. 16. oktober
Matematikk for IT Oblig 7 løsigsforslag. oktober 7..8 a) Vi skal dae kodeord som består av sifree,,,, 7. odeordet er gldig dersom det ieholder et like atall (partall) -ere. Dee løses på samme måte som..:
DetaljerKapittel 9 ALGEBRA. Hva er algebra?
Kpttel 9 ALGEBRA Hv er lger? Kpttel 9 ALGEBRA Alger Ekelt k v s t lger er å rege me okstver steet for tll. Når v løser lgger, står okstve (vlgvs for et estemt tll. Når v ruker lger tl å utlee formler eller
DetaljerChapter 2 - Discrete Mathematics and Its Applications. Løsningsforslag på utvalgte oppgaver
Chpter - Dscrete Mthemtcs d Its pplctos Løsgsforslg på utvlgte oppgver vstt Oppgve Gtt 7 ) E mtrse med rder og koloer er e mtrse Geerelt hr v t e m mtrse er e mtrse med m rder og koloer Uttrykket m klles
DetaljerLøsningsforslag Eksamen 8. august 2009 TFY4250 Atom- og molekylfysikk
Eksamen TFY425 8. august 29 - løsningsforslag Oppgave Løsningsforslag Eksamen 8. august 29 TFY425 Atom- og molekylfysikk a. For β = har vi en ordinær boks fra x = til x = L. Energiegenfunksjonene har formen
DetaljerLøsningsforslag Eksamen 26. mai 2008 TFY4215 Kjemisk fysikk og kvantemekanikk
Eksamen TFY4215 26. mai 2008 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 26. mai 2008 TFY4215 Kjemisk fysikk og kvantemekanikk a. Utenfor boksen, hvor V (x) =, er bølgefunksjonen lik null. Kontinuiteten
DetaljerEKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK Fredag 19. august 2005 kl
NORSK TEKST Side 1 av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 18 67, eller 97012355 EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK
DetaljerSem 1 ECON 1410 Halvor Teslo
Løsningsforslg til seminr i ECON : Internsjonl økonomi.seminruke V ) Den økonomien vi her står ovenfor produserer re to goder, tø og vin. Altså vil lterntivkostnden for den ene vren nødvendigvis måles
DetaljerTall i arbeid Påbygging terminprøve våren 2014
Terminprøve våren 014 Tll i rei Påygging terminprøve våren 014 DEL 1 Uten hjelpemiler Hjelpemiler: vnlige skrivesker, psser, linjl me entimetermål og vinkelmåler Oppgve 1 1 Skriv tllet Skriv tllet 6 3,15
DetaljerEksamen REA3024 Matematikk R2. Nynorsk/Bokmål
Eksame 6.05.010 REA304 Matematikk R Nyorsk/Bokmål Bokmål Eksamesiformasjo Eksamestid: Hjelpemidler på Del 1: Hjelpemidler på Del : Vedlegg: Framgagsmåte: Veiledig om vurderige: 5 timer: Del 1 skal leveres
DetaljerEksamen R2, Va ren 2013
Eksame R, Va re 013 Oppgave 1 (4 poeg) Deriver fuksjoee a) f x 3cos x f x 3 six 3si x b) gx x 6si 7 Bruker kjereregele på uttrykket si x der og Vi har da guu siu u cosu cos x gx 6cos x 6 cos x u x g u
DetaljerLøsningsforslag til eksamen i STK desember 2010
Løsigsforslag til eksame i STK0 0. desember 200 Løsigsforslaget har med flere detaljer e det vil bli krevd til eksame. Oppgave a Det er tilpasset e multippel lieær regresjosmodell av forme β 0 + β x i
DetaljerPolynominterpolasjon
Polyomiterpolasjo Ae Kværø March 5, 2018 1 Problemstillig Gitt + 1 pukter (x i, y i ) i=0 med distikte x-verdier (dvs. x i = x j hvis i = j). Fi et polyom p(x) av lavest mulig grad slik at p(x i ) = y
DetaljerSensorveiledning ECON 1410: Internasjonal Økonomi; vår a) NORD har absolutt fortrinn i produksjonen av begge varer siden A < a og
1 Sesorveiledig ECO 1410: Itersjol Økoomi; vår 2004 ) ORD hr solutt fortri i produksjoe v egge vrer side < og < ; det rukes færre timer per ehet produsert v hver vre i ORD e i SØR. Komprtive fortri er
DetaljerLæringsmål og pensum. Funksjoner hittil (1) Oversikt. Læringsmål Anonyme og rekursive funksjoner Funksjoner som inn-argumenter Subfunksjoner
1 Lærigsmål og pesum TDT4105 Iformsjostekologi grukurs: Uke 44 Aoyme fuksjoer, fuksjosfuksjoer og rekursjo Lærigsmål Aoyme og rekursive fuksjoer Fuksjoer som i-rgumeter Subfuksjoer Pesum Mtlb, Chpter 10
Detaljer14 Plateberegninger. Litteratur: Cook & Young, Advanced Mechanics of Materials, kap Larsen, Dimensjonering av stålkonstruksjoner, kap. 9.
14 Plateberegiger Ihold: Forskjellige strategier for plateberegig Naviers plateløsig Virtuelle forskvigers prisipp for plater Raleigh-Ritz' metode for plater Litteratur: Cook & Youg, Advaced Mechaics of
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-aturviteskapelige fakultet Eksame i MAT00 Matematikk I Eksamesdag: Fredag 4 jui 00 Tid for eksame: 0900 00 Oppgavesettet er på sider Vedlegg: Tillatte hjelpemidler:
DetaljerLøsningsforslag Konte-eksamen 2. august 2003 SIF4048 Kjemisk fysikk og kvantemekanikk
Konte-eksamen SIF448.aug. 3 - løsningsforslag 1 Oppgave 1 a. Hamilton-operatoren er Løsningsforslag Konte-eksamen. august 3 SIF448 Kjemisk fysikk og kvantemekanikk Ĥ = h m x + V (x), og den tidsuavhengige
DetaljerLøsningsforslag Eksamen 27. mai 2005 FY2045 Kvantefysikk
Eksamen FY2045 27. mai 2005 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 27. mai 2005 FY2045 Kvantefysikk a. Ifølge den tidsuavhengige Shrödingerligningen, Ĥψ = Eψ, har vi for x < 0 : E = Ĥψ ψ
DetaljerØving 4: Coulombs lov. Elektrisk felt. Magnetfelt.
Lørdgsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 007. Veiledning: 9. september kl 1:15 15:00. Øving 4: oulombs lov. Elektrisk felt. Mgnetfelt. Oppgve 1 (Flervlgsoppgver) ) Et proton med hstighet
DetaljerLøsningsforslag Eksamen 4. desember 2007 TFY4250 Atom- og molekylfysikk/fy2045 Kvantefysikk
Eksamen TFY450/FY045 4. desember 007 - løsningsforslag Løsningsforslag Eksamen 4. desember 007 TFY450 Atom- og molekylfysikk/fy045 Kvantefysikk Oppgave a. For tilfellet α 0 har vi et ordinært bokspotensial
DetaljerLøsningsforslag TFE4120 Elektromagnetisme 24. mai = 2πrlɛE(r) = Q innenfor S =
Norges teknisk nturvitenskpelige universitet Institutt for elektronikk og telekommuniksjon Side 1 v 5 Løsningsforslg TFE4120 Elektromgnetisme 24. mi 2011 Oppgve 1 ) Av symmetrigrunner må det elektriske
DetaljerS1 kapittel 4 Logaritmer Løsninger til oppgavene i boka
Løsninger til oppgvene i ok S kpittel 4 Logritmer Løsninger til oppgvene i ok 4. Vi leser v fr tllet 4 på y-ksen og ser t vi får den tilhørende verdien,6 på -ksen. lg 4,6 Vi leser v fr tllet,5 på y-ksen
DetaljerTFY Løsning øving 5 1 LØSNING ØVING 5. Krumning og stykkevis konstante potensialer
TFY4215 - Løsning øving 5 1 Løsning oppgave 16 LØSNING ØVING 5 Krumning og stykkevis konstante potensialer a. I et område hvor V er konstant (lik V 1 ), og E V 1 er positiv (slik at området er klassisk
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve 1 4,5 % 3,6 % 0,9 % Økningen hr vært på 0,9 prosentpoeng. 0,9 % 100 % 5 % 3, 6 % Økningen hr
DetaljerST1201 Statistiske metoder
ST20 Statistiske metoder Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsforslag - Eksame desember 2005 Oppgave a Ma beyttet radomisert blokkdesig. I situasjoe har ma k =
DetaljerLøsning R2-eksamen høsten 2016
Løsig R-eksame høste 016 Tid: 3 timer Hjelpemidler: Valige skrivesaker, lijal med cetimetermål og vikelmåler er tillatt. Oppgave 1 (4 poeg) Deriver fuksjoee a) ( ) 3cos f( x) 3 six 6six f x x b) gx ( )
DetaljerLøsningsforslag Eksamen 20. desember 2012 FY2045/TFY4250 Kvantemekanikk I
Eksamen FY045/TFY450 0. desember 0 - løsningsforslag Oppgave Løsningsforslag Eksamen 0. desember 0 FY045/TFY450 Kvantemekanikk I a. For x < 0 er potensialet lik null. (i) For E > 0 er da ψ E = (m e E/
DetaljerYF kapittel 8 Rom Løsninger til oppgavene i læreboka
YF kpittel 8 Rom Løsninger til oppgvene i læreok Oppgve 809 Vi skl gå ett hkk mot venstre, og deler derfor med 10. 40 dl = (40 :10) L = 4 L Vi skl gå to hkk mot venstre, og deler derfor med 10 10 = 100.
DetaljerTMA4240 Statistikk Høst 2009
TMA440 Statistikk Høst 009 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b4 Løsigsskisse Oppgave Øsker å fie 99% kofidesitervall for µ µ år vi atar ormalfordeliger
DetaljerLøsningsforslag Eksamen 12. august 2004 TFY4215 Kjemisk fysikk og kvantemekanikk
Eksamen TFY4215 12. august 2004 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 12. august 2004 TFY4215 Kjemisk fysikk og kvantemekanikk a. Den tidsuavhengige Schrödingerligningen, Ĥψ = Eψ, tar for
DetaljerECON 2200 våren 2012: Oppgave på plenumsøvelse den 21. mars
EON våre Jo Vislie ECON våre : Oppgve på pleumsøvelse de. mrs Oppgve E edrift produserer e vre i megde x med produtfusjoe x A, der er ru v reidsrft og er relpitl. Bedrifte opptrer som prisfst vtumstilpsser
DetaljerLøsningsforslag Eksamen 26. mai 2008 TFY4215 Kjemisk fysikk og kvantemekanikk
Eksamen TFY415 6. mai 8 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 6. mai 8 TFY415 Kjemisk fysikk og kvantemekanikk a. Utenfor boksen, hvor V (x) =, er bølgefunksjonen lik null. Kontinuiteten
DetaljerLØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK 5.august 2004
Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 0 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK 5.august 2004 Oppgave Foruresig X er e stokastisk variabel som agir
DetaljerEKSAMENSOPPGAVE. Mat-1060 Beregningsorientert programmering og statistikk
Fakultet for aturviteskap og tekologi EKSAMENSOPPGAVE Eksame i: (Kode og av) Dato: 05.1.017 Klokkeslett: 09:00-13:00 Sted: Åsgårdv 9 Mat-1060 Beregigsorietert programmerig og statistikk Tillatte hjelpemidler:
Detaljerx 1, x 2,..., x n. En lineær funksjon i n variable er en funksjon f(x 1, x 2,..., x n ) = a 1 x 1 + a 2 x a n x n,
Introduksjon Velkommen til emnet TMA45 Mtemtikk 3, våren 9 Disse nottene inneholder det vi gjennomgår i forelesningene, og utgjør, smmen med lle øvingene, pensum for emnet Læreoken nefles som støttelittertur
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-aturviteskapelige fakultet Eksame i STK2120 Statistiske metoder og dataaalyse 2 Eksamesdag: Madag 6. jui 2011. Tid for eksame: 09.00 13.00. Oppgavesettet er på 5 sider.
DetaljerDEL 1. Uten hjelpemidler 500+ er x
DEL 1 Ute hjelpemidler Oppgave 1 (18 poeg) 500 = + 8 er a) Vis at de deriverte til fuksjoe ( ) O O ( ) = 500+ 16 b) Deriver fuksjoee 1) f( ) = l( ) ) g( ) = e c) Vi har gitt polyomfuksjoe f( ) = 1 + 15
DetaljerRepetisjon; 9.1, 9.2, 9.3, 9.4, 9.5, og Repetisjon; 9.1, 9.2, 9.3, 9.4, 9.5, og 9.10
Repetisjo; 9.1, 9.2, 9.3, 9.4, 9.5, og 9.10 og Geerell defiisjo av : Situasjo: Data x 1,...,x ;utfallav:x 1,...,X ; u.i.f. tilfeldige variable Ukjet parameter i fordelige til X i ee: θ Dersom L og U L
DetaljerLøsningsforslag, Midtsemesterprøve fredag 13. mars 2009 kl Oppgavene med kort løsningsforslag (Versjon A)
Institutt for fysikk, NTNU FY100 Elektrisitet og mgnetisme TFY4155 Elektromgnetisme Vår 2009 Løsningsforslg, Midtsemesterprøve fredg 1. mrs 2009 kl 1415 1615. Fsit side 10. Oppgvene med kort løsningsforslg
DetaljerLøsningsforslag Eksamen 5. august 2009 TFY4215 Kjemisk fysikk og kvantemekanikk
Eksamen TFY4215 5. august 29 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 5. august 29 TFY4215 Kjemisk fysikk kvantemekanikk a. Med ψ A (x) = C = konstant for x > har vi fra den tidsuavhengige
DetaljerDEL 1 Uten hjelpemidler
DEL Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler Oppgve f = + f ( ) = 6 ( ) 3 g = ( ) e g = + = + ( ) e e e ( ) h = 3 ( ) ln( ) 3 h ( ) = 3 = 3 3 Oppgve
DetaljerTMA4100 Høst Løsningsforslag Øving 2. Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag
TMA400 Høst 206 Norges tekiskaturviteskapelige uiversitet Istitutt for matematiske fag Løsigsforslag Øvig 2 2..0: Vi bruker eisjoe for ikke-vertikale tagetlijer sie 97 i læreboke). Tagetlije gjeom et pukt
DetaljerEKSAMEN I FY2045 KVANTEFYSIKK Onsdag 30. mai 2007 kl
NORSK TEKST Side av 3 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 97355 EKSAMEN I FY45 KVANTEFYSIKK Onsdag 3.
DetaljerIngen forhåndspreparerte hjelpemiddler er tillatt på eksamen. Ingen bøker er tillatt untatt standard godkjent formelsamling. Kalkulator er tillatt.
Midtsemester Eksame FYS340 30.03.009 Varighet: 3 timer Ige orhådspreparerte hjelpemiddler er tillatt på eksame. Ige bøker er tillatt utatt stadard godkjet ormelsamlig. Kalkulator er tillatt. Dee eksame
DetaljerLøsning obligatorisk oppgave 3, ingeniørmatematikk 3.
Oppgave eltet har kompoeter og avheger av variable Jacobimatrise er da av forme Partiell derivasjo gir: ( y) ( y) ( y) y J ( x, y, ) x ( x ) x x x y x x e partielt derivert er polyomer og rasjoale fuksjoer
DetaljerMAT 100A: Mappeeksamen 4
. november, MAT A: Mppeeksmen Løsningsforslg Oppgve ) Vi bruker produktregelen: f (x) x rctn x + x + x Siden x og rctn x hr smme fortegn, og x ldri er negtiv, er f (x) positiv overlt, bortsett fr t f ().
Detaljer