YF kapittel 6 Lengder og vinkler Løsninger til oppgavene i læreboka

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "YF kapittel 6 Lengder og vinkler Løsninger til oppgavene i læreboka"

Transkript

1 YF kpittel 6 Lengder og vinkler Løsninger til oppgvene i læreok Oppgve 601 Vi skl gå ett hkk mot høyre, og gnger derfor med cm mm 140 mm c Vi skl gå to hkk mot høyre, og gnger derfor med dm mm 500 mm Vi skl gå tre hkk mot høyre, og gnger derfor med ,049 m 0, mm 49 mm Oppgve 602 Vi skl gå tre hkk mot høyre, og gnger derfor med km m m Vi skl gå fire hkk mot høyre, og gnger derfor med mil m m c Vi skl gå fire hkk mot høyre, og gnger derfor med ,25 mil 0, m 2500 m Oppgve 603 Håvrd kjører til smmen 2 46 mil 92 mil. Vi skl gå ett hkk mot høyre, og gnger derfor med mil km 920 km Håvrd kjører til smmen 920 km. Aschehoug Side 1 v 19

2 Oppgve 604 Vi skl gå ett hkk mot venstre, og deler derfor med dm (58 :10) m 5,8 m c Vi skl gå to hkk mot venstre, og deler derfor med cm (5 :100) m 0,05 m Vi skl gå tre hkk mot venstre, og deler derfor med mm (300 :1000) m 0,3 m Oppgve 605 Vi skl gå ett hkk mot venstre, og deler derfor med km (83:10) mil 8,3 mil Vi skl gå fire hkk mot venstre, og deler derfor med m ( :10 000) mil 5 mil c Vi skl gå fire hkk mot venstre, og deler derfor med m (840 :10 000) mil 0,084 mil Oppgve 606 Vi skl gå tre hkk mot venstre, og deler derfor med mm ( :1000) m 13,3 m Lengden v huset er 13,3 m. Aschehoug Side 2 v 19

3 Oppgve 607 Når vi gjør om fr km til m, går vi tre hkk mot høyre, og gnger derfor med Når vi gjør om fr m til cm, går vi to hkk mot høyre, og gnger derfor med For eksempel er 5 km m 5000 m, og 45 m cm 4500 cm. Når vi gjør om fr m til km, går vi tre hkk mot venstre, og deler derfor med Når vi gjør om fr cm til m, går vi to hkk mot venstre, og deler derfor med For eksempel er 45 m (45 :1000) km 0, 045 km, og 200 cm (200 :100) m 2 m. km m cm 0, , , , , Oppgve ,54 cm 58,42 cm Digonlen på skjermen er c. 58,4 cm lng. 58,4 cm (58,4 :100) m 0,584 m Digonlen er 0,584 m lng. Oppgve fot 30 30,48 cm 914,4 cm 914,4 cm (914,4 :100) m 9,144 m Båten er c. 9,1 m lng. 200 nutiske mil m m m ( :1000) km 370,4 km Kjell kjørte c. 370 km med åten. Oppgve µ m 60 0,001 mm 0,06 mm Mlingstykkelsen er 0,06 mm. Aschehoug Side 3 v 19

4 Oppgve 611 0,3 mil 0, m 3000 m 500 cm (500 :100) m 5 m ,54 cm 116,84 cm (116,84 :100) m 1,1684 m 8 dm (8 :10) m 0,8 m 6 km m 6000 m I sortert rekkefølge får vi dermed 8 dm 1 m cm 0,3 mil 6 km Oppgve 612 c Høyden v et kjøleskp er vnligvis over 1 meter. D er måleånd eller meterstokk est egnet til å måle høyden. Avløpsrør er noen cm tykke, og de er dessuten runde. D er det lettest å måle tykkelsen med et skyvelære. Tykkelsen v et ppirrk er under 1 mm, og måles derfor est med en mikrometerskrue. Oppgve 613 c Vi ser t den solutte usikkerheten i lengdemålingen er 0,05 cm, og den solutte usikkerheten i reddemålingen er 0,01 cm. Det kn derfor tenkes t Mrius rukte en linjl for å måle lengden og et skyvelære for å måle redden. Den solutte usikkerheten i lengdemålingen er 0,05 cm. Den solutte usikkerheten i reddemålingen er 0,01 cm. 0, % 0,2 % 5,33 Den reltive usikkerheten i reddemålingen er 0,2 %. Oppgve 615 Vi kn nslå den solutte måleusikkerheten til å være c. hlvprten v måleenheten på linjlen, ltså 0,5 cm. 0,5 100 % 0,7 % 72,5 Den reltive usikkerheten er 0,7 %. Oppgve 616 Den solutte usikkerheten for en mikrometerskrue er 0,01 mm 0,001 cm. 0, % 0,07 % 1, 5 Den reltive usikkerheten er 0,07 %. Aschehoug Side 4 v 19

5 Oppgve 617 Den reltive usikkerheten er 1 % 0, 01. Tenk t den solutte usikkerheten er x m. solutt usikkerhet Reltiv usikkerhet måleresultt x 0,01 60,0 x 60,0 0,01 60,0 60,0 0,6 x Den solutte måleusikkerheten er 0,6 m. Oppgve 618 Vi skl gå ett hkk mot høyre, og gnger derfor med dm 7 10 cm 70 cm c Vi skl gå to hkk mot høyre, og gnger derfor med m cm 1400 cm Vi skl gå ett hkk mot venstre, og deler derfor med mm (35 :10) cm 3,5 cm Oppgve 619 Vi skl gå tre hkk mot høyre, og gnger derfor med km m 8000 m Vi skl gå tre hkk mot høyre, og gnger derfor med ,4 km 1, m 1400 m c Vi skl gå ett hkk mot venstre, og deler derfor med dm (3:10) m 0,3 m Aschehoug Side 5 v 19

6 Oppgve 620 Vi skl gå ett hkk mot venstre, og deler derfor med km (58 :10) mil 5,8 mil Vi skl gå fire hkk mot venstre, og deler derfor med m ( :10 000) mil 1,4 mil c Vi skl gå ett hkk mot venstre, og deler derfor med km (4 :10) mil 0,4 mil Oppgve 621 Sigurd kjører til smmen km 1104 km. Vi skl gå ett hkk mot venstre, og deler derfor med km (1104 :10) mil 110, 4 mil Sigurd kjører 110,4 mil. Oppgve 622 Den solutte usikkerheten er 0,05 cm. 0, % 0,2 % 29,7 Den reltive usikkerheten er 0,2 %. Oppgve 6018 Vi skl gå to hkk mot venstre, og deler derfor med cm (83:100) m 0,83 m Vi skl gå tre hkk mot høyre, og gnger derfor med ,49 km 0, m 490 m c Vi skl gå tre hkk mot høyre, og gnger derfor med ,4 km 23, m m d Vi skl gå tre hkk mot venstre, og deler derfor med ,2 mm (34,2 :1000) m 0,0342 m Aschehoug Side 6 v 19

7 Oppgve ,5 m 0,5 100 cm 50 cm 60 mm (60 :10) cm 6 cm 84 cm + 0,5 m + 60 mm 84 cm + 50 cm + 6 cm 140 cm 0, km 0, cm 14,8 cm 62 mm (62 :10) cm 6,2 cm 0, km + 62 mm 14,8 cm + 6,2 cm 21 cm c ,54 cm 81, 28 cm 9 fot 9 30,48 cm 274,32 cm fot 81,28 cm + 274,32 cm 355,6 cm Oppgve ,5 µ m 0,5 0,001 mm 0,0005 mm Dimeteren v klmydikterien er 0,0005 mm. 5 mm ,0005 mm Det er plss til kterier etter hverndre lngs linjestykket. Oppgve 6021 Tenk t lsermålingen til Steffen hr en solutt usikkerhet på x cm. Den reltive usikkerheten er 0,5 % 0,005, og målingen er 8, 25 m 825 cm. solutt usikkerhet Reltiv usikkerhet måleresultt x 0, x 825 0, ,125 x Målingen til Steffen hr en solutt usikkerhet på 4 cm. Det er ltså Hlvor som hr målt lengden v rommet mest nøyktig. Oppgve 6022 Vi finner den solutte usikkerheten til EsyBruk. Avstnd 50 m: 50 m 0,5 % 50 m 0,005 0,25 m Avstnd 100 m: 100 m 0,5 % 100 m 0,005 0,5 m For de fleste vstnder er det EsyBruk som hr minst solutt usikkerhet. Det er re for de lengste vstndene t SuperAvstnd er mest nøyktig. Derfor er EsyBruk snnsynligvis est, men det vhenger v ruksområdet, dvs. om det primært er korte eller lnge vstnder vi skl måle. Aschehoug Side 7 v 19

8 Oppgve 624 De to ndre vinklene, ltså A og B, er mindre enn 90. Vinklene er derfor spisse. c Vinkelsummen i en treknt er 180. Altså er A+ B+ C 180. A+ B+ C 180 A+ B 180 C A+ B A+ B 90 De to vinklene er til smmen 90. Oppgve 625 Vinkelsummen i treknten skl være 180. Den tredje vinkelen er derfor Oppgve 626 Summen v de fire vinklene skl være 360. B Av figuren ser vi t CDA D 140. c Vi ser t B og D er større enn 90. Altså er B og D stumpe. Oppgve 627 Treknt ABC: C Treknt EFG: E Treknt DEF: EFD D 180 E EFD Treknt DFG: FGD 180 GFD D Oppgve 628 Alle sidene i treknten er like lnge. Det etyr t treknten er likesidet. Alle vinklene i treknten er derfor 60. Aschehoug Side 8 v 19

9 Oppgve 629 Den rette vinkelen er 90. Dermed er den tredje vinkelen Oppgve 630 Vinkelsummen skl være 180. Derfor må de to ukjente vinklene til smmen være Treknten er likeeint. Derfor er de to ukjente vinklene like store. 80 Altså er A C Oppgve 631 I et rektngel er lle vinklene 90. Altså er Q 90. I et rektngel er to og to sider like lnge. Altså er PQ RS 12 cm. Oppgve 632 Vinkelsummen i treknten skl være 180. Det gir A Oppgve 633 Vinkelsummen i treknten skl være 180. Det gir E Oppgve 634 Vinkelsummen i firknten skl være 360. Det gir J Aschehoug Side 9 v 19

10 Oppgve 635 Vinkelsummen i treknten skl være 180. Det gir x To v sidene i treknten er like lnge. Treknten er derfor likeeint. Det etyr t de to vinklene til venstre er like store. Altså er x 70. Dermed er y c Vinkelsummen i firknten skl være 360. Det gir x Alle vinklene i firknten er 90, og to nærliggende sider er like lnge. Firknten er derfor et kvdrt. Det etyr t lle sidene er like lnge. Altså er d Vinkelsummen i treknten skl være 180. Det gir x To v vinklene er like store. Treknten er derfor likeeint. Det etyr t de to sidene til venstre er like lnge. Altså er y 6 cm. Oppgve 6032 y 4 cm. I en likeeint treknt er to sider like lnge og to vinkler like store. Siden D > 90, kn ikke D være én v de to like vinklene i treknten. Det må derfor være E og F som er like store. Til smmen må de to vinklene være Dermed er F Oppgve 6033 I en likeeint treknt er to sider like lnge og to vinkler like store. Den rette vinkelen er 90. De to ndre vinklene er like store, og til smmen De to ndre vinklene er derfor Aschehoug Side 10 v 19

11 Oppgve 6034 Vinkelsummen i treknten skl være 180. Det gir likningen 90 + x+ 2x x+ 2x x 180 3x x 90 3x x 30 Oppgve 6035 Vi ser først på firknten ABCE og ruker t vinkelsummen skl være 360. Det gir x Siden linjestykket BD er rett, er x+ w 180. Det gir w Treknten CDE er likeeint, ettersom CE DE. Det etyr t vinklene y og w er like store. Altså er y 75. Til slutt ruker vi t vinkelsummen i treknten CDE skl være 180. Det gir z Oppgve 6036 Ettersom CD står vinkelrett på AB, er ADC BDC 90. Vinkelsummen i treknten ADC skl være 180. Det gir ACD Ettersom ACB 90, er ACD + BCD 90. Det gir BCD Oppgve 6037 Siden linjene l og n er rette, er e+ f f + g g+ h 180. Det etyr t e g og f h. Linjene l og m er prllelle. Firknten i figuren hr derfor to rette vinkler. Vinkelsummen skl være 360. Derfor er c+ f Siden f + g også er 180, etyr dette t c g. Videre finner vi t c og d, kkurt som for vinklene e, f, g og h. Oppsummert etyr dette t c e g og d f h. Oppgve 636 Vinkel D tilsvrer vinklene A og G. Derfor er D 80. Vinkel E tilsvrer vinklene B og I. Derfor er B I 40. Vinkelsummen i trekntene er 180. Det gir C F H Aschehoug Side 11 v 19

12 Oppgve 637 Vinkel A tilsvrer vinkel H. Derfor er A 60. Vinkel C tilsvrer vinkel F. Derfor er C 100. Vinkel E tilsvrer vinkel B. Derfor er E 90. Vinkel G tilsvrer vinkel D. Derfor er G 110. Vinkelsummen er Oppgve 638 c To v vinklene i trekntene er prvis like store. D må den tredje vinkelen også være lik. Siden vinklene er prvis like store, er trekntene formlike. (Den tredje vinkelen er C F ) De tilsvrende sidene ligger mellom tilsvrende vinkler. De tilsvrende sidene er derfor AB og DE, BC og EF, og AC og DF. Vi kjenner lengden v BC, som er tilsvrende side med EF. Vi kn derfor finne lengden v EF ved å ruke formlikhet. EF og BC er tilsvrende sider, og DE og AB er tilsvrende sider. Forholdet mellom tilsvrende sider skl være lik hverndre. EF DE BC AB x 4,0 4,5 5, 0 x 4,5 4, 0 4,5 4,5 5, 0 x 3, 6 Lengden v EF er 3,6. Oppgve 639 Vi velger to pr v tilsvrende sider, AC og DF, og AB og DE. Så setter vi forholdet mellom tilsvrende sider lik hverndre. AC AB DF DE 8 10 x 14 x x x 11, 2 Lengden v DF er 11,2 m. Aschehoug Side 12 v 19

13 Oppgve 640 De tilsvrende sidene er AB og DE, BC og EF, og AC og DF. Vi finner først BC, og setter d BC x. BC AB EF DE x 4,60 4,90 6,90 x 4,90 4, 60 4,90 4,90 6,90 x 3, 27 Lengden v BC er 3,27 cm. Så finner vi DF, og setter d DF x. DF DE AC AB x 6,90 2,10 4, 60 x 2,10 6,90 2,10 2,10 4, 60 x 3,15 Lengden v DF er 3,15 cm. Oppgve 641 Huset og grsjen hr form som to formlike rektngler. På figuren er AB og EF tilsvrende sider, og AD og EH er tilsvrende sider. Forholdet mellom tilsvrende sider skl være lik hverndre. Lengden v grsjen er EH x. EH EF AD AB x 6,30 13,3 10, 0 x 13,3 6,30 13,3 13,3 10, 0 x 8,38 Lengden v grsjen må være 8,38 m. Oppgve 642 Vinkel B tilsvrer vinkel F. Derfor er B 80. Vinkel D tilsvrer vinkel H. Derfor er D 100. Vinkel A tilsvrer vinkel E. Derfor er E 60. Til slutt ruker vi t vinkelsummen i firkntene er 360. Det gir C G Aschehoug Side 13 v 19

14 Oppgve 643 De to ildene er formlike rektngler. Sidene AB og EF er tilsvrende sider, og AD og EH er tilsvrende sider. Vi setter forholdet mellom de tilsvrende sidene lik hverndre. EH EF AD AB x 21 8,0 12 x 8,0 21 8,0 8,0 12 x 14 Høyden i det forstørrede ildet lir 14 cm. Oppgve 645 De tilsvrende sidene er AB og DE, BC og EF, og AC og DF. Vi setter forholdet mellom de tilsvrende sidene lik hverndre. EF DE BC AB x x x 6 Riktig svr er EF 6. Lrs hr derfor regnet feil. En mulighet er t Lrs hr tenkt t lengden v BC er 2 større enn lengden v AB, og t lengden v EF derfor også skl være 2 større enn lengden v DE. D ville nemlig lengden v EF h litt Oppgve 6042 De tilsvrende sidene ligger mellom tilsvrende vinkler. De tilsvrende sidene er derfor AB og DF, BC og DE, og AC og EF. Oppgve 6043 De tilsvrende sidene er AB og DE, BC og EF, og AC og DF. Vi setter forholdet mellom tilsvrende sider lik hverndre. DE EF AB BC x x x 4,5 Lengden v DE er 4,5 m. Aschehoug Side 14 v 19

15 DF EF AC BC x x x 6 Lengden v DF er 6 m. Oppgve 6044 Trekntene ABC og DEF er rettvinklede, og vinkelen til skyggen ( B og E ) er den smme i de to trekntene. Trekntene er derfor formlike. Forholdet mellom de tilsvrende sidene AC og DF er dermed lik forholdet mellom de tilsvrende sidene AB og DE. AC AB DF DE x 8,1 2,0 2,7 x 2,0 8,1 2,0 2,0 2,7 x 6,0 Høyden på huset er 6,0 m. Oppgve 6045 Trekntene ABC og EBD er rettvinklede, og de hr vinkel B felles. Trekntene hr ltså to vinkler felles. Den tredje vinkelen må derfor også være lik. Siden vinklene er prvis like store, er trekntene formlike. AC og DE er tilsvrende sider, og AB og BE er tilsvrende sider. BE AB AE 9 cm 4 cm 5 cm Vi setter forholdet mellom tilsvrende sider lik hverndre. DE BE AC AB x x x 3,3 Lengden v DE er 3,3 cm. Aschehoug Side 15 v 19

16 Oppgve 646 Høyden v flsken er oppgitt til å være 227 mm i virkeligheten. Målestokken er 1 : 2. 1 mm i virkeligheten tilsvrer derfor 1 2 mm på tegningen ,5 2 Høyden v flsken skl være 113,5 mm på tegningen. Vi ser t dette stemmer når vi kontrollmåler. På reidstegningen er høyden v isfjellet 8 mm. 1 mm på tegningen tilsvrer 2 mm i virkeligheten. 2 8 mm 16 mm Høyden v isfjellet er 16 mm i virkeligheten. Oppgve cm på tegningen tilsvrer 500 cm i virkeligheten cm 2000 cm 20 m I virkeligheten er grens 20 m lng. Oppgve 648 På krtet er det c. 3,6 cm mellom Gnsdlen og Bjørkelngen. Målestokken er 1 : cm på krtet tilsvrer ltså cm i virkeligheten ,6 cm cm Vi gjør om fr cm til km, og deler d på cm ( : ) km 11,7 km Det er c. 12 km i luftlinje fr Gnsdlen til Bjørkelngen. Oppgve 649 Målestokken er 5 : 1. 1 mm i virkeligheten tilsvrer derfor 5 mm på tegningen mm 100 mm 10 cm Dimeteren på reidstegningen er 10 cm. Oppgve 651 Vi gjør om den virkelige lengden til centimeter. 73,5 km 73, cm cm lengden på tegningen Målestokken lengden i virkeligheten 24,5 24,5 : 24,5 1 M : 24, Krtet er tegnet i målestokken 1 : Aschehoug Side 16 v 19

17 Oppgve 652 Bredden v huset er 45 mm på tegningen og 6900 mm i virkeligheten. lengden på tegningen Målestokken lengden i virkeligheten : 45 1 M : Areidstegningen er lget i målestokken 1 : 153. Oppgve 653 Lengden v frimerket er c. 7 cm på ildet. lengden på tegningen Målestokken lengden i virkeligheten 7 7 : 3,5 2 M 3,5 3,5 : 3,5 1 Frimerket er vildet i målestokken 2 : 1. Oppgve 654 Avstnden (i luftlinje) mellom A og B er 3,2 cm på krtet og 6,4 km i virkeligheten. Vi gjør om den virkelige lengden til centimeter. 6,4 km 6, cm cm lengden på tegningen Målestokken lengden i virkeligheten 3, 2 3, 2 : 3, 2 1 M : 3, Målestokken er 1 : Oppgve 655 Målestokken 1 : etyr t 1 cm på krtet tilsvrer cm i virkeligheten. Krtet er ltså en forminskning v virkeligheten. 1 cm på krtet tilsvrer cm i virkeligheten cm ( :100) m 250 m 1 cm på krtet tilsvrer 250 m i virkeligheten. c 1 km er det smme som cm cm. 1 1 cm i virkeligheten tilsvrer cm på krtet km i virkeligheten tilsvrer 4 cm på krtet. Oppgve 656 Målestokken er 1 : Det etyr t 1 cm på krtet tilsvrer cm i virkeligheten ,1 cm cm ( :100) m 765 m Avstnden mellom postene er 765 m i virkeligheten. Aschehoug Side 17 v 19

18 Oppgve 6054 Avstnden (i luftlinje) mellom A og B er 3,2 cm på krtet og 6,4 km i virkeligheten. Vi gjør om den virkelige lengden til centimeter. 6,4 km 6, cm cm lengden på tegningen Målestokken lengden i virkeligheten 3, 2 3, 2 : 3, 2 1 M : 3, Målestokken er 1 : Vi forenkler veien fr A til C som vist på figuren. Avstnden på krtet er 0,9 cm + 1,3 cm 2,2 cm. 1 cm på krtet tilsvrer cm i virkeligheten ,2 cm cm ( : ) km 4,4 km Avstnden lngs veien fr A til C er c. 4,4 km. Ingun jogger med gjennomsnittsfrten 10 km/h. 4, 4 km 0,44 timer 10 km/h 0, 44 timer 0, minutter 26, 4 minutter Ingun vil ruke c. 26 minutter fr A til C. Oppgve 6055 Lengden på tegningen er 20 % v lengden i virkeligheten. lengden på tegningen Dette kn vi skrive som 20 %. Målestokken er ltså 20 %. lengden i virkeligheten : 20 1 M 20 % : 20 5 Målestokken er 1 : 5. Oppgve cm på det første krtet tilsvrer cm i virkeligheten ,0 cm cm Avstnden mellom turistttrksjonene er cm 1,2 km i virkeligheten. På det ndre krtet er vstnden 4,0 cm. lengden på tegningen Målestokken lengden i virkeligheten 4,0 4,0 : 4,0 1 M : 4, Målestokken på det ndre krtet er 1 : Aschehoug Side 18 v 19

19 Oppgve 6057 Høyden v et A4-rk er 297 mm, og høyden v et A3-rk er 420 mm. I forstørrelsen til Signe svrer ltså 420 mm i "tegningen" til 297 mm i "virkeligheten". lengden på tegningen Målestokken lengden i virkeligheten : 297 1,414 M : Forstørrelsen på A3-rket er tegnet i målestokken 1,414 : 1. Aschehoug Side 19 v 19

1P kapittel 4 Lengder og vinkler

1P kapittel 4 Lengder og vinkler Løsninger til oppgvene i ok 1P kpittel 4 Lengder og vinkler Løsninger til oppgvene i ok Oppgve 4.1 6 MW 6 1 000 000 W 6 000 000 W 7,5 MW 7,5 1 000 000 W 7 500 000 W c 8 000 000 W 8 1 000 000 W 8 MW d 14

Detaljer

1T kapittel 6 Geometri Løsninger til oppgavene i læreboka

1T kapittel 6 Geometri Løsninger til oppgavene i læreboka T kpittel 6 Geometri Løsninger til oppgvene i læreok Oppgve 6. Vi ruker pytgorssetningen. h 5 + 6 h 5 + 36 h 6 h ± 6 Hypotenusen er 6. Vi ruker pytgorssetningen. h, 4 + 6,7 h h 5, 076 + 45, 04 50, 047

Detaljer

YF kapittel 7 Flate Løsninger til oppgavene i læreboka

YF kapittel 7 Flate Løsninger til oppgavene i læreboka YF kpittel 7 Flte Løsninger til oppgvene i læreok Oppgve 701 Vinkel C er en rett vinkel. Altså er C = 90. c AB er motstående side til den rette vinkelen i treknten. Derfor er AB ypotenus. AC er osliggende

Detaljer

1P kapittel 3 Geometri Løsninger til innlæringsoppgavene

1P kapittel 3 Geometri Løsninger til innlæringsoppgavene 1P kapittel Geometri Løsninger til innlæringsoppgavene.1 a 10 mm = 10 1 mm = 10 0,1 cm = 1 cm Bredden av A4-arket er 1 cm. 9800 m = 9800 1 m = 9800 0,001 km = 9,8 km Anne løp 9,8 km. c 60 km = 60 1 km

Detaljer

YF kapittel 8 Rom Løsninger til oppgavene i læreboka

YF kapittel 8 Rom Løsninger til oppgavene i læreboka YF kpittel 8 Rom Løsninger til oppgvene i læreok Oppgve 809 Vi skl gå ett hkk mot venstre, og deler derfor med 10. 40 dl = (40 :10) L = 4 L Vi skl gå to hkk mot venstre, og deler derfor med 10 10 = 100.

Detaljer

1 Geometri KATEGORI 1. 1.1 Vinkelsummen i mangekanter. 1.2 Vinkler i formlike figurer

1 Geometri KATEGORI 1. 1.1 Vinkelsummen i mangekanter. 1.2 Vinkler i formlike figurer Oppgver 1 Geometri KTGORI 1 1.1 Vinkelsummen i mngeknter Oppgve 1.110 ) I en treknt er to v vinklene 65 og 5. Finn den tredje vinkelen. b) I en firknt er tre v vinklene 0, 50 og 150. Finn den fjerde vinkelen.

Detaljer

Mer øving til kapittel 2

Mer øving til kapittel 2 Mer øving til kpittel 2 KAPITTEL 2 GEOMETRI OG MÅLING Oppgve 1 Oppgve 2 Oppgve 3 Anne hr vært på ferie til sine esteforeldre fr 28. juni til 9. ugust. Hvor mnge dger hr hun vært på ferie? Fr hun kom hjem

Detaljer

3.7 Pythagoras på mange måter

3.7 Pythagoras på mange måter Oppgve 3.18 Vis t det er mulig å multiplisere og dividere linjestykker som vist i figur 3.. Bruk formlikhet. 3.7 Pythgors på mnge måter Grekeren Pythgors le født på Smos 569 og døde. år 500 f. Kr. Setningen

Detaljer

Oppgave 5 Et rektangel har en omkrets på 24 cm 2. Hva blir arealet? Dersom lengdene på sidene skal ha heltallige svar, hvor mange løsninger får du?

Oppgave 5 Et rektangel har en omkrets på 24 cm 2. Hva blir arealet? Dersom lengdene på sidene skal ha heltallige svar, hvor mange løsninger får du? KAPITTEL 3 GEOMETRI Mer øving kpittel 3 I e første oppgvene skl u gjøre om enheter på en lgeriske måten. Det vil si t når u skl gjøre om mellom relenheter skl u gå veien om å gjøre om mellom lengeenheter.

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler Eksmen høsten 013 Løsninger Eksmen høsten 013 Løsninger DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve 1 150 sider Vi finner først hvor mnge

Detaljer

Del 2. Alle oppgaver føres inn på eget ark. Vis tydelig hvordan du har kommet frem til svaret. Oppgave 2

Del 2. Alle oppgaver føres inn på eget ark. Vis tydelig hvordan du har kommet frem til svaret. Oppgave 2 Del 2 Alle oppgver føres inn på eget rk. Vis tydelig hvordn du hr kommet frem til svret. Oppgve 1 Figuren viser sidefltene til et prisme. Grunnflten og toppflten mngler. ) Hvilken form må grunn- og toppflten

Detaljer

1 Tallregning og algebra

1 Tallregning og algebra Tllregning og lger ØV MER. REGNEREKKEFØLGE Oppgve.0 6 d) ( : 6) Oppgve. ( ) ( ) ()() ( ) ( ) ( ) () (6 ) () d) ( ) 7() ( ) Oppgve. 6 ( ) d) Oppgve. Med ett ddisjonstegn, ett sutrksjonstegn, ett multipliksjonstegn

Detaljer

R1 kapittel 6 Vektorer. Løsninger til oppgavene i boka Løsninger til oppgavene i boka

R1 kapittel 6 Vektorer. Løsninger til oppgavene i boka Løsninger til oppgavene i boka R1 kpittel 6 Vektorer Løsninger til oppgvene i ok Løsninger til oppgvene i ok 6.1 Tilfellene, e og f er vektorstørrelser fordi de hr retning. Tilfellene, og d er sklrer fordi de ikke hr retning. 6. d e

Detaljer

Fag: Matematikk 1T-Y for yrkesfag for elever og privatisterr. Eksamensdato: 16. januar 2012

Fag: Matematikk 1T-Y for yrkesfag for elever og privatisterr. Eksamensdato: 16. januar 2012 Loklt gittt eksmen Eksmen Fg: Mtemtikk 1T-Y for yrkesfg for elever og privtisterr Fgkode: MAT1006 Eksmensdto: 16. jnur 2012 Antll sider i oppgven: 7 inklusiv forside og opplysningsside Del 1: oppgve 1-5

Detaljer

2 Symboler i matematikken

2 Symboler i matematikken 2 Symoler i mtemtikken 2.1 Symoler som står for tll og størrelser Nvn i geometri Nvn i mtemtikken enyttes på lignende måte som nvn på yer og personer, de refererer eller representerer et tll eller en størrelse,

Detaljer

... ÅRSPRØVE 2014...

... ÅRSPRØVE 2014... Delprøve 1 Ashehoug ÅRSPRØVE 014 9. trinn.... ÅRSPRØVE 014... Nvn: Gruppe: DELPRØVE 1 uten hjelpemiler (39 poeng) Alle oppgvene i el 1 skl føres rett på rket. I noen oppgver er et en regnerute. Her skl

Detaljer

R1 kapittel 8 Eksamenstrening

R1 kapittel 8 Eksamenstrening Løsninger til oppgvene i ok R kpittel 8 Eksmenstrening Løsninger til oppgvene i ok Uten hjelpemidler Oppgve E Hvis er et nullpunkt for De mulige nullpunktene for P, er konstntleddet 8 delelig med. P er

Detaljer

Fag: Matematikk 1T-Y for elever og privatister. Antall sider i oppgaven: 8 inklusiv forside og opplysningsside

Fag: Matematikk 1T-Y for elever og privatister. Antall sider i oppgaven: 8 inklusiv forside og opplysningsside Loklt gitt eksmen 2012 Eksmen Fg: Mtemtikk 1T-Y for elever og privtister Fgkode: MAT1006 Eksmensdto: 25. mi Antll sider i oppgven: 8 inklusiv forside og opplysningsside Eksmenstid: Hjelpemidler under eksmen:

Detaljer

YF kapittel 10 Eksamenstrening Løsninger til oppgavene i læreboka

YF kapittel 10 Eksamenstrening Løsninger til oppgavene i læreboka YF kpittel 10 Eksmenstrening Løsninger til oppgvene i læreok Uten hjelpemidler Oppgve E1 5 + 5 + 6 11 5 + 4 (5 + ) 5 + 4 7 10 6 + 8 d + ( + 1) 5 + 4 5 + 16 5 + 10 5 4 + 4 4 + 8 1 + + + + + + + + 49 49

Detaljer

... JULEPRØVE 9. trinn...

... JULEPRØVE 9. trinn... .... JULEPRØVE 9. trinn.... Nvn: Gruppe: DELPRØVE 1 uten hjelpemidler ( 37 poeng) På denne delprøven kn du re ruke skrivesker, psser og linjl. Alle oppgvene i del 1 skl føres rett på rket. I noen oppgver

Detaljer

R2 kapittel 4 Tredimensjonale vektorer

R2 kapittel 4 Tredimensjonale vektorer Løsninger v oppgvene i ok R kpittel 4 Tredimensjonle vektorer Løsninger v oppgvene i ok 4. Vi tegner punket A i xy-plnet. Vi mrkerer plsseringen v A med linjestykker ut fr punktene (4,0,0) på x-ksen og

Detaljer

Det geometriske stedet for punktene som ligger 5 cm fra et punkt A, er en sirkel med radius 5 cm og har sentrum i A.

Det geometriske stedet for punktene som ligger 5 cm fra et punkt A, er en sirkel med radius 5 cm og har sentrum i A. R1 kapittel 5 Geometri Løsninger til oppgavene i boka 5.1 a Det geometriske stedet for punktene som ligger 5 cm fra et punkt A, er en sirkel med radius 5 cm og har sentrum i A. 5. a Vi bruker GeoGebra

Detaljer

Kompetansemål: Sti 1 Sti 2 Sti 3 2.1 Enheter for lengde og areal 2.2 Målenøyaktighet 200, 201, 202, 206, 208 209, 211, 212, 213, 215

Kompetansemål: Sti 1 Sti 2 Sti 3 2.1 Enheter for lengde og areal 2.2 Målenøyaktighet 200, 201, 202, 206, 208 209, 211, 212, 213, 215 2 Geometri Kompetnsemål: Mål for opplæringen er t eleven skl kunne ruke formlikhet og Pytgors setning til eregninger og i prktisk reid løse prktiske prolemer knyttet til lengde, vinkel, rel og volum ruke

Detaljer

OPPLÆRINGSREGION NORD. Skriftlig eksamen. MAT1001 Matematikk 1P-Y HØSTEN 2011. Privatister. Yrkesfag. Alle yrkesfaglige utdanningsprogrammer

OPPLÆRINGSREGION NORD. Skriftlig eksamen. MAT1001 Matematikk 1P-Y HØSTEN 2011. Privatister. Yrkesfag. Alle yrkesfaglige utdanningsprogrammer OPPLÆRINGSREGION NORD LK06 Finnmrk fylkeskommune Troms fylkeskommune Nordlnd fylkeskommune Nord-Trøndelg fylkeskommune Sør-Trøndelg fylkeskommune Møre og Romsdl fylke Skriftlig eksmen MAT1001 Mtemtikk

Detaljer

1P kapittel 8 Eksamenstrening

1P kapittel 8 Eksamenstrening Løsninger til oppgvene i ok 1P kpittel 8 Eksmenstrening Løsninger til oppgvene i ok Uten hjelpemidler E1 Vi ytter ut 7,60 kr med 8 kr og 104 euro med euro. Det gir: 8 kr 4 300 kr. For fire overnttinger

Detaljer

5.A Digitale hjelpemidler i geometri

5.A Digitale hjelpemidler i geometri 5.A Digitale hjelpemidler i geometri Geometri handler om egenskapene til punkter, linjer og figurer i planet og i rommet. I alle tider har blyant og papir samt passer og linjal vært de viktigst hjelpemidlene

Detaljer

1T kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka

1T kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka T kpittel 8 Eksmenstrening Løsninger til oppgvene i lærebok Uten hjelpemidler E b c E b c Vi gnger vnlige tll med vnlige tll og tierpotenser med tierpotenser. Til slutt omformer vi svret så vi får et tll

Detaljer

MATEMATIKKPRØVE 11. FEBRUAR.

MATEMATIKKPRØVE 11. FEBRUAR. MATEMATIKKPRØVE 11. FEBRUAR. Nvn: Klsse: DELPRØVE 1 uten lommeregner og p (41 poeng) Alle oppgvene i del 1 skl føres rett på rket. I noen oppgver er det en regnerute. Her skl du føre oppgven oversiktlig

Detaljer

R1 kapittel 6 Geometri Løsninger til kapitteltesten i læreboka

R1 kapittel 6 Geometri Løsninger til kapitteltesten i læreboka R1 kapittel 6 Geometri Løsninger til kapitteltesten i læreboka 6.A a ABC DEC fordi C er felles i de to trekantene. AB DE, og da er BAC = EDC og ABC = DEC. Vinklene i de to trekantene er parvis like store,

Detaljer

Bevis i Geometri. 23. April, Kristian Ranestad Matematisk Institutt, Universitetet i Oslo

Bevis i Geometri. 23. April, Kristian Ranestad Matematisk Institutt, Universitetet i Oslo Kristian Ranestad Matematisk Institutt, Universitetet i Oslo 23. April, 2012 Matematikk - å regne - å resonnere/argumentere Geometri -hvorfor? Argumentasjon og bevis, mer enn regning etter oppskrifter.

Detaljer

1.8 Digital tegning av vinkler

1.8 Digital tegning av vinkler 1.8 Digital tegning av vinkler Det går også an å tegne mangekanter digitalt når vi kjenner noen vinkler og sider. Her tegner vi ABC når A = 50, AB = 6 og AC = 4. I GeoGebra setter vi først av linjestykket

Detaljer

R1 kapittel 7 Sannsynlighet. Kapitteltest. Oppgave 1. Oppgave 2. Oppgave 3. Del 1 Uten hjelpemidler. Løsninger til oppgavene i boka

R1 kapittel 7 Sannsynlighet. Kapitteltest. Oppgave 1. Oppgave 2. Oppgave 3. Del 1 Uten hjelpemidler. Løsninger til oppgavene i boka Løsninger til oppgvene i ok R1 kpittel 7 Snnsynlighet Løsninger til oppgvene i ok Kpitteltest Del 1 Uten hjelpemidler Oppgve 1 De fem lppene kn ordnes i rekkefølge på 5! = 15 = forskjellige måter. Vi kn

Detaljer

S1 kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka

S1 kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka S1 kpittel 8 Eksmenstrening Løsninger til oppgvene i læreok E1 995 995 5 + 5 (995 5) (995 + 5) + 5 990 1000 + 5 990 000 + 5 990 05 E E (61+ 9) 51 49) (51+ 49) 61 9 (61 9) 51 49 ( 100 100 11 1997 00 199

Detaljer

Kapittel 3 Geometri Mer øving

Kapittel 3 Geometri Mer øving Kapittel 3 Geometri Mer øving Oppgave 1 Utfør disse konstruksjonene. a Konstruer en normal fra en linje til et punkt. Konstruer en normal fra en linje i et punkt på linja. c Konstruer en midtnormal. d

Detaljer

Årsprøve trinn Del 1. Navn: Informasjon for del 1

Årsprøve trinn Del 1. Navn: Informasjon for del 1 Årsprøve 2015 9. trinn Del 1 Nvn: Informsjon for del 1 Prøvetid: Hjelpemidler på del 1: Andre opplysninger: Fremgngsmåte og forklring: 5 timer totlt. Del 1 og Del 2 skl deles ut smtidig Del 1 skl du levere

Detaljer

DELPRØVE 2 (35 poeng)

DELPRØVE 2 (35 poeng) DELPRØVE 2 (35 poeng) På denne delprøven er lle hjelpemidler tilltt. Alle oppgvene i del 2 skl føres på eget rk. Før svrene oversiktlig, slik t det går tydelig frm hvordn du hr løst oppgvene. Bruk penn.

Detaljer

S1 kapittel 1 Algebra Løsninger til oppgavene i læreboka

S1 kapittel 1 Algebra Løsninger til oppgavene i læreboka Løsninger til oppgvene i ok S kpittel Alger Løsninger til oppgvene i læreok. 8 ( ) 5 9. e = = 9 = = 8 5 = = 0 = 0 0 0 = 000 =. e Ashehoug www.lokus.no Sie v Løsninger til oppgvene i ok..5..7 = = + 5 =

Detaljer

Årsprøve 2014 10. trinn Del 2

Årsprøve 2014 10. trinn Del 2 2 Årsprøve 2014 10. trinn Del 2 Informsjon for del 2 Prøvetid: Hjelpemidler på del 2: Vedlegg: Andre opplysninger: Fremgngsmåte og forklring: Veiledning om vurderingen: 5 timer totlt Del 2 skl du levere

Detaljer

Praktiske opplysninger til rektor. Fag: MATEMATIKK 1TY for yrkesfag Fagkode: MAT1006 Eksamensdato: Antall forberedelsesdager: Ingen

Praktiske opplysninger til rektor. Fag: MATEMATIKK 1TY for yrkesfag Fagkode: MAT1006 Eksamensdato: Antall forberedelsesdager: Ingen Loklt gitt eksmen 2013 Prktiske opplysninger til rektor Fg: MATEMATIKK 1TY for yrkesfg Fgkode: MAT1006 Eksmensdto: 30.5.2013 Antll foreredelsesdger: Ingen Forhold som skolen må være oppmerksom på: Eksmenen

Detaljer

Kapittel 4 Tall og algebra Mer øving

Kapittel 4 Tall og algebra Mer øving Kpittel 4 Tll og lger Mer øving Oppgve 1 d Oppgve 2 Se på uttrykket A = g h. Hv forteller de ulike okstvene? Se på uttrykket A = 2π. Hv står de ulike symolene for? Forklr hv vi mener med en vriel og en

Detaljer

S1 kapittel 6 Derivasjon Løsninger til oppgavene i boka

S1 kapittel 6 Derivasjon Løsninger til oppgavene i boka S kpittel 6 Derivsjon Løsninger til oppgvene i ok 6. c y x y x = = = = y x 4 5 9 4 y 5 6 x 4 = = = = y x y x = = = = 7 ( 5) 6 ( ) 8 6. f( x ) f( x ) 5 7 x x ( ) 4 = = = = 6. T( x) = 0,x +,0 T T = + = (0)

Detaljer

Eksamen 1T våren 2011

Eksamen 1T våren 2011 Eksamen 1T våren 011 Oppgave 1 a) 1) ) 7 6 00 000 =,6 10 0,04 10 =,4 10 4 b) c) x x + 6x= 16 + 6x 16 = 0 6 ± 6 4 1 ( 16) 6 ± 6 + 64 6 ± 100 6 ± 10 x = = = = = ± 5 1 x = 8 eller x = x x xx > 0 ( 1) > 0

Detaljer

Løsningsforslag kapittel 3

Løsningsforslag kapittel 3 Løsningsforslag kapittel 3 Innhold Oppgave 3.2... 2 Oppgave 3.4... 2 Oppgave 3.8... 3 Oppgave 3.14... 5 Oppgave 3.17... 6 Oppgave 3.23... 7 Oppgave 3.29... 8 Oppgave 3.35... 9 Oppgave 3.38... 10 Oppgave

Detaljer

TENTAMEN, VÅR FASIT MED KOMMENTARER.

TENTAMEN, VÅR FASIT MED KOMMENTARER. TENTAMEN, VÅR 017. FASIT MED KOMMENTARER. DELPRØVE 1. OPPG 1 556 + 1555 = 111 3 85 = - (85 3) 85-3 6 3 85 = - 6 C: 30. 9 718 108 = 1798 D: 68 : 3 = 16 6 3 18 18 OPPG 3 50 mm = 3,50 m 0, h = 0,. 60 = 1

Detaljer

R1 kapittel 6 Geometri Løsninger til innlæringsoppgavene

R1 kapittel 6 Geometri Løsninger til innlæringsoppgavene R1 kapittel 6 Geometri Løsninger til innlæringsoppgavene 6.1 a Det geometriske stedet er en sirkellinje med sentrum i punktet og radius 5 cm. 6. Vi ser at koordinataksene er vinkelhalveringslinjene for

Detaljer

FY2045/TFY4250 Kvantemekanikk I, løsning øving 10 1 LØSNING ØVING 10

FY2045/TFY4250 Kvantemekanikk I, løsning øving 10 1 LØSNING ØVING 10 FY45/TFY45 Kvntemeknikk I, løsning øving LØSNING ØVING Løsning oppgve Spinn. D åde χ + og χ i likhet med lle ndre spinorer er egentilstnder til enhetsmtrisen med egenverdi lik, hr vi Videre finner vi t

Detaljer

Brøkregning og likninger med teskje

Brøkregning og likninger med teskje Brøkregning og likninger med teskje Dette heftet gir en uformell trinn for trinn gjennomgng v grunnleggende regler for brøkregning og likninger. Dette er sto som vi i FYS 000 egentlig forventer t dere

Detaljer

Basisoppgaver til 1P kap. 3 Geometri

Basisoppgaver til 1P kap. 3 Geometri Basisoppgaver til 1P kap. Geometri.1 Lengde og areal. Formlikhet. Areal og omkrets av plane figurer.4 Rettvinklede trekanter. Pytagorassetningen.5 Areidstegninger og kart.6 Volum og volumenheter.7 Overflate

Detaljer

Løsningsskisser til oppgaver i Kapittel 2: Trigonometri

Løsningsskisser til oppgaver i Kapittel 2: Trigonometri Løsningsskisser til oppgver i Kpittel : Trigonometri.07 Treknten i figuren hr: (Alle mål i cm.) grunnlinje: g 5 1 høyde: h Tilhørende sirkelsektor spenner over vinkelen v, der cosv 5 v 1.159 Arel Treknt

Detaljer

1P kapittel 5 Areal og volum

1P kapittel 5 Areal og volum Løsninger til oppgvene i ok 1P kpittel 5 Arel og volum Løsninger til oppgvene i ok 5.1 Vi skl gå ett hkk mot høyre og gnger derfor med 100. 14 m 14 100 mm 1400 mm Vi skl gå to hkk mot høyre og gnger derfor

Detaljer

NORGES INFORMASJONSTEKNOLOGISKE HØGSKOLE

NORGES INFORMASJONSTEKNOLOGISKE HØGSKOLE Oppgavesettet består av 6 (seks) sider. NORGES INFORMASJONSTEKNOLOGISKE HØGSKOLE Matematikk R1 GEOMETRI OG VEKTORER Tillatte hjelpemidler: Alle Varighet: Ubegrenset Dato: 10.4 (Innleveringsfrist) Fagansvarlig:

Detaljer

... JULEPRØVE

... JULEPRØVE Ashehoug JULEPRØVE 2014 9. trinn.... JULEPRØVE 2014.... Nvn: Gruppe: DELPRØVE 1 uten hjelpemidler ( 37 poeng) På denne delprøven kn du re ruke skrivesker, psser og linjl. Alle oppgvene i del 1 skl føres

Detaljer

Punktene A, B, C og D ligger på linje med innbyrdes avstander AB = 3, BC = 6, CD = 8 og DE = 4.

Punktene A, B, C og D ligger på linje med innbyrdes avstander AB = 3, BC = 6, CD = 8 og DE = 4. Oppgave Punktene A, B, C og D ligger på linje med innbyrdes avstander AB =, BC = 6, CD = 8 og DE =. Hva er minste mulige verdi for AE? A 0 B C D E 5 Tegn! Start med å tegne ei lang rett linje, plasser

Detaljer

Lærerveiledning. Oppgave 1. På figuren er ABCD et kvadrat, mens ABE er en likesidet trekant. Da er ÐAED lik. Tips til veiledning:

Lærerveiledning. Oppgave 1. På figuren er ABCD et kvadrat, mens ABE er en likesidet trekant. Da er ÐAED lik. Tips til veiledning: Oppgave 1 På figuren er ABCD et kvadrat, mens ABE er en likesidet trekant. Da er ÐAED lik A 10 B 1,5 C 15 D 0 E,5 Skriv på alle kjente vinkler og marker vinkelen dere skal finne på figuren. Marker alle

Detaljer

Eksempeloppgaver 2014 Løsninger

Eksempeloppgaver 2014 Løsninger DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve 1 19 millirder 9 10 = 19 10 = 1,9 10 0,089 10 = 8,9 10 10 = 8,9 10 Oppgve 6 6 8 Prosentvis

Detaljer

S1 kapittel 4 Logaritmer Løsninger til oppgavene i boka

S1 kapittel 4 Logaritmer Løsninger til oppgavene i boka Løsninger til oppgvene i ok S kpittel 4 Logritmer Løsninger til oppgvene i ok 4. Vi leser v fr tllet 4 på y-ksen og ser t vi får den tilhørende verdien,6 på -ksen. lg 4,6 Vi leser v fr tllet,5 på y-ksen

Detaljer

Eksamen i matematikk løsningsforslag

Eksamen i matematikk løsningsforslag Eksamen i matematikk 101 - løsningsforslag BOKMÅL Emnekode: MAT101 Eksamen Tid: 4 timer Dato: 24.10.2016 Hjelpemidler: Kalkulator, linjal, tegne- og skrivesaker Studiested: Notodden og nett Antall sider:

Detaljer

JULETENTAMEN 2016, FASIT.

JULETENTAMEN 2016, FASIT. JULETENTAMEN 2016, FASIT. DELPRØVE 1. OPPGAVE 1 709 + 2598 = 3307 540-71 = 469 c: 2,9. 3,4 116 870 9,86 d: 30,6 : 0,6 = 306 : 6 = 51 30 6 6 OPPGAVE 2 440 kr 4 = 110 kr c: 7 4 7 2 = 7 4+2 =7 6 (Godtar også:

Detaljer

Løsningsforslag heldagsprøve 1T 19.05.2011 DEL 1 OPPGAVE 1. a1) Regn ut 10 8 2 2 3 2 2 3 10 8 2 2 3 2 2 3 10 8 2 2 1 10 32 22 22.

Løsningsforslag heldagsprøve 1T 19.05.2011 DEL 1 OPPGAVE 1. a1) Regn ut 10 8 2 2 3 2 2 3 10 8 2 2 3 2 2 3 10 8 2 2 1 10 32 22 22. c) Løs likningen 6 4 x 4 x 6 4 x 4 x Løsningsforslag heldagsprøve 1T 19.05.011 DEL 1 OPPGAVE 1 a1) Regn ut 10 8 3 3 10 8 3 3 10 8 1 10 3 a) 3 5 4 5 3 5 5 4 5 3 5 5 3 5 5 4 5 1 3 5 1 5 1 1 3 1 5 1 3 3 5

Detaljer

Løsning eksamen R1 våren 2009

Løsning eksamen R1 våren 2009 Løsning eksamen R1 våren 009 Oppgave 1 a) 1) f( ) ( 1) 4 f ( ) 4( 1) ( 1) 4( 1) 8 ( 1) ) g ( ) e 3 3 3 g( ) e ( e ) 1 e e ( ) 1e e (1) e b) ( ) lim lim lim ( ) 4 4 4 ( ) ( ) ( ) ( ) c) ( ) ( ) ( ) ( )

Detaljer

1.7 Digitale hjelpemidler i geometri

1.7 Digitale hjelpemidler i geometri 1.7 Digitale hjelpemidler i geometri Geometri handler om egenskapene til punkter, linjer og figurer i planet og i rommet. I alle tider har blyant og papir samt passer og linjal vært de viktigst hjelpemidlene

Detaljer

2 Tallregning og algebra

2 Tallregning og algebra Tllregning og lger KATEGORI. Regnerekkefølge Oppgve.0 Regn uten digitlt hjelpemiddel. + ( + ) ( ) Oppgve. Regn uten digitlt hjelpemiddel. Oppgve. Regn ut med og uten digitlt hjelpemiddel. + (7 + ) ( 9)

Detaljer

Kapittel 5. Lengder og areal

Kapittel 5. Lengder og areal Kapittel 5. Lengder og areal Mål for Kapittel 5, Lengder og areal. Kompetansemål Mål for opplæringen er at eleven skal kunne bruke og grunngi bruk av formlikhet, målestokk og Pytagoras setning til beregninger

Detaljer

Eksamen våren 2008 Løsninger

Eksamen våren 2008 Løsninger Eksamen våren 008 Løsninger Eksamen våren 008 Løsninger Del Hjelpemidler: Vanlige skrivesaker, passer, linjal med cm-mål og vinkelmåler Oppgave a f x ( ) x ln = x f ( x) = x lnx+ x = xlnx+x x b c ( ) (

Detaljer

Eksamensdato: 25. mai. I del 3 skal du gjøre oppgavene for ditt utdanningsprogram.

Eksamensdato: 25. mai. I del 3 skal du gjøre oppgavene for ditt utdanningsprogram. Lokl gitt eksmen 2012 Eksmen Fg: Mtemtikk 1P for yrkesfg for elever og privtister Fgkode: MAT1001 Eksmensdto: 25. mi Del 1: oppgve 1-5 Del 2: oppgve 6-11 Del 3: oppgve 12-13 I del 3 skl du gjøre oppgvene

Detaljer

1T kapittel 3 Funksjoner Løsninger til oppgavene i læreboka

1T kapittel 3 Funksjoner Løsninger til oppgavene i læreboka 1T kpittel 3 Funksjoner Løsninger til oppgvene i læreok Oppgve 3.1 Origo er skjæringspunktet mellom førsteksen og ndreksen. Koordintene til origo er ltså (0, 0). Førstekoordinten til punktet A er 15, og

Detaljer

1 Mandag 1. mars 2010

1 Mandag 1. mars 2010 Mndg. mrs Fundmentlteoremet sier t integrsjon og derivsjon er motstte opersjoner. Vi hr de siste ukene sett hvordn vi på ulike måter kn derivere funksjoner i flere vrible. Nå er turen kommet til den motstte

Detaljer

Tall i arbeid Påbygging terminprøve våren 2013

Tall i arbeid Påbygging terminprøve våren 2013 Tll i rei Påygging terminprøve våren 2013 DEL 1 Uten hjelpemiler Hjelpemiler: vnlige skrivesker, psser, linjl me entimetermål og vinkelmåler Oppgve 1 Skriv tllene på stnrform. 1 0,000 00015 2 19,6 millirer

Detaljer

Matematikk GS3 Temaer våren 2013 DEL 1: GEOMETRI. 1. Måleenheter. 1.1 Lengdeenheter. 1.2 Arealenheter. Eksempel 1: Gjør om 5 m til dm, cm og mm

Matematikk GS3 Temaer våren 2013 DEL 1: GEOMETRI. 1. Måleenheter. 1.1 Lengdeenheter. 1.2 Arealenheter. Eksempel 1: Gjør om 5 m til dm, cm og mm Matematikk GS3 Temaer våren 2013 DEL 1: GEOMETRI 1. Måleenheter 1.1 Lengdeenheter Eksempel 1: Gjør om 5 m til dm, cm og mm m dm 5 m = 5 10 dm = 50 dm m cm 5 m = 5 10 10 cm = 5 10 2 cm = 500 cm m mm 5 m

Detaljer

Eksamen 1P våren 2011

Eksamen 1P våren 2011 Eksamen 1P våren 011 Del 1: Uten hjelpemidler Oppgave 1 a) Når kursen på islandske kroner er 5,5, svarer 500 ISK til 5, 5 kr 500 = 6, 5 kr 100 b) Hvis vi setter kursen på islandske kroner til 5, blir omregningen

Detaljer

Kapittel 5. Lengder og areal

Kapittel 5. Lengder og areal Kapittel 5. Lengder og areal Dette kapitlet handler om å: Beregne sider i rettvinklede trekanter med Pytagoras setning. Beregne omkrets av trekanter, firkanter og sirkler. Beregne areal av enkle figurer,

Detaljer

Juleprøve trinn Del 1 Navn:

Juleprøve trinn Del 1 Navn: Juleprøve 2014 10. Del 1 Nvn: Informsjon for del 1 1 Prøvetid 5 timer totlt. Del1 og Del 2 skl deles ut smtidig. Del 1 skl du levere innen 2 timer. Hjelpemidler i del 1 Andre opplysninger Del 2 skl du

Detaljer

Oppgaver i matematikk, 9-åringer

Oppgaver i matematikk, 9-åringer Oppgver i mtemtikk, 9-åringer Her er gjengitt e frigitte oppgvene fr TIMSS 2003. For 4. klsse enyttes nå etegnelsen mønstre for et som i 1995 le omtlt som lger. Oppgvene er innelt i isse emnene: Tll Geometri

Detaljer

Løsningsforslag til avsluttende eksamen i HUMIT1750 høsten 2003.

Løsningsforslag til avsluttende eksamen i HUMIT1750 høsten 2003. Løsningsforslg til vsluttende eksmen i HUMIT1750 høsten 2003. Teksten under hr litt litt prtsom fordi jeg hr villet forklre hvordn jeg gikk frm. Fr en studentesvrelse le det ikke forventet nnet enn sluttresulttene.

Detaljer

Terminprøve Matematikk Påbygging høsten 2014

Terminprøve Matematikk Påbygging høsten 2014 Terminprøve høsten 2014 Terminprøve Mtemtikk Påygging høsten 2014 DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler Oppgve 1 Regn ut 3 3 3 4 1 3 3 2

Detaljer

5: Algebra. Oppgaver Innhold Dato

5: Algebra. Oppgaver Innhold Dato 5: Alger Pln resten v året: - Kpittel 6: Ferur - Kpittel 7: Ferur/mrs - Kpittel 8: Mrs - Repetisjon: April/mi - Eventuell offentlig eksmen: Mi - Økter, prøver, prosjekter: Mi - juni For mnge er egrepet

Detaljer

1 Algebra. 1 Skriv disse uttrykkene så enkelt som mulig: a) 2(a + 3) (3 + 3a) b) 2(1 a) + a(2 + a) c) 1 + 2(1 3a) + 5a d) 4a 3ab 2(a 5b) + 3(ab 2b)

1 Algebra. 1 Skriv disse uttrykkene så enkelt som mulig: a) 2(a + 3) (3 + 3a) b) 2(1 a) + a(2 + a) c) 1 + 2(1 3a) + 5a d) 4a 3ab 2(a 5b) + 3(ab 2b) Alger Skriv disse uttrykkene så enkelt som mulig c 5 d 5 Multipliser ut og gjør svrene så enkle som mulige c c c c d e f g h 5 i Regn ut 5 Regn ut og vis frmgngsmåten 5 c Regn ut og vis frmgngsmåten 5

Detaljer

Oppgaver i kapittel 6

Oppgaver i kapittel 6 Oppgaver i kapittel 6 603, 604, 606, 607, 608, 609, 610, 616, 619, 68, 630, 63, 633, 641 Jeg har ikke laget figurer på alle oppgavene, men det bør dere gjøre! 603 u og 70 er begge periferivinkler til v,

Detaljer

Løsningsforslag til del 2 av oppgavesettet Geometri i Sirkel oppgavebok 10B, kapittel 6

Løsningsforslag til del 2 av oppgavesettet Geometri i Sirkel oppgavebok 10B, kapittel 6 Geometri Del Løsningsforslag til del av oppgavesettet Geometri i Sirkel oppgavebok 10B, kapittel 6 Oppgave.1 a Lengden til golvet på tegningen blir: 400 cm 8cm Bredden til golvet på tegningen blir: 300

Detaljer

E.1: Kunne regne ut areal av formlike figurer når målestokken er oppgitt, med omgjøring av enheter E.2: Kunne anvende regelen om samsvarende

E.1: Kunne regne ut areal av formlike figurer når målestokken er oppgitt, med omgjøring av enheter E.2: Kunne anvende regelen om samsvarende 11. mai 2014 INNHOLD INNHOLD... 2 INNLEDNING... 4 STEGARK... 5 GJENNOMGANG AV HVERT STEG... 11 NIVÅ A: FINNE LENGDER I FORMLIKE FIGURER NÅR MÅLESTOKKEN ER OPPGITT13 A.1: En figur, hvor minst en lengde

Detaljer

a 5 (2 + 8) d 5 (2 + 8) 4 g b 3 5 (2 + 8) e h 3 ( ) j Begrunn hvorfor du ikke får samme svar på oppgave b og g.

a 5 (2 + 8) d 5 (2 + 8) 4 g b 3 5 (2 + 8) e h 3 ( ) j Begrunn hvorfor du ikke får samme svar på oppgave b og g. Mtemtikk for ungomstrinnet KAPITTEL 4 TALL OG ALGEBRA MER ØVING Oppgve 1 Oppgve 2 Se på uttrykket A = g h. Hv forteller e ulike okstvene? Se på uttrykket O = 2π. Hv står e ulike symolene for? Forklr hv

Detaljer

1 k 2 + 1, k= 5. i=1. i = k + 6 eller k = i 6. m+6. (i 6) i=1

1 k 2 + 1, k= 5. i=1. i = k + 6 eller k = i 6. m+6. (i 6) i=1 TMA4 Høst 6 Norges teknisk nturvitenskpelige universitet Institutt for mtemtiske fg Løsningsforslg Øving 5 5..6 Vi er gitt summen og ønsker å skrive den på formen m k=5 k +, f(i). i= Strtpunktene er henholdsvis

Detaljer

Kapittel 5. Lengder og areal

Kapittel 5. Lengder og areal Kapittel 5. Lengder og areal Mål for Kapittel 5, Lengder og areal. Kompetansemål Mål for opplæringen er at eleven skal kunne bruke og grunngi bruk av formlikhet, målestokk og Pytagoras setning til beregninger

Detaljer

Eneboerspillet. Håvard Johnsbråten

Eneboerspillet. Håvard Johnsbråten Håvrd Johnsråten Eneoerspillet Når vi tenker på nvendelser i mtemtikken, ser vi gjerne for oss Pytgors læresetning eller ndre formler som vi kn ruke til å eregne lengder, reler, kostnder osv. Men mer strkte

Detaljer

R1 kapittel 1 Algebra

R1 kapittel 1 Algebra Løsninger til oppgvene i ok R1 kpittel 1 Alger Løsninger til oppgvene i ok Oppgve 1.1 1 8 4 ( ) 15 5 (4 ) 7 1 7 ( ) d ( )( ) ( 4)( ) ( ) ( 4) ( )( 1) Oppgve 1. 49 7 ( 7)( 7) 5 5 5 5 1y 75 (4y 5) ( y) 5

Detaljer

Fasit. Grunnbok. Kapittel 4. Bokmål

Fasit. Grunnbok. Kapittel 4. Bokmål Fsit Grunnok Kpittel 4 Bokmål Kpittel 4 Kvdrtiske funksjoner ndregrdsfunksjoner 4.1 Stigningstll Skjæring -kse Skjæring y-kse 4 ( 2, 0) (0, 8) 1 (1, 0) (0, 1) 1 (9, 0) (0, 3) 3 4.5 y = + = 0, y =, y =

Detaljer

Løsningsforslag til prøveeksamen i MAT101 høsten 2016

Løsningsforslag til prøveeksamen i MAT101 høsten 2016 Løsningsforslag til prøveeksamen i MAT101 høsten 2016 Oppgave 1 (vekt 30 %) a) Gjør om tallene til det angitte tallsystemet i) 754 ni = ti ii) 255 ti = syv i) 754 ni = 7 9 2 + 5 9 + 4 = 616 ii) 255 ti

Detaljer

Kvalifiseringstjenesten Tentamen matematikk GS3 22. 04. 2013

Kvalifiseringstjenesten Tentamen matematikk GS3 22. 04. 2013 Tentamen matematikk GS3 Mandag 22. april 2013 DEL 1 Excel Oppgave 1. Hans låner 90 000 kr i banken til 4 % rente pr år. Nedbetalingstiden for lånet er 6 år. a) Lag tabellen nedenfor i Excel. År % rente

Detaljer

Faktorisering. 1 Hva er faktorisering? 2 Hvorfor skal vi faktorisere? Per G. Østerlie Senter for IKT i utdanningen 11.

Faktorisering. 1 Hva er faktorisering? 2 Hvorfor skal vi faktorisere? Per G. Østerlie Senter for IKT i utdanningen 11. Fktorisering Per G. Østerlie Senter for IKT i utdnningen per@osterlie.no 11. mi 013 1 Hv er fktorisering? Vi må se på veret å fktorisere. Hv er det vi skl gjøre når vi fktoriserer? Svret er: å lge fktorer.

Detaljer

1P kapittel 2 Algebra

1P kapittel 2 Algebra 1P kapittel Algera Løsninger til oppgavene i oka.1 a a+ a a 5+ 4 9 c 8c 6c c d d d 0d 0. a + + 5+ 4+ 10 c 5 9 4 d 4 7. a 7 5+ + 8 5+ 8+ 7 + + 10 5y+ + y + 5y+ y 4 4y c 8y 8y + 8y 8y 4+ 0y 4.4 7r+ 10h+

Detaljer

Årsprøve i matematikk for 9. trinn Kannik skole

Årsprøve i matematikk for 9. trinn Kannik skole Årsprøve i matematikk for 9. trinn Kannik skole Våren 2013 bokmål Navn: Gruppe: Informasjon Oppgavesettet består av to deler hvor alle oppgaver skal besvares. Del 1 og del 2 blir delt ut samtidig, men

Detaljer

Regn i hodet. a) 15 : 3 = b) 24 : 6 = c) 36 : 4 = d) 48 : 8 = Regn i hodet. a) 21 : 3 = b) 28 : 7 = c) 49 : 7 = d) 64 : 8 =

Regn i hodet. a) 15 : 3 = b) 24 : 6 = c) 36 : 4 = d) 48 : 8 = Regn i hodet. a) 21 : 3 = b) 28 : 7 = c) 49 : 7 = d) 64 : 8 = 10 Divisjon 2 1 Regn i hodet. ) 15 : 3 = b) 24 : 6 = c) 36 : 4 = d) 48 : 8 = 2 Regn i hodet. ) 21 : 3 = b) 28 : 7 = c) 49 : 7 = d) 64 : 8 = 3 ) 39 : 3 = b) 56 : 4 = c) 96 : 8 = d) 98 : 7 = 4 Gi svret med

Detaljer

1P kapittel 3 Funksjoner

1P kapittel 3 Funksjoner Løsninger til oppgvene i ok 1P kpittel 3 Funksjoner Løsninger til oppgvene i ok 3.1 Origo hr koordintene (0, 0). Vi finner koordintene til punktene ved å lese v punktets verdi på x-ksen og y-ksen. A =

Detaljer

1.9 Oppgaver Løsningsforslag

1.9 Oppgaver Løsningsforslag til Oppgaver 19 19 Oppgaver 191 (Eksamen i grunnskolen 1993) a I et parallellogram ABCD er avstanden mellom de parallelle sidene AB og CD 5,0 cm Konstruer parallellogrammet når siden AB=9,0 cm og A = 45

Detaljer

Løsningsforslag til oppgavene i avsnitt 1.15

Løsningsforslag til oppgavene i avsnitt 1.15 til oppgver... til oppgvene i vsnitt.... August 00, oppgve Linjestykket er gitt Gitt et kvdrt ABCD der AB. Punktet E på BC og punktet F på CD ligger slik t AE BF. AE og BF skjærer hverndre i M. Konstruer

Detaljer

1 Tall og variabler. Oppgave Regn ut uten lommeregner. Oppgave Sett inn symbolet eller i de tomme rutene. a) 9 N b) π Q c) 3 R

1 Tall og variabler. Oppgave Regn ut uten lommeregner. Oppgave Sett inn symbolet eller i de tomme rutene. a) 9 N b) π Q c) 3 R Tll og vribler. TALL OG TALLREGNING Oppgve.0 Sett inn smbolet eller i de tomme rutene. ) N π Q R Oppgve. Sett inn smbolet eller i de tomme rutene. { } { π } ), 0,,,,,,, Oppgve. Skriv disse mengdene på

Detaljer

Fasit til øvingshefte

Fasit til øvingshefte Fasit til øvingshefte Matematikk Ungdomstrinn/VGS Geometri Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren fasit Matematikk U-trinn/VGS Geometri 1 Geometri Seksjon 1 Oppgave 1.1 Finn omkrets

Detaljer

3Geometri. Mål. Grunnkurset K 3

3Geometri. Mål. Grunnkurset K 3 Geometri Mål Når du er ferdig med grunnkurset, skal du kunne finne speilingssymmetri og rotasjonssymmetri i figurer i planet kjenne til vinkelsummen i en trekant, komplementærvinkler, supplementvinkler,

Detaljer

Lokal gitt eksamen 2012. Del 1: oppgave 1-5 Del 2: oppgave 6-10 Del 3: oppgave 11-12 I del 3 skal du gjøre oppgavene for ditt utdanningsprogram.

Lokal gitt eksamen 2012. Del 1: oppgave 1-5 Del 2: oppgave 6-10 Del 3: oppgave 11-12 I del 3 skal du gjøre oppgavene for ditt utdanningsprogram. Lokl gitt eksmen 2012 Eksmen Fg: Mtemtikk 1P-Y for elever og privtister Fgkode: MAT1001 Eksmensdto: 15. jnur 2013 Del 1: oppgve 1-5 Del 2: oppgve 6-10 Del 3: oppgve 11-12 I del 3 skl du gjøre oppgvene

Detaljer

Effektivitet og fordeling

Effektivitet og fordeling Effektivitet og fordeling Vi skl svre på spørsmål som dette: Hv etyr det t noe er smfunnsøkonomisk effektivt? Er det forskjell på smfunnsøkonomisk og edriftsøkonomisk effektivitet? Er det en motsetning

Detaljer