Utkast til løsningsforslag til eksamen i emnet MAT Lineær algebra Utan ansvar for feil og mangler Mandag 31. mai 2010, kl

Størrelse: px
Begynne med side:

Download "Utkast til løsningsforslag til eksamen i emnet MAT 121 - Lineær algebra Utan ansvar for feil og mangler Mandag 31. mai 2010, kl. 09-14."

Transkript

1 Utkast til løsningsforslag til eksamen i emnet MAT 2 - Lineær algebra Utan ansvar for feil og mangler Mandag 3. mai 2, kl Oppgave En bisverm flyr mellom to kuber, A og B, på dagtid, og hver bi blir i en av kubene om natten. La v n = [a n b n ] T R 2, hvor a n er antall bier i kube A og b n er antall bier i kube B i natt n. La s være sannsynligheten for at en bi som overnatter i kube A en natt vil overnatte der neste natt, og la s 22 være den samme sannsynligheten mhp. kube B, slik at v n+ = Sv n, hvor [ ] s S = s 22. s s 22 Du kan anta at både s og s 22 er i det lukkede intervallet [, ]. a) Vis at [ ] T er en egenvektor for S. Hva er den tilhørende egenverdien? [ ] [ ] [ ] [ s S = s 22 s + s = 22 = ( + s s s 22 + s + s + s 22 ) 22 så [ ] T er en egenvektor med egenverdi + s + s 22. b) For hvilke verdier av s og s 22 er S diagonaliserbar? For hvilke verdier av s og s 22 er S ortogonalt diagonaliserbar? Matrisen S er diagonaliserbar om der er to lineært uavhengige egenvektorer. Det karakteristiske polynomet til S er det(s λi) =(s λ(s 22 λ) ( s )( s 22 ) = λ 2 (s + s 22 )λ + s + s 22 =(λ )(λ + s s 22 ), så egenverdiene er og + s + s 22. Egenvektorer med forskjellige egenverdier er lin. uavh. så om + s + s 22 er S diagonaliserbar. Ellers, dvs. når = + s + s 22 må vi ha at s = s 22 = siden både s og s 22 ligger i [, ]. Da er S identitetsmatrisen, som jo er diagonal. Derfor er S alltid diagonaliserbar. Matrisen S er ortogonalt diagonaliserbar hvis og bare hvis den er symmetrisk, noe som skjer nøyaktig når s 22 = s, dvs. når s = s 22. c) Vil biefordelingen nærme seg en likevektstilstand? Vi så at den ene egenverdien var, mens den andre egenverdien var + s + s 22 som ligger i [, ]. Når +s +s 22 < vil bidraget fra den tilhørende egenverdien gå mot null eftersom tiden går, og likevektstilstanden blir en egenvektor med egenverdi. Skrevet med symboler: om v = x+y der x er en egenvektor med egenverdi og y er en egenvektor med egenverdi +s +s 22 vil v n = S n v = S n x+s n y = x+( +s +s 22 ) n y. Om +s +s 22 < vil ( +s +s 22 ) n gå mot null når n går mot, så v n vil nærme seg likevektstilstanden x. Om + s + s 22 = blir S = I og alle tilstander er likevektstilstander (v n = v ). ],

2 2 Om + s + s 22 = ser vi at om v = x + y der x er en egenvektor med egenverdi og y er en egenvektor med egenverdi vil v n = x + ( ) n y, så v n vil hoppe mellom x + y og x y, og vi beveger oss ikke mot en likevektstilstand med mindre y =, altså med mindre v = x er en egenvektor med egenverdi. d) For noen sannsynligheter er S ikke invertibel. Hvordan vil det påvirke biefordelingen ettersom tiden går? Det at S ikke er invertibel vil si at er en egenverdi (så s + s 22 = ). Dermed har S egenverdiene og. Om vi dekomponerer v = x+y der x er en egenvektor med egenverdi og y er en egenvektor med egenverdi, er Sv = Sx + Sy = x, og dermed er S n v = x for alle n >. Vi vil altså oppnå likevektstilstanden allerede ved den første natten. Betrakt matrisen A = a) Finn den reduserte trappeformen til A Oppgave /2 2 b) Finn en basis for nullrommet Nul(A). Hva er dimensjonen? Løser vi den homogene ligningen til den reduserte trappeformen finner vi at 3/2 2 er en er en basis, og dimensjonen til nullrommet er én. c) Finn den generelle løsningen til ligningen Ax = [ 3 7] T /2 7/2 2 8

3 3 så den generelle løsningen (med x 3 som parameter) er 7/2 8 + x 3 3/2 2 d) Finn en basis for søylerommet Col(A). Hva er rangen til A? Om vi velger pivotsøylene i A har vi en basis: 6 4 2, 3 3, og rangen blir altså 2. e) Finn en ortogonal basis for Col(A). Bruker Gram-Schmidt til å gjøre basisen over ortogonal: v = [ 6 4 2] T, v 2 = 3 3 proj Span{v 3 } 3 = 3 3 [ 3 3 ]T v v T v v = = , og {v,v 2 } er en ortogonal basis for Col(A). (Det kan være lurt å droppe 3/4 og sjekke direkte at v v 2 = og at basisvektorene vi fant for Col(A) virkelig er lineærkombinasjoner av v og v 2 ). Om vi hadde vært litt lurere i vårt valg av basis for Col(A) kunne vi ha spart litt regning: Col(A) er todimensjonalt, så to vilkårlige lineært uavhengige vektorer i Col(A) danner en basis. Plukk f.eks. /3 av de to siste søylene: {[ ] T, [ ] T } er en basis for Col(A) og 2 ]T }. GS gir den ortogonale basisen {[ ] T, [ 2 f) Finn alle egenverdier og egenvektorer for A. Finner først det karakteristiske polynomet (determinanten er regnet ut langs siste søyle: det(a λi) =( 6 λ)(3 λ)(3 λ) + 3(4(3 λ)) + 3(2(3 λ)) =(3 λ)(3λ + λ 2 ) = (3 λ)(3 + λ)λ, så egenverdiene er 3, og 3. Finner egenrommene (egenvektorene er ikkenull-vektorene i disse).

4 4 λ = 3 : Nul(A + 3I) = Nul( λ = : λ = 3 : Nul(A I) = Nul(A) = Span({ Nul(A 3I) = Nul( ) = Nul( }) ) = Span({ 3 2 }) ) = Nul( ) = Span({ }) (det er lurt å sjekke direkte at disse vektorene er egenvektorer!). g) Hva vil det si at en matrise er diagonaliserbar? Er A diagonaliserbar? En n n-matrise er M diagonaliserbar om der finnes en invertibel matrise P og en diagonal matrise D slik at M = PDP. Dette er det samme som å si at R n har en basis av egenvektorer for M. Da egenvektorer med forskjellig egenverdi er lineært uavhengige, vil en n n matrise med n forskjellige egenverdier være diagonaliserbar. Vi fikk at 3 3-matrisen A har tre forskjellige egenverdier, så er A diagonaliserbar. La s = 3/2 og betrakt A = s 2 s s s s s 2 Oppgave 3, and b = a) Finn en minste kvadraters (least squares) metode løsning til Ax = b. Er der mer enn en løsning? Vi må løse ligningen A T A x = A T b. Merk at A T A = 3I og A T b = [ ] T, så x = 3 [ ]T. At dette er den eneste løsningen er klart da A T A er invertibel. [Alternativt kan man appellere til resultatet i boken som sier at minste kvadraters metode har entydig løsning presist når søylene i A er lineært uavhengige, og det er de i dette tilfellet (de er til og med ortogonale).] Betrakt undermengden B = {sin x, sin 2x, sin 3x} av vektorrommet av reelle funksjoner, og betrakt underrommet V = Span B. I denne oppgaven kan du bruke følgende tabell, hvor s = 3/2. x π/6 π/3 π/2 2π/3 5π/6 sin x s s 2 2. sin 2x s s s s sin 3x.

5 5 b) Hvorfor er B en basis for V? Siden V = Span B, må vi vise at B er lineært uavhengig, altså, at om en lineærkombinasjon f(x) = a sin x + b sin 2x + c sin 3x er nullfunksjonen, så er a = b = c =. Nullfunksjonen tar verdien null overalt, så vi får = f(π/3) f(π/2) f(2π/3) = as + bs a c as bs = s s s s som kun har null-løsningen (matrisen er invertibel, noe som vi f.eks. kan se ved å regne ut at determinanten er s 2 ). c) Betrakt lineærtransformasjonen S : R 3 V gitt ved S a b = a sin x + b sin 2x + c sin 3x. c Hva er sammenhengen mellom S og koordinatavbildningen (the coordinate mapping) [ ] B : V R 3? Er S en isomorfi? Koordinatavbildningen [ ] B : V R 3 er gitt ved at [a sin x + b sin 2x + c sin 3x] B = og vi ser at [S(v)] B = v og S([f(x)] B ) = f(x). Altså er S inversfunksjonen til koordinatavbildningen. Siden S er inversen til en linærtransformasjon er den invertibel, og altså en isomorfi. d) La D: V V være gitt ved dobbeltderivering: D(f) = f. Finn matrisen [D] B til D relativt til basisen B. Matrisen til D relativt til basisen B tilfredsstiller [D] B [f(x)] B = [D(f(x))] B (illustrert ved tegningen D V R 3 [ ] B [ ] B, R 3 [D] B a b c, a b c R 3 hvor den nederste lin. trafo. er gitt ved multiplikasjon med [D] B ), og finnes ved [D] B =[[D(sin x)] B, [D(sin 2x)] B, [D(sin3x)] B ] =[[ sin x] B, [ 4 sin 2x] B, [ 9 sin 3x] B ] = e) Betrakt lineær transformasjonen E : V R 5 gitt ved 4 9 E(f(x)) = [f(π/6) f(π/3) f(π/2) f(2π/3) f(5π/6)] T. Forklar hvorfor matrisen A gitt ovenfor er matrisen til E relativt til basisene B og standard basisen i R 5.,

6 6 Forklar på hvilken måte en minste kvadraters metode løsning til Ax = b, hvor x = [a bc] T, gir en god løsning på problemet å finne en funksjon f(x) = a sin x+b sin 2x+c sin 3x som passer til observasjonene x π/6 π/3 π/2 2π/3 5π/6 y. Betrakt V E R 5 [ ] B. R 3 R 5 De vertikale lineærtransformasjonene er koordinatavbildningene til hhv. B og standardbasisen i R 5 (den siste lineærtransformasjonen er identiteten!). Matrisen til E relativt til basisene B og standard basisen i R 5 er matrisen til lineærtransformasjonen vi får ved å starte i nederste venstre hjørne og gå til nederste høyre hjørne. Søylene i denne matrisen er bildene av vektorene i standard basisen i R 3 : [E(S(e )) E(S(e 2 )) E(S(e 3 ))] = [E(sin x) E(sin 2x) E(sin 3x)], (S er inversen til [ ] B ) noe som gir A ved å sette rett inn. En minste kvadraters metode løsning av Ax = b gir en vektor x = [a bc] T som gjør at A x b 2 blir så liten som mulig. Merk at om f(x) = a sin x + b sin 2x + c sin 3x, så er E(f(x)) = A[f(x)] B = A x, så minste kvadraters metode har funnet de tallene a, b og c slik at E(f(x)) b 2 blir så liten som mulig, dvs. slik at summen av kvadratene av forskjellen mellom verdiene til f(x) og observasjonene blir så liten som mulig.

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra Universitet i Bergen Det matematisk-naturvitenskapelige fakultet Bokmål Eksamen i emnet MAT - Lineær algebra Onsdag 5 september, 0, kl. 09.00-4.00 Tillatte hjelpemidler. kalkulator, i samsvar med fakultetets

Detaljer

Lineær algebra-oppsummering

Lineær algebra-oppsummering Kapittel 9 Lineær algebra-oppsummering Matriser 1 Matriser er et rektangulært sett av elementer ordnet i rekker og kolonner: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij m n a m1 a n2 a mn 2 Kvadratisk matrise:

Detaljer

Lineær algebra. H. Fausk 09.03.2015. i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over.

Lineær algebra. H. Fausk 09.03.2015. i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over. Lineær algebra H. Fausk 09.03.2015 Første utkast Linære likningsystem lar seg løse ved bruk av de elementære regneartene. Selv om løsningen av lineære likingsystem i prinsippet er elementært blir det fort

Detaljer

Emne 10 Litt mer om matriser, noen anvendelser

Emne 10 Litt mer om matriser, noen anvendelser Emne 10 Litt mer om matriser, noen anvendelser (Reelle) ortogonale matriser La A være en reell, kvadratisk matrise, dvs. en (n n)-matrise hvor hvert element Da vil A være ortogonal dersom: og Med menes

Detaljer

Eksamensoppgavehefte 2. MAT1012 Matematikk 2: Mer lineær algebra

Eksamensoppgavehefte 2. MAT1012 Matematikk 2: Mer lineær algebra Eksamensoppgavehefte 2 MAT1012 Matematikk 2: Mer lineær algebra Matematisk institutt, UiO, våren 2010 I dette heftet er det samlet et utvalg av tidligere eksamensoppgaver innenfor temaet Lineær algebra

Detaljer

Løsningsforslag. e n. n=0. 3 n 2 2n 1. n=1

Løsningsforslag. e n. n=0. 3 n 2 2n 1. n=1 Eksamen i BYPE2000 - Matematikk 2000 Dato: 6. juni 2014 Målform: Bokmål Antall oppgaver: 7 (20 deloppgaver) Antall sider: 4 Vedlegg: Noen formler Hjelpemiddel: Ingen Alle svarene skal grunngis. Alle deloppgavene

Detaljer

Lineær Algebra og Vektorrom. Eivind Eriksen. Høgskolen i Oslo, Avdeling for Ingeniørutdanning

Lineær Algebra og Vektorrom. Eivind Eriksen. Høgskolen i Oslo, Avdeling for Ingeniørutdanning Lineær Algebra og Vektorrom Eivind Eriksen Høgskolen i Oslo, Avdeling for Ingeniørutdanning c Eivind Eriksen 2005. Innhold Kapittel 1. Lineære likningssystemer 1 1.1. Lineære likningssystemer i to variable

Detaljer

Digital Arbeidsbok i ELE 3719 Matematikk

Digital Arbeidsbok i ELE 3719 Matematikk Eivind Eriksen Digital Arbeidsbok i ELE 3719 Matematikk 3. april 215 Handelshøyskolen BI Innhold Del I Forelesninger i ELE3719 Matematikk 1 Vektorer og vektorregning......................................

Detaljer

Forelesning 14 Systemer av dierensiallikninger

Forelesning 14 Systemer av dierensiallikninger Forelesning 14 Systemer av dierensiallikninger Eivind Eriksen 9. april 010 Dierensiallikninger En dierensiallikning inneholder en avhengig variabel (typisk y ) og en uavhengig variabel (typisk x), som

Detaljer

Forelesning 10 Cramers regel med anvendelser

Forelesning 10 Cramers regel med anvendelser Forelesning 10 Cramers regel med anvendelser Eivind Eriksen 25. mars 2010 Lineære likningssystemer Vi minner om at ethvert lineært likningssystem Ax = b kan løses ved hjelp av Gauss eliminasjon, som er

Detaljer

Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 24. april 2014 før forelesningen Antall oppgaver: 9

Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 24. april 2014 før forelesningen Antall oppgaver: 9 Innlevering BYPE000 Matematikk 000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 4. april 014 før forelesningen Antall oppgaver: 9 1 Regn ut determinanten til følgende matriser. (Det er også

Detaljer

Emne 9. Egenverdier og egenvektorer

Emne 9. Egenverdier og egenvektorer Emne 9. Egenverdier og egenvektorer Definisjon: Vi starter med en lineær transformasjon fra til, hvor Dersom, hvor, sier vi at: er egenverdiene til A er tilhørende egenvektorer. betyr at er et reelt eller

Detaljer

DAFE ELFE Matematikk 1000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 26. mars 2015 Antall oppgaver: 10 + 3

DAFE ELFE Matematikk 1000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 26. mars 2015 Antall oppgaver: 10 + 3 Innlevering DAFE ELFE Matematikk HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 26. mars 2 Antall oppgaver: + 3 For hver av matrisene nedenfor nn den ekvivalente matrisen som er på redusert

Detaljer

5.6 Diskrete dynamiske systemer

5.6 Diskrete dynamiske systemer 5.6 Diskrete dynamiske systemer Egenverdier/egenvektorer er viktige for å analysere systemer av typen x k+1 = A x k, k 0, der A er en kvadratisk diagonaliserbar matrise. Tenker her at x k angir systemets

Detaljer

Emne 7. Vektorrom (Del 1)

Emne 7. Vektorrom (Del 1) Emne 7. Vektorrom (Del 1) Første del av dette emnet innholder lite nytt regnemessig, men vi innfører en rekke nye begreper. Avbildning (image). R m T R n n image(t) Vi kan starte med samme skjematiske

Detaljer

3x + 2y 8, 2x + 4y 8.

3x + 2y 8, 2x + 4y 8. Oppgave En møbelfabrikk produserer bord og stoler Produksjonen av møbler skjer i to avdelinger, avdeling I og avdeling II Alle møbler må innom både avdeling I og avdeling II Det å produsere et bord tar

Detaljer

Løsningsforslag eksamen STE 6038 Geometrisk modellering 9/8 1995

Løsningsforslag eksamen STE 6038 Geometrisk modellering 9/8 1995 Løsningsforslag eksamen STE 638 Geometrisk modellering 9/8 995. a) Vi skal bestemme hvilke av avbildningene/transformasjonene som er homeomorfier. f 4 6 Determinanten til matrisen er lik, dvs at den har

Detaljer

QED 1 7. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 1 Tallenes hemmeligheter

QED 1 7. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 1 Tallenes hemmeligheter QED 1 7 Matematikk for grunnskolelærerutdanningen Bind 2 Fasit kapittel 1 Tallenes hemmeligheter Kapittel 1 Oppgave 8. Nei Oppgave 9. Det nnes ikke nødvendigvis et minste element i mengden. Et eksempel

Detaljer

3.9 Teori og praksis for Minste kvadraters metode.

3.9 Teori og praksis for Minste kvadraters metode. 3.9 Teori og praksis for Minste kvadraters metode. Vi fortsetter med minste kvadraters problem. Nå skal vi se nærmere på noen teoretiske spørsmål, bl.a. hvordan normallikningene utledes. Minner om MK problemstillingen:

Detaljer

Tiden går og alt forandres, selv om vi stopper klokka. Stoffet i dette kapittelet vil være en utømmelig kilde med tanke på eksamensoppgaver.

Tiden går og alt forandres, selv om vi stopper klokka. Stoffet i dette kapittelet vil være en utømmelig kilde med tanke på eksamensoppgaver. Kapittel 4 Anvendelser av lineære likningssystemer Tiden går og alt forandres, selv om vi stopper klokka Stoffet i dette kapittelet vil være en utømmelig kilde med tanke på eksamensoppgaver 4 Populasjonsdynamikk

Detaljer

tilfeller tatt for gitt ved universiteter og høyskoler. Her er framstillingen kortfattet, meningen er at dette kan brukes som referanse.

tilfeller tatt for gitt ved universiteter og høyskoler. Her er framstillingen kortfattet, meningen er at dette kan brukes som referanse. Forord Denne læreboken gir en innføring i lineær algebra, rettet mot begynnerkurs på Universitets- og Høyskolenivå. Arbeidet med dette stoffet tok til som en del av et større prosjekt, som omfattet datastøttet

Detaljer

Obligatorisk innlevering 2 - MA 109

Obligatorisk innlevering 2 - MA 109 Obligatorisk innlevering 2 - MA 9 Skriv fullt navn og studentnummer øverst på besvarelsen. Du skal bruke sifrene fra studentnummeret i besvarelsen. Studentnummeret ditt er E. Er studentnummeret ditt da

Detaljer

Løsningsforslag Prøveeksamen i MAT-INF 1100, Høsten 2003

Løsningsforslag Prøveeksamen i MAT-INF 1100, Høsten 2003 Løsningsforslag Prøveeksamen i MAT-INF 1100, Høsten 003 Denne prøveeksamenen har samme format som den virkelige eksamenen, og inneholder oppgaver av samme type og vanskelighetsgrad. Første del av eksamen

Detaljer

Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler:

Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler: Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler: Tallene i en matrise kalles elementer. En matrise har rader (vannrett, horisontalt)

Detaljer

RF5100 Lineær algebra Leksjon 12

RF5100 Lineær algebra Leksjon 12 RF5100 Lineær algebra Leksjon 12 Lars Sydnes, NITH 26. november 2013 I. GAUSS-ELIMINASJON 2x + 3y + z = 1 2x + 5y z = 1 4x + 7y + 4z = 3 x + 3/2 y + 1/2 z = 1/2 x + 2z = 2 y z = 1 3z = 2 x + 2z = 2 y z

Detaljer

Løsningsforslag. Vedlegg C: Kapittel 2. e) Ingen løsning. f) Flere løsninger: x = 4 + 2t, y = t. c) x 1 = 2, x 2 = 3, x 3 = 1

Løsningsforslag. Vedlegg C: Kapittel 2. e) Ingen løsning. f) Flere løsninger: x = 4 + 2t, y = t. c) x 1 = 2, x 2 = 3, x 3 = 1 Vedlegg C: Løsningsforslag Kapittel. a x =, y = 3 b x =, y = 0 cx =, y = 5 d x =, y = 3 e Ingen løsning. f Flere løsninger: x = 4 + t, y = t. a x = 7, x = 6, x 3 = bx =, x =, x 3 = c x =, x = 3, x 3 =.3

Detaljer

Eksamen i MIK130, Systemidentifikasjon

Eksamen i MIK130, Systemidentifikasjon DET TEKNISK - NATURVITENSKAPELIGE FAKULTET Institutt for data- og elektroteknikk Eksamen i MIK130, Systemidentifikasjon Dato: Tirsdag 28. november 2006 Lengde på eksamen: 4 timer Tillatte hjelpemidler:

Detaljer

Talsnes ONE - 995850168 Enhver form for mangfoldiggjørelse av hele eller deler av innholdet av dette materiale er i henhold til norsk lov om

Talsnes ONE - 995850168 Enhver form for mangfoldiggjørelse av hele eller deler av innholdet av dette materiale er i henhold til norsk lov om 1 Eksponentielt vekst: En størrelse vokser eller avtar med en fast prosent per tidsenhet. Eulers tall e: En matematisk konstant, e=2,7 1828.. ln a gir det tallet du må opphøye Eulers tall e i for å få

Detaljer

Funksjoner og andregradsuttrykk

Funksjoner og andregradsuttrykk 88 4 Funksjoner og andregradsuttrykk Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder løse likninger, ulikheter

Detaljer

Gauss-eliminasjon og matrisemultiplikasjon

Gauss-eliminasjon og matrisemultiplikasjon DUMMY Gauss-eliminasjon og matrisemultiplikasjon Lars Sydnes 9 september 2015 Sammendrag Dette notatet handler om hvordan man løser lineære ligningssystemer, altså systemer av flere ligninger i flere ukjente,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 00 Kalkulus. Eksamensdag: Mandag,. desember 006. Tid for eksamen:.30 8.30. Oppgavesettet er på sider. Vedlegg: Tillatte hjelpemidler:

Detaljer

100 ENKLERE OPPGAVER MED HINT OG LØSNINGSFORSLAG I LINEÆR ALGEBRA (OG NOEN I DISKRET MATEMATIKK)

100 ENKLERE OPPGAVER MED HINT OG LØSNINGSFORSLAG I LINEÆR ALGEBRA (OG NOEN I DISKRET MATEMATIKK) ENKLERE OPPGAVER MED HINT OG LØSNINGSFORSLAG I LINEÆR ALGEBRA (OG NOEN I DISKRET MATEMATIKK) EIVIND ERIKSEN, TROND STØLEN GUSTAVSEN, AND HELGE HÜLSEN Introduksjon Dette kompendiet inneholder oppgaver med

Detaljer

MAT 1001. Vår 2010. Oblig 1. Innleveringsfrist: Fredag 19.februar kl. 1430

MAT 1001. Vår 2010. Oblig 1. Innleveringsfrist: Fredag 19.februar kl. 1430 MAT Vår Oblig Innleveringsfrist: Fredag 9februar kl 43 Oppgaven leveres stiftet med forsideark på ekspedisjonskontoret til Matematisk institutt i 7 etg i Niels Henrik Abels hus innen fristen Oppgaven vil

Detaljer

Forkurs, Avdeling for Ingeniørutdanning

Forkurs, Avdeling for Ingeniørutdanning Eksamen i FO929A Matematikk Prøve-eksamen Dato 13. desember 2007 Tidspunkt 09.00-1.00 Antall oppgaver Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 a) Likningen

Detaljer

1 C z I G + + = + + 2) Multiplikasjon av et tall med en parentes foregår ved å multiplisere tallet med alle leddene i parentesen, slik at

1 C z I G + + = + + 2) Multiplikasjon av et tall med en parentes foregår ved å multiplisere tallet med alle leddene i parentesen, slik at Ekstranotat, 7 august 205 Enkel matematikk for økonomer Innhold Enkel matematikk for økonomer... Parenteser og brøker... Funksjoner...3 Tilvekstform (differensialregning)...4 Telleregelen...7 70-regelen...8

Detaljer

Eksamen, høsten 13 i Matematikk 3 Løsningsforslag

Eksamen, høsten 13 i Matematikk 3 Løsningsforslag Eksamen, høsten 3 i Matematikk 3 Løsningsforslag Oppgave. a) Fra ligningen x 5 + y 3 kan vi lese ut store og lille halvakse a 5 og b 3. Fokus til senter avstanden er da gitt ved c a b 5 3 5 9 6 4. ermed

Detaljer

MAT 100a - LAB 3. Vi skal først illustrerere hvordan Newtons metode kan brukes til å approksimere n-te roten av et positivt tall.

MAT 100a - LAB 3. Vi skal først illustrerere hvordan Newtons metode kan brukes til å approksimere n-te roten av et positivt tall. MAT 100a - LAB 3 I denne øvelsen skal vi bruke Maple til å illustrere noen anvendelser av derivasjon, først og fremst Newtons metode til å løse likninger og lokalisering av min. og max. punkter. Vi skal

Detaljer

Matematikk R1 Oversikt

Matematikk R1 Oversikt Matematikk R1 Oversikt Lars Sydnes, NITH 20. mai 2014 I. ALGEBRA ANNENGRADSLIGNINGER Annengradsformelen: ax 2 + bx + c = 0 x = b ± b 2 4ac 2a (i) 0 løsninger hvis b 2 4ac < 0 (ii) 1 løsning hvis b 2 4ac

Detaljer

Lær å bruke Microsoft Mathematics, Matematikk-tillegget i Word og WordMat. Av Sigbjørn Hals

Lær å bruke Microsoft Mathematics, Matematikk-tillegget i Word og WordMat. Av Sigbjørn Hals Lær å bruke Microsoft Mathematics, Matematikk-tillegget i Word og WordMat Av Sigbjørn Hals 1 Innhold Hva er matematikktillegget for Word?... 2 Nedlasting og installasjon av matematikktillegget for Word...

Detaljer

1T 2014 høst LØSNING 25000000000 0, 0005 = 2, 5 10 10 5 10 4 = 12, 5 10 6 = 1, 25 10 7. 2 2+ x 2 = 2 4 x 2 4 + x = 8 x = 4

1T 2014 høst LØSNING 25000000000 0, 0005 = 2, 5 10 10 5 10 4 = 12, 5 10 6 = 1, 25 10 7. 2 2+ x 2 = 2 4 x 2 4 + x = 8 x = 4 3/8/06 T 0 høst LØSNING - matematikk.net T 0 høst LØSNING Contents Diskusjon av denne oppgaven Løsning av del Matteprat spørsmål om oppgave 6 del DEL EN Oppgave 5000000000 0, 0005 =, 5 0 0 5 0 =, 5 0 6

Detaljer

Niels Henrik Abels matematikkonkurranse 2013 2014. Løsninger

Niels Henrik Abels matematikkonkurranse 2013 2014. Løsninger Niels Henrik Abels matematikkonkurranse 0 04. Løsninger Første runde 7. november 0 Oppgave. Siden er et primtall, vil bare potenser av gå opp i 0. Altså,,,,..., 0 i alt tall........................................

Detaljer

Sammendrag kapittel 9 - Geometri

Sammendrag kapittel 9 - Geometri Sammendrag kapittel 9 - Geometri Absolutt vinkelmål (radianer) Det absolutte vinkelmålet til en vinkel v, er folholdet mellom buelengden b, og radien r. Buelengde v = b r Med v i radianer! b = r v Omregning

Detaljer

Tallregning og algebra

Tallregning og algebra 30 Tallregning og algebra Mål for opplæringen er at eleven skal kunne tolke, bearbeide og vurdere det matematiske innholdet i ulike tekster bruke matematiske metoder og hjelpemidler til å løse problemer

Detaljer

Komplekse tall og komplekse funksjoner

Komplekse tall og komplekse funksjoner KAPITTEL Komplekse tall og komplekse funksjoner. Komplekse tall.. Definisjon av komplekse tall. De komplekse tallene er en utvidelse av de reelle tallene. Dvs at de komplekse tallene er en tallmengde som

Detaljer

Faktor. Eksamen høst 2005 SØK 1001- Innføring i matematikk for økonomer Besvarelse nr 1: -en eksamensavis utgitt av Pareto

Faktor. Eksamen høst 2005 SØK 1001- Innføring i matematikk for økonomer Besvarelse nr 1: -en eksamensavis utgitt av Pareto Faktor -en eksamensavis utgitt av Pareto Eksamen høst 005 SØK 00- Innføring i matematikk for økonomer Besvarelse nr : OBS!! Dette er en eksamensbevarelse, og ikke en fasit. Besvarelsene er uten endringer

Detaljer

Løsningsforslag B = 1 3 A + B, AB, BA, AB BA, B 2, B 3 C + D, CD, DC, AC, CB. det(a), det(b)

Løsningsforslag B = 1 3 A + B, AB, BA, AB BA, B 2, B 3 C + D, CD, DC, AC, CB. det(a), det(b) Innlevering BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Fredag 05. februar 2016 kl 14:00 Antall oppgaver: 5 Løsningsforslag 1 Vi denerer noen matriser A [ 1 5 2 0 B [ 1

Detaljer

For æresdoktoratet i Bergen 28 august 2008

For æresdoktoratet i Bergen 28 august 2008 ITERERTE LINEÆRE REKURSJONER OG SCHUBERT REGNING For æresdoktoratet i Bergen 28 august 2008 1. Adjunksjon av røtter 1.1 Notasjon. La A være en ring. For en A-algebra B betrakter vi Hom A (B, A) som en

Detaljer

Sammendrag R1. Sandnes VGS 19. august 2009

Sammendrag R1. Sandnes VGS 19. august 2009 Sammendrag R1 Sandnes VGS 19. august 2009 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A

Detaljer

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 3 Geometri

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 3 Geometri QED 5 0 Matematikk for grunnskolelærerutdanningen Bind Fasit kapittel Geometri Kapittel Oppgave a) ( +, + 7) = (4, 9) b) (0, 4 + 5) = (, ) c) ( + 0, + 6) = (, 9) Oppgave a) Vi får vektoren [4, ]. b) Vi

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (16 poeng) a) Vi har to punkter A ( 2, 5) og ( 4,3) B i et koordinatsystem. 1) Finn AB. 2) Regn ut avstanden fra A til B. b) Ovenfor har vi tegnet a og b. La 1 c= a b.

Detaljer

Sammendrag R2. www.kalkulus.no. 31. mai 2009

Sammendrag R2. www.kalkulus.no. 31. mai 2009 Sammendrag R2 www.kalkulus.no 31. mai 2009 1 1 Trigonometri Definisjon av sinus og cosinus Sirkelen med sentrum i origo og radius 1 kalles enhetssirkelen. La v være en vinkel i grunnstilling, og la P være

Detaljer

Lineære likningssystemer, vektorer og matriser

Lineære likningssystemer, vektorer og matriser Lineære likningssystemer, vektorer og matriser Kompendium 1 i MAT1001 Matematikk 1 Høsten 2008 Inger Christin Borge Matematisk institutt, UiO Forord Velkommen til Universitetet i Oslo, og til MAT1001!

Detaljer

MATEMATIKK OG INFORMASJONSSØKNING PÅ NETTET. Eskilstuna 5 september 02

MATEMATIKK OG INFORMASJONSSØKNING PÅ NETTET. Eskilstuna 5 september 02 Leting på nettet 3 MATEMATIKK OG INFORMASJONSSØKNING PÅ NETTET Eskilstuna 5 september 02 Som så ofte når det gjelder spektakulære tekniske anvendelser, og spesielt når det gjelder verktøyene på nettet,

Detaljer

ECON1210 Oblig. Fredrik Meyer

ECON1210 Oblig. Fredrik Meyer ECON1210 Oblig Fredrik Meyer Oppgave 1 Hva er de viktigste forutsetningene for såkalt fullkommen konkurranse i et marked (perfectly competitive market)? Forklar kort hvilken betydning hver enkelt forutsetning

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN STE 6251 Styring av romfartøy

LØSNINGSFORSLAG TIL EKSAMEN STE 6251 Styring av romfartøy HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi MSc-studiet Studieretning for romteknologi Side 1 av 5 LØSNINGSFORSLAG TIL EKSAMEN STE 6251 Styring av romfartøy Tid: Torsdag 14.1.24,

Detaljer

Analyse og metodikk i Calculus 1

Analyse og metodikk i Calculus 1 Analyse og metodikk i Calculus 1 Fredrik Göthner og Raymi Eldby Norges teknisk-naturvitenskapelige universitet 3. desember 01 1 Innhold Forord 3 1 Vurdering av grafer og funksjoner 4 1.1 Hva er en funksjon?.........................

Detaljer

MAT 1120: Obligatorisk oppgave 1, H-09

MAT 1120: Obligatorisk oppgave 1, H-09 MAT 110: Obligatorisk oppgave 1, H-09 Innlevering: Senest fredag 5. september, 009, kl.14.30, på Ekspedisjonskontoret til Matematisk institutt (7. etasje NHA). Du kan skrive for hånd eller med datamaskin,

Detaljer

Løsningsforslag. Oppgavesettet består av 9 oppgaver med i alt 20 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye.

Løsningsforslag. Oppgavesettet består av 9 oppgaver med i alt 20 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye. Løsningsforslag Emnekode: ITF75 Dato: 5 desember Emne: Matematikk for IT Eksamenstid: kl 9 til kl Hjelpemidler: To A4-ark med valgfritt innhold på begge sider Kalkulator er ikke tillatt Faglærer: Christian

Detaljer

Kapittel 5. Lengder og areal

Kapittel 5. Lengder og areal Kapittel 5. Lengder og areal Dette kapitlet handler om å: Beregne sider i rettvinklede trekanter med Pytagoras setning. Beregne omkrets av trekanter, firkanter og sirkler. Beregne areal av enkle figurer,

Detaljer

Geometri. Kapittel 3. 3.1 Vektorproduktet

Geometri. Kapittel 3. 3.1 Vektorproduktet Kapittel 3 Geometri I dette kapitlet skal vi benytte den teorien vi utviklet i kapittel 1 og 2 til å studere geometriske problemstillinger. Vi skal se på kurver og flater, og vi skal også studere hvordan

Detaljer

Komplekse tall og Eulers formel

Komplekse tall og Eulers formel Komplekse tall og Eulers formel Harald Hanche-Olsen 2011-03-24 1. Oppvarming Jeg vil anta at leseren er kjent med komplekse tall, men vil likevel si noen ord om temaet. Naivt kan man starte med bare å

Detaljer

1.1 Tall- og bokstavregning, parenteser

1.1 Tall- og bokstavregning, parenteser MATEMATIKK: 1 Algebra 1 Algebra 1.1 Tall- og bokstavregning, parenteser Matematikk er et morsomt fag hvis vi får det til. Som på de fleste områder er det er morsomt og givende når vi lykkes. Skal en f.eks.

Detaljer

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 1 Kalkulus

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 1 Kalkulus QED 5 10 Matematikk for grunnskolelærerutdanningen Bind 2 Fasit kapittel 1 Kalkulus Kapittel 1 Oppgave 1. a) en funksjon b) en funksjon c) ikke en funksjon d) ikke en funksjon Oppgave 2. a) 12,1 b) 4 c)

Detaljer

Sammendrag R1. 26. januar 2011

Sammendrag R1. 26. januar 2011 Sammendrag R1 26. januar 2011 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A B hvis to påstander

Detaljer

FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014

FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014 FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014 Oppgave 1 (4 poeng) Forklar hvorfor Charles Blondin tok med seg en lang og fleksibel stang når han balanserte på stram line over Niagara fossen i 1859. Han

Detaljer

Løsningsforslag. og B =

Løsningsforslag. og B = Prøve i Matte EMFE DAFE ELFE BYFE Dato: august 25 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave a) Gitt matrisene A = 2 3 2 4 2 Løsningsforslag og

Detaljer

Enkel matematikk for økonomer 1. Innhold. Parenteser, brøk og potenser. Ekstranotat, februar 2015

Enkel matematikk for økonomer 1. Innhold. Parenteser, brøk og potenser. Ekstranotat, februar 2015 Ekstranotat, februar 205 Enkel matematikk for økonomer Innhold Enkel matematikk for økonomer... Parenteser, brøk og potenser... Funksjoner...4 Tilvekstform (differensialregning)...5 Nyttige tilnærminger...8

Detaljer

Oppgave 1. (a) Vi utvikler determinanten langs første kolonne og dette gir. (b) Med utgangspunkt i de tre datapunktene denerer vi X og y ved

Oppgave 1. (a) Vi utvikler determinanten langs første kolonne og dette gir. (b) Med utgangspunkt i de tre datapunktene denerer vi X og y ved Sensorveiledning: ELE 37191 Maemaikk valgfag Eksamensdao: 13.06.2012 09:00 1:00 Toal anall sider: 5 Anall vedlegg: 0 Tillae hjelpemidler: BI-dener eksamenskalkulaor TEXAS INSTRUMENTS BA II Plus Innføringsark:

Detaljer

Young-Laplace si likning

Young-Laplace si likning Young-Laplace si likning Dette er Appendiks A i hovedoppgaven til Leiv Magne Siqveland, Høgskolen i Stavanger, Sivilingeniørutdanningen, innlevert 8. juni 996. Krumme flater z Z (a,b) X Y y x Figur : Flate

Detaljer

Regn i hodet: 46 + 28. Å uttrykke tall. Ulike uttrykksmåter. Det vesentlige er utvikling. Hvordan jobbe med dette? Hvordan jobbe med dette? 10.09.

Regn i hodet: 46 + 28. Å uttrykke tall. Ulike uttrykksmåter. Det vesentlige er utvikling. Hvordan jobbe med dette? Hvordan jobbe med dette? 10.09. Hva er Hvorfor Singaporematematikk er folk interesserte i Singapore-matematikk Fordi elevene i Singapore stadig får best resultat på En samling undervisningsstrategier vanlig i Singapore internasjonale

Detaljer

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 18. august 2011

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 18. august 2011 Funksjoner Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 8. august 20 2 Definisjon av funksjon Definisjon En funksjon er en regel f som til et hvert tall i definisjonsmengden

Detaljer

Emne 11 Differensiallikninger

Emne 11 Differensiallikninger Emne 11 Differensiallikninger Differensiallikninger er en dynamisk beskrivelse av et system eller en prosess, basert på de balanselikningene vi har satt opp for prosessen. (Matematisk modellering). Vi

Detaljer

Lær å bruke GeoGebra 4.0

Lær å bruke GeoGebra 4.0 Lær å bruke GeoGebra 4.0 av Sigbjørn Hals Innhold: Generelt om GeoGebra... 2 Innstillinger... 2 Likninger og ulikheter... 5 Implisitte likninger... 5 Ulikheter... 9 Statistikkberegninger i regnearket...

Detaljer

LØSNINGSFORSLAG SIF5015 DISKRET MATEMATIKK Onsdag 18. desember 2002

LØSNINGSFORSLAG SIF5015 DISKRET MATEMATIKK Onsdag 18. desember 2002 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 LØSNINGSFORSLAG SIF55 DISKRET MATEMATIKK Onsdag 8. desember 22 Oppgave a) Vi vil ha 77x (mod 3), så vi trenger en

Detaljer

11 Harmonisk oscillator og dreieimpuls vha operatoralgebra

11 Harmonisk oscillator og dreieimpuls vha operatoralgebra TFY4250/FY2045 Tillegg 11 - Harmonisk oscillator og dreieimpuls operatoralgebra 1 TILLEGG 11 11 Harmonisk oscillator og dreieimpuls vha operatoralgebra I Tillegg 3 er den harmoniske oscillatoren gitt en

Detaljer

Litt matematikk som er nyttig for teorien bak spillteorien.

Litt matematikk som er nyttig for teorien bak spillteorien. Litt matematikk som er nyttig for teorien bak spillteorien.. John von Neumanns min-max teorem For å vise dette resultatet trenger vi et lite hjelperesultat. For p R m så sier vi at p er en sannsynlighetsvektor

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST101 Innføring i statistikk og sannsynlighetsregning. Eksamensdag: Mandag 29. november 1993. Tid for eksamen: 09.00 15.00. Oppgavesettet

Detaljer

Hvor magisk er eksponensialet til et magisk kvadrat?

Hvor magisk er eksponensialet til et magisk kvadrat? Normat 50:2, 1001 1007 2002) 1001 Hvor magisk er eksponensialet til et magisk kvadrat? Kenth Engø Telenor Forskning og Utvikling Snarøyveien 0 NO 11 Fornebu Kenth.Engo@telenor.com Introduksjon. I denne

Detaljer

PENSUM MAT1100 H11 Flervariabel analyse med lineær algebra, Tom Lindstrøm og Klara Hovberg Kalkulus, Tom Lindstrøm, 3. Utgave Joakim Myrvoll Johansen

PENSUM MAT1100 H11 Flervariabel analyse med lineær algebra, Tom Lindstrøm og Klara Hovberg Kalkulus, Tom Lindstrøm, 3. Utgave Joakim Myrvoll Johansen PENSUM MAT1100 H11 Flervariabel analyse med lineær algebra, Tom Lindstrøm og Klara Hovberg Kalkulus, Tom Lindstrøm, 3. Utgave Joakim Myrvoll Johansen MAT1100 Pensum fra Kalkulus KAP3 KOMPLEKSE TALL 3.1

Detaljer

Matematikk eksamensklassen 2013 / 14 Oversikt over temaer / innhold

Matematikk eksamensklassen 2013 / 14 Oversikt over temaer / innhold 1 Matematikk eksamensklassen 2013 / 14 Oversikt over temaer / innhold 1 Regning med positive og negative tall 2 Regnerekkefølge og parenteser 3 Potenser 4 Algebra 5 Brøkregning 6 Ligninger 7 Ulikheter

Detaljer

Oppgaveark Uke 37 (07/09-11/09) MAT111 - H09

Oppgaveark Uke 37 (07/09-11/09) MAT111 - H09 Oppgaveark Uke 37 (07/09-11/09) MAT111 - H09 Oppgave 1 Du ar fått deg en jobb i et firma og skal kjøre til en konferanse med overnatting. Du drar jemmefra på mandag kl 07:15 og ankommer 11:07. Du overnatter

Detaljer

Oppgave 6. Tabellen nedenfor viser folketallet i en by fra 1960 til 2010. 1960 1970 1980 1990 2000 2010 35 000 41 000 43 000 47 000 48 000 56 000

Oppgave 6. Tabellen nedenfor viser folketallet i en by fra 1960 til 2010. 1960 1970 1980 1990 2000 2010 35 000 41 000 43 000 47 000 48 000 56 000 GS3 Forberedelse til tentamen. Ark 38 Løsninger deles ut fredag 19. april. Oppgave 1. Løs ligningene og ulikhetene. a) + = 3 b) 3x > -9 6 (x + 3) c) 3 (x - ) = 2 - d) 3x < - (1 - ) Oppgave 2. Løs ligningssettet.

Detaljer

Fagplan Matte, 3. trinn, 2010/2011

Fagplan Matte, 3. trinn, 2010/2011 Fagplan Matte, 3. trinn, 2010/2011 Måned Kompetansemål K06 Læringsmål / Delmål Kjennetegn på måloppnåelse / kriterier August 34-35 Mål for opplæringen er at eleven skal kunne: samle, sortere, notere og

Detaljer

Krasjkurs MAT101 og MAT111

Krasjkurs MAT101 og MAT111 Krasjkurs MAT101 og MAT111 Forord Disse notatene ble skrevet under et åtte timer (to firetimers forelesninger) i løpet av 10. og 11. desember 2012. Det er mulig at noen av utregningene ikke stemmer, enten

Detaljer

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform 1 10 Tall og tallregning Studentene skal kunne gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall definere og benytte de anerkjente skrivemåtene for åpne, halvåpne og lukkede intervaller

Detaljer

x n+1 rx n = 0. (2.2)

x n+1 rx n = 0. (2.2) Kapittel 2 Første ordens lineære differenslikninger 2.1 Homogene likninger Et av de enkleste eksemplene på en følge fås ved å starte med et tall og for hvert nytt ledd multiplisere det forrige leddet med

Detaljer

Kapittel: 9. MEK4550 Elementmetoden i faststoffmekanikk I. (E-post:ges@math.uio.no) Universitetet i Oslo. Avdeling for Mekanikk Geir Skeie

Kapittel: 9. MEK4550 Elementmetoden i faststoffmekanikk I. (E-post:ges@math.uio.no) Universitetet i Oslo. Avdeling for Mekanikk Geir Skeie Kapittel: 9 MEK4550 Elementmetoden i faststoffmekanikk I (21. november 2007) Foreleser: (E-post:ges@math.uio.no) Page 1 of 31 Innhold 9 Geometrisk avbilding og numerisk integrasjon 3 9.1 Skjeve elementer

Detaljer

Familiematematikk MATTEPAKKE 4. Trinn

Familiematematikk MATTEPAKKE 4. Trinn Familiematematikk MATTEPAKKE 4. Trinn May Renate Settemsdal og Ingvill Merete Stedøy Aktiviteter Penta-blokker Bygg noe fint med penta-blokkene. Se om du klarer å bygge noen av de store klossene ved å

Detaljer

MATEMATIKK FOR ØKONOMER (3. avdeling) Eksamensoppgaver

MATEMATIKK FOR ØKONOMER (3. avdeling) Eksamensoppgaver MATEMATIKK FOR ØKONOMER (3. avdeling) Eksamensoppgaver Sosialøkonomisk institutt 22 Forord Dette heftet er beregnet på studenter som forbereder seg til eksamen i kurset Matematikk for økonomer i 3. avdeling.

Detaljer

Areal av polygoner med GeoGebra

Areal av polygoner med GeoGebra 1. Vi starter med å lage forskjellige rektangler og kvadrater med følgende arealer: 1 rute, 2 ruter, 3 ruter, 4 ruter, 5 ruter, 6 ruter, 7 ruter, 8 ruter, 9 ruter og 10 ruter 2. Tegn så mange ulike figurer

Detaljer

Permutasjoner og symmetriske grupper

Permutasjoner og symmetriske grupper 4. Del Permutasjoner og symmetriske grupper Verbet permutere kommer av det latinske verbet permutare og betyr å bytte om, og ombyttinger,elleraltsåpermutasjoner,ernoevikjennerfradagliglivet.imatematikker

Detaljer

{(1,0), (2,0), (2,1), (3,0), (3,1), (3,2), (4,0), (4,1), (4,2), (4,3) } {(1,0), (1,1), (1,2), (1,3), (2,0), (2,2), (3,0), (3,3), (4,0)}

{(1,0), (2,0), (2,1), (3,0), (3,1), (3,2), (4,0), (4,1), (4,2), (4,3) } {(1,0), (1,1), (1,2), (1,3), (2,0), (2,2), (3,0), (3,3), (4,0)} Diskret matematikk - Høgskolen i Oslo Løsningsforslag for en del oppgaver fra boken Discrete athematics and Its Applications Forfatter: Kenneth H. osen Avsnitt 8. Oppgave A {,,,,4} og B {,,,} a) {( a,

Detaljer

Lineære likningssystemer, vektorer og matriser

Lineære likningssystemer, vektorer og matriser Lineære likningssystemer, vektorer og matriser Kompendium i MAT00 Matematikk Høsten 2008 Inger Christin Borge Matematisk institutt, UiO Forord Velkommen til Universitetet i Oslo, og til MAT00! Selv om

Detaljer

Niels Henrik Abels matematikkonkurranse 2012 2013

Niels Henrik Abels matematikkonkurranse 2012 2013 okmål Niels Henrik bels matematikkonkurranse 2012 201 Første runde 8. november 2012 Ikke bla om før læreren sier fra! belkonkurransens første runde består av 20 flervalgsoppgaver som skal løses i løpet

Detaljer

EKSAMENSOPPGÅVE. Tilletne hjelpemiddel: Godkjend kalkulator og formelsamling og 2 eigne A4-ark (4 sider totalt)

EKSAMENSOPPGÅVE. Tilletne hjelpemiddel: Godkjend kalkulator og formelsamling og 2 eigne A4-ark (4 sider totalt) EKSAMENSOPPGÅVE/EKSAMENSOPPGAVE EKSAMENSOPPGÅVE Eksamen i: MAT-1003 Kalkulus 3 Dato: Tirsdag 17. 1.013 Tid: Kl 09:00 13:00 Stad: Åsgårdveien 9 Tilletne hjelpemiddel: Godkjend kalkulator og formelsamling

Detaljer

Kapittel 4. 4. og 5. september 2012. Institutt for geofag Universitetet i Oslo. GEO1040 - En Introduksjon til MatLab. Kapittel 4.

Kapittel 4. 4. og 5. september 2012. Institutt for geofag Universitetet i Oslo. GEO1040 - En Introduksjon til MatLab. Kapittel 4. r r Institutt for geofag Universitetet i Oslo 4. og 5. september 2012 r r Ofte ønsker vi å utføre samme kommando flere ganger etter hverandre gjør det mulig å repetere en programsekvens veldig mange ganger

Detaljer

Oskar Klein og den femte dimensjon

Oskar Klein og den femte dimensjon Oskar Klein og den femte dimensjon Finn Ravndal Fysisk Institutt, Universitetet i Oslo. Abstract Etter en kort oppsummering av det vitenskapelige liv til Oskar Klein, blir en mer detaljert utledning av

Detaljer

3. Løs oppgavene ved hjelp av likning a. Summen av tre tall som følger etter hverandre er 51. Hvilke tre tall er det?

3. Løs oppgavene ved hjelp av likning a. Summen av tre tall som følger etter hverandre er 51. Hvilke tre tall er det? Likninger av første grad med en ukjent 1. Løs følgende likninger x 3 + 4x a. + = 16 2x 7 2 x 1 x + 3 b. + 2 = 0 x x 2 1 1 1 c. (2x + 3) (3 4x) = (4x 7) 3 2 6 d. 2 x + 3( 2 x) = 3 2. Lag en likning som

Detaljer

For en tid siden ble jeg konfrontert med følgende problemstilling:

For en tid siden ble jeg konfrontert med følgende problemstilling: Normat 55:, 3 7 (7) 3 Bøker på bøker En bokorms øvelse i stabling Ivar Farup Høgskolen i Gjøvik Postboks 9 N 8 Gjøvik ivar.farup@hig.no Innledning For en tid siden ble jeg konfrontert med følgende problemstilling:

Detaljer

Sensurveiledning Matematikk 1, 5-10, emne 1 Høsten 2013

Sensurveiledning Matematikk 1, 5-10, emne 1 Høsten 2013 Sensurveiledning Matematikk 1, 5-10, emne 1 Høsten 2013 Oppgave 1 a) =2 = 5 2 =5 2 = = 25 4 = 25 8 Full uttelling gis for arealet uttrykt over. Avrundinger gis noe uttelling. b) DC blir 5 cm og bruk av

Detaljer