MAT-1004 Vårsemester 2017 Prøveeksamen

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "MAT-1004 Vårsemester 2017 Prøveeksamen"

Transkript

1 MAT-4 Vårsemester 7 Prøveeksamen Contents. Forord OPPGAVE OPPGAVE OPPGAVE 7 4 OPPGAVE 8 OPPGAVE 6 OPPGAVE 7 OPPGAVE 8 OPPGAVE 9 Formatering av svarene 4 9. Rasjonale tall Matriser og vektorer Tupler Fasit 6. Oppgave Oppgave Oppgave Oppgave Oppgave Oppgave Oppgave Oppgave

2 Løsningsforslag. Oppgave Oppgave Oppgave Oppgave Oppgave Oppgave Oppgave Oppgave Forord. Oppgavene nedenfor dekker nesten alle typer av oppgaver, som kan gis på eksamen. Prøveeksamenen er stor: den inneholder 4 deloppgaver (abc, abcdefghijk, abcd, 4abcdefg, abc, 6, 7, 8abcd), noen delt opp i enda mindre deloppgaver. Tilsvarende deloppgaver på eksamen vil bli lettere beregningsmessig. Betrakt derfor denne prøveeksamenen som en tredobbel eksamen.. En oppgave om komplekse matriser kan bli inkludert i eksamenen. Oppgave 8 er et typisk eksempel av en slik oppgave. Den ligner oppgave 4 fra eksamenen 6-6, men er litt vanskeligere. OPPGAVE Vi ser på et lineært system Ax b, der: A b 6a 4 4a + 8 a + a a + a., a) Finn determinanten det A. Resultatet er et polynom det A k + k a + k a. Du oppgir radvektoren [k, k, k i feltet a. b) For hvilke a R er systemet konsistent (dvs. at det har løsninger)? Svaret skal være på formen a s, der s er et rasjonalt tall. Du oppgir tallet s i feltet b.

3 c) For hvilke a R har systemet uendelig mange løsninger? Svaret skal være på formen a t, der t er et rasjonalt tall. Du oppgir tallet t i feltet c. Hint: se eksamensoppgaver -6-, -9-, -6- og -9-, samt Exercise.9,.7 og.8. OPPGAVE En del av oppgaven nedenfor er knyttet til Ch. 6 Inner Product Spaces. Vi betrakter vektorer fra R både som kolonnevektorer og radvektorer. Gitt matrisen A 4. 4 Betrakt systemet Ax b der x x x x x 4 x, b Lag en utvidet matrise [ A b, og bruk Gauss-Jordan for å få en annen matrise [ A b slik at A har en redusert trappeform (reduced row echelon form). Denne siste matrisen skal hjelpe deg til å løse alle deloppgaver nedenfor. Merknad. Istedenfor kolonnen b b b b b 4 b b b b 4. i den utvidede matrisen [ A b, kan du bruke en 4 4 identitetsmatrise. a) Finn en basis G (g, g,..., g s ) for radrommet (the row space) row (A). Svaret skal gis i formen av et s-tuppel av radvektorer (som i Seksjon 9.). b) Gitt vektoren u [ 8 4 row (A). Finn koordinatvektoren [u G til u mht basisen G du fant i deloppgave a. Svaret skal gis i formen av en kolonnevektor (som i Seksjon 9.) (u ; u ;...; u s )

4 der u u g + u g u s g s. Hint: hvis du skriver likningen u u g + u g u s g s koordinatvis, får du et system med likninger og s variabler. Du trenger ikke å bruke Gauss- Jordan på nytt for å løse systemet. Hvis du fikk basisen G ved hjelp av Gauss- Jordan, er den allerede god nok til å løse systemet med én gang. c) Finn en ortogonal basis for G (g, g,..., g s) for radrommet (the row space) row (A). Svaret skal gis i formen av et s-tuppel av radvektorer. la Hint: bruk Gram-Schmidt. d) For en vilkårlig kolonnevektor x x x x x 4 x R, T (x) proj row(a) (x) være projeksjonen til vektoren x på underrommet row (A) (orthogonal projection of x on row (A)). T er en lineær operator T : R R, derfor beskrives den som en matriseoperator T (x) Bx, der B er en matrise. Du oppgir matrisen B i svaret. Hint: se Oblig 6, oppgave f. e) Finn en basis J (j, j,..., j u ) for nullrommet (the null space) Null (A). Svaret skal gis i formen av et u-tuppel av kolonnevektorer (som i Seksjon 9.). 4

5 f) Gitt vektoren w 6 Null (A). Finn koordinatvektoren [w J til w mht basisen J du fant i deloppgave e. Svaret skal gis i formen av en kolonnevektor (som i Seksjon 9.) w w... w u der w w j + w j w u j u. Hint: hvis du skriver likningen w w j + w j w u j u koordinatvis, får du et system med likninger og u variabler. Du trenger ikke å bruke Gauss- Jordan på nytt for å løse systemet. Hvis du fikk basisen J ved hjelp av Gauss- Jordan, er den allerede god nok til å løse systemet med én gang. g) Finn en ortogonal basis J (j, j,..., j v) for det ortogonale komplementet row (A) til radrommet (the orthogonal complement of the row space). Svaret skal gis i formen av et v-tuppel av kolonnevektorer. Hint: se Oblig 6, Oppgave b. h) For en vilkårlig kolonnevektor x x x x x 4 x R, la S (x) proj row(a) (x) være projeksjonen til vektoren x på underrommet row (A) (orthogonal projection of x on row (A) ). S er en lineær operator S : R R,

6 derfor beskrives den som en matriseoperator S (x) Mx, der M er en matrise. Du oppgir matrisen M i svaret. i) Finn betingelsen for b for at systemet Ax b er konsistent, dvs. har minst én løsning x. Betingelsen skal oppgis som en radvektor av lengde 4. k b + k b + k b + k 4 b 4, k i R, [k, k, k, k 4 Hint: se på den siste linjen i den utvidede matrisen [ A b. j) Finn en basis H (h, h,..., h t ) for kolonnerommet (the column space) col (A). Svaret skal gis i formen av et t-tuppel av kolonnevektorer (som i Seksjon 9.). k) Gitt vektoren v 4 4 col (A). Finn koordinatvektoren [v H til v mht basisen H du fant i deloppgave d. Svaret skal gis i formen av en kolonnevektor (som i Seksjon 9.) v v... v t der v v h + v h v t h t. 6

7 OPPGAVE Gitt tre vektorer u, v, w i R. Operatoren er gitt ved formelen T : R R T (x) u (v x) der x R, og er kryssproduktet (the cross product). For eksempel, hvis x, er T (x) 8. a) Finn matrisen [T E til operatoren T med hensyn til standardbasisen E (i, j, k), (the matrix for T relative to the base E). Svaret skal oppgis som en matrise., b) Finn en basis for kjernen (the kernel) ker T. Svaret skal gis som et s-tuppel av kolonnevektorer. c) Finn en basis for bildet (the range) R (T ). Svaret skal gis som et t-tuppel av kolonnevektorer. d) Finn en vektor x som tilfredsstiller likningen T (x) w. Svaret skal gis som en kolonnevektor. 7

8 4 OPPGAVE La W M være mengden av antisymmetriske (X T X) matriser. For eksempel, matrisen er antisymmetrisk fordi mens er ikke antisymmetrisk fordi T T W er et underrom i Mat av dimensjon og har en basis G (g, g, g ),,., (du behøver ikke å sjekke at W er et underrom, eller at G er en basis for W ). La V P være rommet av polynomer av grad med standardbasisen Gitt også matrisen La E (, x, x, x ). B U : V W være en lineær transformasjon gitt ved formelen. U (f) f (B) f (B) T. (du behøver ikke å sjekke at U er lineær). For eksempel, hvis f + x x x, 8

9 er f (B) I + B B B + og U (f) (f (B)) (f (B)) T T 6 6. a) Finn matrisen [U G E (i læreboken betegnes som [U G,E ) til transformasjonen U mht basisene E og G. Svaret skal gis som i Seksjon 9.. b) Finn en basis for kjernen (the kernel) til U. Det påminnes om at ker U {v V U (v) }. Svaret skal gis som et s-tuppel (Seksjon 9.) av kolonnevektorer som tilsvarer polynomer på følgende måte: a a + a x + a x + a x a a. a c) Finn en basis for bildet (the range) R (U) til U. Det påminnes om at R (U) {U (v) v V }. Svaret skal gis som et t-tuppel (se Seksjon 9.) av matriser. d) Finn et polynom f slik at U (f)

10 Svaret skal gis som en kolonnevektor a a a, a som tilsvarer polynomet f a + a x + a x + a x. e) La oss betrakte en annen basis G for W : G (g, g, g ),,. Finn overgangsmatrisene (the transition matrices) P G G og P G G (i læreboken betegnes de som P G G og P G G ). f) La oss betrakte en annen basis E for V : E (, + x, x, x + x ). Finn overgangsmatrisene (the transition matrices) P E E og P E E (i læreboken betegnes som P E E og P E E ). g) Finn matrisene til U mht diverse basispar: [U G E, [U G E, og [U G E. Hint: bruk Teorem.7 og Korollar.9 på s. 96 i Kompendium. OPPGAVE Gitt matrisen A a) Finn det karakteristiske polynomet p (λ) til matrisen A. Hvis p (λ) a + a λ + a λ + a λ, skal svaret gis som en radvektor [ a a a a.

11 Merknad. Polynomet skal beregnes som i læreboka, dvs. p (λ) det (λi A). Det er tillatt å bruke metoden som var gitt på forelesningene, men husk å sette minus foran (fordi er et odde tall): p (λ) det (λi A) det (A λi). Du kan også bruke formlene fra Teorem.9 på s. i Kompendium. b) Finn en invertibel matrise P slik at P AP D der D er en diagonalmatrise med voksende diagonalelementene: D λ λ, λ λ λ. λ Både D og P skal oppgis i svaret. Hint: for å finne egenverdiene, bruk Ex.... c) Finn formelen for A m der m er et vilkårlig helt tall. Formelen skal se ut som A m b m B + c m C, der b og c er rasjonale tall, b < c, mens B og C er konstante (dvs. som ikke avhenger av m) matriser. Hint: A m ( P DP ) m P D m P. 6 OPPGAVE Gitt matrisen F Det karakteristiske polynomet q (λ) til matrisen F er lik q (λ) λ 9λ 9λ + 8 (λ + ) (λ ) (λ 9). Matrisen F er ortogonalt diagonaliserbar (hvorfor?). Finn en ortogonal matrise Q slik at Q F Q Q T F Q. 9.

12 7 OPPGAVE Gitt matrisen a b d A c e [ k k k f som inneholder 6 ukjente elementer a, b, c, d, e, f. Det er kjent at A er ortogonal, og at a >, b <, d <. Finn a, b, c, d, e, f (de er rasjonale tall), og oppgi den resulterende matrisen A i svaret. Hint: for å finne a, bruk betingelsen at kolonnen k har lengden ( k ) og at a >. For å finne b og c, bruk betingelsene k, k k, b <. For å finne d, e og f, bruk betingelsene k, k k, k k, d <. Se oppgave 7.7 fra læreboken og eksamensoppgave -9-b. 8 OPPGAVE a) Gitt den komplekse matrisen [ + (a + ) i ( + i) z A i der a R, og z b + ci C. Finn for hvilke verdier av a, b, c er A Hermitsk (A A). Du oppgir radvektoren [a, b, c i svaret., b) Gitt den komplekse matrisen [ 7a + + i ( i) z B 4i 6i,

13 der a R, og z b + ci C. Finn for hvilke verdier av a, b, c er B anti-hermitsk (B B). Du oppgir radvektoren [a, b, c i svaret. c) Gitt den komplekse matrisen [ a 4 C 7 i z i 7 der a R, a >, og z b + ci C. Finn for hvilke verdier av a, b, c er C unitær (C C I). Du oppgir radvektoren [a, b, c i svaret. 7 i, Hint: betrakt de to kolonnene som C består av: C [ k k. Bruk Th. 7..4(d) fra læreboka. Betingelsen k gir to mulige verdier til a. Velg a >. Betingelsen gir verdien til z. k k d) Gitt den komplekse matrisen [ i z D 4 + i i der z b + ci C. Finn for hvilke verdier av b, c er D normal (D D DD ). Du oppgir radvektoren [b, c i svaret.,

14 9 Formatering av svarene 9. Rasjonale tall Alle tall i svarene er enten hele eller rasjonale. Hele tall skal skrives på vanlig måte som,, - osv. Rasjonale tall skal skrives slik: -/ for, 4/7 for 4 7. Merknad. Tall på formen 7 eller 7 er ikke tillatt. Skriv -/ eller 4/7 i stedet. 9. Matriser og vektorer De settes i kvadratiske parenteser. Radene (rows) er separert med semikoloner ; mens elementene i radene er separert med kommaer, for eksempel matrisen 4 4 skal skrives som [,,-/,4;,-/4,,;/,,/,, radvektoren (the row vector) [ 4 skal skrives som [,,-/,4, og kolonnevektoren (the column vector) skal skrives som [;;/. Legg merke til semikoloner istedenfor kommaer! 9. Tupler Tuplene settes i runde parenteser. Leddene separeres med kommaer. For eksempel, hvis en basis G for R består av kolonnevektorer 6 7 G (g, g, g, g 4, g ) 4, 7 8 9,,, 8 9, 4

15 er G et -tuppel, og skal skrives ned som ([; ; ; 4;, [6; 7; 8; 9;, [; ; ; ;, [; ; ; ;, [7; 8; 9; ; ) Merknad 9. Legg merke til at leddene i kolonnevektorene er separert med semikoloner, mens leddene i -tuppelet er separert med kommaer.

16 Fasit. Oppgave a) [4,-4,-4 det A 4 4a 4a. s 9 4, t 6. b) -9/4 c) /6. Oppgave a) G (g, g, g ) ([, [, [ ). Rangen s rank (A), nulliteten t nullity (A). ([,,,,,[,,-,,,[,,,,-) b) [-;;- [u G. c) G (g, g, g ) ([, [ 8 7, [ 48 4 ). ([,,,,,[,,-8,,7,[48,,-,4,-) d) T (x) 6 x + x + 7 x + x x x + x 4 x + x 4 + x 7 x 4 x + 8 x 8 x 4 8 x x + x 8 x x 4 4 x 4 x + x 8 x 4 x x [6/,/,/7,/,4/;/,/,-/4,/,/;/7,-/4,/8,- /8,-/8; /,/,-/8,4/4,-/4;4/,/,-/8,-/4,9/4 x x x x 4 x Bx. 6

17 e) J ([-;;;;,[-;-;;;),. f) [-; [w J [. g) J (j, j ), 6 7. ([-;;;;,[-6;-7;;;) h) S (x) 9 x x 7 x x 4 4 x 7 x x + 4 x x 4 x 4 x 7 x + 8 x + 8 x x 8 x x x x x 8 x x 4 x + 4 x x [9/,-/,-/7,-/,-4/;-/,7/,/4,-/,-/;-/7,/4,/8,/8,/8; -/,-/,/8,99/4,/4;-4/,-/,/8,/4,/4 x x x x 4 x Mx. i) b b + b b 4. [,-/,,-/ eller [,-,,- j) H (h, h, h ) ([;;;,[;;;,[;4;; 4),,

18 k) [6;-;-7 [v H Oppgave a) x x y, z 7x y z 7 T (x) x y + 6z 6 x + y 4z 4 7 [T E A 6. 4 [-7,-,-;-,-,6;-,,-4 x y z, b) er en basis for ker T. ([-;;) c) En basis for bildet R (T ): ([-7;-;-,[-;-;) 7,. d) x y z t t t + t, 8

19 for eksempel: x y z x y z 8,. [-;; eller [-;8;.4 Oppgave a) [U (f) G E [,,,;,-,,-4;,,-,- b) En basis for ker U er 4 (, 4x x + x ).. ([;;;,[;-4;-;) c) En basis for R (U) er G (g, g ),. ([,,-;-,,;,,,[,,;-,,-;,,) d) [;-;-; f ( x x ) + s + t ( 4x x + x ). e) P G G P G G,. 9

20 4e_P_G_Gprime: [,,;,,;,,- 4e_P_Gprime_G: [,-,;,,;,,- f) P E E P E E,. 4f_P_E_Eprime: [,,,;,,,;,,,;,,, 4f_P_Eprime_E: [,-,,;,,,;,,,-;,,, g) [U G E [U G E [U G E 9 4, g_U_Gprime_E: [,,,9;,-,,-4;,,, 4g_U_G_Eprime: [,,,6;,-,,-4;,,-,-6 4g_U_Gprime_Eprime: [,,,;,-,,-4;,,,6.,. Oppgave a) [-,-,-, p (λ) λ λ + λ. b) D P.,

21 b_d: [-,,;,-,;,, b_p: [,,;,,;,, c) A m ( ) m 4??? c_b: -??? c_c: c_b: [-,,4;-,,;-,, c_c: [4,-,-4;,-,-;,-,- + m Oppgave Q [-/,/,/;-/,/,-/;/,/,/..7 Oppgave 4 A. [/,-4/,-/;/,-/,/;-/,-/,/.8 Oppgave a) a, z i, [ + i A i. [-/,7/,7/ b) a 7, z i, [ i 4i B 4i 6i.

22 [-/7,4/9,-/9 c) a 7, [/7,8/7,-/7 d) b 8 7, c 7, [ C i i i 7 7 i. b, c 4, [ i 4i D 4 + i i. [,-4

23 Løsningsforslag. Oppgave A b 6a 4 4a + 8 a + a a + a., a) det A blokk-diagonal 6a 4 4a + 8 ( 6a) (9 + 4a) 4 4a 4a. Vi skriver [4,-4,-4 i feltet a. bc) Setter sammen koeffi sientmatrisen og vektoren b: 6a 4 a + A a 4a + 8 a + a. Systemet Ax b har en entydig løsning Matrisen er invertibel det A ( 6a) (9 + 4a) a 9 4, 6.. Hvis a 9 4, blir den utvidede matrisen slik: og systemet er inkonsistent. G J. Hvis a 6, blir den utvidede matrisen slik: 6 4 G J. 7 74,,

24 og x x x x 4 t t t dvs. systemet vil ha uendelig mange løsninger. 4. Endelig: s 9 4, t 6. Du skriver -9/4 i feltet a, og /6 i feltet b.. Oppgave A 4 4 La oss lage den utvidede matrisen som består av matrisen A og kolonnevektorene b b b b, v 4. b 4 4 Man kan sette en 4 4 identitetsmatrisen I 4 istedenfor b, men vi inkluderer begge deler (både b og I 4 ). Bruker deretter Gauss-Jordan: b 4 b b 4 G J 4 b 4 4 G J., b + 4b b b 8b + b b + b b 4 7 b b + b b 4 a) De tre første radene i den reduserte matrisen A gir en basis for radrommet: G (g, g, g ) ([, [, [ ). Rangen s rank (A), nulliteten t nullity (A). Vi skriver ([,,,,,[,,-,,,[,,,,-) i feltet a. b) La u [ 8 4 u g + u g + u g u [ + u [ + u [ [ u u u u u u + u u.. 4

25 og Det er klart at Vi skriver [-;;- i feltet b. La oss kontrollere resultatet: u, u, u [u G [ + [ [ [ 8 4 u.. c) La oss bruke Gram-Schmidt: G (g, g, g ) ([, [, [ ). g g [, g g g g g g g [ [ [ T [ [ T [ [ [ [ 8 7. Vi kan bruke i stedet. g [ 8 7 [ 8 7 g g g g g g g g g g g g [ [ [ T [ [ T [ [ [ T 8 7 [ [ [ T [ [ ( ) ( 7 ) [ 8 7 4

26 Vi kan bruke g 4 [ 48 4 i stedet. Endelig: G (g, g, g ) [ [ 48 4 ([, [ 8 7, [ 48 4 ). Vi skriver ([,,,,,[,,-8,,7,[48,,-,4,-) i feltet c. d) La oss finne projeksjonen (se Th. 6..4a). Vi skal skrive vektorer g i både radvis og kolonnevis: T (x) x g g g g + x g g g T x x x x 4 g + x g g g g x [ [ T T x x x 8 x 4 x 7 [ [ T T x 48 x x x 4 4 x [ [ T ( x + x + ) x + + ( x + 4 x 8 x + 7 x 48 4 ) 8 7 6

27 6 ( + 4 x + 8 x 48 x + 4 x 4 ) 74 x x + x + 7 x + x x x + x 4 x + x 4 + x 7 x 4 x + 8 x 8 x 4 8 x x + x 8 x x 4 4 x 4 x + x 8 x 4 x x Vi skriver [6/,/,/7,/,4/;/,/,-/4,/,/;/7,-/4,/8,- /8,-/8; /,/,-/8,4/4,-/4;4/,/,-/8,-/4,9/4 i feltet d. dvs. e) Siden nullity (A), består basisen J av to vektorer J (j, j ). Å finne basisen er det samme som å løse systemet Ax. x s og x t er frie variable, og x s t x x x 4 s t s t s + t, x t J,. Vi skriver ([-;;;;,[-;-;;;) i feltet e. x x x x 4 x Bx. f) La 6 w w j + w j w + w w w w w w w w. 7

28 Det er klart at w, w, [w J [. Vi skriver [-; i feltet f. g) Vi vet (Th ) at row (A) Null (A), derfor er J, en basis for det ortogonale komplementet row (A). For å finne en ortogonal basis, bruker vi Gram-Schmidt: j j, j J j j j j j T T ( )

29 Vi kan bruke i stedet. Endelig: j 6 7 J (j, j ), Vi skriver ([-;;;;,[-6;-7;;;) i feltet g. h) La oss finne projeksjonen (se Th. 6..4a). x x x x 4 x T T S (x) x j j j j + x j j j j ( x x + ) x 9 + x x 7 x x 4 4 x 7 x x + 4 x x 4 x 4 x 7 x + 8 x + 8 x x 8 x x x x x 8 x x 4 x + 4 x x x x x x 4 x 6 7 T T ( + 8 x x 4 8 x + 4 x 4 + ) 4 x x x x x 4 x 6 7 Mx. Vi skriver [9/,-/,-/7,-/,-4/;-/,7/,/4,-/,-/;-/7,/4,/8,/8,/8; -/,-/,/8,99/4,/4;-4/,-/,/8,/4,/4 9

30 i feltet h. Merknad. Begge matrisene, M og C er symmetriske. Merknad. Sammenlign de to matrisene! Finnes det noen relasjon mellom dem? i) Det siste elementet i kolonne nr. 6 (eller de siste elementene i kolonnene nr. 7-) gir oss betingelsen for b for at systemet Ax b er konsistent: b b + b b 4. Vi skriver [,-/,,-/ i feltet i. stedet. Vi kunne godt skrive [,-,,- i j) Kolonnene nr, og 4 i den opprinnelige matrisen danner en basis for kolonnerommet: H (h, h, h ),, 4. 4 Vi skriver ([;;;,[;;;,[;4;; 4) i feltet j. k) Se på den siste kolonnen i den reduserte matrisen: 6 7. Den siste elementet er lik, derfor v virkelig tilhører kolonnerommet. De tre resterende elementene gir koordinatene mht basisen H: 6 [v H. 7 Vi skriver [6;-;-7 i feltet k.

31 . Oppgave u, v, w T (x) u (v x) a) Hvis er T (x) 7x y z x y + 6z x + y 4z x x y z x y z, x y z, y + z x + z x y dvs. der og A [T E A T T A 7 6 4, Vi skriver [-7,-,-;-,-,6;-,,-4 i feltet a. Lag den utvidede matrisen som består av A, kolonne a b b c og/eller identitetsmatrisen I, og kolonne w 9 9, 4.

32 og bruk Gauss-Jordan: 7 a 9 6 b 9 G J 4 c 4 G J 8b 6c b + 6 c 8 6 a b c. b) For å finne en basis for kjernen ker T, løs systemet Ax. z t er en fri variabel: x t y t t, z t dvs. er en basis for ker T. Vi skriver ([-;;) i feltet b. c) Kolonnene nr. og i den opprinnelige matrisen gir en basis for bildet R (T ): 7,. Vi skriver ([-7;-;-,[-;-;) i feltet c. d) Løser systemet Ax w: x t y t z t + t. Det er uendelig mange løsninger, for eksempel: x t, y z, t, x y z t t + t 8. Vi skriver [-;; eller [-;8; (eller en vektor som tilsvarer en annen verdi av t) i feltet d.

33 La oss kontrollere svarene: Oppgave G (g, g, g ) W M., V P, E (, x, x, x ). B U : V W,. U (f) f (B) f (B) T.,. a) Løsning. f a + a x + a x + a x, f (B) a I + a B + a B + a B a + a a a a + a a a a a + + a 4a a a a a 4a a + a + 4a + a a + a + a a + 4a a + a + a a + a + a + a a + a a + 8a 4a + 4a a + a U (f) U ( a + a x + a x + a x ) f (B) f (B) T + a a a 4a a a a 8a 4a.

34 dvs. a + 4a + a a + a + a a + 4a a + a + a a + a + a + a a + a a + 8a 4a + 4a a + a a + 4a + a a + a + a a + 4a a + a + a a + a + a + a a + a a + 8a 4a + 4a a + a [U (f) G a + a + a a 4a a a a a a a + 4a a + a a + a + a a 4a a a [U (f) G E 4 4 Vi skriver [,,,;,-,,-4;,,-,- i feltet 4a. Løsning. [U () G [ I I T G [U (x) G [ B B T G, G G. T. [ U ( x ) G [ B ( B ) T G T G G, a a a a T, G, T G 4

35 4 4 T Setter de 4 kolonnene i matrisen [ U ( x ) G [ B ( B ) T G [U (f) G E G G 4. T G b) Vi tar i betrakning matrisen fra deloppgave 4d, og setter sammen matrisen [U (f) G E, kolonnen a b c (eller identitetsmatrisen I ; vi setter begge), og kolonnen Bruker Gauss-Jordan: a 4 4 b c 6 La a a a a G G J Null ([U (f) G E ). a og a er frie variable. Det er klart at a s a a 4t t s a t + t 4 b c a + b + c 4..

36 Oversetter tilbake til P -språket: en basis for ker U er (, 4x x + x ). Vi skriver ([;;;,[;-4;-;) i feltet 4b. c) Bildet R (U) tilsvarer kolonnerommet til [U (f) G E. En basis for kolonnerommet består av kolonnene nr. og :,. Oversetter tilbake til matriser: en basis for R (U) er G (g, g ),. Vi skriver ([,,-;-,,;,,,[,,;-,,-;,,) i feltet 4c. d) U (f) Den siste kolonnen i den trappeformede matrisen sier at den generelle løsningen til systemet er a a a + s + t 4. a Vi kan velge s og t selv. Hvorfor ikke å sette s t : a a a, a og det ønskelige polynomet er Vi skriver [;-;-; i feltet 4d. Den generelle løsningen er x x.. f ( x x ) + s + t ( 4x x + x ). 6

37 La oss kontrollere resultatet: B B U ( x x ) U () I I T T T ,, 4B B + B 4 U ( 4x x + x ) + T., U (( x x ) + s + t ( 4x x + x )) + s + t e) G (g, g, g ), P G G [[g G, [g G, [g G P G G,,.. Vi skriver [,,;,,;,,- i feltet 4e_P_G_Gprime og [,-,;,,;,,- i feltet 4e_P_Gprime_G. f) 7

38 E (, + x, x, x + x ). P E E [ [ E, [ + x E, [ x E, [ x + x E P E E Vi skriver [,,,;,,,;,,,;,,, i feltet 4f_P_E_Eprime og [,-,,;,,,;,,,-;,,, i feltet 4f_P_Eprime_E. g) [U G E P G G [U G E [U G E [U G E P E E [U G E P G G [U G E P E E , ,, Vi skriver [,,,9;,-,,-4;,,, i feltet 4g_U_Gprime_E, [,,,6;,-,,-4;,,-,-6 i feltet 4g_U_G_Eprime, og [,,,;,-,,-4;,,,6 i feltet 4g_U_Gprime_Eprime.. Oppgave A

39 a) p (λ) a + a λ + a λ + a λ. a det A det a tr (A), a Vi skriver [-,-,-, i feltet a. b) P AP D p (λ) λ λ + λ. λ λ λ, 8 9,, λ λ λ. Siden a, er det bare 4 muligheter for egenverdiene (dvs. røttene til p (λ)): ± og ±. Det er enkelt å sjekke at og er to egenverdier. Siden er den resterende egenverdien tr (A) λ + λ + λ, ( ). Derfor er diagonalmatrisen D. Vi skriver [-,,;,-,;,, i feltet b_d. La oss finne egenvektorer:. λ, : A + I x x x s + t s t s G J + t,, s + t. 9

40 . λ : A I x x x t t t t G J, t., Setter de tre egenvektorene som kolonner i matrisen P : P, 8 6 P AP D. Vi skriver [,,;,,;,, i feltet b_p. c) A m b m B + c m C. A m ( P DP ) m P D m P P ( ) m ( ) m m ( ) m ( ) m m P 4 m ( ) m ( ) m m 4 ( ) m 4 m m ( ) m ( ) m m ( ) m m m ( ) m ( ) m m ( ) m m ( ) m 4 + m 4 4 ( ) m B + m C. Vi skriver - i feltet c_b, i feltet c_c, [-,,4;-,,;-,, i feltet c_b, og [4,-,-4;,-,-;,-,- i feltet c_c. 4

41 La oss kontrollere resultatet (f. eks. for m 7): ( ) 7 4 A m (( ) m B + m C) Oppgave F q (λ) λ 9λ 9λ + 8 (λ + ) (λ ) (λ 9). La oss finne egenvektorene:. λ :. λ : F + I x x x F I x x x t t t t t t t t G J G J,, t., t.,. λ 9: F 9I x x x t t t t G J, t., 4

42 De tre vektorene,, danner en ortogonal basis for R, men vi trenger en ortonormal basis. La oss normalisere vektorene, og sette dem som kolonner i matrisen:,,, Q Vi skriver [-/,/,/;-/,/,-/;/,/,/ i feltet d. La oss kontrollere resultatet: QQ T dvs. Q er en ortogonal matrise. Q T AQ T T, 9..7 Oppgave A a b d c e f AA T I, a >, b <, d <. [ k k k, Fiiner a: 4

43 k a k k, a +, a 4, a, siden a >. Finner b: k k, b c, b + c + 9, b c, k k, ( c ) ( + c +, ) 4 c + c + 6 9, 4 c + c + 7 9, Løsningen [ b 6 7, c 4 7 forkastes, siden b <, derfor b 4, c. Finner d, e og f. Vi kan godt løse systemet k k, k k, 4

44 og velge deretter løsningen som tilfredsstiller betingelsene d + e + f, d <. Men det er lettere å bruke kryssproduktet: d e f t t ±. 4 t t t, Siden er d + e + f, ( ) ( ) ( ) t + t + t, t, t (fordi d < ), og Endelig: d e f. 4 A Vi skriver [/,-4/,-/;/,-/,/;-/,-/,/ i feltet 6a...8 Oppgave a) A [ + (a + ) i ( + i) z i der z b + ci C. [ A + i (a + ) i (A T ) ( + i) z, [ i (a + ) + i ( i) z. Det er klart at a +, a, 44

45 og ( + i) z + i, z + i + i 7 + 7i ( + i) ( i) ( + i) ( i) i. A [ + (a + ) i ( + i) z i [ + i. i [ ( ( ) ) ( + + i ( + i) i) i Du oppgir [-/,7/,7/ i svaret. b) B der a R, og z b + ci C. B (B T ) [ 7a + + i ( i) z 4i 6i [ 7a + + i 4i ( i) z 6i, [ 7a + i + 4i ( + i) z 6i. Det er klart at og 7a +, a 7, ( i) z 4i, z 4i i i. B [ 7a + + i ( i) z 4i 6i [ i 4i. 4i 6i [ ( ) ( i ( i) 4 4i 6i 9 9 i) Du oppgir [-/7,4/9,-/9 i svaret. c) [ a 4 C 7 i z i i [ k k,

46 der a R, a >, og z b + ci C. Siden k, er ( a 4 ) ( 7 i a + 4 ) ( 7 i ) ( 7 i 7 8 ) 7 i a ,, Siden er ( a 4 ) 7 i a , a 89 7 >. ( z + k k, ( i ) ( 7 i ) i ), z i, z z i i 8 ( i Du oppgir [/7,8/7,-/7 i svaret i, ) i. d) der z b + ci C. D [ i z 4 + i i, [ D i + 4 i (D T ), z + i [ [ DD i z i + 4 i 4 + i i z + i [ zz + i z + iz, i z iz [ [ [ D i + 4 i i z D z + i 4 + i i z + iz z iz zz +. 46

47 og Siden DD D D, er zz z, Endelig: D DD DD i z + iz z + iz, z ( i) + i, z + i 4i. i [ i 4i, 4 + i i [ [ [ i 4i + i 4 i, 4 + i i + 4i + i [ [ [ + i 4 i i 4i, + 4i + i 4 + i i og D er normal. Du oppgir [,-4 i svaret. 47

MAT-1004 Vårsemester 2017 Prøveeksamen

MAT-1004 Vårsemester 2017 Prøveeksamen MAT-1004 Vårsemester 017 Prøveeksamen Contents 0.1 Forord................................. 1 1 OPPGAVE OPPGAVE OPPGAVE 6 4 OPPGAVE 7 5 OPPGAVE 10 6 OPPGAVE 11 7 OPPGAVE 11 8 OPPGAVE 1 9 Formatering av

Detaljer

Eksamensoppgave MAT juni 2010 (med løsningsforslag)

Eksamensoppgave MAT juni 2010 (med løsningsforslag) Eksamensoppgave MAT-4 juni (med løsningsforslag) Contents OPPGAVE OPPGAVE 4 OPPGAVE 5 4 OPPGAVE 6 5 Fasit 7 5 Oppgave 7 5 Oppgave 7 5 Oppgave 8 54 Oppgave 8 6 Løsningsforslag 9 6 Oppgave 9 6 Oppgave 6

Detaljer

MAT-1004 Vårsemester 2017 Obligatorisk øving 6

MAT-1004 Vårsemester 2017 Obligatorisk øving 6 MAT-4 Vårsemester 7 Obligatorisk øving Contents OPPGAVE Hvordan å løse oppgaven? 4 Formatering av svarene 9. Rasjonale tall............................. 9. Matriser og vektorer.........................

Detaljer

MAT-1004 Vårsemester 2017 Obligatorisk øving 3

MAT-1004 Vårsemester 2017 Obligatorisk øving 3 MAT-4 Vårsemester 7 Obligatorisk øving Contents OPPGAVE OPPGAVE Hvordan løses oppgave? 5 4 Hvordan løses oppgave? 6 5 Formatering av svarene 8 5. Rasjonale tall............................. 8 5. Matriser

Detaljer

MAT-1004 Vårsemester 2017 Obligatorisk øving 2

MAT-1004 Vårsemester 2017 Obligatorisk øving 2 MAT-1004 Vårsemester 2017 Obligatorisk øving 2 Contents 1 OPPGAVE 2 2 OPPGAVE 2 Eksempler 4.1 Oppgave 1............................... 4.2 Oppgave 2............................... 5 4 Formatering av svarene

Detaljer

EKSAMENSOPPGAVE. to A4 ark egne notater og Rottmanns tabeller. Kontaktperson under eksamen: Professor Andrei Prasolov. Telefon:

EKSAMENSOPPGAVE. to A4 ark egne notater og Rottmanns tabeller. Kontaktperson under eksamen: Professor Andrei Prasolov. Telefon: EKSAMENSOPPGAVE Eksamen i: Mat 4 Lineær algebra Dato: Torsdag 4 juni 25 Tid: Kl 9: 3: Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Godkjent kalkulator, to A4 ark egne notater og Rottmanns tabeller Oppgavesettet

Detaljer

EKSAME SOPPGAVE MAT-1004 (BOKMÅL)

EKSAME SOPPGAVE MAT-1004 (BOKMÅL) EKSAME SOPPGAVE MAT-00 (BOKMÅL) Eksamen i : Mat-00 Lineær algebra. Dato : Torsdag 09. juni. Tid : 09.00 -.00. Sted: : Teorifagb., hus, plan. Tillatte hjelpemidler : Godkjent kalkulator, to A ark egne notater

Detaljer

10 Radrommet, kolonnerommet og nullrommet

10 Radrommet, kolonnerommet og nullrommet Radrommet kolonnerommet og nullrommet La A være en m n matrise Vi kan beskrive matrisen ved hjelp av dens rader r A r r i R n r m eller dens kolonner A [ c c c n ci R m Definisjon (se Def 7 i boka) For

Detaljer

12 Lineære transformasjoner

12 Lineære transformasjoner 2 Lineære transformasjoner 2 Funksjoner Definisjon 2 En funksjon ( a function) f : A B er en regel, som tilordner en entydig bestemt verdi f (a) B til ethvert element a A Mengden A kalles domenet til f

Detaljer

13 Oppsummering til Ch. 5.1, 5.2 og 8.5

13 Oppsummering til Ch. 5.1, 5.2 og 8.5 3 Oppsummering til Ch. 5. 5. og 8.5 3. Motivasjon Det er veldig viktig å kunne beregne funksjonsverdier f (A) for kvadratiske matriser A. I kalkulus (teori av differensiallikninger) er det viktig å beregne

Detaljer

16 Ortogonal diagonalisering

16 Ortogonal diagonalisering Ortogonal diagonalisering Ortogonale matriser Definisjon (Def 7) En n n matrise A kalles ortogonal dersom den er invertibel og A A T Denne betingelsen er ekvivalent til at der I n er n n identitesmatrisen

Detaljer

12 Diagonalisering av matriser og operatorer (Ch. 5.1, 5.2 og 8.5)

12 Diagonalisering av matriser og operatorer (Ch. 5.1, 5.2 og 8.5) Diagonalisering av matriser og operatorer (Ch 5, 5 og 85) Motivasjon Det er veldig viktig å kunne beregne funksjonsverdier f (A) for kvadratiske matriser A I kalkulus (teori av differensiallikninger) er

Detaljer

15 Hovedprinsippet for vektorrom med et indre produkt

15 Hovedprinsippet for vektorrom med et indre produkt Hovedprinsippet for vektorrom med et indre produkt La oss minne Hovedprinsippet (Seksjon 8.): Alle (endelig dimensjonale dvs. de som har en endelig basis) vektorrom kan beskrives som R n der n dim V. Alle

Detaljer

UNIVERSITET I BERGEN

UNIVERSITET I BERGEN UNIVERSITET I BERGEN Det matematisk-naturvitenskapelige fakultet BOKMÅL Løsningsforslag eksamen MAT - Lineær algebra H Med forbehold om skrivefeil. Oppgave. Betrakt A = 6 5, b = 6 b (a) (b) Finn den reduserte

Detaljer

LØSNINGSFORSLAG EKSAMEN MA1202/MA6202 VÅR 2010

LØSNINGSFORSLAG EKSAMEN MA1202/MA6202 VÅR 2010 LØSNINGSFORSLAG EKSAMEN MA/MA6 VÅR Oppgave. a Radredusering gir A 4 6 5 R, og siden R har to ledende variabler så får vi ranka. Siden A har re kolonner gir dimensjonsteoremet for matriser at nullitya 4

Detaljer

EKSAMEN I MA1202 LINEÆR ALGEBRA MED ANVENDELSER

EKSAMEN I MA1202 LINEÆR ALGEBRA MED ANVENDELSER Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 Faglig kontakt under eksamen: Truls Fretland (73 55 89 87) EKSAMEN I MA1202 LINEÆR ALGEBRA MED ANVENDELSER LØSNINGSFORSLAG

Detaljer

1 Gauss-Jordan metode

1 Gauss-Jordan metode Merknad I dette Kompendiet er det gitt referanser både til læreboka og til selve Kompendiet Hvordan å gjenkjenne dem? Referansene til boka er 3- tallede, som Eks 3 Vi kan også referere til 22, kap 22 eller

Detaljer

Lineær algebra. 0.1 Vektorrom

Lineær algebra. 0.1 Vektorrom Lineær algebra Siden dette temaet er alt for stort til å kunne gjennomgås på en halvtime, med alle de teoremene og denisjonene som skal til, har jeg laget dette notatet. Det bygger hovedsakelig på notatene

Detaljer

MA1201/MA6201 Høsten 2016

MA1201/MA6201 Høsten 2016 MA/MA6 Høsten 6 Norges teknisk naturvitenskapelige universitet Institutt for matematikk Løsningsforslag Øving Med forebehold om feil. Hvis du finner en, ta kontakt med Karin. Kapittel 6. a) Stemmer. Anta

Detaljer

x 1 x 2 x = x n b 1 b 2 b = b m Det kan være vanskelig (beregningsmessig) og bearbeide utrykk som inneholder

x 1 x 2 x = x n b 1 b 2 b = b m Det kan være vanskelig (beregningsmessig) og bearbeide utrykk som inneholder 4 Noen merknader 4. Lineære systemer Ax = b Gitt systemet Ax = b, A = [a i,j ] i=,,...,m, j=,,...,n x = b = Det kan være vanskelig (beregningsmessig) og bearbeide utrykk som inneholder b i. Med det finnes

Detaljer

Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter!

Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Oppgave.. a x y = x + y = r r r +r r x y = y fri x y = y fri Vi får én fri variabel, og løsningens har følgelig dimensjon.

Detaljer

(3/2)R 2+R 3 R 1 +R 2,( 2)R 1 +R 3 ( 2)R 1 +R 4 6/5R 3 +R 4 1/5R 3

(3/2)R 2+R 3 R 1 +R 2,( 2)R 1 +R 3 ( 2)R 1 +R 4 6/5R 3 +R 4 1/5R 3 NTNU Institutt for matematiske fag TMA4115 Matematikk 3 våren 2009 Løsningsforslag - Øving 10 Fra Edwards & Penney, avsnitt 4.4 5 Vi bruker Algoritme 1 og 2 i EP på sidene 190 og 193 for å finne en basis

Detaljer

EKSAMENSOPPGAVER FOR TMA4110/TMA4115 MATEMATIKK 3

EKSAMENSOPPGAVER FOR TMA4110/TMA4115 MATEMATIKK 3 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 25 2. januar 25 EKSAMENSOPPGAVER FOR TMA4/TMA45 MATEMATIKK 3 Oppgave A- a) Finn kvadratrøttene til det komplekse tallet

Detaljer

Lineær algebra-oppsummering

Lineær algebra-oppsummering Kapittel 9 Lineær algebra-oppsummering Matriser 1 Matriser er et rektangulært sett av elementer ordnet i rekker og kolonner: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij m n a m1 a n2 a mn 2 Kvadratisk matrise:

Detaljer

(a) R n defineres som mengden av kolonnevektorer. a 1 a 2. a n. (b) R n defineres som mengden av radvektorer

(a) R n defineres som mengden av kolonnevektorer. a 1 a 2. a n. (b) R n defineres som mengden av radvektorer 5 Vektorrom Et vektorrom er en mengde V med tre algebraiske operasjoner (addisjon, negasjon og skalærmultiplikasjon) som tilfredsstiller de 10 betingelsene fra Def. 4.1.1. Jeg vil ikke gi en eksamensoppgave

Detaljer

EKSAMENSOPPGAVE. 4 (1+3) Det er 12 deloppgaver (1abc, 2abcd, 3abc, 4ab) Andrei Prasolov

EKSAMENSOPPGAVE. 4 (1+3) Det er 12 deloppgaver (1abc, 2abcd, 3abc, 4ab) Andrei Prasolov Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: Mat-004 Lineær algebra Dato: Torsdag. juni 207 Klokkeslett: 09.00-3.00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Godkjent kalkulator,

Detaljer

Universitetet i Agder Fakultetet for teknologi og realfag Institutt for matematiske fag. Eksamen MA desember Lykke til!

Universitetet i Agder Fakultetet for teknologi og realfag Institutt for matematiske fag. Eksamen MA desember Lykke til! Universitetet i Agder Fakultetet for teknologi og realfag Institutt for matematiske fag Eksamen Emnekode: Emnenavn: MA-2 Lineær algebra Dato: Varighet:. desember 2 9. - 4. Antall sider: Tillatte hjelpemidler:

Detaljer

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra Universitet i Bergen Det matematisk-naturvitenskapelige fakultet Bokmål Eksamen i emnet MAT2 - Lineær algebra Onsdag 29 mai, 20, kl. 09.00-4.00 Tillatte hjelpemidler. kalkulator, i samsvar med fakultetets

Detaljer

= 3 11 = = 6 4 = 1.

= 3 11 = = 6 4 = 1. MAT3000/4000 Eksamen V3 Løsningsforslag Oppgave [0 poeng] Sjekk at 3 er en kvadratisk rest i Z/(3) og finn løsningene av likningen x = 3 i Z/(3) (uten å lage en tabell for x ) Du får lov til å bruke at

Detaljer

Løsninger for eksamen i MAT Lineær algebra og M102 - Lineær algebra, fredag 28. mai 2004, Oppgave 1. M s = = 1 2 (cofm 2) T.

Løsninger for eksamen i MAT Lineær algebra og M102 - Lineær algebra, fredag 28. mai 2004, Oppgave 1. M s = = 1 2 (cofm 2) T. Løsninger for eksamen i MAT - Lineær algebra og M - Lineær algebra, fredag 8. mai 4, (a) Finn determinanten til matrisen M s = Oppgave s uttrykt ved s, og bruk dette til å avgjøre for hvilke s matrisen

Detaljer

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra Universitet i Bergen Det matematisk-naturvitenskapelige fakultet Bokmål Eksamen i emnet MAT - Lineær algebra Onsdag 5 september, 0, kl. 09.00-4.00 Tillatte hjelpemidler. kalkulator, i samsvar med fakultetets

Detaljer

Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon.

Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. 4.6 Rang Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. Definisjon: Rangen til en m n matrise A betegnes med rank A og er definert som dimensjonen til kolonnerommet

Detaljer

Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på

Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på Kap. 7 Innledning Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på Symmetriske matriser. Disse matrisene har uvanlig pene egenskaper mht. diagonalisering. Kvadratiske

Detaljer

4.1 Vektorrom og underrom

4.1 Vektorrom og underrom 4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,

Detaljer

Løsningsforslag MAT 120B, høsten 2001

Løsningsforslag MAT 120B, høsten 2001 Løsningsforslag MAT B, høsten Sett A = ( ) (a) Finn egenverdiene og egenvektorene til A ( ) λ =, e = ( λ =, e = ) (b) Finn matrisen e ta og den generelle løsningen på initialverdiproblemet Ẋ = AX, X()

Detaljer

Minste kvadraters løsning, Symmetriske matriser

Minste kvadraters løsning, Symmetriske matriser Minste kvadraters løsning, Symmetriske matriser NTNU, Institutt for matematiske fag 19. november 2013 Inkonsistent ligningsystem Anta at Ax = b er et inkonsistent ligningsystem, da er b ikke i Col(A).

Detaljer

Kap. 6 Ortogonalitet og minste kvadraters problemer

Kap. 6 Ortogonalitet og minste kvadraters problemer Kap. 6 Ortogonalitet og minste kvadraters problemer vanlig indreprodukt (prikkprod.) i IR n, egenskaper. ortogonalitet i IR n Pythagoras teorem: u og v i IR n er ortogonale hvis og bare hvis u + v 2 =

Detaljer

Kap. 6 Ortogonalitet og minste kvadrater

Kap. 6 Ortogonalitet og minste kvadrater Kap. 6 Ortogonalitet og minste kvadrater IR n er mer enn bare et vektorrom: den har et naturlig indreprodukt, nemlig prikkproduktet av vektorer. Dette indreproduktet gjør det mulig å tenke geometrisk og

Detaljer

6.4 Gram-Schmidt prosessen

6.4 Gram-Schmidt prosessen 6.4 Gram-Schmidt prosessen La W {0} være et endeligdimensjonalt underrom av R n. (Senere skal vi mer generelt betrakte indreprodukt rom; se seksjon 6.7). Vi skal se hvordan vi kan starte med en vanlig

Detaljer

Generelle teoremer og definisjoner MA1201 Lineær Algebra og Geometri - NTNU

Generelle teoremer og definisjoner MA1201 Lineær Algebra og Geometri - NTNU Generelle teoremer og definisjoner MA1201 Lineær Algebra og Geometri - NTNU Lærebok: Anton, H & Rorres, C: Elementary Linear Algebra, 11 utgave Jonas Tjemsland 26 april 2015 4 Generelle vektorrom 41 Reelle

Detaljer

Egenverdier for 2 2 matriser

Egenverdier for 2 2 matriser Egenverdier for matriser (Bearbeidet versjon av tidligere notat på nett-sidene til MA101 - Lineær algebra og geometri Versjon oppdatert med referanser til 10utg av læreboken) Egenvektorer og egenverdier

Detaljer

Generelle teoremer og denisjoner MA1201 Lineær Algebra og Geometri - NTNU Lærebok: Anton, H. & Rorres, C.: Elementary Linear Algebra, 11.

Generelle teoremer og denisjoner MA1201 Lineær Algebra og Geometri - NTNU Lærebok: Anton, H. & Rorres, C.: Elementary Linear Algebra, 11. Generelle teoremer og denisjoner MA1201 Lineær Algebra og Geometri - NTNU Lærebok: Anton, H. & Rorres, C.: Elementary Linear Algebra, 11. utgave Jonas Tjemsland 19. november 2014 1 Lineære likningssystemer

Detaljer

EKSAMEN I MA1202 OG MA6202 LINEÆR ALGEBRA MED ANVENDELSER

EKSAMEN I MA1202 OG MA6202 LINEÆR ALGEBRA MED ANVENDELSER Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 3 Faglig kontakt under eksamen: Carl Fredrik Berg (975 05 585) EKSAMEN I MA1202 OG MA6202 LINEÆR ALGEBRA MED ANVENDELSER

Detaljer

Rang og Vektorrom. Magnus B. Botnan NTNU. 4. august, 2015

Rang og Vektorrom. Magnus B. Botnan NTNU. 4. august, 2015 Rang og Vektorrom Magnus B. Botnan NTNU 4. august, 2015 Lineær Uavhengighet La v (1),..., v (m) være vektorer av samme størrelse. Vi sier at vektorene er lineært avhengige hvis det finnes konstanter c

Detaljer

Løsningsforslag for eksamen i Matematikk 3 - TMA4115

Løsningsforslag for eksamen i Matematikk 3 - TMA4115 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag for eksamen i Matematikk 3 - TMA4115 Vår 1 1 a) La z = x iy. Da er Re z = x og z = x y. Siden y er et reelt

Detaljer

4.2 Nullrom, kolonnerom og lineære transformasjoner

4.2 Nullrom, kolonnerom og lineære transformasjoner 4.2 Nullrom, kolonnerom og lineære transformasjoner Utover Span {v 1, v 2,..., v p } er det en annen måte vi får lineære underrom på! Ser nå på V = R n. Skal se at det er visse underrom knyttet til en

Detaljer

A 2 = PDP 1 PDP 1 = PD 2 P 1. og ved induksjon får vi. A k = PD k P 1. Kommentarer:

A 2 = PDP 1 PDP 1 = PD 2 P 1. og ved induksjon får vi. A k = PD k P 1. Kommentarer: 5.3 Diagonalisering Det ville være fint om en matrise A var similær med en diagonalmatrise D: da har vi funnet egenverdiene, og kan f.eks. lett beregne A k. Når er dette tilfelle? Det er tema i denne seksjonen.

Detaljer

Basis, koordinatsystem og dimensjon

Basis, koordinatsystem og dimensjon Basis, koordinatsystem og dimensjon NTNU, Institutt for matematiske fag 22.-24. oktober 2013 Basis Basis for vektorrom: En endelig mengde B = {b 1, b 2,..., b n } av vektorer i et vektorrom V er en basis

Detaljer

7.1 forts. Schur triangularisering og spektralteoremet

7.1 forts. Schur triangularisering og spektralteoremet 7.1 forts. Schur triangularisering og spektralteoremet Vi skal vise to svært sentrale resultat i lineær algebra. Spektralteoremet (Teorem 3 i Lay): dette sier bl.a. at reelle symmetriske matriser er ortogonalt

Detaljer

MAT1120 Notat 2 Tillegg til avsnitt 5.4

MAT1120 Notat 2 Tillegg til avsnitt 5.4 MAT1120 Notat 2 Tillegg til avsnitt 54 Dette notatet utfyller bokas avsnitt 54 om matriserepresentasjoner (også kalt koordinatmatriser) av lineære avbildninger mellom endeligdimensjonale vektorrom En slik

Detaljer

Notat2 - MAT Om matriserepresentasjoner av lineære avbildninger

Notat2 - MAT Om matriserepresentasjoner av lineære avbildninger Notat2 - MAT1120 - Om matriserepresentasjoner av lineære avbildninger Dette notatet uftfyller bokas avsn 54 om matriserepresentasjoner av lineære avbildninger mellom endelig dimensjonale vektorrom En matriserepresentasjon

Detaljer

Kap. 7 Symmetriske matriser og kvadratiske former

Kap. 7 Symmetriske matriser og kvadratiske former Kap. 7 Symmetriske matriser og kvadratiske former Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på symmetriske matriser som har uvanlig pene egenskaper mht. diagonalisering.

Detaljer

7.4 Singulærverdi dekomposisjonen

7.4 Singulærverdi dekomposisjonen 7.4 Singulærverdi dekomposisjonen Singulærverdi dekomposisjon til en matrise A er en av de viktigste faktoriseringene av A (dvs. A skrives som et produkt av matriser). Den inneholder nyttig informasjon

Detaljer

MAT Prøveeksamen 29. mai - Løsningsforslag

MAT Prøveeksamen 29. mai - Løsningsforslag MAT0 - Prøveeksamen 9 mai - Løsningsforslag Oppgave Sett A = 4 4 0 x 0, x = x, b =, x 0 og la v, v, v betegne kolonnevektorene til A a) Skriv A x = y som en vektorlikning x Svar : Siden A x = [v v v ]

Detaljer

R: 0, , = 6000 D : 0, , = 4000 La v n = angi fordelingen etter n år (dvs. a b n stemmer for R og

R: 0, , = 6000 D : 0, , = 4000 La v n = angi fordelingen etter n år (dvs. a b n stemmer for R og EGENVERDIER FOR MATRISER a Motiverende eksempel En by i USA har 0000 innbyggere som stemmer ved valget hvert år. I dag stemmer 8000 for R og 000 for D. Hvert år går 30% fra R til D og 0% fra D til R. Hva

Detaljer

EKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Mandag 6. juni 2011 løsningsforslag

EKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Mandag 6. juni 2011 løsningsforslag Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 EKSAMEN I TMA4 MATEMATIKK 3 Bokmål Mandag 6. juni løsningsforslag Hjelpemidler (kode C): Enkel kalkulator (HP3S eller

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 1120 Lineær algebra Eksamensdag: 9. desember 2014. Tid for eksamen: 14.30 18.30. Oppgavesettet er på 6 sider. Vedlegg: Tillatte

Detaljer

Lineær algebra. H. Fausk 09.03.2015. i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over.

Lineær algebra. H. Fausk 09.03.2015. i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over. Lineær algebra H. Fausk 09.03.2015 Første utkast Linære likningsystem lar seg løse ved bruk av de elementære regneartene. Selv om løsningen av lineære likingsystem i prinsippet er elementært blir det fort

Detaljer

Rom og lineæritet. Erik Bédos. Matematisk Institutt, UiO 2012.

Rom og lineæritet. Erik Bédos. Matematisk Institutt, UiO 2012. Rom og lineæritet Erik Bédos Matematisk Institutt, UiO 202. Lineær algebra er et viktig redskap i nær sagt alle grener av moderne matematikk. De fleste emnene i matematikk på masternivå bygger på en forståelse

Detaljer

6.5 Minste kvadraters problemer

6.5 Minste kvadraters problemer 6.5 Minste kvadraters problemer I mange anvendte situasjoner møter man lineære likningssystemer som er inkonsistente, dvs. uten løsninger, samtidig som man gjerne skulle ha funnet en løsning. Hva gjør

Detaljer

Gauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts.

Gauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts. Gauss-Jordan eliminasjon; redusert echelonform Forelesning, TMA4110 Fredag 18/9 Martin Wanvik, IMF MartinWanvik@mathntnuno En matrise vil normalt være radekvivalent med flere echelonmatriser; med andre

Detaljer

Emne 7. Vektorrom (Del 1)

Emne 7. Vektorrom (Del 1) Emne 7. Vektorrom (Del 1) Første del av dette emnet innholder lite nytt regnemessig, men vi innfører en rekke nye begreper. Avbildning (image). R m T R n n image(t) Vi kan starte med samme skjematiske

Detaljer

Diagonalizering. En n n matrise A sies å være diagonaliserbar hvis den er similær med en diagonalmatrise D. A = PDP 1

Diagonalizering. En n n matrise A sies å være diagonaliserbar hvis den er similær med en diagonalmatrise D. A = PDP 1 Diagonalizering En n n matrise A sies å være diagonaliserbar hvis den er similær med en diagonalmatrise D. A = PDP 1 1 Diagonalizering En n n matrise A sies å være diagonaliserbar hvis den er similær med

Detaljer

Forelesning 14 Systemer av dierensiallikninger

Forelesning 14 Systemer av dierensiallikninger Forelesning 14 Systemer av dierensiallikninger Eivind Eriksen 9. april 010 Dierensiallikninger En dierensiallikning inneholder en avhengig variabel (typisk y ) og en uavhengig variabel (typisk x), som

Detaljer

3.9 Teori og praksis for Minste kvadraters metode.

3.9 Teori og praksis for Minste kvadraters metode. 3.9 Teori og praksis for Minste kvadraters metode. Vi fortsetter med minste kvadraters problem. Nå skal vi se nærmere på noen teoretiske spørsmål, bl.a. hvordan normallikningene utledes. Minner om MK problemstillingen:

Detaljer

Lineær algebra. H. Fausk i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over.

Lineær algebra. H. Fausk i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over. Lineær algebra H. Fausk 09.03.2015 Andre utkast Linære likningsystem lar seg løse ved bruk av de elementære regneartene. I prinsippet er det enkelt, men det blir fort veldig mange regneoperasjoner som

Detaljer

MAT Onsdag 7. april Lineær uavhengighet (forts. 1.8 Underrom av R n, nullrom, basis MAT Våren UiO. 7.

MAT Onsdag 7. april Lineær uavhengighet (forts. 1.8 Underrom av R n, nullrom, basis MAT Våren UiO. 7. MAT 2 april 2.7 Lineær.8 Underrom MAT 2 Våren 2 UiO 7. april 2 / 23 MAT 2 april 2.7 Lineær.8 Underrom Minner om:.7 Lineær (fortsettelse) Definisjon. To vektorer u og v i R n kalles lineært avhengige dersom

Detaljer

Lineære likningssystemer og matriser

Lineære likningssystemer og matriser Kapittel 3 Lineære likningssystemer og matriser I dette kapittelet skal vi sette sammen Kapittel 1 og 2. 3.1 Den utvidede matrisen til et likningssystem Vi starter med et lineært likningssystem med m likninger

Detaljer

Utkast til løsningsforslag til eksamen i emnet MAT 121 - Lineær algebra Utan ansvar for feil og mangler Mandag 31. mai 2010, kl. 09-14.

Utkast til løsningsforslag til eksamen i emnet MAT 121 - Lineær algebra Utan ansvar for feil og mangler Mandag 31. mai 2010, kl. 09-14. Utkast til løsningsforslag til eksamen i emnet MAT 2 - Lineær algebra Utan ansvar for feil og mangler Mandag 3. mai 2, kl. 9-4. Oppgave En bisverm flyr mellom to kuber, A og B, på dagtid, og hver bi blir

Detaljer

Et forsøk på et oppslagsverk for TMA4145 Lineære metoder

Et forsøk på et oppslagsverk for TMA4145 Lineære metoder Et forsøk på et oppslagsverk for TMA4145 Lineære metoder Ruben Spaans May 21, 2009 1 Oppslagsverk Adjungert Ball, la (X, d) være et metrisk rom og la ɛ > 0. Da er for x 0 X: 1. B(x 0 ; ɛ) = {x x X d(x,

Detaljer

Kapittel 3. Mer om egenverdier og egenvektorer. 3.1 Komplekse n-tupler og vektorer

Kapittel 3. Mer om egenverdier og egenvektorer. 3.1 Komplekse n-tupler og vektorer Kapittel 3 Mer om egenverdier og egenvektorer I neste kapittel skal vi lære å løse systemer av difflikninger. Da vil vi trenge egenverdier og egenvektorer, og selv om vi skal løse reelle problemer, vil

Detaljer

MAT1120 Oppgaver til plenumsregningen torsdag 18/9

MAT1120 Oppgaver til plenumsregningen torsdag 18/9 MAT1120 Oppgaver til plenumsregningen torsdag 18/9 Magnus Dahler Norling (magnudn@math.uio.no) September 2014 Oppgave 4.6.4 rank A = rank B = 5 (teorem 13+14). dim Nul A = n - rank A = 6-5 = 1 (teorem

Detaljer

Emne 9. Egenverdier og egenvektorer

Emne 9. Egenverdier og egenvektorer Emne 9. Egenverdier og egenvektorer Definisjon: Vi starter med en lineær transformasjon fra til, hvor Dersom, hvor, sier vi at: er egenverdiene til A er tilhørende egenvektorer. betyr at er et reelt eller

Detaljer

Lineær Algebra og Vektorrom. Eivind Eriksen. Høgskolen i Oslo, Avdeling for Ingeniørutdanning

Lineær Algebra og Vektorrom. Eivind Eriksen. Høgskolen i Oslo, Avdeling for Ingeniørutdanning Lineær Algebra og Vektorrom Eivind Eriksen Høgskolen i Oslo, Avdeling for Ingeniørutdanning c Eivind Eriksen 2005. Innhold Kapittel 1. Lineære likningssystemer 1 1.1. Lineære likningssystemer i to variable

Detaljer

GENERELLE VEKTORROM. Hittil har vi bare snakket om vektorrom av type

GENERELLE VEKTORROM. Hittil har vi bare snakket om vektorrom av type Emne 8 GENERELLE VEKTORROM Hittil har vi bare snakket om vektorrom av type og underrom av dette. Vi definerte en mengde V som et underrom av hvis det inneholdt og var lukket under addisjon og skalar multiplikasjon.

Detaljer

EKSAMEN I MATEMATIKK 3 (TMA4110)

EKSAMEN I MATEMATIKK 3 (TMA4110) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 EKSAMEN I MATEMATIKK 3 (TMA) Tirsdag 3. november Tid: 9: 3: LØSNINGSFORSLAG MED KOMMENTARER Oppgave I denne oppgaven

Detaljer

MA1201 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3. desember 2007

MA1201 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3. desember 2007 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag MA101 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3 desember 007 Oppgave 1 a) Vi ser på ligningssystemet x +

Detaljer

MAT3000/ Våren 2013 Obligatorisk oppgavesett nr. 2 Løsningsskisse

MAT3000/ Våren 2013 Obligatorisk oppgavesett nr. 2 Løsningsskisse MAT3000/4000 - Våren 2013 Obligatorisk oppgavesett nr. 2 Løsningsskisse Oppgave 1 Din offentlig nøkkel er N = 377 og a = 269, mens lederen av klubben har valgt N = 1829 og a = 7. Passordet som du har mottatt

Detaljer

Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 24. april 2014 før forelesningen Antall oppgaver: 9

Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 24. april 2014 før forelesningen Antall oppgaver: 9 Innlevering BYPE000 Matematikk 000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 4. april 014 før forelesningen Antall oppgaver: 9 1 Regn ut determinanten til følgende matriser. (Det er også

Detaljer

Øving 3 Determinanter

Øving 3 Determinanter Øving Determinanter Determinanten til en x matrise er definert som Clear@a, b, c, dd K a b OF c d ad -bc Determinanten til en matrise er derfor et tall. Du skal se at det viktige for oss er om tallet er

Detaljer

Lineær uavhengighet og basis

Lineær uavhengighet og basis Lineær uavhengighet og basis NTNU, Institutt for matematiske fag 19. oktober, 2010 Lineær kombinasjon En vektor w sies å være en lineær kombinasjon av vektorer v 1, v 2,..., v k hvis det finnes tall c

Detaljer

MAT1120 Oppgaver til plenumsregningen torsdag 25/9

MAT1120 Oppgaver til plenumsregningen torsdag 25/9 MAT1120 Oppgaver til plenumsregningen torsdag 25/9 Øyvind Ryan (oyvindry@i.uio.no) September 2008 Oppgaver fra 5.1 Denisjon av egenverdier, egenvektorer, egenrom. Teorem 1 s. 306: Egenverdiene til en triangulær

Detaljer

Repetisjon: Om avsn og kap. 3 i Lay

Repetisjon: Om avsn og kap. 3 i Lay Repetisjon: Om avsn. 2.1-2.4 og kap. 3 i Lay Matrisemultiplikasjon. La A = [a ij ] være en m n matrise og B = [b kl ] være en n p matrise. ] Skriv B = [b 1 b 2 b p. Produktet AB er m p matrisen definert

Detaljer

Lineær algebra. H. Fausk i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over.

Lineær algebra. H. Fausk i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over. Lineær algebra H. Fausk 23.08.2015 Fjerde utkast Linære likningsystem lar seg løse ved bruk av de elementære regneartene. I prinsippet er løsing av linære likningsystem enkelt, men det blir fort veldig

Detaljer

4.4 Koordinatsystemer

4.4 Koordinatsystemer 4.4 Koordinatsystemer Minner om at B = { b 1, b 2,..., b n } kalles en basis for et vektorrom V dersom B er lineært uavhengig og utspenner V. I samme vektorrom kan vi innføre ulike koordinatsystemer ;

Detaljer

Kap. 5 Egenverdier og egenvektorer

Kap. 5 Egenverdier og egenvektorer Kap. 5 Egenverdier og egenvektorer Egenverdier, egenvektorer og diagonaliserbarhet er sentrale begreper for kvadratiske matriser. Mye er kjent fra tidligere, skal repetere dette og gå videre. Sammenhengen

Detaljer

Repetisjon: om avsn og kap. 3 i Lay

Repetisjon: om avsn og kap. 3 i Lay Repetisjon: om avsn. 2.1-2.4 og kap. 3 i Lay Matrisemultiplikasjon La A = [a ij ] være en m n matrise og B = [b kl ] være en n p matrise. ] Skriv B = [b 1 b 2 b p der b j -ene er i R n for hver j. Produktet

Detaljer

=cos. =cos 6 + i sin 5π 6 = =cos 2 + i sin 3π 2 = i.

=cos. =cos 6 + i sin 5π 6 = =cos 2 + i sin 3π 2 = i. Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 9 L SNINGSFORSLAG TIL EKSAMEN I SIF59 MATEMATIKK Bokmål Fredag. desember Oppgave a) Vi har z = i r e iθ = e i π r =,

Detaljer

Oppgave 1 (25 %) - Flervalgsoppgaver

Oppgave 1 (25 %) - Flervalgsoppgaver Oppgaver og løsningsforslag for 4t eksamen 10.mai 006 i LO510D Lineær algebra med grafiske anvendelser. Fra og med oppgave skal alle svar begrunnes. Oppgave 1 (5 %) - Flervalgsoppgaver Denne oppgaven består

Detaljer

Digital Arbeidsbok i ELE 3719 Matematikk

Digital Arbeidsbok i ELE 3719 Matematikk Eivind Eriksen Digital Arbeidsbok i ELE 3719 Matematikk 3. april 215 Handelshøyskolen BI Innhold Del I Forelesninger i ELE3719 Matematikk 1 Vektorer og vektorregning......................................

Detaljer

tilfeller tatt for gitt ved universiteter og høyskoler. Her er framstillingen kortfattet, meningen er at dette kan brukes som referanse.

tilfeller tatt for gitt ved universiteter og høyskoler. Her er framstillingen kortfattet, meningen er at dette kan brukes som referanse. Forord Denne læreboken gir en innføring i lineær algebra, rettet mot begynnerkurs på Universitets- og Høyskolenivå. Arbeidet med dette stoffet tok til som en del av et større prosjekt, som omfattet datastøttet

Detaljer

y(x) = C 1 e 3x + C 2 xe 3x.

y(x) = C 1 e 3x + C 2 xe 3x. NTNU Institutt for matematiske fag TMA4115 Matematikk eksamen 4 juni 9 Løsningsforslag 1 Innsatt for z = x + iy kan ligningen skrives x + 1 + i(y ) = x 1 + i(y + ) Ved å benytte at z = a + b for et kompleks

Detaljer

TMA4110 Matematikk 3 Haust 2011

TMA4110 Matematikk 3 Haust 2011 Noregs teknisk naturvitskaplege universitet Institutt for matematiske fag TMA40 Matematikk 3 Haust 0 Løysingsforslag Øving Oppgåver frå læreboka kap 5, s 7-73 5 Eigenrommet som svarar til λ = 5 er det

Detaljer

Lineære likningssystemer, vektorer og matriser

Lineære likningssystemer, vektorer og matriser Lineære likningssystemer, vektorer og matriser Kompendium 1 i MAT1001 Matematikk 1 Høsten 2008 Inger Christin Borge Matematisk institutt, UiO Forord Velkommen til Universitetet i Oslo, og til MAT1001!

Detaljer

Oppgaver til seksjon med fasit

Oppgaver til seksjon med fasit Oppgaver til seksjon.6-. med fasit Oppgaver til seksjon.6. Skriv b som en lineærkombinasjon av a og a når a = ( ( a = og b =.. Skriv b som en lineærkombinasjon av a, a og a når a = a =, a = og b = 5. (.

Detaljer

MA1201, , Kandidatnummer:... Side 1 av 5. x =.

MA1201, , Kandidatnummer:... Side 1 av 5. x =. MA1201, 05.10.2016, Kandidatnummer:... Side 1 av 5 Oppgave 1 Løs ligningssystemet S T S T 1 1 0 1 W X W X U2 1 1 V x = U5V. 1 0 2 1 x =. Oppgave 2 Regn ut: S T S T 1 2 1 1 1 W X W X U 3 0 1 V U0 1 V =

Detaljer

Øving 5 Diagonalisering

Øving 5 Diagonalisering Øving 5 Diagonalisering En matrise A er diagonaliserbar dersom den er similær med en diagonalmatrise, dvs. det eksisterer en invertibel matrise P og diagonal matrise D slik at P.D.P -1. I øving 4 lærte

Detaljer

Forelesning 10 Cramers regel med anvendelser

Forelesning 10 Cramers regel med anvendelser Forelesning 10 Cramers regel med anvendelser Eivind Eriksen 25. mars 2010 Lineære likningssystemer Vi minner om at ethvert lineært likningssystem Ax = b kan løses ved hjelp av Gauss eliminasjon, som er

Detaljer

Emne 10 Litt mer om matriser, noen anvendelser

Emne 10 Litt mer om matriser, noen anvendelser Emne 10 Litt mer om matriser, noen anvendelser (Reelle) ortogonale matriser La A være en reell, kvadratisk matrise, dvs. en (n n)-matrise hvor hvert element Da vil A være ortogonal dersom: og Med menes

Detaljer

MAT 1110: Bruk av redusert trappeform

MAT 1110: Bruk av redusert trappeform Tom Lindstrøm 10/5, 2006: MAT 1110: Bruk av redusert trappeform I Lays bok brukes den reduserte trappeformen til matriser til å løse en rekke problemer knyttet til ligningssystemer, lineærkombinasjoner,

Detaljer