Temahefte nr. 1. Hvordan du regner med hele tall

Størrelse: px
Begynne med side:

Download "Temahefte nr. 1. Hvordan du regner med hele tall"

Transkript

1 1 ARBEIDSHEFTE I MATEMATIKK SNART MATTE EKSAMEN Hvordn du effektivt kn forberede deg til eksmen Temhefte nr. 1 Hvordn du regner med hele tll Av Mtthis Lorentzen mttegrisenforlg.com

2 Opplysning: De nturlige tllene telletllene) er gitt nedenfor. N = { 1,,, 4, 5, } Ved ddisjon v nturlige tll spiller rekkefølgen ingen rolle. Formel: + b = b + kommuttiv lov) = Oppgve: Skriv inn riktig tll i boksen under. + 5 = 5 + Fsit: Opplysning: Addisjon kn betrktes som en fortstt opptelling. 4 + tilsvrer opptellingen = = = 7 Altså 4 + = 7

3 Oppgve: Skriv inn riktig tll i boksene under. 7 + = = = Fsit: 1, 1, 10 Opplysning: En ddisjons oppgve består v ddender og sum. Formel: ddend + ddend = sum tre ddender) = 0 sum) Oppgve: Hvor mnge ddender hr vi i eksempelet under. Hv er summen? Skriv inn riktig tll i boksene under = sum Skriv inn ntll ddender Skriv inn summen Fsit: 5 ddender, summen er 15

4 4 Opplysning: Hvis vi skl summere flere enn to ddender så spiller det ingen rolle i hvilken rekkefølge mn dderer tllene. Eventuelle prenteser kn uteltes. Mn kn også sette prentesene som mn vil. Formel: + b) + c = + b + c) = + b +c ssositiv lov) kn skrives som + 7) + 9 = 19 eller ) = 19 Oppgve: Skriv riktig tll inn i de tomme boksene under = + ) + 5 = ) = Fsit: 4, 1, 1, 5, 1 Opplysning: Subtrksjon kn betrktes som en fortstt nedtelling. 7 tilsvrer nedtellingen 7 1 = = = 4 Altså 7 = 4

5 5 Oppgve: Skriv riktig tll inn i de tomme boksene under. - 1 = 1 = 1 - = 0 Fsit:, 1, 1 Opplysning: De hele tllene består v de negtive hele tllene, null og de nturlige tllene. Z = { -5, -4, -, -, -1, 0, 1,,, 4, 5 } Forndrer mn fortegnet til et helt tll, så får mn det tilsvrende mottllet. Kotelett: Bokstven Z står for Zhlen, som er det tyske ordet for tll. Formel: Tllet blir ved fortegns skifte mottllet - ) Tllet - ) blir ved fortegns skifte mottllet - og er mottll 5 og 5 er mottll Opplysning: Piler vektorer) kn stå for tll. Vektorer som er like lnge, men med motstt retning kn stå for motstte tll.

6 6 Tllene og + kn fremstilles ved hjelp v vektorene nedenfor. Legg merke til t vektorene er like lnge lik to enheter), men peker i motstt retning. Negtiv retning Positiv retning Vektoren - Vektoren + To vektorer som peker motstt retning Grøtsleiv: Vektorer kn flyttes på, så lenge de ikke forndrer retning eller snus se under). To vektorer som peker motstt retning Vektoren + Vektoren - Sviske: Vi kn tenke oss t du først går skritt mot høyre representert v vektoren + ), så snur du og går to skritt mot venstre representert v vektoren - ). D hr du kommet tilbke til utgngspunktet som er null vi sier også t summen v vektorene er lik null). Bnl sviske: Du kn selvfølgelig også strte med å gå to skritt mot venstre og så to skritt tilbke igjen til null. Rosin: Mot venstre klles negtiv retning. Mot høyre klles positiv retning.

7 7 Oppgve: Hvilke to tll er mottll i eksempelet under? = 5 Skriv inn mottllene Fsit: Mottllene er 7 og 7. Opplysning: Summen v to mottll er lik null. Formel: -) + = 0 eller vi hr t + -) = = 0 Oppgve: Finn mottllene i eksempelet under. Finn også summen ved å nulle ut mottllene uten å bruke klkultor. Skriv summen inn i boksen nederst = sum Skriv inn mottllene Skriv inn summen Fsit: Mottllene er -548 og 548) og og -). Summen er 11.

8 8 Opplysning: Mnge feil som blir gjort ved regning med hele tll hr med fortegnene å gjøre. For å unngå det kn mn sette tllet for eks. - 5 eller 5 er tll) i prentes der det er hensiktsmessig. Dette gjelder spesielt de negtive tllene som er lumske. - 5) + - ) eller -7) + + 6) eller + 1) + + ) eller - ) + - b) eller + ) + - b) Oppgve: Hvilket tll bør helst stå i prentes? = - 9 Skriv inn riktig tll i prentesen 9 Fsit: Tllet -9 til venstre for likhetstegnet) noe som gir -9) der. Dvs. vi får d + -9) = -9 Opplysning: Tllverdien til et tll er den positive delen v tllet du fjerner minusfortegnet). Tllverdien til et positivt tll er selvfølgelig tllet selv. Formel: Tllverdien til tllet - ) = forutstt t er positiv )

9 9 Oppgve: Sett inn riktig tll i boksene under. = Fsit: 14 eller 14), 78, 98 Opplysning: Hvis begge tllene er positive kn de legges de smmen på vnlig måte: + 9) + + 8) = 17 Vektoren + 9 Vektoren + 8 Summen v vektorene er vektoren + 17 Grynt: Summen v lengdene til de to pilene vektorene) er Positive tll kn tenkes som piler mot høyre. Oppgve: Skriv summen i boksen under. + 49) ) = Fsit: 100

10 10 Opplysning: Hvis begge tllene/vektorene er negtive, legger mn tllene/vektorene smmen ved å legge de etter hverndre mot venstre. - 7) + - 5) = ) = Grønnsk: Summen v lengdene til de to pilene vektorene) er -1. Negtive tll kn tenkes som piler mot venstre. Pust og pes: Du tenker deg t du går 7 skritt mot venstre representert ved vektoren 7), og så går du ytterligere 5 skritt mot venstre representert ved vektoren 5). D er du 1 skritt til venstre fr utgngspunktet representert ved vektoren 1). Oppgve: Skriv summen i boksen under prøv å finne summen uten klkultor). - 1) + - 9) = Fsit: -0 Opplysning: Hvis tllene hr ulike fortegn, så vil summen bli negtiv hvis det negtive tllet vektoren mot venstre) hr størst tllverdi lengde).

11 11 8) 5 summen v vektorene -8 og +5 er lik Summen er vektoren - Kongle: Du tenker deg t du går 8 skritt mot venstre representert ved vektoren 8), og så snur du og går 5 skritt mot høyre representert ved vektoren + 5). D vil du fortstt være tre skritt til venstre representert ved vektoren ) fr utgngspunktet ofte klt for null). Frosk: En sum kn fremkomme både ved å legge smmen negtive og positive tll. Oppgve: Skriv summen i boksen under prøv å finne summen uten klkultor). Bevertips: Tegn en vektor pil) med lengde -18 mot venstre og fr pilspissen strter du en ny vektor mot høyre med lengde 11 pilspissen skl peke mot høyre). Differensen blir en vektor mot venstre svret). - 18) ) = Fsit: - 7

12 1 Opplysning: En prentes med pluss forn kn fjernes uten å måtte forndre fortegn inni. En prentes med minus forn kn fjernes hvis fortegnet inni forndres. Formel: Opplysning: En prentes med minus forn kn fjernes hvis fortegnet inni forndres. Formel: Bnn: Her er plusstegnet brukt for å mrkere t to minuser gir pluss. Plusstegnet er ikke lltid nødvendig. Vi hr t + = eller for eks. t +7 = 7. Plusstegnet brukes vnligvis som bindeledd mellom to tll for eks. 9) + 1 = - 8)

13 1 Oppgve: Skriv inn riktig fortegn i de 4 første boksene under. Skriv inn summen i den siste boksen prøv å finne summen uten klkultor) ) + - 9) + 5) + + 7) = = Fsit: +, -, -, +, -. Opplysning: Multipliksjon er en forkortet skrivemåte for like ddender. D skriver du opp ddenden kun en gng etterfulgt v et multipliksjonstegn og tllet som ngir ntll ddender. Formel: n ddender) = n, Eksempel : For n = får vi + + ddender) = 4 ddender ) 4 8 Oppgve: Skriv inn ddenden i den første boksen, riktig ntll ddender inn i den ndre og summen i den sisteprøv å finne summen uten klkultor). Fsit:, 5, 15

14 14 Opplysning: En multipliksjon består v to eller flere fktorer og et produkt. 8 4 fktor gnger fktor er lik produkt Oppgve: Skriv inn ordet fktor og produkt i riktig boks under. Skriv også inn ordet ddend og ordet sum i riktig boks Fsit: ni og to er fktorer. Atten er produktet. Fire og seks er ddender. Ti er summen. Opplysning: Fktorenes rekkefølge ved multipliksjon er likegyldig. Og prenteser kn brukes eller uteltes hvis fktorene er positive. Negtive tll bør settes i prentes. Formel: b b fktorenesrekkeføl geerlikegyldig, kommuttivregel ) b c b) c b c) ssositivregel)

15 15 Fktorenes rekkefølge er likegyldig: 4 b 4 b 1b Assositiv regel: 4) 4) 4) 4 Oppgve: Skriv inn riktig tll/bokstv i boksene under. 99 b 99 Fsit: første boks, ndre boks b eller omvendt). Legger meg flt: Det er vnlig å h bokstver i lfbetisk rekkefølge. Opplysning: Ved multipliksjon gjelder t like fortegn gir pluss og ulike gir minus. Formel: ) b) b ) b) b ) b) b) ) b) b) ) ) 6 4) 5) ) 4) 7 4) 8 ) ) ) 6

16 16 Opplysning: Ved multipliksjon gjelder t odde ntll oddetll) negtive fortegn gir minus. Et prtll med minuser gir pluss. minuser oddetll) gir minus: ) ) ) ) ) ) 4 minuser prtll) gir pluss: ) ) ) ) ) Oppgve: Hvor mnge minuser er det i hvert produkt under? Skriv inn riktig fortegn i boksene etter likhetstegnet.. Skriv inn ntll minuser ) 4) ) ) 7 Skriv inn ntll minuser ) ) ) ) 4 Fsit: + 7, - 4.

17 17 Opplysning: Multipliksjon gnging) utføres før pluss og minus. Riktig: Vi gnger smmen multipiserer) og først og får 6 i ndre ledd RIKTIG!) PURR! Feil: Vi tr fktoren og trekker leddet i fr minus) ) FEIL!) BRØL! Feil: Til leddet 00 plusser vi fktoren ) FEIL!) HYL! Oppgve: Skriv inn riktig tll i boksene under Fsit: 70, - 60, 1, 11

18 18 Opplysning: Prenteser regnes ut først. Begynn med de innerste. Innerste prentes er 5 ): [5 ) 4 7] [ 4 7] 8 7) 15 0 Oppgve: Skriv inn riktig tll i boksene under. [ 4) ) ] [ ] Fsit:, 10 Opplysning: Ved divisjon gjelder t like fortegn gir pluss og ulike gir minus. Formel: ) : b) : b) ) : b) : b) ) : b) : b) ) : b) : b) Lyspære: Deletegn kn erstttes v brøkstrek. Dvs. : erstttes med / eller

19 19 + 9) : + ) = + 9 : ) = + = + 4) : - 4) = - 4 : 4) = ) : + 5) = - 15 : 5) = - - 1) : - 7) = + 1 : 7) = + = Oppgve: Skriv inn riktig tll i boksene under. [- 4) : - )] : [+ 6) : - )] = : = Fsit:, -, - 1

Brøkregning og likninger med teskje

Brøkregning og likninger med teskje Brøkregning og likninger med teskje Dette heftet gir en uformell trinn for trinn gjennomgng v grunnleggende regler for brøkregning og likninger. Dette er sto som vi i FYS 000 egentlig forventer t dere

Detaljer

5: Algebra. Oppgaver Innhold Dato

5: Algebra. Oppgaver Innhold Dato 5: Alger Pln resten v året: - Kpittel 6: Ferur - Kpittel 7: Ferur/mrs - Kpittel 8: Mrs - Repetisjon: April/mi - Eventuell offentlig eksmen: Mi - Økter, prøver, prosjekter: Mi - juni For mnge er egrepet

Detaljer

Kapittel 3. Potensregning

Kapittel 3. Potensregning Kpittel. Potensregning I potensregning skriver vi tll som potenser og forenkler uttrykk som inneholder potenser. Dette kpitlet hndler blnt nnet om: Betydningen v potenser som hr negtiv eksponent eller

Detaljer

ALTERNATIV GRUNNBOK BOKMÅL

ALTERNATIV GRUNNBOK BOKMÅL Anne Rsch-Hlvorsen Oddvr Asen Illustrtør: Bjørn Eidsvik 7B NY UTGAVE ALTERNATIV GRUNNBOK BOKMÅL CAPPELEN DAMM AS, 2011 Mterilet i denne publiksjonen er omfttet v åndsverklovens bestemmelser. Uten særskilt

Detaljer

1 Tallregning og algebra

1 Tallregning og algebra Tllregning og lger ØV MER. REGNEREKKEFØLGE Oppgve.0 6 d) ( : 6) Oppgve. ( ) ( ) ()() ( ) ( ) ( ) () (6 ) () d) ( ) 7() ( ) Oppgve. 6 ( ) d) Oppgve. Med ett ddisjonstegn, ett sutrksjonstegn, ett multipliksjonstegn

Detaljer

Faktorisering. 1 Hva er faktorisering? 2 Hvorfor skal vi faktorisere? Per G. Østerlie Senter for IKT i utdanningen 11.

Faktorisering. 1 Hva er faktorisering? 2 Hvorfor skal vi faktorisere? Per G. Østerlie Senter for IKT i utdanningen 11. Fktorisering Per G. Østerlie Senter for IKT i utdnningen per@osterlie.no 11. mi 013 1 Hv er fktorisering? Vi må se på veret å fktorisere. Hv er det vi skl gjøre når vi fktoriserer? Svret er: å lge fktorer.

Detaljer

... JULEPRØVE 9. trinn...

... JULEPRØVE 9. trinn... .... JULEPRØVE 9. trinn.... Nvn: Gruppe: DELPRØVE 1 uten hjelpemidler ( 37 poeng) På denne delprøven kn du re ruke skrivesker, psser og linjl. Alle oppgvene i del 1 skl føres rett på rket. I noen oppgver

Detaljer

Kapittel 4 Tall og algebra Mer øving

Kapittel 4 Tall og algebra Mer øving Kpittel 4 Tll og lger Mer øving Oppgve 1 d Oppgve 2 Se på uttrykket A = g h. Hv forteller de ulike okstvene? Se på uttrykket A = 2π. Hv står de ulike symolene for? Forklr hv vi mener med en vriel og en

Detaljer

Eneboerspillet. Håvard Johnsbråten

Eneboerspillet. Håvard Johnsbråten Håvrd Johnsråten Eneoerspillet Når vi tenker på nvendelser i mtemtikken, ser vi gjerne for oss Pytgors læresetning eller ndre formler som vi kn ruke til å eregne lengder, reler, kostnder osv. Men mer strkte

Detaljer

2 Tallregning og algebra

2 Tallregning og algebra Tllregning og lger KATEGORI. Regnerekkefølge Oppgve.0 Regn uten digitlt hjelpemiddel. + ( + ) ( ) Oppgve. Regn uten digitlt hjelpemiddel. Oppgve. Regn ut med og uten digitlt hjelpemiddel. + (7 + ) ( 9)

Detaljer

Fasit. Grunnbok. Kapittel 2. Bokmål

Fasit. Grunnbok. Kapittel 2. Bokmål Fsit 9 Grunnbok Kpittel Bokmål Kpittel Lineære funksjoner rette linjer. ƒ(x) = 4x + 5 ƒ() = 3 ƒ(4) = ƒ(6) = 9.6 ƒ(x) = -x b ƒ(x) = x b ƒ(x) = (x + ) 3 ƒ() = ƒ(4) = 8 ƒ(6) = 4 ƒ(x) = x 4 ƒ() = - ƒ(4) =

Detaljer

R1 kapittel 1 Algebra

R1 kapittel 1 Algebra Løsninger til oppgvene i ok R1 kpittel 1 Alger Løsninger til oppgvene i ok Oppgve 1.1 1 8 4 ( ) 15 5 (4 ) 7 1 7 ( ) d ( )( ) ( 4)( ) ( ) ( 4) ( )( 1) Oppgve 1. 49 7 ( 7)( 7) 5 5 5 5 1y 75 (4y 5) ( y) 5

Detaljer

Tillegg til kapittel 2 Grunntall 10

Tillegg til kapittel 2 Grunntall 10 8.09.0 Kvrtsetningene Tillegg til kpittel Grunntll 0 Ne læringsmål i reviert lærepln 0 Mål for et u skl lære: kunne ruke kvrtsetningene til å multiplisere to prentesuttrkk kunne fktorisere ve å ruke kvrtsetningene

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Numerisk integrasjon

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Numerisk integrasjon Mtemtikk 1000 Øvingsoppgver i numerikk leksjon 8 Numerisk integrsjon Som kjent kn vi regne ut (bestemte) integrler ved nti-derivsjon. Dette resulttet er et v de viktikgste innen klkulus; det heter tross

Detaljer

Løsningsforslag til avsluttende eksamen i HUMIT1750 høsten 2003.

Løsningsforslag til avsluttende eksamen i HUMIT1750 høsten 2003. Løsningsforslg til vsluttende eksmen i HUMIT1750 høsten 2003. Teksten under hr litt litt prtsom fordi jeg hr villet forklre hvordn jeg gikk frm. Fr en studentesvrelse le det ikke forventet nnet enn sluttresulttene.

Detaljer

Basisoppgaver til Tall i arbeid P kap. 1 Tall og algebra

Basisoppgaver til Tall i arbeid P kap. 1 Tall og algebra Bsisoppgver til Tll i reid P kp. 1 Tll og lger 1.1 Regning med hele tll 1. Brøk 1.3 Store og små tll 1.4 Bokstvuttrykk 1.5 Likninger 1.6 Formler 1.7 Hverdgsmtemtikk 1.8 Proporsjonlitet Bsisoppgver 1.1

Detaljer

R2 - Heldagsprøve våren 2013

R2 - Heldagsprøve våren 2013 Løsningsskisser HD R R - Heldgsprøve våren 0 Løsningsskisser Viktigste oppsummeringer: Må skrive med penn på eksmen! Slurv og regnefeil, både med tll og bokstver, er hovedproblemet. Beste måten å fikse

Detaljer

Terminprøve Matematikk for 1P 1NA høsten 2014

Terminprøve Matematikk for 1P 1NA høsten 2014 Terminprøve Mtemtikk for 1P 1NA høsten 2014 DEL 1 Vrer 1,5 time Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler. Forsøk på lle oppgvene selv om du er usikker

Detaljer

Integrasjon Skoleprosjekt MAT4010

Integrasjon Skoleprosjekt MAT4010 Integrsjon Skoleprosjekt MAT4010 Tiin K. Kristinslund, Julin F. Rossnes og Torstein Hermnsen 19. mrs 2014 1 Innhold 1 Innledning 3 2 Integrsjon 3 3 Anlysens fundmentlteorem 7 4 Refernser 10 2 1 Innledning

Detaljer

... JULEPRØVE

... JULEPRØVE Ashehoug JULEPRØVE 2014 9. trinn.... JULEPRØVE 2014.... Nvn: Gruppe: DELPRØVE 1 uten hjelpemidler ( 37 poeng) På denne delprøven kn du re ruke skrivesker, psser og linjl. Alle oppgvene i del 1 skl føres

Detaljer

addisjon av 2 og 3. Vi skriver da i alt: 2+3= og etter at likhetstegnet er skrevet så gir matcad oss svaret.

addisjon av 2 og 3. Vi skriver da i alt: 2+3= og etter at likhetstegnet er skrevet så gir matcad oss svaret. ddisjon v og. Vi skriver d i lt: += og etter t likhetstegnet er skrevet så gir mtcd oss svret. + + + = 5 ddisjon med + først. Skriv inn et +tegn, så og bruk TAB + + + + = 5 minus 5 5 5 = Å bruke gngetegn

Detaljer

M2, vår 2008 Funksjonslære Integrasjon

M2, vår 2008 Funksjonslære Integrasjon M, vår 008 Funksjonslære Integrsjon Avdeling for lærerutdnning, Høgskolen i Vestfold. pril 009 1 Arelet under en grf Vi begynner vår diskusjon v integrsjon, på smme måte som vi begynte med derivsjon, ved

Detaljer

Løsninger til oppgaver i boka

Løsninger til oppgaver i boka Løsninger til oppgver i ok Kpittel 1 Alger Løsninger til oppgver i ok 1.9 d På ildet ser vi t den lengste siden i tkåpningen er omtrent så lng som den korteste. Om vi kller den korteste siden for x, hr

Detaljer

Basisoppgaver til 2P kap. 1 Tall og algebra

Basisoppgaver til 2P kap. 1 Tall og algebra Bsisoppgver til P kp. Tll og lger. Potenser. Nye potenser. Store og små tll. Stnrform. Tllsystemer. Femtllsystemet. Totllsystemet.7 Prosentregning me vekstfktor.8 Renteregning Ashehoug www.lokus.no Ashehoug

Detaljer

3.7 Pythagoras på mange måter

3.7 Pythagoras på mange måter Oppgve 3.18 Vis t det er mulig å multiplisere og dividere linjestykker som vist i figur 3.. Bruk formlikhet. 3.7 Pythgors på mnge måter Grekeren Pythgors le født på Smos 569 og døde. år 500 f. Kr. Setningen

Detaljer

Tom Lindstrøm. Tilleggskapitler til. Kalkulus. 3. utgave. Universitetsforlaget,

Tom Lindstrøm. Tilleggskapitler til. Kalkulus. 3. utgave. Universitetsforlaget, Tom Lindstrøm Tilleggskpitler til Klkulus 3. utgve Universitetsforlget, Oslo 3. utgve Universitetsforlget AS 2006 1. utgve 1995 2. utgve 1996 ISBN-13: 978-82-15-00977-3 ISBN-10: 82-15-00977-8 Mterilet

Detaljer

Sammendrag kapittel 1 - Aritmetikk og algebra

Sammendrag kapittel 1 - Aritmetikk og algebra Smmendrg kpittel 1 - Aritmetikk og lgebr Regneregler for brøker Utvide brøk: Gng med smme tll i teller og nevner. b = k b k Forkorte brøk: del med smme tll i teller og nevner. b = : k b : k Summere brøker:

Detaljer

2 Symboler i matematikken

2 Symboler i matematikken 2 Symoler i mtemtikken 2.1 Symoler som står for tll og størrelser Nvn i geometri Nvn i mtemtikken enyttes på lignende måte som nvn på yer og personer, de refererer eller representerer et tll eller en størrelse,

Detaljer

Sensorveiledning Oppgaveverksted 4, høst 2013 (basert på eksamen vår 2011)

Sensorveiledning Oppgaveverksted 4, høst 2013 (basert på eksamen vår 2011) Sensorveiledning Oppgveverksted 4, høst 203 (bsert på eksmen vår 20) Ved sensuren tillegges oppgve vekt 0,2, oppgve 2 vekt 0,4, og oppgve 3 vekt 0,4. For å bestå eksmen, må besvrelsen i hvert fll: gi minst

Detaljer

Fag: Matematikk 1T-Y for elever og privatister. Antall sider i oppgaven: 8 inklusiv forside og opplysningsside

Fag: Matematikk 1T-Y for elever og privatister. Antall sider i oppgaven: 8 inklusiv forside og opplysningsside Loklt gitt eksmen 2012 Eksmen Fg: Mtemtikk 1T-Y for elever og privtister Fgkode: MAT1006 Eksmensdto: 25. mi Antll sider i oppgven: 8 inklusiv forside og opplysningsside Eksmenstid: Hjelpemidler under eksmen:

Detaljer

Nytt skoleår, nye bøker, nye muligheter!

Nytt skoleår, nye bøker, nye muligheter! Nytt skoleår, nye øker, nye muligheter! Utstyret dere trenger, er som i fjor: Læreok lånes v skolen vinkelmåler, --9 og - -9-treknter, psser, lynt, viskelær, penn, A-rk til innføring og A klddeok. Og en

Detaljer

OPPLÆRINGSREGION NORD. Skriftlig eksamen. MAT1001 Matematikk 1P-Y HØSTEN 2011. Privatister. Yrkesfag. Alle yrkesfaglige utdanningsprogrammer

OPPLÆRINGSREGION NORD. Skriftlig eksamen. MAT1001 Matematikk 1P-Y HØSTEN 2011. Privatister. Yrkesfag. Alle yrkesfaglige utdanningsprogrammer OPPLÆRINGSREGION NORD LK06 Finnmrk fylkeskommune Troms fylkeskommune Nordlnd fylkeskommune Nord-Trøndelg fylkeskommune Sør-Trøndelg fylkeskommune Møre og Romsdl fylke Skriftlig eksmen MAT1001 Mtemtikk

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 9 Numerisk integrasjon

Matematikk Øvingsoppgaver i numerikk leksjon 9 Numerisk integrasjon Mtemtikk 1000 Øvingsoppgver i numerikk leksjon 9 Numerisk integrsjon Forståelsen v integrlet som et rel ligger til grunn når vi skl beregne integrler numerisk. Litt mer presist: Når f(x) 0 for lle x i

Detaljer

1T kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka

1T kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka T kpittel 8 Eksmenstrening Løsninger til oppgvene i lærebok Uten hjelpemidler E b c E b c Vi gnger vnlige tll med vnlige tll og tierpotenser med tierpotenser. Til slutt omformer vi svret så vi får et tll

Detaljer

6 Brøk. Matematisk innhold Brøk i praktiske situasjoner Brøk som del av en mengde. Utstyr Eventuelt ulike konkreter, som brikker og knapper

6 Brøk. Matematisk innhold Brøk i praktiske situasjoner Brøk som del av en mengde. Utstyr Eventuelt ulike konkreter, som brikker og knapper Brøk I dette kpitlet lærer elevene om røk som del v en helhet, der helheten kn være en mengde, en lengde eller en figur, og de skl lære om røk som del v en mengde. De skl lære å finne delen når det hele

Detaljer

Integralregning. Mål. for opplæringen er at eleven skal kunne

Integralregning. Mål. for opplæringen er at eleven skal kunne 8 Integrlregning Mål for opplæringen er t eleven skl kunne gjøre rede for definisjonen v estemt integrl som grense for en sum og uestemt integrl som ntiderivert eregne integrler v de sentrle funksjonene

Detaljer

Oppgave 2 Betydningen til hvert enkelt siffer er bestemt av sifferets plassering eller posisjon. Tallet 4321 betyr

Oppgave 2 Betydningen til hvert enkelt siffer er bestemt av sifferets plassering eller posisjon. Tallet 4321 betyr KAPITTEL 1 TALL OG TALLREGNING FLERE UTFORDRINGER Oppgve 1 Du hr sifrene A 1 3 5 7 9 og B 2 4 6 8 Ve å ruke tre v sifrene i enten A eller B skl u lge ett tll så nærme 500 som mulig. Du kn re ruke ett siffer

Detaljer

Del 2. Alle oppgaver føres inn på eget ark. Vis tydelig hvordan du har kommet frem til svaret. Oppgave 2

Del 2. Alle oppgaver føres inn på eget ark. Vis tydelig hvordan du har kommet frem til svaret. Oppgave 2 Del 2 Alle oppgver føres inn på eget rk. Vis tydelig hvordn du hr kommet frem til svret. Oppgve 1 Figuren viser sidefltene til et prisme. Grunnflten og toppflten mngler. ) Hvilken form må grunn- og toppflten

Detaljer

Terminprøve Matematikk Påbygging høsten 2014

Terminprøve Matematikk Påbygging høsten 2014 Terminprøve høsten 2014 Terminprøve Mtemtikk Påygging høsten 2014 DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler Oppgve 1 Regn ut 3 3 3 4 1 3 3 2

Detaljer

S1 kapittel 4 Logaritmer Løsninger til oppgavene i boka

S1 kapittel 4 Logaritmer Løsninger til oppgavene i boka Løsninger til oppgvene i ok S kpittel 4 Logritmer Løsninger til oppgvene i ok 4. Vi leser v fr tllet 4 på y-ksen og ser t vi får den tilhørende verdien,6 på -ksen. lg 4,6 Vi leser v fr tllet,5 på y-ksen

Detaljer

1 Tall og variabler. Oppgave Regn ut uten lommeregner. Oppgave Sett inn symbolet eller i de tomme rutene. a) 9 N b) π Q c) 3 R

1 Tall og variabler. Oppgave Regn ut uten lommeregner. Oppgave Sett inn symbolet eller i de tomme rutene. a) 9 N b) π Q c) 3 R Tll og vribler. TALL OG TALLREGNING Oppgve.0 Sett inn smbolet eller i de tomme rutene. ) N π Q R Oppgve. Sett inn smbolet eller i de tomme rutene. { } { π } ), 0,,,,,,, Oppgve. Skriv disse mengdene på

Detaljer

1T kapittel 1 Algebra Løsninger til oppgavene i læreboka

1T kapittel 1 Algebra Løsninger til oppgavene i læreboka T kpittel Alger Løsninger til oppgvene i læreok Oppgve. 0 8 ( 0) + 0 + ( 0) 0 8 Oppgve. 7 ( ) + + ( ) 7 Oppgve. ( ) + Oppgve. 0 ( ) 0 ( 0) ( ) 0 ( 0) : ( ) 0 : ( ) Oppgve. ( ) ( ) ( ) (,) ( ) (,) 9 Oppgve.

Detaljer

TFE4101 Krets- og Digitalteknikk Vår 2016

TFE4101 Krets- og Digitalteknikk Vår 2016 Norges teknisk nturvitenskpelige universitet Institutt for elektronikk og telekomuniksjon TFE4101 Krets- og Digitlteknikk Vår 2016 Løsningsforslg Øving 4 1 Oppgve 1 R 1 = 10 R 2 = 8 V = 600 V R 3 = 40

Detaljer

1T kapittel 3 Funksjoner Løsninger til oppgavene i læreboka

1T kapittel 3 Funksjoner Løsninger til oppgavene i læreboka 1T kpittel 3 Funksjoner Løsninger til oppgvene i læreok Oppgve 3.1 Origo er skjæringspunktet mellom førsteksen og ndreksen. Koordintene til origo er ltså (0, 0). Førstekoordinten til punktet A er 15, og

Detaljer

1P kapittel 3 Funksjoner

1P kapittel 3 Funksjoner Løsninger til oppgvene i ok 1P kpittel 3 Funksjoner Løsninger til oppgvene i ok 3.1 Origo hr koordintene (0, 0). Vi finner koordintene til punktene ved å lese v punktets verdi på x-ksen og y-ksen. A =

Detaljer

Kompendium av Amir Hashemi, HiB. Notater, eksempler og oppgaver med fasit/løsningsforslag Institutt for Matematikk og Statistikk, UiT, Høsten 2012

Kompendium av Amir Hashemi, HiB. Notater, eksempler og oppgaver med fasit/løsningsforslag Institutt for Matematikk og Statistikk, UiT, Høsten 2012 Forkurs i mtemtikk til MAT-, ugust Kompendium v Amir Hshemi, HiB. Notter, eksempler og oppgver med fsit/løsningsforslg Institutt for Mtemtikk og Sttistikk, UiT, Høsten Innhold Forord... Kpittel Test deg

Detaljer

Forkurs i matematikk. Kompendium av Amir Hashemi, UiB. Notater, eksempler og oppgaver med fasit/løsningsforslag 1

Forkurs i matematikk. Kompendium av Amir Hashemi, UiB. Notater, eksempler og oppgaver med fasit/løsningsforslag 1 Forkurs i mtemtikk Kompendium v Amir Hshemi, UiB. Notter, eksempler og oppgver med fsit/løsningsforslg Mtemtisk Institutt UiB Innhold Sist oppdtert 07. juni 0 i Forord... Kpittel 0 Test deg selv... Oppgver

Detaljer

Fag: Matematikk 1T-Y for yrkesfag for elever og privatisterr. Eksamensdato: 16. januar 2012

Fag: Matematikk 1T-Y for yrkesfag for elever og privatisterr. Eksamensdato: 16. januar 2012 Loklt gittt eksmen Eksmen Fg: Mtemtikk 1T-Y for yrkesfg for elever og privtisterr Fgkode: MAT1006 Eksmensdto: 16. jnur 2012 Antll sider i oppgven: 7 inklusiv forside og opplysningsside Del 1: oppgve 1-5

Detaljer

S1 kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka

S1 kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka S1 kpittel 8 Eksmenstrening Løsninger til oppgvene i læreok E1 995 995 5 + 5 (995 5) (995 + 5) + 5 990 1000 + 5 990 000 + 5 990 05 E E (61+ 9) 51 49) (51+ 49) 61 9 (61 9) 51 49 ( 100 100 11 1997 00 199

Detaljer

S1 kapittel 1 Algebra Løsninger til oppgavene i læreboka

S1 kapittel 1 Algebra Løsninger til oppgavene i læreboka Løsninger til oppgvene i ok S kpittel Alger Løsninger til oppgvene i læreok. 8 ( ) 5 9. e = = 9 = = 8 5 = = 0 = 0 0 0 = 000 =. e Ashehoug www.lokus.no Sie v Løsninger til oppgvene i ok..5..7 = = + 5 =

Detaljer

MAT 100a - LAB 4. Før vi gjør dette, skal vi for ordens skyld gjennomgå Maple-kommandoene for integrasjon (cf. GswM kap. 12).

MAT 100a - LAB 4. Før vi gjør dette, skal vi for ordens skyld gjennomgå Maple-kommandoene for integrasjon (cf. GswM kap. 12). MAT 00 - LAB 4 Denne øvelsen er i hovedsk viet til integrsjon. For mnge er integrsjon i prksis det smme som ntiderivsjon, og noe som kn rukes til å eregne relet v enkelte områder i plnet som lr seg egrense

Detaljer

Kap. 3 Krumningsflatemetoden

Kap. 3 Krumningsflatemetoden SIDE. KRUMNINGSFLTEMETODEN I kpittel. og. hr vi sett t en bjelkes krefter og deformsjon kn beskrives ved fire integrler som henger smmen : Skjærkrft : V d Vinkelendring : φ M d Moment : M V d Forskyvning

Detaljer

DELPRØVE 2 (35 poeng)

DELPRØVE 2 (35 poeng) DELPRØVE 2 (35 poeng) På denne delprøven er lle hjelpemidler tilltt. Alle oppgvene i del 2 skl føres på eget rk. Før svrene oversiktlig, slik t det går tydelig frm hvordn du hr løst oppgvene. Bruk penn.

Detaljer

Sem 1 ECON 1410 Halvor Teslo

Sem 1 ECON 1410 Halvor Teslo Løsningsforslg til seminr i ECON : Internsjonl økonomi.seminruke V ) Den økonomien vi her står ovenfor produserer re to goder, tø og vin. Altså vil lterntivkostnden for den ene vren nødvendigvis måles

Detaljer

9.6 Tilnærminger til deriverte og integraler

9.6 Tilnærminger til deriverte og integraler 96 TILNÆRMINGER TIL DERIVERTE OG INTEGRALER 169 Figur 915 Bezier-kurve med kontrollpolygon som representerer bokstven S i Postscript-fonten Times-Romn De ulike Bezier-segmentene ser du mellom kontrollpunktene

Detaljer

E K S A M E N. Matematikk 3MX. Elevar/Elever Privatistar/Privatister. AA6524/AA6526 8. desember 2004 UTDANNINGSDIREKTORATET

E K S A M E N. Matematikk 3MX. Elevar/Elever Privatistar/Privatister. AA6524/AA6526 8. desember 2004 UTDANNINGSDIREKTORATET E K S A M E N UTDANNINGSDIREKTORATET Mtemtikk 3MX Elevr/Elever Privtistr/Privtister AA654/AA656 8. desember 004 Vidregånde kurs II / Videregående kurs II Studieretning for llmenne, økonomiske og dministrtive

Detaljer

Mer øving til kapittel 2

Mer øving til kapittel 2 Mer øving til kpittel 2 KAPITTEL 2 GEOMETRI OG MÅLING Oppgve 1 Oppgve 2 Oppgve 3 Anne hr vært på ferie til sine esteforeldre fr 28. juni til 9. ugust. Hvor mnge dger hr hun vært på ferie? Fr hun kom hjem

Detaljer

S1 kapittel 6 Derivasjon Løsninger til oppgavene i boka

S1 kapittel 6 Derivasjon Løsninger til oppgavene i boka S kpittel 6 Derivsjon Løsninger til oppgvene i ok 6. c y x y x = = = = y x 4 5 9 4 y 5 6 x 4 = = = = y x y x = = = = 7 ( 5) 6 ( ) 8 6. f( x ) f( x ) 5 7 x x ( ) 4 = = = = 6. T( x) = 0,x +,0 T T = + = (0)

Detaljer

Årsprøve trinn Del 1. Navn: Informasjon for del 1

Årsprøve trinn Del 1. Navn: Informasjon for del 1 Årsprøve 2015 9. trinn Del 1 Nvn: Informsjon for del 1 Prøvetid: Hjelpemidler på del 1: Andre opplysninger: Fremgngsmåte og forklring: 5 timer totlt. Del 1 og Del 2 skl deles ut smtidig Del 1 skl du levere

Detaljer

Get filmleie. Brukerveiledning

Get filmleie. Brukerveiledning Get filmleie Brukerveiledning Innhold 4 Funksjoner for fjernkontroll 5 Hv er Get filmleie? 6 Hvilke filmer kn jeg leie? 6 Hv skl til for å få tjenesten? 7 Slik kontrollerer du tjenesten 7 Hv koster det

Detaljer

Fasit. Grunnbok. Kapittel 5. Bokmål

Fasit. Grunnbok. Kapittel 5. Bokmål Fsit Grunnok 8 Kpittel 5 Bokmål Kpittel 5 5.1 Figurtll: 8, 13, 18, 23, 28 19 etsjer 5.2 Figurtll: 1, 7, 10, 13, 16, 19 3 c Figurtllet er 3 gnger figurnummeret pluss 1. d Figurtllet er 5 gnger figurnummeret

Detaljer

Kapittel 4 Kombinatorikk og sannsynlighet. Løsninger til oppgaver i boka. Løsninger til oppgaver i boka

Kapittel 4 Kombinatorikk og sannsynlighet. Løsninger til oppgaver i boka. Løsninger til oppgaver i boka Kpittel 4 Kombintorikk og snnsynlighet Løsninger til oppgver i bok 4.4 Oppgve 4.2 løst ved multipliksjonsprinsippet: multipliksjon v de ulike vlgmulighetene v forretter, hovedretter og desserter gir uttrykket

Detaljer

EKSAMEN. ANTALL SIDER UTLEVERT: 7 (innkl. forside og 2 sider formelark)

EKSAMEN. ANTALL SIDER UTLEVERT: 7 (innkl. forside og 2 sider formelark) KANDIDATNUMMER: EKSAMEN FAGNAVN: Mtemtikk FAGNUMMER: REA EKSAMENSDATO: 5. desember 6 KLASSE:. klssene, ingenørutdnning. TID: kl. 9... FAGLÆRER: Hns Petter Hornæs ANTALL SIDER UTLEVERT: 7 (innkl. forside

Detaljer

1 k 2 + 1, k= 5. i=1. i = k + 6 eller k = i 6. m+6. (i 6) i=1

1 k 2 + 1, k= 5. i=1. i = k + 6 eller k = i 6. m+6. (i 6) i=1 TMA4 Høst 6 Norges teknisk nturvitenskpelige universitet Institutt for mtemtiske fg Løsningsforslg Øving 5 5..6 Vi er gitt summen og ønsker å skrive den på formen m k=5 k +, f(i). i= Strtpunktene er henholdsvis

Detaljer

... ÅRSPRØVE 2014...

... ÅRSPRØVE 2014... Delprøve 1 Ashehoug ÅRSPRØVE 014 9. trinn.... ÅRSPRØVE 014... Nvn: Gruppe: DELPRØVE 1 uten hjelpemiler (39 poeng) Alle oppgvene i el 1 skl føres rett på rket. I noen oppgver er et en regnerute. Her skl

Detaljer

Grunntall 10 Kapittel 2 Algebra Fordypning

Grunntall 10 Kapittel 2 Algebra Fordypning Grunntll 0 Kpittl Algr Forypning Kvrtstningn Fsit: I t kvrt r ll sin lik lng. Vi innr rlt v kvrtt v å multiplisr n si m sg slv. Dtt r t smm som å opphøy t tll i nr potns. Å opphøy t tll i nr potns klls

Detaljer

1 Algebra. 1 Skriv disse uttrykkene så enkelt som mulig: a) 2(a + 3) (3 + 3a) b) 2(1 a) + a(2 + a) c) 1 + 2(1 3a) + 5a d) 4a 3ab 2(a 5b) + 3(ab 2b)

1 Algebra. 1 Skriv disse uttrykkene så enkelt som mulig: a) 2(a + 3) (3 + 3a) b) 2(1 a) + a(2 + a) c) 1 + 2(1 3a) + 5a d) 4a 3ab 2(a 5b) + 3(ab 2b) Alger Skriv disse uttrykkene så enkelt som mulig c 5 d 5 Multipliser ut og gjør svrene så enkle som mulige c c c c d e f g h 5 i Regn ut 5 Regn ut og vis frmgngsmåten 5 c Regn ut og vis frmgngsmåten 5

Detaljer

ARBEIDSHEFTE I MATEMATIKK

ARBEIDSHEFTE I MATEMATIKK ARBEIDSHEFTE I MATEMATIKK Temahefte nr Hvordan du regner med brøk Detaljerte forklaringer Av Matthias Lorentzen mattegrisenforlag.com Opplysning: Et helt tall er delelig på et annet helt tall hvis svaret

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Ved sensuren tillegges oppgve vekt 25%, oppgve 2 vekt 25% og oppgve 3 vekt 5%. Sensorveiledning 3, obligtorisk oppgve H-7 Oppgve () Definer begrepene nettorelinvestering,

Detaljer

! Dekoder: En av 2 n output linjer er høy, avhengig av verdien på n inputlinjer. ! Positive tall: Som før

! Dekoder: En av 2 n output linjer er høy, avhengig av verdien på n inputlinjer. ! Positive tall: Som før Dgens temer Enkoder! Dgens temer hentes fr kpittel 3 i Computer Orgnistion nd Architecture! Dekoder: En v 2 n output linjer er høy, vhengig v verdien på n inputlinjer! Enkoder/demultiplekser (vslutte fr

Detaljer

Numerisk derivasjon og integrasjon utledning av feilestimater

Numerisk derivasjon og integrasjon utledning av feilestimater Numerisk derivsjon og integrsjon utledning v feilestimter Knut Mørken 6 oktober 007 1 Innledning På forelesningen /10 brukte vi litt tid på å repetere inhomogene differensligninger og rkk dermed ikke gjennomgå

Detaljer

Navn: Klasse: Ekstrahefte 2. Brøk

Navn: Klasse: Ekstrahefte 2. Brøk Nvn: Klsse: Ekstrhefte Brøk Brøk Oppg. ) Finn største felles fktor (sff) for teller og nevner ved å fktorisere. Bruk dette til å forkorte røken. 0 6 ) Finn minste felles multiplum (mfm) for nevnerne ved

Detaljer

Regn i hodet. a) 15 : 3 = b) 24 : 6 = c) 36 : 4 = d) 48 : 8 = Regn i hodet. a) 21 : 3 = b) 28 : 7 = c) 49 : 7 = d) 64 : 8 =

Regn i hodet. a) 15 : 3 = b) 24 : 6 = c) 36 : 4 = d) 48 : 8 = Regn i hodet. a) 21 : 3 = b) 28 : 7 = c) 49 : 7 = d) 64 : 8 = 10 Divisjon 2 1 Regn i hodet. ) 15 : 3 = b) 24 : 6 = c) 36 : 4 = d) 48 : 8 = 2 Regn i hodet. ) 21 : 3 = b) 28 : 7 = c) 49 : 7 = d) 64 : 8 = 3 ) 39 : 3 = b) 56 : 4 = c) 96 : 8 = d) 98 : 7 = 4 Gi svret med

Detaljer

1 Mandag 18. januar 2010

1 Mandag 18. januar 2010 Mndg 8. jnur 2 I denne første forelesningen skl vi friske opp litt rundt funksjoner i en vribel, se på hvordn de vokser/vtr, studere kritiske punkter og beskrive krumning og vendepunkter. Vi får ikke direkte

Detaljer

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 8. a = e m E

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 8. a = e m E TFY414 Fysikk. Institutt for fysikk, NTNU. Høsten 16. Løsningsforslg til øving 8. Oppgve 1. ) C F = E = m Newtons. lov. Her er = e, så elektronets kselersjon blir = e m E ltså mot venstre. b) C Totlt elektrisk

Detaljer

1 Geometri KATEGORI 1. 1.1 Vinkelsummen i mangekanter. 1.2 Vinkler i formlike figurer

1 Geometri KATEGORI 1. 1.1 Vinkelsummen i mangekanter. 1.2 Vinkler i formlike figurer Oppgver 1 Geometri KTGORI 1 1.1 Vinkelsummen i mngeknter Oppgve 1.110 ) I en treknt er to v vinklene 65 og 5. Finn den tredje vinkelen. b) I en firknt er tre v vinklene 0, 50 og 150. Finn den fjerde vinkelen.

Detaljer

NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME

NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME NORGES LANDBRUKSHØGSKOLE nstitutt for mtemtiske relfg og teknologi EKSAMEN FYS135 - ELEKTROMAGNETSME Eksmensdg: 12. desember 2003 Tid for eksmen: Kl. 14:00-17:00 (3 timer) Tilltte hjelpemidler: B2 - Enkel

Detaljer

Oppgave N2.1. Kontantstrømmer

Oppgave N2.1. Kontantstrømmer 1 Orientering: Oppgvenummereringen leses slik: N står for nettsiden, første siffer står for kpittelnummer og ndre for oppgvenummer. Oppgve N2.1. Kontntstrømmer En edrift vurderer å investere 38 millioner

Detaljer

Fasit til utvalgte oppgaver MAT1100, uka 20-24/9

Fasit til utvalgte oppgaver MAT1100, uka 20-24/9 Fsit til utvlgte oppgver MAT00, uk 20-24/9 Øyvind Ryn oyvindry@ifi.uio.no September 24, 200 Oppgve 5..5 år vi viser t f er kontinuerlig i ved et ɛ δ-bevis, er det lurt å strte med uttrykket fx f, og finne

Detaljer

Numerisk matematikk. Fra Matematikk 3MX (2002) Side

Numerisk matematikk. Fra Matematikk 3MX (2002) Side Numerisk mtemtikk Fr Mtemtikk 3MX (2002) Side 142 147 142 Kpittel 4: Integrlregning 47 NUMERISK MATEMATIKK pffiffiffiffiffi På lommeregneren finner du rskt t 71 er lik 8,426150, og t lg 5 er lik 0,698970

Detaljer

Fasit. Grunnbok. Kapittel 1. Bokmål

Fasit. Grunnbok. Kapittel 1. Bokmål Fsit 9 Grunnbok Kpittel Bokmål Kpittel Prosent. = 0,5 = 50 % 2 b 0,333 = 33,3 % 3 c = 0,25 = 25 % 4 d = 0,2 = 20 % 5 e = 0,25 = 2,5 % 8.2 4 b 20 c 20 d 4 = 25 % e 20 = 5 % f 20 = 5 %.3 2 5 b 37,5% 3 c

Detaljer

Innledning. Kategori Regnerekkefølge. 1.2 Bokstavregning og parenteser

Innledning. Kategori Regnerekkefølge. 1.2 Bokstavregning og parenteser Innledning Ktegori. Regnerekkefølge Oppgve.0 Regn uten lommeregner. b) ( ) d) ( ) Oppgve. Regn uten lommeregner. b) d) Oppgve. Regn ut med og uten lommeregner. b) ( ) d) ( 9) Oppgve. Regn ut med lommeregner.

Detaljer

Løsningsforslag til ukeoppgaver i INF3110/4110

Løsningsforslag til ukeoppgaver i INF3110/4110 Løsningsforslg til ukeoppgver i INF3/4 Uke 42 (5-723) Oppgve Jernbnedigrm: FlotingPointLiterl Digits Digits xponentprt xponentprt Digits Digits Digit xponentprt Digit xponentprt Digits + - 2 Omskriving

Detaljer

E K S A M E N. Algoritmiske metoder I. EKSAMENSDATO: 13. desember HINDA / 98HINDB / 98HINEA ( 2DA / 2DB / 2EA ) TID:

E K S A M E N. Algoritmiske metoder I. EKSAMENSDATO: 13. desember HINDA / 98HINDB / 98HINEA ( 2DA / 2DB / 2EA ) TID: Høgskolen i Gjøvik Avdeling for Teknologi E K S A M E N FAGNAVN: FAGNUMMER: Algoritmiske metoder I L 189 A EKSAMENSDATO: 13. desember 1999 KLASSE: 98HINDA / 98HINDB / 98HINEA ( 2DA / 2DB / 2EA ) TID: 09.00-14.00

Detaljer

Løsningsforslag, Midtsemesterprøve fredag 13. mars 2009 kl Oppgavene med kort løsningsforslag (Versjon A)

Løsningsforslag, Midtsemesterprøve fredag 13. mars 2009 kl Oppgavene med kort løsningsforslag (Versjon A) Institutt for fysikk, NTNU FY100 Elektrisitet og mgnetisme TFY4155 Elektromgnetisme Vår 2009 Løsningsforslg, Midtsemesterprøve fredg 1. mrs 2009 kl 1415 1615. Fsit side 10. Oppgvene med kort løsningsforslg

Detaljer

Numerisk kvadratur. PROBLEM STILLING: Approksimér. f(x)dx. I(f) = hvor f : R R. Numerisk sett, integralet I(f) = b. f(x)dx approksimeres med en summe

Numerisk kvadratur. PROBLEM STILLING: Approksimér. f(x)dx. I(f) = hvor f : R R. Numerisk sett, integralet I(f) = b. f(x)dx approksimeres med en summe Numerisk kvdrtur PROBLEM STILLING: Approksimér 1/18 I(f) = f(x)dx. hvor f : R R. Numerisk sett, integrlet I(f) = f(x)dx pproksimeres med en summe Q n (f) = w i f(x i ), n-punkter regel hvor x 1 < x 2

Detaljer

Tall i arbeid Påbygging terminprøve våren 2013

Tall i arbeid Påbygging terminprøve våren 2013 Tll i rei Påygging terminprøve våren 2013 DEL 1 Uten hjelpemiler Hjelpemiler: vnlige skrivesker, psser, linjl me entimetermål og vinkelmåler Oppgve 1 Skriv tllene på stnrform. 1 0,000 00015 2 19,6 millirer

Detaljer

Microsoft PowerPoint MER ENN KULEPUNKTER

Microsoft PowerPoint MER ENN KULEPUNKTER Mirosoft PowerPoint MER ENN KULEPUNKTER INNHOLDSFORTEGNELSE: Opprette en ny presentsjon: «Ml» vs. «tomt skll» Bilder: Sette inn ilder fr Google ildesøk. Bilder: Sette inn llerede lgrede ilder. Bilder:

Detaljer

Oppgaver i matematikk, 9-åringer

Oppgaver i matematikk, 9-åringer Oppgver i mtemtikk, 9-åringer Her er gjengitt e frigitte oppgvene fr TIMSS 2003. For 4. klsse enyttes nå etegnelsen mønstre for et som i 1995 le omtlt som lger. Oppgvene er innelt i isse emnene: Tll Geometri

Detaljer

Fakultet for realfag Ho/gskolen i Agder - Va ren 2007

Fakultet for realfag Ho/gskolen i Agder - Va ren 2007 Msteroppgve i mtemtikkdidktikk Fkultet for relfg Ho/gskolen i Agder - V ren 2007 Integrl og integrsjon Roger Mrkussen Roger Mrkussen Integrl og integrsjon Msteroppgve i mtemtikkdidktikk Høgskolen i Agder

Detaljer

Effektivitet og fordeling

Effektivitet og fordeling Effektivitet og fordeling Vi skl svre på spørsmål som dette: Hv etyr det t noe er smfunnsøkonomisk effektivt? Er det forskjell på smfunnsøkonomisk og edriftsøkonomisk effektivitet? Er det en motsetning

Detaljer

Fasit. Grunnbok. Kapittel 4. Bokmål

Fasit. Grunnbok. Kapittel 4. Bokmål Fsit Grunnok Kpittel 4 Bokmål Kpittel 4 Kvdrtiske funksjoner ndregrdsfunksjoner 4.1 Stigningstll Skjæring -kse Skjæring y-kse 4 ( 2, 0) (0, 8) 1 (1, 0) (0, 1) 1 (9, 0) (0, 3) 3 4.5 y = + = 0, y =, y =

Detaljer

75045 Dynamiske systemer 3. juni 1997 Løsningsforslag

75045 Dynamiske systemer 3. juni 1997 Løsningsforslag 75045 Dynmiske systemer 3. juni 1997 Løsningsforslg Oppgve 1 ẋ = 0 gir y = ±x, og dette innstt i ẏ = 0 gir 1 ± x = 0. Vi må velge minustegnet, og får x = y = ±1/. Vi deriverer: [ ] x y ( 1 Df(x, y) = ;

Detaljer

Juleprøve trinn Del 1. Navn: Del 1 Aschehoug JULEPRØVE trinn. Informasjon for del 1

Juleprøve trinn Del 1. Navn: Del 1 Aschehoug JULEPRØVE trinn. Informasjon for del 1 Juleprøve 2015 10. Del 1 Nvn: Informsjon for del 1 Prøvetid Hjelpemidler i del 1 Andre opplysninger Frmgngsmåte og forklring 5 timer totlt Del 1 og del 2 lir delt ut smtidig. Del 1 skl leveres inn seinest

Detaljer

MED SVARFORSLAG UNIVERSITETET I OSLO

MED SVARFORSLAG UNIVERSITETET I OSLO Eksmen i : MED SVARFORSLAG UNIVERSITETET I OSLO Det mtemtisk-nturvitenskpelige fkultet INF5110 - Kompiltorteknikk Eksmensdg : Onsdg 6. juni 2012 Tid for eksmen : 14.30-18.30 Oppgvesettet er på : Vedlegg

Detaljer

1 Mandag 1. mars 2010

1 Mandag 1. mars 2010 Mndg. mrs Fundmentlteoremet sier t integrsjon og derivsjon er motstte opersjoner. Vi hr de siste ukene sett hvordn vi på ulike måter kn derivere funksjoner i flere vrible. Nå er turen kommet til den motstte

Detaljer

Kapittel 5 Verb. 5.4 For å få tak i en engelsk avis. For å finne utenlandske varer. For å treffe venninna si. For å invitere henne med til lunsj.

Kapittel 5 Verb. 5.4 For å få tak i en engelsk avis. For å finne utenlandske varer. For å treffe venninna si. For å invitere henne med til lunsj. Kpittel 5 Ver 5.1 For eksempel: Hver dg pleier jeg å sove middg Liker du ikke å dnse? I dg kn jeg ikke hndle mt. Jeg orker ikke å lge slt. Nå må jeg lese norsk. Jeg hr ikke tid til å t ferie. Kn du synge?

Detaljer

Eksempeloppgaver 2014 Løsninger

Eksempeloppgaver 2014 Løsninger DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve 1 19 millirder 9 10 = 19 10 = 1,9 10 0,089 10 = 8,9 10 10 = 8,9 10 Oppgve 6 6 8 Prosentvis

Detaljer

1T kapittel 6 Geometri Løsninger til oppgavene i læreboka

1T kapittel 6 Geometri Løsninger til oppgavene i læreboka T kpittel 6 Geometri Løsninger til oppgvene i læreok Oppgve 6. Vi ruker pytgorssetningen. h 5 + 6 h 5 + 36 h 6 h ± 6 Hypotenusen er 6. Vi ruker pytgorssetningen. h, 4 + 6,7 h h 5, 076 + 45, 04 50, 047

Detaljer

Integrasjon av trigonometriske funksjoner

Integrasjon av trigonometriske funksjoner Integrsjon v trigonometriske funksjoner øistein Søvik 3. november 15 I dette dokumentet skl jeg vise litt ulike integrsjonsteknikker og metoder for å utforske integrlene v (cos x) og (sin x). De bestemte

Detaljer