LØSNINGSFORSLAG Eksamen i emne SIE4006, Digitalteknikk med kretsteknikk, fredag 16. mai 2003

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "LØSNINGSFORSLAG Eksamen i emne SIE4006, Digitalteknikk med kretsteknikk, fredag 16. mai 2003"

Transkript

1 Side av 6 LØSNINGSFORSLAG Ekamen i emne SIE4006, Digitalteknikk med kretteknikk, fredag 6. mai 2003 Oppgave a) Kirchoff trømlov: Den algebraike um av alle grentrømmer i et knutepunkt i en kret er lik null ): in = 0 n Kirchoff penninglov: Den algebraike um av alle grenpenninger rundt en lukket løyfe i en kret er lik null ): vn = 0 Omtegnet kret n R R ν + - R 2 R 3 R 5 R 7 R 6 R Fig. Antall noder er lik 6 Strøm i førte kret: i = 3A 4V Strøm i andre kret: i b = 4Ω a = A b) Bruker Kirchoff trømlov i øvre node R 2 = 5 Ω R 4 = 20 Ω R = Ω + R 3 = 80Ω ν o V = 36V + I G ν x - I =,5A Fig. 2 υ V υ + + ( I) = 0 R + R R υ =50V 0

2 Side 2 av 6 Effekt fra penningkilden: Setter I G om en ukjent trøm inn på den poitive terminal på pg.kilden I G υ V R + R 0 = = = ,875A Strømmen går i retning av penningfallet, dv. P =I V G V=0,875 36=3,5 W Spenningkilden er en forbruker. Effekt fra trømkilden: Setter V x om en ukjent penning over trømkilden V x I R 4 = υ 0 => V x = 50 +,5 20 = 80V Strømmen I går i retning av penningtigning, dv. P =V I =80,5 = 20W I x Strømkilden er en leverandør. Forbrukt effekt i mottandene υ P = ( R + R ) I + R I + R G 4 R = 6 0, ,5 + = 88,5W 80 Total forbrukt effekt i vårt tilfelle er Σ P +P =88,5+3,5=20W R V Total levert effekt er P I =-20W Dv.: Σ Avgitt effekt = Σ Forbrukt effekt Spenningen υ 0 er uavhengig av enhver endelig mottand koblet i erie med trømkilden I. Strømkilden I gir en trøm lik,5a uanett mottandverdi på R 4. Strømkilden og R 4 vil hele tiden dele penningfallet υ 0 mellom eg. c) Betingelene for at de to kretene kal være ekvivalente ett fra klemmene er at

3 Side 3 av 6 Begge kretene må produere amme penning υ L og amme trøm i L når kretene belate med identike motander R L. Dette gjelder uanett verdi på R L. Dette gir RL RP υ = υ ( i ) R R + R R + R L L L P L Dermed få ekvivalen når R = R og p υ υ = Rp ip og ip = R b) Makimal tillatt trøm i hver av mottandene blir i 00max P R max = = = 00 0, mA i 64max P R max = = = 64 0, ,5mA i) Strøm pga. penningkilden alene gir 6V + - i 00 ' 00Ω i 64 ' 64Ω Fig 3 i ' ' 6 00 = i 64 = = 36, ma Dv. ingen overbelatning pga. penningkilden alene.

4 Side 4 av 6 ii) Strøm pga. trømkilden alene gir '' 00 Ω i 00 i 64 '' 64Ω I x Fig. 4 '' I x i = '' I i = x Strømdelingen vier at kommer til fratrekk fra '' i 64 kommer om et tillegg til ' i 64, men ' i 00. Dermed blir grenene for I x gitt av '' i 00 '' ' i = i i = = ma 64max 64max 64 62,5 36,59 25,9 '' ' i = i i = = ma 00max 00max ( 36,59) 86,59 For 00Ω-mottanden: For 64Ω-motanden: I x I x < 86,59 = 22,89 ma < 25,9 = 42,49 ma 00 ٱ Makimal po. trøm fra I x blir 42,49mA

5 Side 5 av 6 Oppgave 2 a) R V i νc - Fig. Alt. : Kirchoff penninglov gir: V = R i + υ c V dυ R C dt c = + υ c Alt. 2: Kirchoff trømlov gir: dυc C + ( υc V)/ R= 0 dt Begge alternativ reulterer i diff.likningen: dυc V + υc = dt RC RC Løer diff.likningen: dυc = ( υc V ) dt RC dυc = ( υc V ) dt RC dυc υ V c = dt RC υ () t t dυc = υ V0 c V 0 dt RC υ () t ln( υc V) = t V0 RC υ () t V ln c = t V V RC 0

6 Side 6 av 6 () t c t V RC υ V 0 V = e c 0 t RC υ () t = V + ( V V ) e q.e.d. Deriverer uttrykket for penningen over kondenatoren for å finne trømmen dυc it () = C = C( )( V0 V ) e dt RC V it () = V R 0 e t RC RC b) Av de oppgitte figurene blir RC-modellen i pull-up tiltand: R p R p + - C L + - C L Fig. 2 Tidkontantene blir: τ up = R P C L = 2, = 2,5 µs τ down = R n C L = 2, = 2 µs Tranijontiden fra 0V til V tn = 4V finne ved å ette inn i likningen fra pkt. a. I dette tilfellet er V = 5V og V 0 = 0V. Dermed υ tup tup τ 9 up 2,50 c( t) = V( e ) = 5( e ) = 4 t up 9 2,50 5 e =

7 Side 7 av 6 t up ln 9 2,5 0 5 = t up =τup = = 5 9 ln 2,5 0 (, 6) 4, 02 n 5(- e - ) = 3,6 ν out 5V 4V [v] % avvik τ t up 5τ t Fig. 3 c) I pull-down tilfellet får vi ekvivalenten 5V + - R n Cp Rn C n C in = C p + C n Fig. 4 Tidkontant: τ n = R n C in = = 0n Tiden det tar å falle fra 5V til V tn n υ () t = V + ( υ (0) V ) e τ c c tn n = υ c (0) e τ = hvor υ c (0) = 5V tn n e τ = 5 tn = τ nln = 6,n 5

8 Side 8 av 6 ν c [v] 5 =,84 e τ = 0n t n = 6,n t Fig. 5 I pull-up tilfellet får vi ekvivalenten R p R p 5V + - C n C + p 5V - C in C p + C n Fig. 6 I dette tilfellet er τ u = τ n = 0 n Tiden det tar å tige fra 0V til 4V tu u υ () t = V + ( υ (0) V ) e τ c c tu u = 5 + (0 5) e τ = 4 t u = 6, n Dv. tranijonen fra lav til høy og fra høy til lav går like fort i dette tilfellet. Makimal frekven på kilden er dermed gitt ved f = = = = 3,MHz max 9 2 tu 2tu 2 6, 0 Hvi frekvenen ette til 36 MH z får vi følgende cenario:

9 Side 9 av ν c [v] A B C D E F 3,9 27,8 4,7 55,6 69,5 t[n] 6,n Fig. 7 Periodetid for generator: TG = = = 27,8n 6 f 36 0 Med referane til figuren ovenfor B: Tidligte tidpunkt for detektering av at inverter har kiftet tiltand. A: Tidpunkt hvor inverter ombetemmer eg og tiger igjen. Regner fra flanke til flanke utover i) Ved t = 3,9 n: t = ta A ta ta τ 9 n 0 0 (0) 5,36 υc = υc e = e = V Dv. penningen ut av førte inverter faller ikke nok til at andre inverter oppdager at tiltanden er endret. ii) Ved t = 27,8 n: t = tc cc ca tcta u υ = V + ( υ V ) e τ 9 3, = 5 + (,36 5) e = 4, 09V Ved dette tidpunkt tarter inverter en ny tranijon. iii) Ved t = 4, 7 n: t = td υ tdtc 3,9 0 ( t ) e τ n = υ = 4, 09 e =, 087 V CD C C Fremdele har ikke inverter 2 regitrert at inverter har kiftet tiltand. iv) Ved t = 55, 6 n: t = te CE S CD S te td u υ = V + ( υ V ) e τ

10 Side 0 av 6 = + =,39 5 (,02 5) e 4,0084 V v) Ved t = 69,5 n: t = tf υ υ t e e V,39,39 C = ( ) 4,0084 0,9984 F C E = = Inverter 2 vil altå tarte å kifte tiltand umiddelbart før dette tidpunktet. Finner ekakt tiden når υ ( t C ) = V t n υ () t = υ ( t ) e τ C C E t n 4, 0084e τ = t = τ n ln( ) = 3,8n 4, 0084 Inverter 2 tarter å kifte tiltand ved tidpunktet t = 3,9n x 4 + 3,8n = 69, 4n

11 Side av 6 Oppgave 3 Svartabell for oppgave 3: SPØRSMÅL NR.: a b c d e f g h i j A B C

12 Side 2 av 6 Oppgave 4 Fig. F = (x +y+z)(x+z ) = (x +y+z)(x+z +yy ) = (x+y+z )(x+y +z )(x +y+z) F 2 = (y+x )z +xz = yz +x z +xz F 3 = (x z)+(xy ) Alternativ D3 implementerer ikke funkjonen F(x,y,z) = П(,3,4) = (x+y+z )(x+y +z )(x +y+z) Merk at funkjonen er gitt ved den 0-maktermer. Løningmetode kan være algebraik manipulajon, annhettabell eller Karnaugh-diagram. x y z П(,3,4) F F2 F П(,3,4) = (x+y+z )(x+y +z )(x +y+z) = F Σ(0,2,5,6,7) = П(,3,4) = F2 0-maktermer -mintermer

13 Side 3 av 6 2b) Den Boolke funkjonen S = (((A +B ) (C D ) ) E) er tegnet i figuren under: Fig 2 Vi har her utnyttet DeMorgan teorem, dv. at (A +B ) = (A B). Vi har ogå anvendt en NAND-port med ammenkoblede innganger koblet til D for å realiere invertering av ignalet D. Kritik ti er N+N3+N4+N5 Av dataene i det oppgitte komponentbiblioteket er vi at tidforinkelen blir 4 x t NAND = 4 x,4 n = 5,6 n Antall tranitorer er 5 x 4 = 20 tranitorer 2c) Nødvendig tid for at ignalet kal forplante eg gjennom den kombinatorike kreten plu at vi kal ta henyn til forinkelen i D-vippen og D-vippen etup -tid, er t = 4 x t + t + t = 2,4n tot NAND pd ( LH ) etup Makimal klokkefrekven blir f = = = 80,6 max 9 ttot 2,4 0 MHz 2d) Strukturen (komponenten) kalle en Programmable Logic Array (PLA). Den angi ofte om en k x n x m PLA der k er antall adreelinjer, n er antall produktledd og m er antall utgangfunkjoner. I vårt tilfelle er dette en 4 x 8 x 4 PLA. Henikten med OR-portene er at enhver utgang kan gi ved enten ann eller komplimentert form. (Dv. hvi x er array-input til OR-kreten og y er kompliment-bryteren 0 eller, å blir funkjonen gitt ved F = xy + x y). F 0 realierer: F = A AA + A A A ' ' F = ( A ' AA ' + A A A)' realiere om vit

14 Side 4 av 6

15 Side 5 av 6 Oppgave 5 a) Netetiltand- og utgangtabell for tiltandmakinen Nåtiltand Inngang Netetiltand Utgangverdi z A 0 B 0 A A 0 * B 0 B 0 B D 0 C 0 B 0 C A D 0 B 0 D A * Svak trykk i oppgavetekten kan ha gjort at enkelte har feiltolket utgangverdien. b) Betingelene for at to tiltander S j og S K kal være ekvivalente er at i) begge tiltandene har amme utgangfukjon ii) begge tiltandene har amme eller ekvivalente nettiltander. Implikajontabell i) Sjekker amme utgang ii) Sjekker amme netetiltand B <A D> C D OK A B C (alle unntatt ite tiltand) (alle unntatt førte tiltand) Fig. Tiltand C er ekvivalent med tiltand D Kan døpe om tiltandene til G G G 0 = = { A} { B} { C D 2 =, }

16 Side 6 av 6 Forenklet netetiltand- og utgangtabell Nåtiltand Inngang Netetiltand Utgangverdi z A 0 B 0 A A 0 B 0 B 0 B D 0 C 0 B 0 C A Forenklet tiltanddiagram x/z' x'/z' A = G 0 B = G x'/z' x/z x'/z' x/z' C = D = G 2 Fig 2 c) Tiddiagrammet blir CLOCK x Q 2 Q z Tiltand: A B D B B D A B Fig. 3

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Fredag 25. mai Tid. Kl LØSNINGSFORSLAG

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Fredag 25. mai Tid. Kl LØSNINGSFORSLAG Side 1 av 17 NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 73 59 20 23 / 920 87 172 Bjørn B. Larsen 73 59 44

Detaljer

Kontinuasjonseksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK

Kontinuasjonseksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK Side av 2 NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 73 59 2 23 / 92 87 72 Bjørn B. Larsen 73 59 44 93 / 92

Detaljer

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK Side 1 av 12 NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 73 59 20 23 / 920 87 172 Bjørn B. Larsen 73 59 44

Detaljer

1 Lavpassfilter Lavpassfilteret påtrykkes en inngangsspenning på 1 V ved t = 0. Spenningen over spolen er vist i figuren under.

1 Lavpassfilter Lavpassfilteret påtrykkes en inngangsspenning på 1 V ved t = 0. Spenningen over spolen er vist i figuren under. ALM5M-A Matematikk Utatt Ekamen, 9 Lavpafilter Lavpafilteret påtrykke en inngangpenning på V ved t =. Spenningen over polen er vit i figuren under. Spenning [V].9.8.7.6.5.4.3.. Tidkontanten til lavpafilteret

Detaljer

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Fredag 25. mai Tid. Kl LØSNINGSFORSLAG

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Fredag 25. mai Tid. Kl LØSNINGSFORSLAG Side av 7 NORGES TEKNISKNATURITENSKAPLIGE UNIERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 7 59 2 2 / 92 87 72 Bjørn B. Larsen 7 59 44 9 Eksamen i emne

Detaljer

Kontinuasjonseksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Mandag 14. august Tid. Kl LØSNINGSFORSLAG

Kontinuasjonseksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Mandag 14. august Tid. Kl LØSNINGSFORSLAG Side av 8 NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 73 59 2 23 / 92 87 72 Bjørn B. Larsen 73 59 44 93 / 92

Detaljer

Kontinuasjonseksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK

Kontinuasjonseksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK Side av 9 NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 73 59 2 23 / 92 87 72 Bjørn B. Larsen 73 59 44 93 Kontinuasjonseksamen

Detaljer

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Lørdag 5. juni Tid. Kl LØSNINGSFORSLAG

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Lørdag 5. juni Tid. Kl LØSNINGSFORSLAG Side 1 av 15 NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Bjørn B. Larsen 73 59 44 93 / 902 08 317 (Digitaldel) Ingulf Helland

Detaljer

Løsningsforslag for obligatorisk øving 1

Løsningsforslag for obligatorisk øving 1 TFY4185 Måleteknikk Institutt for fysikk Løsningsforslag for obligatorisk øving 1 Oppgave 1 a Vi starter med å angi strømmen i alle grener For Wheatstone-brua trenger vi 6 ukjente strømmer I 1 I 6, som

Detaljer

Théveninmotstanden finnes ved å måle kortslutningsstrømmen (se figuren under).

Théveninmotstanden finnes ved å måle kortslutningsstrømmen (se figuren under). Oppgave 1 (10 %) a) Kirchoffs spenningslov i node 1 gir følgende ligning 72 12 24 30 hvor to av strømmene er definert ut av noden, mens strømmen fra strømkilden går inn i noden. 2 72 720 Løser med hensyn

Detaljer

Løsningsforslag til regneøving 6. a) Bruk boolsk algebra til å forkorte følgende uttrykk [1] Fjerner 0 uttrykk, og får: [4]

Løsningsforslag til regneøving 6. a) Bruk boolsk algebra til å forkorte følgende uttrykk [1] Fjerner 0 uttrykk, og får: [4] Løsningsforslag til regneøving 6 TFE4 Digitalteknikk med kretsteknikk Løsningsforslag til regneøving 6 vårsemester 28 Utlevert: tirsdag 29. april 28 Oppgave : a) Bruk boolsk algebra til å forkorte følgende

Detaljer

EKSAMEN I FAG TFE4101 KRETS- OG DIGITALTEKNIKK

EKSAMEN I FAG TFE4101 KRETS- OG DIGITALTEKNIKK Side 1 av 13 INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON EKSAMEN I FAG TFE4101 KRETS- OG DIGITALTEKNIKK Faglig kontakt: Peter Svensson (1 3.5) / Kjetil Svarstad (3.6 4) Tlf.: 995 72 470 / 458 54 333

Detaljer

Kontinuasjonseksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Onsdag 15. august Tid. Kl LØSNINGSFORSLAG

Kontinuasjonseksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Onsdag 15. august Tid. Kl LØSNINGSFORSLAG Side av 8 NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 73 59 2 23 / 92 87 72 Bjørn B. Larsen 73 59 44 93 Kontinuasjonseksamen

Detaljer

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK Fredag 21. mai 2004 Tid. Kl

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK Fredag 21. mai 2004 Tid. Kl Side av NORGES TEKNSK- NATURVTENSKAPLGE UNVERSTET nstitutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Øystein Ellingsson tlf. 95373 Eksamen i emne TFE4 DGTALTEKNKK MED KRETSTEKNKK

Detaljer

Eksamensoppgave i TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK

Eksamensoppgave i TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK Institutt for elektronikk og telekommunikasjon LØSNINGSFORSLAG KRETSDEL Eksamensoppgave i TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK Faglig kontakt under eksamen: Ragnar Hergum - tlf. 73 59 20 23 / 920 87

Detaljer

Løsningsforslag Analyseøving 4

Løsningsforslag Analyseøving 4 TTT465 Elektronik ytemdeign og -analye II Løningforlag Analyeøving 4 Oppgave a Vi tarter med å finne ytemfunkjonen: H( = /C R + L + /C = RC + LC + = /LC + R L + /LC = ω0 + R L +. ω 0 Videre må vi finne

Detaljer

Løsningsforslag til hjemmeøving nr.6 Fag SO122E Kraftelektronikk

Løsningsforslag til hjemmeøving nr.6 Fag SO122E Kraftelektronikk Avd. for teknologi Program for elektro- og datateknikk Løningforlag til hjemmeøving nr.6 Fag SOE Kraftelektronikk (D:\ARFI\D\OVIG\KRELIKK\Ov6\Kraftelektronikk øv6 løning.doc) Oppgave a) Skiér blokkkjemaene

Detaljer

INF1400. Karnaughdiagram

INF1400. Karnaughdiagram INF4 Karnaughdiagram Hvor er vi Vanskelighetsnivå Binær Porter Karnaugh Kretsdesign Latch og flipflopp Sekvensiell Tilstandsmaskiner Minne Eksamen Tid juleaften Omid Mirmotahari 2 Hva lærte vi forrige

Detaljer

LF til KRETSDELEN AV Eksamen i TFE4101 Kretsteknikk og digitalteknikk

LF til KRETSDELEN AV Eksamen i TFE4101 Kretsteknikk og digitalteknikk Institutt for elektronikk og telekommunikasjon LF til KRETSDELEN AV Eksamen i TFE4101 Kretsteknikk og digitalteknikk Faglig kontakt under eksamen: Ragnar Hergum tlf. 73 59 20 23 / 920 87 172 (oppgave 1,

Detaljer

Institutt for elektronikk og telekommunikasjon. Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Onsdag 24. mai Tid. Kl.

Institutt for elektronikk og telekommunikasjon. Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Onsdag 24. mai Tid. Kl. Side av 2 NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 73 59 2 23 / 92 87 72 Bjørn B. Larsen 73 59 44 93 Eksamen

Detaljer

Signalfiltrering. Finn Haugen TechTeach. 21. september 2003. Sammendrag

Signalfiltrering. Finn Haugen TechTeach. 21. september 2003. Sammendrag Signalfiltrering Finn Haugen TechTeach. eptember 3 Sammendrag Dette dokumentet gir en kort bekrivele av ignalfiltrering med tidkontinuerlige, ogå kalt analoge, filtere og med tiddikrete, ogå kalt digitale,

Detaljer

Datamaskiner og operativsystemer =>Datamaskinorganisering og arkitektur

Datamaskiner og operativsystemer =>Datamaskinorganisering og arkitektur Datamaskiner og operativsystemer =>Datamaskinorganisering og arkitektur Lærebok: Computer organization and architecture/w. Stallings. Avsatt ca 24 timers tid til forelesning. Lærestoffet bygger på begrepsapparat

Detaljer

Kurs: FYS3220 Lineær kretselektronikk. Oppgave: LABORATORIEØVELSE B

Kurs: FYS3220 Lineær kretselektronikk. Oppgave: LABORATORIEØVELSE B Kur: FYS30 Lineær kretelektronikk Gruppe: Utført dato: Oppgave: LABOATOIEØVELSE B Omhandler: LAPLACE TANSFOMASJON... AC-ESPONS OG BODEPLOT... 7 3 WIENBOFILTE... 5 H.Balk rev 9 04.0.00 Utført av i Sett

Detaljer

Kontinuasjonseksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK

Kontinuasjonseksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon aglig kontakt under eksamen: Ragnar Hergum 73 59 20 23 / 920 87 172 Bjørn B. Larsen 73 59 44 93 / 902 08 317

Detaljer

Kontinuasjonseksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Onsdag 15. august Tid. Kl LØSNINGSFORSLAG

Kontinuasjonseksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Onsdag 15. august Tid. Kl LØSNINGSFORSLAG Side av 8 NORGES TEKNISKNATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 73 59 2 23 / 92 87 72 Bjørn B. Larsen 73 59 44 93 Kontinuasjonseksamen

Detaljer

H Laplacetransformasjon, transientanalyse og Z- transformasjon

H Laplacetransformasjon, transientanalyse og Z- transformasjon FYS30 H013-1 Laplacetranformajon, tranientanalye og Z- tranformajon... 1 801 Paivt Chebyhevfilter (H00-4)... 80 Aktivt Butterworth & Beel filter (H03-1)... 3 807 Fra 1-orden prototype Beel filter til båndpa...

Detaljer

KONTINUASJONSEKSAMEN I FAG TFE4101 KRETS- OG DIGITALTEKNIKK - LF

KONTINUASJONSEKSAMEN I FAG TFE4101 KRETS- OG DIGITALTEKNIKK - LF Side 1 av 20 INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON KONTINUASJONSEKSAMEN I FAG TFE4101 KRETS- OG DIGITALTEKNIKK - LF Faglig kontakt: Peter Svensson (1 3.5) / Kjetil Svarstad (3.6 4) Tlf.: 995 72

Detaljer

Forelesning 2. Boolsk algebra og logiske porter

Forelesning 2. Boolsk algebra og logiske porter Forelesning 2 Boolsk algebra og logiske porter Hovedpunkter Toverdi Boolsk algebra Huntington s postulater Diverse teorem Boolske funksjoner med sannhetstabell Forenkling av uttrykk (port implementasjon)

Detaljer

Oppgave 1 (30%) a) De to nettverkene gitt nedenfor skal forenkles. Betrakt hvert av nettverkene inn på klemmene:

Oppgave 1 (30%) a) De to nettverkene gitt nedenfor skal forenkles. Betrakt hvert av nettverkene inn på klemmene: 3. juni 2010 Side 2 av 16 Oppgave 1 (30%) a) De to nettverkene gitt nedenfor skal forenkles. Betrakt hvert av nettverkene inn på klemmene: Reduser motstandsnettverket til én enkelt resistans og angi størrelsen

Detaljer

Kontinuasjonseksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK

Kontinuasjonseksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK NORGES TEKNISKNATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon aglig kontakt under eksamen: Ragnar Hergum 73 59 20 23 / 920 87 72 Bjørn B. Larsen 73 59 93 / 902 08 37 i emne

Detaljer

EKSAMEN (Del 1, høsten 2015)

EKSAMEN (Del 1, høsten 2015) EKSAMEN (Del 1, høsten 2015) Emnekode: ITD13012 Emne: Datateknikk Dato: 02.12.2015 Eksamenstid: kl 0900 til kl 1200 Hjelpemidler: Faglærer: to A4-ark (fire sider) med egne notater Robert Roppestad "ikke-kommuniserende"

Detaljer

TFE4101 Krets- og Digitalteknikk Høst 2016

TFE4101 Krets- og Digitalteknikk Høst 2016 Norges teknisk naturvitenskapelige universitet Institutt for elektronikk og telekomunikasjon TFE40 Krets- og Digitalteknikk Høst 206 Løsningsforslag Øving 5 Boolske funksjoner, algebraisk forenkling av

Detaljer

Høgskoleni østfold EKSAMEN. Emnekode: Emne: ITD13012 Datateknikk (deleksamen 1, høstsemesteret) Dato: Eksamenstid: kl til kl.

Høgskoleni østfold EKSAMEN. Emnekode: Emne: ITD13012 Datateknikk (deleksamen 1, høstsemesteret) Dato: Eksamenstid: kl til kl. Høgskoleni østfold EKSAMEN Emnekode: Emne: ITD13012 Datateknikk (deleksamen 1, høstsemesteret) Dato: 02.12.2015 Eksamenstid: kl. 0900 til kl. 1200 Hjelpemidler: Faglærer: to A4-ark (fire sider) med egne

Detaljer

RAPPORT LAB 3 TERNING

RAPPORT LAB 3 TERNING TFE4110 Digitalteknikk med kretsteknikk RAPPORT LAB 3 TERNING av June Kieu Van Thi Bui Valerij Fredriksen Labgruppe 201 Lab utført 09.03.2012 Rapport levert: 16.04.2012 FAKULTET FOR INFORMASJONSTEKNOLOGI,

Detaljer

Hva gikk vi gjennom forrige uke? Omid Mirmotahari 3

Hva gikk vi gjennom forrige uke? Omid Mirmotahari 3 Boolsk Algebra Hva gikk vi gjennom forrige uke? Omid Mirmotahari 3 Læringsutbytte Kunnskapsmål: Kunnskap om boolsk algebra Ferdighetsmål: Kunne forenkle boolske uttrykk Kunne implementere flerinputs-porter

Detaljer

Ferdighetsmål: Kunne forenkle boolske uttrykk Kunne implementere flerinputs-porter med bare 2-inputs porter

Ferdighetsmål: Kunne forenkle boolske uttrykk Kunne implementere flerinputs-porter med bare 2-inputs porter Boolsk Algebra Læringsutbytte Kunnskapsmål: Kunnskap om boolsk algebra Ferdighetsmål: Kunne forenkle boolske uttrykk Kunne implementere flerinputs-porter med bare 2-inputs porter Generelle kompetansemål:

Detaljer

Oppgave 1 (30%) SVAR: R_ekv = 14*R/15 0,93 R L_ekv = 28*L/15 1,87 L

Oppgave 1 (30%) SVAR: R_ekv = 14*R/15 0,93 R L_ekv = 28*L/15 1,87 L Oppgave 1 (3%) a) De to nettverkene gitt nedenfor skal forenkles. Betrakt hvert av nettverkene inn på klemmene: Reduser motstandsnettverket til én enkelt resistans og angi størrelsen på denne. Reduser

Detaljer

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Bjørn B. Larsen 73 59 44 93 / 902 08 317 (Digitaldel) Peter Svensson 73 59 05

Detaljer

LØSNINGSFORSLAG KRETSDEL

LØSNINGSFORSLAG KRETSDEL NORGES TEKNISKNATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 73 59 20 23 / 920 87 172 Bjørn B. Larsen 73 59 44 93 / 902 08 317 Eksamen

Detaljer

Eksamensoppgave i TFY4190 Instrumentering

Eksamensoppgave i TFY4190 Instrumentering Intitutt for fyikk Ekamenoppgave i FY49 Intrumentering Faglig kontakt under ekamen: Steinar Raaen lf.: 48 96 758 Ekamendato: 3. mai 4 Ekamentid (fra-til): 9: 3: Hjelpemiddelkode/illatte hjelpemidler: Alternativ

Detaljer

EKSAMEN I FAG TFE4101 KRETS- OG DIGITALTEKNIKK

EKSAMEN I FAG TFE4101 KRETS- OG DIGITALTEKNIKK Side 1 av 13 INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON EKSAMEN I FAG TFE4101 KRETS- OG DIGITALTEKNIKK Faglig kontakt: Peter Svensson (1 3.5) / Kjetil Svarstad (3.6 4) Tlf.: 995 72 470 / 458 54 333

Detaljer

FYS3220 Filteroppave Oppgave og løsningsforslag v. H.Balk

FYS3220 Filteroppave Oppgave og løsningsforslag v. H.Balk FYS0 Filteroppave Oppgave og løningforlag v. H.Balk 0_Paivt -orden hebyhev P til HP konvertering, prototype impedan og frekven kalering. -orden hebychev filter, prototype filter, frekven kalering, impedan

Detaljer

TFE4101 Krets- og Digitalteknikk Høst 2016

TFE4101 Krets- og Digitalteknikk Høst 2016 Norges teknisk naturvitenskapelige universitet Institutt for elektronikk og telekomunikasjon TFE40 Krets- og Digitalteknikk Høst 206 Løsningsforslag Øving 6 Teknologi-mapping a) Siden funksjonen T er på

Detaljer

Kontinuasjonseksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Mandag 4. august Tid. Kl LØSNINGSFORSLAG

Kontinuasjonseksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Mandag 4. august Tid. Kl LØSNINGSFORSLAG NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 73 59 20 23 / 920 87 172 Bjørn B. Larsen 73 59 44 93 / 902 08 317

Detaljer

Bokmål / Nynorsk / English NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK. Eksamen TFY4185 Måleteknikk

Bokmål / Nynorsk / English NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK. Eksamen TFY4185 Måleteknikk Bokmål / Nynorsk / English Side 1 av 5 NORGES TEKNISK- NATURITENSKAPELIGE UNIERSITET INSTITUTT FOR FYSIKK Steinar Raaen tel. 482 96 758 Eksamen TFY4185 Måleteknikk Mandag 17. desember 2012 Tid: 09.00-13.00

Detaljer

IN1020. Logiske porter om forenkling til ALU

IN1020. Logiske porter om forenkling til ALU IN2 Logiske porter om forenkling til ALU Hovedpunkter Utlesing av sannhetsverdi-tabell; Max og Min-termer Forenkling av uttrykk med Karnaugh diagram Portimplementasjon Kretsanalyse Adder og subtraktor

Detaljer

INF1400 Kap 02 Boolsk Algebra og Logiske Porter

INF1400 Kap 02 Boolsk Algebra og Logiske Porter INF4 Kap 2 Boolsk Algebra og Logiske Porter Hovedpunkter Toverdi Boolsk algebra Huntington s postulater Diverse teorem Boolske funksjoner med sannhetstabell Forenkling av uttrykk (port implementasjon)

Detaljer

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon aglig kontakt under eksamen: Ragnar Hergum 73 59 20 23 / 920 87 172 Bjørn B. Larsen 73 59 44 93 / 902 08 317

Detaljer

4 kombinatorisk logikk, løsning

4 kombinatorisk logikk, løsning 4 kombinatorisk logikk, løsning 1) Legg sammen følgende binærtall uten å konvertere til desimaltall: a. 1101 + 1001 = 10110 b. 0011 + 1111 = 10010 c. 11010101 + 001011 = 11100000 d. 1110100 + 0001011 =

Detaljer

TFE4101 Vår Løsningsforslag Øving 2. 1 Strøm- og spenningsdeling. (5 poeng)

TFE4101 Vår Løsningsforslag Øving 2. 1 Strøm- og spenningsdeling. (5 poeng) TFE4101 Vår 2016 Norges teknisk naturvitenskapelige universitet Institutt for elektronikk og telekomunikasjon Løsningsforslag Øving 2 1 Strøm- og spenningsdeling. (5 poeng) Sett opp formelen for strømdeling

Detaljer

INF2270. Boolsk Algebra og kombinatorisk logikk

INF2270. Boolsk Algebra og kombinatorisk logikk INF227 Boolsk Algebra og kombinatorisk logikk Hovedpunkter Boolsk Algebra og DeMorgans Teorem Forkortning av uttrykk ved regneregler Utlesing av sannhetsverdi-tabell; Max og Min-termer Forkortning av uttrykk

Detaljer

Løsningsforslag i digitalteknikkoppgaver INF2270 uke 5 (29/1-4/2 2006)

Løsningsforslag i digitalteknikkoppgaver INF2270 uke 5 (29/1-4/2 2006) Løsningsforslag i digitalteknikkoppgaver INF2270 uke 5 (29/1-4/2 2006) Oppgave 1) Bør kunne løses rett fram, likevel: a) E = abcd + a'bc + acd + bcd: cd 00 01 11 10 ab 00 01 1 1 11 1 10 1 De variablene

Detaljer

Dagens temaer. Dagens temaer er hentet fra P&P kapittel 3. Motivet for å bruke binær representasjon. Boolsk algebra: Definisjoner og regler

Dagens temaer. Dagens temaer er hentet fra P&P kapittel 3. Motivet for å bruke binær representasjon. Boolsk algebra: Definisjoner og regler Dagens temaer Dagens temaer er hentet fra P&P kapittel 3 Motivet for å bruke binær representasjon Boolsk algebra: Definisjoner og regler Kombinatorisk logikk Eksempler på byggeblokker 05.09.2003 INF 103

Detaljer

Forelesning nr.3 INF 1411 Elektroniske systemer. Parallelle og parallell-serielle kretser Kirchhoffs strømlov

Forelesning nr.3 INF 1411 Elektroniske systemer. Parallelle og parallell-serielle kretser Kirchhoffs strømlov Forelenng nr.3 INF 4 Elektronke ytemer Parallelle og parallell-erelle kreter Krchhoff trømlo Dagen temaer Krchhoff trømlo Parallelle kreter Kreter med parallelle og erelle ter Effekt parallelle kreter

Detaljer

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK 5.juni 2010 Side 1 av 17 NORGES TEKNISK- BOKMÅL NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Bjørn B. Larsen 73 59 44 93 / 902 08 317 (Digitaldel)

Detaljer

EKSAMENSOPPGAVE I TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK

EKSAMENSOPPGAVE I TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK Side av 8 Norges teknisknaturvitenskapelige universitet Institutt for elektronikk og telekommunikasjon EKSAMENSOPPGAVE I TFE4 DIGITALTEKNIKK MED KRETSTEKNIKK LØSNINGSFORSLAG Versjon. Faglig kontakt under

Detaljer

EKSAMEN I FAG TFE4101 KRETS- OG DIGITALTEKNIKK

EKSAMEN I FAG TFE4101 KRETS- OG DIGITALTEKNIKK Side 1 av 14 INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON EKSAMEN I FAG TFE4101 KRETS- OG DIGITALTEKNIKK Faglig kontakt: Peter Svensson (1 3.5) / Kjetil Svarstad (3.6 4) Tlf.: 995 72 470 / 458 54 333

Detaljer

Eksamensoppgave i TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK

Eksamensoppgave i TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK 3.juni 2 Side av 2 Med LF. Institutt for elektronikk og telekommunikasjon Eksamensoppgave i TFE4 DIGITALTEKNIKK MED KRETSTEKNIKK Faglig kontakt under eksamen: Ragnar Hergum - tlf. 73 59 2 23 / 92 87 72

Detaljer

Kontinuasjonseksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Mandag 4. august Tid. Kl LØSNINGSFORSLAG

Kontinuasjonseksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Mandag 4. august Tid. Kl LØSNINGSFORSLAG NORGES TEKNISKNATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon aglig kontakt under eksamen: Ragnar Hergum 73 59 2 23 / 92 87 72 Bjørn B. Larsen 73 59 44 93 / 92 8 37 i emne

Detaljer

Kondensator. Symbol. Lindem 22. jan. 2012

Kondensator. Symbol. Lindem 22. jan. 2012 UKE 5 Kondensatorer, kap. 12, s. 364-382 RC kretser, kap. 13, s. 389-413 Frekvensfilter, kap. 15, s. 462-500 og kap. 16, s. 510-528 Spoler, kap. 10, s. 289-304 1 Kondensator Lindem 22. jan. 2012 Kondensator

Detaljer

7. Hvilket alternativ (A, B eller C) representerer hexadesimaltallet B737 (16) på oktal form?

7. Hvilket alternativ (A, B eller C) representerer hexadesimaltallet B737 (16) på oktal form? Jeg har rettet alle oppgavene og legger ut et revidert løsningsforslag. Noen av besvarelsene var glitrende! 6. Hva er desimalverdien av 0 0000 0000 (2)? Tallet er gitt på toerkomplement binær form. Eneren

Detaljer

dx k dt н x 1,..., x n f 1,...,f n н- н f k (x 1,..., x n ), k =1,2,...,n, нн d X = f( X). X = (t),.. x 1 = 1 (t), x 2 = 2 (t),...

dx k dt н x 1,..., x n f 1,...,f n н- н f k (x 1,..., x n ), k =1,2,...,n, нн d X = f( X). X = (t),.. x 1 = 1 (t), x 2 = 2 (t),... - ( ) - 3 579 : - - : - / : : 3 4 579-4 5 9 3 9 4 3 5 5 6 3 33 34 3 35 4 36 39 c - ( ) 3 c 3 - - ( ) - ( - ) - - - ( ) - - ( - ) ( t) - dx k = f k (x x n ) k = n () dt x x n f f n - d X = f( X) dt f k

Detaljer

Forelesning nr.2 INF 1410

Forelesning nr.2 INF 1410 009 Forelenng nr. INF 40 Strøm og pennngloer 3.0.009 INF 40 009 Oerkt dagen temaer Defnjon a løkker, ter, noder og grener Krchhoff trøm og pennngloer (KCV og KCL) Serelle Serelle og parallelle kreter Forenklng

Detaljer

a) Bruk en passende Gaussflate og bestem feltstyrken E i rommet mellom de 2 kuleskallene.

a) Bruk en passende Gaussflate og bestem feltstyrken E i rommet mellom de 2 kuleskallene. Oppgave 1 Bestem løsningen av differensialligningen Oppgave 2 dy dx + y = e x, y(1) = 1 e Du skal beregne en kulekondensator som består av 2 kuleskall av metall med samme sentrum. Det indre skallet har

Detaljer

Kontinuasjonseksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK Fredag 6. aug 2004 Tid. Kl

Kontinuasjonseksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK Fredag 6. aug 2004 Tid. Kl Side 1 av 11 NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Oppgave 1 (20%) a) Gitt kretsen i Figur 1. Faglig kontakt under eksamen: Spenningen over kondensato

Detaljer

LF - anbefalte oppgaver fra kapittel 2

LF - anbefalte oppgaver fra kapittel 2 1 LF - anbefalte oppgaver fra kapittel 2 N2.1 Denne oppkoblingen er lovlig: Alle spenningkildene kan få en strøm på 5 A fra strømkilden. Spenningsfallet over strømkilden er også lovlig. Ved å summere alle

Detaljer

Svar: Vi bruker Ampères lov for å finne magnetfeltet en avstand r fra lynet.

Svar: Vi bruker Ampères lov for å finne magnetfeltet en avstand r fra lynet. I FYS1120-undervininga legg vi meir vekt på matematikk og numerike metoder enn det oppgåvene i læreboka gjer. Det gjeld òg oppgåvene om vert gitt til ekamen. Difor er det viktig at du gjer vekeoppgåvene

Detaljer

Løsningsforslag LO346E Dynamiske Systemer H 06 eksamen 21. november 2006

Løsningsforslag LO346E Dynamiske Systemer H 06 eksamen 21. november 2006 øningforlag O346E Dynamike Syemer H 6 ekamen. november 6 Oppgave Gi e yem med ranferfnkjonen H 58 + a Tidkonanen for yeme er T 8 4. Den aike forerkningen er H 5 Saik forerkning for en varmvannank kan handle

Detaljer

Løsningsforslag til EKSAMEN

Løsningsforslag til EKSAMEN Løsningsforslag til EKSAMEN Emnekode: ITD006 Emne: Fysikk og datateknikk Dato: 09. Mai 007 Eksamenstid: kl 9:00 til kl :00 Hjelpemidler: 4 sider (A4) ( ark) med egne notater. Kalkulator. Gruppebesvarelse,

Detaljer

System av likninger. Den andre likningen løses og gir x=1, hvis man setter x=1 i første likning får man

System av likninger. Den andre likningen løses og gir x=1, hvis man setter x=1 i første likning får man System av likninger System av likninger er en mengde likninger med flere ukjente. I økonomiske sammenheng er disse svært vanlige ved optimering. Ofte må vi kreve deriverte lik null for å optimere. I kurset

Detaljer

Løsningsforslag oppgaver FYS3220 uke43 H2009 HBalk

Løsningsforslag oppgaver FYS3220 uke43 H2009 HBalk Løningforlag oppgaver FYS3 uke43 H9 HBalk Oppgave Nyquit diagrammer... Oppgave Tilbakekobling... Oppgave 3 Polplaering, Bodeplot, Nyquit... 4 Oppgave Nyquit diagrammer a) Forklar hva et Nyquit diagram

Detaljer

Dagens temaer. Architecture INF ! Dagens temaer hentes fra kapittel 3 i Computer Organisation and. ! Kort repetisjon fra forrige gang

Dagens temaer. Architecture INF ! Dagens temaer hentes fra kapittel 3 i Computer Organisation and. ! Kort repetisjon fra forrige gang Dagens temaer! Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture! Kort repetisjon fra forrige gang! Kombinatorisk logikk! Analyse av kretser! Eksempler på byggeblokker! Forenkling

Detaljer

Punktladningen Q ligger i punktet (3, 0) [mm] og punktladningen Q ligger i punktet ( 3, 0) [mm].

Punktladningen Q ligger i punktet (3, 0) [mm] og punktladningen Q ligger i punktet ( 3, 0) [mm]. Oppgave 1 Finn løsningen til følgende 1.ordens differensialligninger: a) y = x e y, y(0) = 0 b) dy dt + a y = b, a og b er konstanter. Oppgave 2 Punktladningen Q ligger i punktet (3, 0) [mm] og punktladningen

Detaljer

5 E, B (16) , 1011 (2) Danner grupper a' fire bit , (2) Danner grupper a' tre bit 1 3 6, 5 4 (8)

5 E, B (16) , 1011 (2) Danner grupper a' fire bit , (2) Danner grupper a' tre bit 1 3 6, 5 4 (8) 7. juni Side 8 av 17 11) Gitt det negative desimale tallet -20 (10). Hva er det samme tallet på binær 2 skomplement form? A) 110100 (2) B) 101100 (2) C) 001011 (2) Vi starter med å finne binær form av

Detaljer

TFE4101 Vår 2016. Løsningsforslag Øving 3. 1 Teorispørsmål. (20 poeng)

TFE4101 Vår 2016. Løsningsforslag Øving 3. 1 Teorispørsmål. (20 poeng) TFE411 Vår 216 Norges teknisk naturvitenskapelige universitet Institutt for elektronikk og telekommunikasjon Løsningsforslag Øving 3 1 Teorispørsmål. (2 poeng) a) Beskriv følgende med egne ord: Nodespenningsmetoden.

Detaljer

Forelesning nr.2 INF 1411 Elektroniske systemer. Effekt, serielle kretser og Kirchhoffs spenningslov

Forelesning nr.2 INF 1411 Elektroniske systemer. Effekt, serielle kretser og Kirchhoffs spenningslov Forelesning nr.2 INF 1411 Elektroniske systemer Effekt, serielle kretser og Kirchhoffs spenningslov Dagens temaer Sammenheng mellom strøm, spenning, energi og effekt Strøm og resistans i serielle kretser

Detaljer

Høgskoleni østfold EKSAMEN. Dato: Eksamenstid: kl til kl. 1200

Høgskoleni østfold EKSAMEN. Dato: Eksamenstid: kl til kl. 1200 Høgskoleni østfold EKSAMEN Emnekode: ITD13012 Emne: Datateknikk Dato: 3.12.2014 Eksamenstid: kl. 0900 til kl. 1200 Hjelpemidler: to A4-ark (fire sider) med egne notater "ikke-kommuniserende" kalkulator

Detaljer

FYS3220 Forelesningsnotat H.Balk

FYS3220 Forelesningsnotat H.Balk FYS3 Foreleningnotat H.Balk Innhold Forelening filter NOMAISEING, POTOTYPEFITE OG SKAEING... POTOTYPE FITE... Frekvenkalering... IMPEDANSSKAEING...4 Ekempel på kombinert frekven- og impedankalering...6

Detaljer

EKSAMEN I FAG TFE4101 KRETS- OG DIGITALTEKNIKK, LF DIGITALTEKNIKKDELEN AV EKSAMEN (VERSJON 1)

EKSAMEN I FAG TFE4101 KRETS- OG DIGITALTEKNIKK, LF DIGITALTEKNIKKDELEN AV EKSAMEN (VERSJON 1) Side 1 av 14 INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON EKSAMEN I FAG TFE4101 KRETS- OG DIGITALTEKNIKK, LF DIGITALTEKNIKKDELEN AV EKSAMEN (VERSJON 1) Faglig kontakt: Ragnar Hergum (1 3.5) / Per Gunnar

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i INF 1411 Introduksjon til elektroniske systemer Eksamensdag: 30. mai 2010 Tid for eksamen: 3 timer Oppgavesettet er på

Detaljer

UKE 5. Kondensatorer, kap. 12, s RC kretser, kap. 13, s Frekvensfilter, kap. 15, s og kap. 16, s.

UKE 5. Kondensatorer, kap. 12, s RC kretser, kap. 13, s Frekvensfilter, kap. 15, s og kap. 16, s. UKE 5 Kondensatorer, kap. 12, s. 364-382 R kretser, kap. 13, s. 389-413 Frekvensfilter, kap. 15, s. 462-500 og kap. 16, s. 510-528 1 Kondensator Lindem 22. jan. 2012 Kondensator (apacitor) er en komponent

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2017

MA0002 Brukerkurs i matematikk B Vår 2017 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2017 Løsningsforslag Øving 11 Oppgaver fra boken: 10.6 :, 8, 12, 19, 1, (valgfritt - 9,

Detaljer

Repetisjon digital-teknikk. teknikk,, INF2270

Repetisjon digital-teknikk. teknikk,, INF2270 Repetisjon digital-teknikk teknikk,, INF227 Grovt sett kan digital-teknikk-delen fordeles i tre: Boolsk algebra og digitale kretser Arkitektur (Von Neuman, etc.) Ytelse (Pipelineling, cache, hukommelse,

Detaljer

Løsningsforslag eksamen inf 1410 våren 2009

Løsningsforslag eksamen inf 1410 våren 2009 Løsningsforslag eksamen inf 1410 våren 2009 Oppgave 1- Strøm og spenningslover. (Vekt: 15%) a) Finn den ukjente strømmen I 5 i Figur 1 og vis hvordan du kom frem til svaret Figur 1 Løsning: Ved enten å

Detaljer

Korreksjoner til fasit, 2. utgave

Korreksjoner til fasit, 2. utgave Korreksjoner til fasit,. utgave Kapittel. Oppgave.. a): / Oppgave.. e):.887, 0.58 Oppgave..9: sin00πt). + ) x Oppgave.7.5 c): ln for 0 < x. x Oppgave.8.0: Uttrykket for a + b) 7 skal være a + b) 7 = a

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1411 Introduksjon til elektroniske systemer Eksamensdag: 1. juni 2015 Tid for eksamen: 4 timer Oppgavesettet er på 5 sider

Detaljer

Løsningsforslag til regneøving 5. Oppgave 1: a) Tegn tegningen for en eksklusiv eller port ved hjelp av NOG «NAND» porter.

Løsningsforslag til regneøving 5. Oppgave 1: a) Tegn tegningen for en eksklusiv eller port ved hjelp av NOG «NAND» porter. TFE4110 Digialeknikk med kreseknikk Løsningsforslag il regneøving 5 vårsemeser 2008 Løsningsforslag il regneøving 5 Ulever: irsdag 29. april 2008 Oppgave 1: a) Tegn egningen for en eksklusiv eller por

Detaljer

MAX MIN RESET. 7 Data Inn Data Ut. Load

MAX MIN RESET. 7 Data Inn Data Ut. Load UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i IN 240 çç Digital Systemkonstruksjon Eksamensdag: 6. desember 2000 Tid for eksamen: 9.00 ç 15.00 Oppgavesettet er p 5 sider. Vedlegg:

Detaljer

EKSAMENSOPPGAVE. ü Kalkulator med tomt dataminne ü Rottmann: Matematisk Formelsamling. rute

EKSAMENSOPPGAVE. ü Kalkulator med tomt dataminne ü Rottmann: Matematisk Formelsamling. rute Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAE Eksamen i: FYS-1002 Dato: 26. september 2017 Klokkeslett: 09.00-13.00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: ü Kalkulator med tomt dataminne

Detaljer

Forelesning nr.4 INF 1411 Elektroniske systemer. Vekselstrøm Kondensatorer

Forelesning nr.4 INF 1411 Elektroniske systemer. Vekselstrøm Kondensatorer Forelesning nr.4 INF 1411 Elektroniske systemer Vekselstrøm Kondensatorer Dagens temaer Sinusformede spenninger og strømmer Firkant-, puls- og sagtannsbølger Effekt i vekselstrømkretser Kondensator Presentasjon

Detaljer

EKSAMEN I FAG SIF 4014 FYSIKK 3 Onsdag 2. desember 1998 kl

EKSAMEN I FAG SIF 4014 FYSIKK 3 Onsdag 2. desember 1998 kl Side av 7 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under ekamen: Førteamanueni Knut Arne Strand Telefon: 73 59 34 6 EKSAMEN I FAG SIF 44 FYSIKK 3 Ondag. deember

Detaljer

Oppgave 1 INF3400. Løsning: 1a Gitt funksjonen Y = (A (B + C) (D + E + F)). Tegn et transistorskjema (skjematikk) i komplementær CMOS for funksjonen.

Oppgave 1 INF3400. Løsning: 1a Gitt funksjonen Y = (A (B + C) (D + E + F)). Tegn et transistorskjema (skjematikk) i komplementær CMOS for funksjonen. Eksamen Vår 2006 INF400 INF400 Eksamen vår 2006 0.06. /9 Oppgave a Gitt funksjonen Y (A (B + C) (D + E + F)). Tegn et transistorskjema (skjematikk) i komplementær CMOS for funksjonen. INF400 Eksamen vår

Detaljer

Rapport laboratorieøving 2 RC-krets. Thomas L Falch, Jørgen Faret Gruppe 225

Rapport laboratorieøving 2 RC-krets. Thomas L Falch, Jørgen Faret Gruppe 225 Rapport laboratorieøving 2 RC-krets Thomas L Falch, Jørgen Faret Gruppe 225 Utført: 12. februar 2010, Levert: 26. april 2010 Rapport laboratorieøving 2 RC-krets Sammendrag En RC-krets er en seriekobling

Detaljer

SLUTTPRØVE. Løsningsforslag. Antall oppgaver: 4 KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

SLUTTPRØVE. Løsningsforslag. Antall oppgaver: 4 KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG Høgkolen i elemark Avdeling for teknologike fag SLUPRØVE Løningforlag EMNE: EE49 Modellbaert regulering LÆRERE jell-erik Wolden og Han-Petter Halvoren LASSE(R): IA DAO: 9.5. PRØVEID, fra-til (kl.): 9..

Detaljer

UKE 5. Kondensatorer, kap. 12, s RC kretser, kap. 13, s Frekvensfilter, kap. 15, s kap. 16, s

UKE 5. Kondensatorer, kap. 12, s RC kretser, kap. 13, s Frekvensfilter, kap. 15, s kap. 16, s UKE 5 Kondensatorer, kap. 2, s. 364-382 R kretser, kap. 3, s. 389-43 Frekvensfilter, kap. 5, s. 462-500 kap. 6, s. 50-528 Kondensator Lindem 22. jan. 202 Kondensator (apacitor) er en komponent som kan

Detaljer

Samfunnsøkonomi andre avdeling, mikroøkonomi, Diderik Lund, 13. mars 2002

Samfunnsøkonomi andre avdeling, mikroøkonomi, Diderik Lund, 13. mars 2002 Samfunnøkonomi andre avdeling, mikroøkonomi, Diderik Lund, 3. mar 00 Måling av graden av riikoaverjon Blant konkave nyttefunkjoner: Mer konkav betyr terkere riikoaverjon Vanlig å måle grad av konkavitet

Detaljer

Fag: Elektroteknikk Løsningsforslag til øving 4

Fag: Elektroteknikk Løsningsforslag til øving 4 Bergen tekniske fagskole Finn Haugen (finn@techteach.no) 12.1.06 Fag: Elektroteknikk Løsningsforslag til øving 4 Oppgave 5.1.1 Figur1viserkretsen.Strømstyrkener,ihht.Ohmslov, ndre resistans R i 0,25ohm

Detaljer

Lab 3: AC og filtere - Del 1

Lab 3: AC og filtere - Del 1 Lab 3: AC og filtere - Del 1 Lab 3 er på mange måter en fortsettelse av Lab 2 hvor det skal simuleres og måles på en krets bestående av motstander og kondensatorer. Vi skal se på hvordan en kondensator

Detaljer

TFE4101 Vår Løsningsforslag Øving 1. 1 Ohms lov. Serie- og parallellkobling. (35 poeng)

TFE4101 Vår Løsningsforslag Øving 1. 1 Ohms lov. Serie- og parallellkobling. (35 poeng) TFE4101 Vår 2016 Norges teknisk naturvitenskapelige universitet Institutt for elektronikk og telekomunikasjon Løsningsforslag Øving 1 1 Ohms lov. Serie- og parallellkobling. (35 poeng) a) Hvilke av påstandene

Detaljer

LABORATORIEØVELSE B FYS LINEÆR KRETSELEKTRONIKK 1. LAPLACE TRANSFORMASJON 2. AC-RESPONS OG BODEPLOT 3. WIENBROFILTER

LABORATORIEØVELSE B FYS LINEÆR KRETSELEKTRONIKK 1. LAPLACE TRANSFORMASJON 2. AC-RESPONS OG BODEPLOT 3. WIENBROFILTER FYS322 - LINEÆR KRETSELEKTRONIKK LABORATORIEØVELSE B. LAPLACE TRANSFORMASJON 2. AC-RESPONS OG BODEPLOT 3. WIENBROFILTER Maris Tali(maristal) maristal@student.matnat. uio.no Eino Juhani Oltedal(einojo)

Detaljer