Kap. 10: Inferens om to populasjoner. Inferens om forskjell i forventning ved å bruke to avhengige utvalg (10.3) ST0202 Statistikk for samfunnsvitere

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Kap. 10: Inferens om to populasjoner. Inferens om forskjell i forventning ved å bruke to avhengige utvalg (10.3) ST0202 Statistikk for samfunnsvitere"

Transkript

1 Kap. 0: Inferen om to populajoner Situajon: Det er to populajoner om vi ønker å ammenligne. Vi trekker da et utvalg fra hver populajon. Vi kan ha avhengige eller uavhengige utvalg. ST00 Statitikk for amfunnvitere Bo Lindqvit Intitutt for matematike fag Avhengige utvalg: Det er en ammenheng mellom utvalgene Uavhengige utvalg: Det er ingen ammenheng mellom utvalgene Ekempel: Underøk om et nytt treningprogram påvirker det fyike nivået til elevene ved en videregående kole. Populajo: Alle elevene før de gjennomgår programmet. Populajon : Alle elevene etter at de har gjennomgått programmet. Spørmål: Er populajon i bedre form enn populajo? Uavhengige utvalg: Trekk 6 elever om ennå ikke har gjennomgått treningprogrammet og tet dem. Trekk 6 elever om har gjennomgått treningprogrammet og tet dem. Elevene i de to utvalgene er forkjellige. Dataene er ett ett med verdier for hvert utvalg. Avhengige utvalg: Trekk 6 elever. Tet dem før de gjennomgår treningprogrammet, la dem å gjennomgå programmet og tet de amme elevene etterpå. Elevene i de to utvalgene er de amme. Dataene er to verdier for hver elev (åkalte pardata - paired data 4 Inferen om forkjell i forventning ved å bruke to avhengige utvalg (0.3 Har nå pardata, x og x, for hvert av n utvalgte par (for ekempel reultater før og etter å ha gjennomgått et treningprogram for hver elev. Vi ønker å finne ut om det er forkjell på forventningverdiene i de to populajonene. For dette er vi på: Pardifferane ( paired difference : d = x x beregnet for hvert av de n parene Antagele om fordeling for d: Antar at de to populajonene er normalfordelte og at forøkenheter er tilfeldig trukket ut. De n beregnede verdier av differanene d kan da anta å være et tilfeldig utvalg fra en normalfordeling med forventning μ d og tandardavvik σ d. Her repreenterer μ d forkjellen i forventet verdi mellom de to populajonene.

2 Ekempel: Sammenligner to typer dekk A og B med henyn på dekklitaje. På 6 biler montere ett bildekk av hver type (tilfeldig ide på forhjulene. Dekklitaje etter kjøring en vi lengde måle: Bil Dekk A (x Dekk B (x Pardifferane (d = x x d = 6.3, d = 5. (vanlig utvalgtandardavvik for d-ene Ide: x-ene varierer mye, da de er påvirket av mange faktorer: Bilen tyngde, type kjøring, føreren kjørevaner etc. Slike effekter eliminere i høy grad ved å baere analyen på d-ene. Dette er eenen i bruk av avhengige utvalg. Dermed har vi kun ett utvalg i vår analye, og vi er tilbake til ituajonen i kapitel 9. 6 Konfidenintervall for forventet forkjell ved avhengige utvalg Et α konfidenintervall for μ d er gitt ved d ± t(n,α/ d n Konfidenintervall og teting er baert på t = d μ d d / n om er t-fordelt med df = n frihetgrader. Met aktuelle nullhypotee er: H 0 : μ d = 0 (hvorfor? mot ulike alternativer for μ d Oppgave: Finn et 90% konfidenintervall for μ d i dekk-ekemplet. Tet ogå H 0 : μ d = 0motH a : μ d > 0 med 5% ignifikannivå. 7 Inferen om forkjell i forventning ved å bruke to uavhengige utvalg (0.4 8 Utvalgfordeling for x x Populajo: Populajon μ forventning μ forventning (populajongjennomnitt (populajongjennomnitt σ populajontandardavvik σ populajontandardavvik obervajoner n obervajoner x obervert variabel x obervert variabel x utvalggjennomnitt x utvalggjennomnitt utvalgtandardavvik utvalgtandardavvik Vi er nå intereert i μ μ, om har punktetimat x x Antagele: Uavhengige utvalg av tørrele og n trekke tilfeldig fra normalfordelte populajoner. Da er x x normalfordelt med. forventning. tandardfeil σ x x = μ x x = μ μ ( σ ( σ n

3 Det korrekte antall frihetgrader for t er Dette betyr at z = x x (μ μ ( ( σ σ n df = {( ( } n ( / ( /n n er tandard normalfordelt og kan bruke til inferen om μ μ hvi σ og σ er kjente. Hvi σ og σ er ukjente, ertatte die med og, og inferen baere på t = x x (μ μ ( ( n om er tilnærmet t-fordelt med df frihetgrader (e nete ide. (avrundet nedover til nærmete hele tall. Dette bruke i kalkulatorer og dataprogrammer, men for å gjøre analyer enklere vil vi bruke om df for t: det minte av og n. (Det kan vie at formelen ovenfor alltid gir en df mellom dette tallet og den makimale verdien n. Men: Vi gjør da inferenen konervativ i den fortand at vi får lenger konfidenintervall og høyere kritike verdier for teter enn ved å bruke formelen. Konfidenintervall for forventet forkjell ved uavhengige utvalg Et α konfidenintervall for μ μ er gitt ved ( x x ± t(df,α/ ( n der df er lik det minte av ogn, eller eventuelt gitt ved formelen på forrige ide,

4 Fra ekamen 4. mai 003 Oppgave Vekta (i kilogram til forvarpillerne, x, og til angreppillerne, y, i Molde Fotballklubb A-tall (MFK er lik: x y Det oppgi at x =50, x = 4935, y = 387 og y = a Finn utvalgmiddelverdiene og utvalgtandardavvikene for de to utvalgene. Anta at vi kan betrakte forvarpillerne og angreppillerne i MFK om uavhengige tilfeldige utvalg fra henholdvi populajonen av alle forvarpillere og populajonen av alle angreppillere på høyt nivå. b Forelå en tetmetode for å underøke om det er noen forkjell i gjennomnittvekta til forvarpillere og angreppillere på høyt nivå. Gjør greie for antakelene for tetmetoden. c Utfør teten med ignifikannivå α = 0,0. b Bruker t-tet for to uavhengige utvalg ( to-utvalg t-tet. Løning: Skriver x for x, x for y μ er forventet vekt for forvarpiller μ er forventet vekt for angreppiller a x = 50/6 = 83.5, x = 387/5 = 77.4 = = Σx (Σx / Σx (Σx /n n = = 4935 (50 /6 = (387 /5 = Utvalgene må være uavhengige og tilfeldige, fra normalfordelte populajoner (vier eg rimelig for vekt. Teter H 0 : μ μ = 0motH : μ μ 0 c Tetobervator t = x x (μ μ ( ( n = ( ( =.59 Hvi H 0 gjelder er t tilnærmet t-fordelt med df = 4 (minimum av 6- og 5-. Klaik metode: Forkat H 0 hvi t < t(4, 0.0/ = t(4, 0.05 =.3 (tabell 6, eller hvi t > t(4, 0.05 =.3. Vi forkater altå H 0 og påtår H a iden.59 >.3.

5 Metode med p-verdi: p-verdi er gitt ved annynligheten for å få det vi har fått eller noe mer ektremt i forhold til nullhypoteen, dv. her P(t <.59P(t >.59 = P(t >.59 når t er t-fordelt med 4 frihetgrader. Tabell 7 gir at P(t >.6 =0.03, å p-verdien blir ca 0.03 = 0.06, om altå er mindre enn ignifikannivået på 0.0. Vi forkater altå H 0. Det er tidligere bemerket at dette er en konervativ metode. Det korrekte antall frihetgrader er muligen tørre enn 4, noe om ville ha gitt en mindre p-verdi, og lavere kritik verdi. Men ålenge vi forkater, har dette ingen betydning for konklujonen. (Formelen for df ville gitt 8.7, dv vi kunne ha brukt 8 frihetgrader. Kritike verdier ville da ha blitt ±.86, men p-verdi ville blitt Oppgave: Jeg har trukket 0 tall fra populajo om er normalfordelt med forventning μ og tandardavvik σ : med utvalggjennomnitt x = 47.0 og utvalgtandardavvik = 0.3. Deuten har jeg trukket 0 tall fra en populajon om er normalfordelt med forventning μ og tandardavvik σ : med utvalggjennomnitt x = 3.9 og utvalgtandardavvik = 5.6 Finn punktetimat for μ μ Finn 90% konfidenintervall for μ μ. Er μ = μ? Bruk 5% ignifikannivå. Fordelinger om dataene er trukket fra: Populajo: Normalfordeling med μ = 50,σ = 0 Populajon : Normalfordeling med μ = 35,σ = 5 0 Inferen om forkjell mellom andeler i to populajoner baert på uavhengige utvalg (0.5 p andel ukeer i populajo p andel ukeer i populajon x antall ukeer i utvalg x antall ukeer i utvalg p = x andel ukeer i utvalg p = x n andel ukeer i utvalg Vil gjøre inferen om p p ved hjelp av p p.

6 Repetijon: Binomik ituajon med ett utvalg Andel med uke i utvalget er Binomik ituajon med to utvalg Utvalgfordelingen: å p = x n μ p = p pq σ p = n z = p p pq n er tilnærmet tandard normalfordelt Hvi uavhengige utvalg på og n trekke tilfeldig fra tore populajoner med uke-annynligheter p og p,vil utvalgfordelingen for p p ha egenkapene:. forventning:. tandardfeil: μ p p = p p σ p p = p q p q n 3. tilnærmet normalfordelt når og n er tore Hypoteeteting om p p. Dermed er z = p p (p p p q p q n tilnærmet tandard normalfordelt når og n er tore. Et tilnærmet ( α-konfidenintervall for p p er gitt ved Altå om vanlig: p p ± z(α/ p q p q n punktetimat ± z(α/ tandard error VanligåteteH 0 : p p = 0 om er det amme om H 0 : p = p Tar utgangpunkt i den tandard normalfordelte z = p p (p p p q p q n og lager tetobervatoren z = p p p p q p p pq p n der p p er et punktetimat for verdien av p = p når H 0 er ann. Et naturlig etimat er p p = x x n Da er z tandard normalfordelt når H 0 gjelder og vi kan baere teten på den.

7 ! " #! " " ', -.. % / 0 9 : : ; < = >? z(α =z(0.05 =.65 < 3.80 C S H K T E G U I C D B G H 0R Løning Fra ekamen 5. deember 005 z = p B p T (p B p T p B = p T p p ( p p p p ( p p p p ( p p n p p ( p p n A B C D E F C B G H I D E G B J B G & "! ' ( % * p B p " " T / 3 / H 0 : p B = p T H a : p B >p 4 5 T 0 # , / 3 R p B = p T p B = = p T = =0.549 p p = =0.675 z = = ( ( C K L B J J M N N O P Q E D B C B J B G I W K J C D B C K X J K Y U I J C J K H S C E Z X K G T E G U I C D J K J X F N K G V H B G L K B J \ p[ H B G L K = P (z >z =P (z >3.80 = p[ Oppgave: Jeg har utført et binomik forøk med = 000, x = 757 og n = 500, x = 367 ukeer. Finn et punkteimat for p p Finn et 90% konfidenintervall for p p Tet hypoteen H 0 : p = p mot H a : p p med ignifikannivå 5% (Dataene er imulert med p = 0.75, p = 0.7

Kap. 10: Inferens om to populasjoner. Eksempel. ST0202 Statistikk for samfunnsvitere

Kap. 10: Inferens om to populasjoner. Eksempel. ST0202 Statistikk for samfunnsvitere Kap. 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to populasjoner med populasjonsgjennomsnitt henholdsvis μ 1 og μ. Vi trekker da ett utvalg fra hver populasjon. ST00 Statistikk for

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to populasjoner med populasjonsgjennomsnitt henholdsvis

Detaljer

Oppgave 1. (x i x)(y i Y ) (Y i A Bx i ) 2 er estimator for σ 2 (A er minstek-

Oppgave 1. (x i x)(y i Y ) (Y i A Bx i ) 2 er estimator for σ 2 (A er minstek- MOT310 Statitike metoder 1 Løningforlag til ekamen vår 010,. 1 Oppgave 1 a) Modell: Y i α + βx i + ε i der ε 1,..., ε n u.i.f. N 0, σ ). b) Vil tete: Tettørrele H 0 : β 0 mot H 1 : β 0 B β T t n under

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 10: Inferens om to populasjoner

ST0202 Statistikk for samfunnsvitere Kapittel 10: Inferens om to populasjoner ST0202 Statistikk for samfunnsvitere Kapittel 10: Inferens om to populasjoner Bo Lindqvist Institutt for matematiske fag 2 Kapittel 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to

Detaljer

Signalfiltrering. Finn Haugen TechTeach. 21. september 2003. Sammendrag

Signalfiltrering. Finn Haugen TechTeach. 21. september 2003. Sammendrag Signalfiltrering Finn Haugen TechTeach. eptember 3 Sammendrag Dette dokumentet gir en kort bekrivele av ignalfiltrering med tidkontinuerlige, ogå kalt analoge, filtere og med tiddikrete, ogå kalt digitale,

Detaljer

BEDRIFTSØKONOMISK ANALYSE MAN 8898 / 8998

BEDRIFTSØKONOMISK ANALYSE MAN 8898 / 8998 BEDRIFTSØKONOMISK ANALYSE MAN 8898 / 8998 Lineær programmering og bedriftøkonomike problemer Tor Tangene BI - Sandvika V-00 Dipoijon Bruk av LP i økonomike problemer Et LP-problem Begreper og noen grunnleggende

Detaljer

SLUTTPRØVE. Løsningsforslag. Antall oppgaver: 4 KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

SLUTTPRØVE. Løsningsforslag. Antall oppgaver: 4 KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG Høgkolen i elemark Avdeling for teknologike fag SLUPRØVE Løningforlag EMNE: EE49 Modellbaert regulering LÆRERE jell-erik Wolden og Han-Petter Halvoren LASSE(R): IA DAO: 9.5. PRØVEID, fra-til (kl.): 9..

Detaljer

EKSAMEN I FAG SIF 4014 FYSIKK 3 Onsdag 2. desember 1998 kl

EKSAMEN I FAG SIF 4014 FYSIKK 3 Onsdag 2. desember 1998 kl Side av 7 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under ekamen: Førteamanueni Knut Arne Strand Telefon: 73 59 34 6 EKSAMEN I FAG SIF 44 FYSIKK 3 Ondag. deember

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon

ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon Bo Lindqvist Institutt for matematiske fag 2 Kap. 9: Inferens om én populasjon Statistisk inferens har som mål å tolke/analysere

Detaljer

Årsplan spansk 10. klasse

Årsplan spansk 10. klasse Årplan pank 10. klae 2015/ 2016 Faglærer: Timetall: David Romero t. pr. uke. Læreverk: Amigo tre texto Gyldendal Forlag Amigo tre Ejercicio Gyldendal Forlag Kopier Nettiden: www.gyldendal.no/amigo Lytte-cd-er

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Grunnbegrep. Grunnbegrep, sannsynligheten for et utfall

ÅMA110 Sannsynlighetsregning med statistikk, våren Grunnbegrep. Grunnbegrep, sannsynligheten for et utfall ÅM110 Sannynlighetregning med tatitikk, våren 2010 Kp. 2 Sannynlighetregning (annynlighetteori) 1 Grunnbegrep Stokatik forøk: forøk med uforutigbart utfall Enkeltutfall: et av de mulige utfallene av et

Detaljer

Notater. Øystein Linnestad og Ole Kristian Lien. SM08 Prisindekser. Fraktindeks på utenriks sjøfart. 2005/8 Notater 2005

Notater. Øystein Linnestad og Ole Kristian Lien. SM08 Prisindekser. Fraktindeks på utenriks sjøfart. 2005/8 Notater 2005 2005/8 Notater 2005 Øytein Linnetad og Ole Kritian Lien Notater SM08 Priindeker Fraktindek på utenrik jøfart Avdeling for næringtatitikk/sekjon for Samferdel- og reielivtatitikk Innhold Innledning...3

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig

Detaljer

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig om populasjonen. Konkret: Analysere en observator for å finne ut noe om korresponderende

Detaljer

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig om populasjonen. Konkret: Å analysere en utvalgsobservator for å trekke slutninger

Detaljer

Samfunnsøkonomi andre avdeling, mikroøkonomi, Diderik Lund, 13. mars 2002

Samfunnsøkonomi andre avdeling, mikroøkonomi, Diderik Lund, 13. mars 2002 Samfunnøkonomi andre avdeling, mikroøkonomi, Diderik Lund, 3. mar 00 Måling av graden av riikoaverjon Blant konkave nyttefunkjoner: Mer konkav betyr terkere riikoaverjon Vanlig å måle grad av konkavitet

Detaljer

Oppgaver til Dynamiske systemer 1

Oppgaver til Dynamiske systemer 1 Oppgaver til Dynamike ytemer Oppgave 0. Lineariering av ulineær modell Likning (2.28) i læreboka er en dynamik modell av en tank med gjennomtrømning og oppvarming. Modellen gjengi her: cρv T (t) P (t)+cw(t)[t

Detaljer

Etterklangsmåling ved Kristiansund videregående skole

Etterklangsmåling ved Kristiansund videregående skole Bedriftnavn: Hjelp24 a Kritianund videregående kole v/ Marit Bjerketrand Sankthanhaugen 2 6514 KRISIANSUND N Kopi er endt: Gunhild Bergem, Johan Leite Hjelp24 a HMS Bruhagen Sentrumbygg 6530 AVERØY lf:

Detaljer

Dette gir følgende likning for nedbør som funksjon av høyde over havet: p = z/2

Dette gir følgende likning for nedbør som funksjon av høyde over havet: p = z/2 Fait ekamen HYD200 2005-05-8 Oppgave Svar oppgave nedbør a) i. Punktnedbør: Den nedbørmengden om faller i et punkt på landoverflaten. De flete metoder av nedbørmåling gir punktverdier. Man ønker likevel

Detaljer

Vidar Lund Kjørelengdedatabasen Dokumentasjon

Vidar Lund Kjørelengdedatabasen Dokumentasjon Notater 27/2011 Vidar Lund Kjørelengdedatabaen Dokumentajon Statitik entralbyrå Statitic Norway Olo Kongvinger Notater I denne erien publiere dokumentajon, metodebekriveler, modellbekriveler og tandarder.

Detaljer

Symbolisering av logisk form: setningslogiske tegn.

Symbolisering av logisk form: setningslogiske tegn. Logike ltninger NB! Dette er for peielt intereerte: Siden det ikke tår å mye om dette i lærebøkene er omfanget av dette foreleningmanet alt for tort i forhold til hva vi kan betrakte om penm. Videre kan

Detaljer

Substitusjonsmatriser

Substitusjonsmatriser Additivt kåringytem Subtitujonmtrier Ser på hver poijon i en gitt mmentilling for eg og gir en kår for hver v poijonene. Den totle (kumultive) kåren finne å ved å ddere kåren fr hver v poijonene. Enkelt

Detaljer

Lean Videregående. Hvordan lykkes med å utvikle en organisasjonskultur der kontinuerlig forbedring blir en naturlig del av hverdagen?

Lean Videregående. Hvordan lykkes med å utvikle en organisasjonskultur der kontinuerlig forbedring blir en naturlig del av hverdagen? - Vi gjør virkomheten elvgående innen Lean Lean Videregående Hvordan lykke med å utvikle en organiajonkultur der kontinuerlig forbedring blir en naturlig del av hverdagen? Henikten med kuret Henikten med

Detaljer

Kapittel 7: Inferens for forventningerukjent standardavvik

Kapittel 7: Inferens for forventningerukjent standardavvik Kapittel 7: Inferens for forventningerukjent standardavvik 7.1: Inferens for forventningen i en populasjon 7.2: Inferens for å sammenligne to forventninger 7.1 Inferens for forventningen i en populasjon

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Fra første forelesning: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg En delmengde av

Detaljer

LINSEKIKKERTER. Jeg har nå endelig fått laget noen slike skisser, og du finner dem på de neste sidene.

LINSEKIKKERTER. Jeg har nå endelig fått laget noen slike skisser, og du finner dem på de neste sidene. LINSEKIKKERTER Maiken purte meg for en tid tilbake om jeg kunne lage en tegning av trålegangen i en linekikkert, iden un adde fått pørmål om dette på gruppetimene ine og det er jo alltid litt tyr å få

Detaljer

Fra første forelesning:

Fra første forelesning: 2 Fra første forelesning: ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag opulasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg En delmengde av populasjonen

Detaljer

Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans

Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner

Detaljer

1 Section 7-2: Estimere populasjonsandelen. 2 Section 7-4: Estimere µ når σ er ukjent

1 Section 7-2: Estimere populasjonsandelen. 2 Section 7-4: Estimere µ når σ er ukjent 1 Section 7-2: Estimere populasjonsandelen 2 Section 7-4: Estimere µ når σ er ukjent Kapittel 7 Nå begynner vi med statistisk inferens! Bruke stikkprøven til å 1 Estimere verdien til en parameter i populasjonen.

Detaljer

ØVING 4. @V @x i. @V @x

ØVING 4. @V @x i. @V @x FY006/TFY425 - Øving 4 Frit for innlevering: tirdag 8. februar, kl 7.00 Oppgåve ØVING 4 Vibrerande to-partikkel-ytem Som dikutert på ide 0 i boka til Hemmer, er det eit viktig poeng både i klaik mekanikk

Detaljer

AVDELING FOR TEKNISK-NATURVITENSKAPELIGE FAG HOVEDOPPGAVE. Forfatter: Bjørnar Heide Knudsen. Faglig ansvarlig og veileder: Jan Erik Vinnem

AVDELING FOR TEKNISK-NATURVITENSKAPELIGE FAG HOVEDOPPGAVE. Forfatter: Bjørnar Heide Knudsen. Faglig ansvarlig og veileder: Jan Erik Vinnem AVDELING FOR TEKNISK-NATURVITENSKAPELIGE FAG HOVEDOPPGAVE Intitutt for petroleumteknologi: Sivilingeniørtudium i Samfunnikkerhet Våremeteret 2003 Åpen Forfatter: Bjørnar Heide Knuden Faglig anvarlig og

Detaljer

Denne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans

Denne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner

Detaljer

Fasit GF-GG141 Eksamen 2003

Fasit GF-GG141 Eksamen 2003 Fait GF-GG141 Ekamen 3 Oppgave 1 a) Vannføringkurven gir o ammenhengen mellom vanntand og vannføring. I den daglig drift er det vanntand om måle og vannføring om etimere. For å etablere kurven må det gjøre

Detaljer

Forelesning nr.3 INF 1411 Elektroniske systemer. Parallelle og parallell-serielle kretser Kirchhoffs strømlov

Forelesning nr.3 INF 1411 Elektroniske systemer. Parallelle og parallell-serielle kretser Kirchhoffs strømlov Forelenng nr.3 INF 4 Elektronke ytemer Parallelle og parallell-erelle kreter Krchhoff trømlo Dagen temaer Krchhoff trømlo Parallelle kreter Kreter med parallelle og erelle ter Effekt parallelle kreter

Detaljer

Løsningsforslag oppgaver FYS3220 uke43 H2009 HBalk

Løsningsforslag oppgaver FYS3220 uke43 H2009 HBalk Løningforlag oppgaver FYS3 uke43 H9 HBalk Oppgave Nyquit diagrammer... Oppgave Tilbakekobling... Oppgave 3 Polplaering, Bodeplot, Nyquit... 4 Oppgave Nyquit diagrammer a) Forklar hva et Nyquit diagram

Detaljer

MYNDIGGJORTE MEDARBEIDERE - gir bedre pleie- og omsorgstjenester

MYNDIGGJORTE MEDARBEIDERE - gir bedre pleie- og omsorgstjenester MYNDIGGJORTE MEDARBEIDERE - gir bedre pleie- og omorgtjeneter Februar 2005 FoU MYNDIGGJORTE MEDARBEIDERE - gir bedre pleie- og omorgtjeneter Denne kortverjonen gir en innføring i hva om ligger i begrepet

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Kapittel 7: Utvalgsfordeling Bo Lindqvist Institutt for matematiske fag 2 Fra kapittel 1: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 9: Inferens om én populasjon I Kapittel 8 brukte vi observatoren z = x µ σ/ n for å trekke konklusjoner om µ. Dette

Detaljer

DEDIP2 Brukerprofil. APERAK (Kvittering faktura) til bruk for dagligvarehandelen. 7. april 2006 2. utgave

DEDIP2 Brukerprofil. APERAK (Kvittering faktura) til bruk for dagligvarehandelen. 7. april 2006 2. utgave DEDIP2 Brukerprofil APERAK (Kvittering faktura) til bruk for dagligvarehandelen 7. april 2006 2. utgave INNHOLDFORTEGNELE: Introdukjon ide 2 Meldingtabell ide 4 Ekempel ide 6 Verjon- /endringlogg ide 8

Detaljer

FYS3220 Filteroppave Oppgave og løsningsforslag v. H.Balk

FYS3220 Filteroppave Oppgave og løsningsforslag v. H.Balk FYS0 Filteroppave Oppgave og løningforlag v. H.Balk 0_Paivt -orden hebyhev P til HP konvertering, prototype impedan og frekven kalering. -orden hebychev filter, prototype filter, frekven kalering, impedan

Detaljer

Kostnadsminimering og porteføljeforvaltning for en markedsaggregator i spotmarkedet

Kostnadsminimering og porteføljeforvaltning for en markedsaggregator i spotmarkedet Kotnadminimering og porteføljeforvaltning for en markedaggregator i potmarkedet Chritian L. Svendby Indutriell økonomi og teknologiledele Innlevert: juni 2013 Hovedveileder: Ageir Tomagard, IØT Norge teknik-naturvitenkapelige

Detaljer

7.2 Sammenligning av to forventinger

7.2 Sammenligning av to forventinger 7.2 Sammenligning av to forventinger To-utvalgs z-observator To-utvalgs t-prosedyrer To-utvalgs t-tester To-utvalgs t-konfidensintervall Robusthet To-utvalgs t-prosedyrerår variansene er like Sammenlikning

Detaljer

Internett og pc Brukerveiledning

Internett og pc Brukerveiledning FASETT JANUAR 2008 Internett og pc Brukerveiledning Altibox fra Lye er en fiberoptik løning tilpaet morgendagen muligheter. I en og amme fiberoptike kabel får du rake internettlinjer, et variert tv- og

Detaljer

Are Salthaug. Havforskningsinstituttet Postboks 1870 Nordnes 5817 Bergen

Are Salthaug. Havforskningsinstituttet Postboks 1870 Nordnes 5817 Bergen Revidert 1 rapport fra tokt med F/F G.O. Sar, Lofoten 16.03-02.04.02 Are Salthaug Havforkningintituttet Potbok 1870 Nordne 5817 Bergen 1. Sammendrag Hovedmålet for underøkelen er å oppnå et akutik etimat

Detaljer

Håndtering av forurenset grunn: Spunting som et alternativt tiltak

Håndtering av forurenset grunn: Spunting som et alternativt tiltak SWECO a N 0 TAT OPPORAG OPPDRAGSLEDER DATO Terminalbygg for BoNett i Berge BoNett AS 17.06.2013 entrum OPPORAGSNUMMER OPPRETTET AV 986030001 Krihna Aryal Håndtering av forurenet grunn: Spunting om et alternativt

Detaljer

Eksamen i TMA4135 Matematikk 4D

Eksamen i TMA4135 Matematikk 4D Norge teknik naturvitenkapelige univeritet Intitutt for matematike fag Side av 5 Faglig kontakt under ekamen: Harald Krogtad telefon 46 5 87 / 73 59 35 2 Ekamen i TMA435 Matematikk 4D Bokmål Mandag 8.

Detaljer

EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE

EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 Bokmål Faglig kontakt under eksamen: Bo Lindqvist, tlf. 97589418 EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE Tirsdag

Detaljer

TKP4105/TKP4110 Air Separation by membranes Arbeidsplan

TKP4105/TKP4110 Air Separation by membranes Arbeidsplan TKP4105/TKP4110 Air Separation by membrane Arbeidplan Audun F. Buene audunfor@tud.ntnu.no Elie Landem eliel@tud.ntnu.no Gruppe B19 Veileder: Karen Neler Seglem Laboratorie: K4213 Utføre: 12. eptember 2012

Detaljer

Eksamen i TMA4135 Matematikk 4D

Eksamen i TMA4135 Matematikk 4D Norge teknik naturvitenkapelige univeritet Intitutt for matematike fag Side av 5 Faglig kontakt under ekamen: Harald Krogtad telefon 46 5 87 / 73 59 35 2 Ekamen i TMA435 Matematikk 4D Bokmål Mandag 8.

Detaljer

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 14.12.2007

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 14.12.2007 Høgskole Telemark Avdelg for estetske fag, folkekultur og lærerutdag BOKMÅL 4..7 UTATT PRØVE I MATEMATIKK, Modul 5 studepoeg Td: 5 tmer Hjelpemdler: Kalkulator og vedlagt formelsamlg (bakerst oppgavesettet).

Detaljer

Oppgave 1. Det oppgis at dersom y ij er observasjon nummer j fra laboratorium i så er SSA = (y ij ȳ i ) 2 = 3.6080.

Oppgave 1. Det oppgis at dersom y ij er observasjon nummer j fra laboratorium i så er SSA = (y ij ȳ i ) 2 = 3.6080. EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 28. FEBRUAR 2005 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV 4 OPPGAVER PÅ

Detaljer

MASTER I IDRETTSVITENSKAP 2014/2016. Utsatt individuell skriftlig eksamen. STA 400- Statistikk. Mandag 24. august 2015 kl. 10.00-12.

MASTER I IDRETTSVITENSKAP 2014/2016. Utsatt individuell skriftlig eksamen. STA 400- Statistikk. Mandag 24. august 2015 kl. 10.00-12. MASTR I IDRTTSVITNSKAP 2014/2016 Utsatt individuell skriftlig eksamen i STA 400- Statistikk Mandag 24. august 2015 kl. 10.00-12.00 Hjelpemidler: kalkulator ksamensoppgaven består av 10 sider inkludert

Detaljer

Notasjon og Tabell 8. ST0202 Statistikk for samfunnsvitere

Notasjon og Tabell 8. ST0202 Statistikk for samfunnsvitere 2 Inferens om varians og standardavvik for ett normalfordelt utvalg (9.4) Inferens om variansen til en normalfordelt populasjon bruker kjikvadrat-fordelingen ( chi-square distribution ) (der kji er den

Detaljer

Dato: sss BSF - BEREGNING AV ARMERING, Siste rev.: sss PARVISE ENHETER. ps DIMENSJONERING. Dok. nr.: BSF - BEREGNING AV ARMERING, PARVISE ENHETER

Dato: sss BSF - BEREGNING AV ARMERING, Siste rev.: sss PARVISE ENHETER. ps DIMENSJONERING. Dok. nr.: BSF - BEREGNING AV ARMERING, PARVISE ENHETER MEMO 54 Dato: 1.10.013 Sign.: BSF - BEREGNING V RMERING, Site rev.: 11.05.16 Sign.: PRVISE ENHETER Dok. nr.: K4-10/54 Kontr.: p DIMENSJONERING BSF - BEREGNING V RMERING, PRVISE ENHETER INNHOLD DEL 1 GUNNLEGGENDE

Detaljer

VERSJON BRUKERHÅNDBOK FOR WINDOWS 32-BIT

VERSJON BRUKERHÅNDBOK FOR WINDOWS 32-BIT VERSJON BRUKERHÅNDBOK FOR WINDOWS 32-BI M Anvarbegrenninger Novell, Inc. påtar eg ikke anvar for og gir ingen garantier om innholdet i eller bruk av denne håndboken, og frakriver eg definitivt ekpliitte

Detaljer

Inferens. STK Repetisjon av relevant stoff fra STK1100. Eksempler. Punktestimering - "Fornuftig verdi"

Inferens. STK Repetisjon av relevant stoff fra STK1100. Eksempler. Punktestimering - Fornuftig verdi Inferens STK1110 - Repetisjon av relevant stoff fra STK1100 Geir Storvik 12. august 2015 Data x 1,..., x n evt også y 1,..., y n Ukjente parametre θ kan være flere Vi ønsker å si noe om θ basert på data.

Detaljer

Eksamensoppgave i ST3001

Eksamensoppgave i ST3001 Det medisinske fakultet Institutt for kreftforskning og molekylær medisin Eksamensoppgave i ST3001 fredag 25. mai 2012, kl. 9.00 13:00 Antall studiepoeng: 7.5 Tillatte hjelpemidler: Kalkulator og alle

Detaljer

VÅGEN EIENDOM. Alle skal inn i eiendom! Vi setter fokus på eiendomshandel og syndikering. Les mer side 2 og 3 NYTT FRA. Nr 1-2005 - 3.

VÅGEN EIENDOM. Alle skal inn i eiendom! Vi setter fokus på eiendomshandel og syndikering. Les mer side 2 og 3 NYTT FRA. Nr 1-2005 - 3. NYTT FRA VÅGEN EIENDOM Nr 1-2005 - 3. årgang Samtlige 250 andeler á 100.000 ble revet bort på én dag da FIRST Securitie og SR-Bank kulle yndikere denne eiendommen i Petroleumveien 6 i deember 2004. Alle

Detaljer

Analyse av kontinuerlige data. Intro til hypotesetesting. 21. april 2005. Seksjon for medisinsk statistikk, UIO. Tron Anders Moger

Analyse av kontinuerlige data. Intro til hypotesetesting. 21. april 2005. Seksjon for medisinsk statistikk, UIO. Tron Anders Moger Intro til hypotesetesting Analyse av kontinuerlige data 21. april 2005 Tron Anders Moger Seksjon for medisinsk statistikk, UIO 1 Repetisjon fra i går: Normalfordelingen Variasjon i målinger kan ofte beskrives

Detaljer

Løsning på Dårlige egg med bruk av Tabell 2 i Appendix B

Løsning på Dårlige egg med bruk av Tabell 2 i Appendix B Situasjonen er som i quiz-eksempelet: n = 4, p = 1/3 ( suksess betyr å gjette riktig alternativ), q = 2/3. Oppgave: Finn P(x), x=0,1,2,3,4 fra den generelle formelen for binomisk sannsynlighetsfordeling

Detaljer

Kapittel 1: Beskrivende statistikk

Kapittel 1: Beskrivende statistikk Kapittel : Bekrivede tatitikk Defiijoer: Populajo og utvalg Populajo: Alle mulige obervajoer vi ka gjøre (x,x,,x N ). Utvalg: Delmegde av populajoe (x,x,,x der

Detaljer

Kurs: FYS3220 Lineær kretselektronikk. Oppgave: LABORATORIEØVELSE B

Kurs: FYS3220 Lineær kretselektronikk. Oppgave: LABORATORIEØVELSE B Kur: FYS30 Lineær kretelektronikk Gruppe: Utført dato: Oppgave: LABOATOIEØVELSE B Omhandler: LAPLACE TANSFOMASJON... AC-ESPONS OG BODEPLOT... 7 3 WIENBOFILTE... 5 H.Balk rev 9 04.0.00 Utført av i Sett

Detaljer

H Laplacetransformasjon, transientanalyse og Z- transformasjon

H Laplacetransformasjon, transientanalyse og Z- transformasjon FYS30 H013-1 Laplacetranformajon, tranientanalye og Z- tranformajon... 1 801 Paivt Chebyhevfilter (H00-4)... 80 Aktivt Butterworth & Beel filter (H03-1)... 3 807 Fra 1-orden prototype Beel filter til båndpa...

Detaljer

Lindesnes og Lyngdal kommune. Kommunedelplan for E 39 Vigeland - Lyngdal vest. Varsel om oppstart av planarbeid og høring av planprogram

Lindesnes og Lyngdal kommune. Kommunedelplan for E 39 Vigeland - Lyngdal vest. Varsel om oppstart av planarbeid og høring av planprogram VET-AGDER FYLKEKOMMUNE cg,~ fr c. AKPROTOKOLL ONDE1 KOM LlIVE Arkivak-dok. 14/28938 akbehandler Diderik Cappelen akgang Møtedato aknr Lindene og Lyngdal kommune. Kommunedelplan for E 39 Vigeland - Lyngdal

Detaljer

EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE

EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Bokmål Faglig kontakt under eksamen: Bo Lindqvist, tlf. 97589418 EKSAMEN ST00 STATISTIKK FOR SAMFUNNSVITERE Torsdag

Detaljer

EKSAMEN I SOS1120 KVANTITATIV METODE 5. MAI 2004 (6 timer)

EKSAMEN I SOS1120 KVANTITATIV METODE 5. MAI 2004 (6 timer) EKSAMEN I SOS1120 KVANTITATIV METODE 5. MAI 2004 (6 timer) Bruk av ikke-programmerbar kalkulator er tillatt under eksamen. Utover det er ingen hjelpemidler tillatt. Sensur faller fredag 28. mai kl. 14.00,

Detaljer

Statens vegvesen. 14.637 Kapillær sugehastighet og porøsitet, PF. Omfang. Referanser. Utstyr. Fremgangsmåte. Full prosedyre

Statens vegvesen. 14.637 Kapillær sugehastighet og porøsitet, PF. Omfang. Referanser. Utstyr. Fremgangsmåte. Full prosedyre Staten vegveen 14.6 Betong og materialer til betong 14.63 Underøkele av herdet betong 14.637 - ide 1 av 5 14.637 Kapillær ugehatighet og porøitet, PF Gjeldende proe (nov. 1996): NY Omfang Metodebekrivelen

Detaljer

Forord. Lykke til! Ta lærevilligheten og selvtilliten på alvor, det er nå den er høyest. Terje Krogsrud Fjeld

Forord. Lykke til! Ta lærevilligheten og selvtilliten på alvor, det er nå den er høyest. Terje Krogsrud Fjeld Forord Du har ikkert merket det allerede. Iveren, lærevilligheten og nygjerrigheten til barnet ditt. «Se på meg a!» De vil ykle. De vil tegne. De vil lære boktavene. De vil regne. Og de vil gjøre det nå.

Detaljer

Løsningsforslag LO346E Dynamiske Systemer H 06 eksamen 21. november 2006

Løsningsforslag LO346E Dynamiske Systemer H 06 eksamen 21. november 2006 øningforlag O346E Dynamike Syemer H 6 ekamen. november 6 Oppgave Gi e yem med ranferfnkjonen H 58 + a Tidkonanen for yeme er T 8 4. Den aike forerkningen er H 5 Saik forerkning for en varmvannank kan handle

Detaljer

Løsningsforslag til eksamen i jernbaneteknikk HiOA

Løsningsforslag til eksamen i jernbaneteknikk HiOA Løningforlag til ekamen i jernbaneteknikk HiOA 9.1.011 Oppgave 1 Gitt kurvekombinajonen rettlinje - overgangkurve - irkelkurve - overgangkurve - rettlinje, der irkelkurven har en radiu på 600 meter og

Detaljer

MASTER I IDRETTSVITENSKAP 2013/2015 MASTER I IDRETTSFYSIOTERAPI 2013/2015. Individuell skriftlig eksamen. STA 400- Statistikk

MASTER I IDRETTSVITENSKAP 2013/2015 MASTER I IDRETTSFYSIOTERAPI 2013/2015. Individuell skriftlig eksamen. STA 400- Statistikk MASTER I IDRETTSVITENSKAP 013/015 MASTER I IDRETTSFYSIOTERAPI 013/015 Individuell skriftlig eksamen i STA 400- Statistikk Mandag 10. mars 014 kl. 10.00-1.00 Hjelpemidler: kalkulator Eksamensoppgaven består

Detaljer

Pe n g e r o g K r e d i t t 4 06 D e s e m b e r

Pe n g e r o g K r e d i t t 4 06 D e s e m b e r P e n g e r o g r e d i t t 4 6 D e e m b e r Penger og reditt utgi hvert kvartal av Norge Bank, Olo Abonnement: r 5 pr. år (inkl. mva) Betilling kan foreta over Internett: norge-bank.no, under «publikaoner»

Detaljer

Kontinuasjonseksamen, MEDSEM/ODSEM/ERNSEM1 høst 2009 Onsdag 17. februar 2010 kl. 09:00-15:00

Kontinuasjonseksamen, MEDSEM/ODSEM/ERNSEM1 høst 2009 Onsdag 17. februar 2010 kl. 09:00-15:00 Kontinuajonekamen, MEDSEM/ODSEM/ERNSEM høt 009 Ondag 7. ebruar 00 kl. 09:00-5:00 Oppgaveettet betår av 4 ider Viktige opplyninger: Alle oppgaver kal bevare. Hver av de ire delene (I-IV) må betå og teller

Detaljer

Sluttrapport Analysefase. Medikasjonstjenesteprosjektet

Sluttrapport Analysefase. Medikasjonstjenesteprosjektet Sluttrapport Analyefae FOR Medikajontjeneteprojektet Ditribujonlite NIKT Projekteierforum NIKT Styringgruppe Regionale forankringfora Hdir / Kjernejournalprojektet Projektet tyringgruppe Endringlogg Verjon

Detaljer

Vedlegg 6.1 KAPASITETSBEREGNING FOR INNSTØPTE STÅLPLATER MED FORANKRING TYPE KL

Vedlegg 6.1 KAPASITETSBEREGNING FOR INNSTØPTE STÅLPLATER MED FORANKRING TYPE KL edlegg 6. KAPASITETSBEREGIG FOR ISTØPTE STÅLPLATER ED FORAKRIG TYPE KL Etter Betongelementboken bind B kapittel 9. Kapaitetkontrollen utøre i bruddgrenetiltanden. De ytre latene dele i latvirkninger på

Detaljer

Leiv Solheim. Foreløpige landstall i KOSTRA Prinsipper, metoder, produksjon og eksempler. 2003/46 Notater 2003

Leiv Solheim. Foreløpige landstall i KOSTRA Prinsipper, metoder, produksjon og eksempler. 2003/46 Notater 2003 2003/46 Notater 2003 Leiv Soheim Foreøpige andta i KOSTRA Prinipper, metoder, produkjon og ekemper Metoder og Standarder Emnegruppe: 00.00.20 1. Innedning 1.1. Formået KOSTRA (KOmmune STat Rapportering)

Detaljer

Fysikkolympiaden Norsk finale 2013

Fysikkolympiaden Norsk finale 2013 Nork fyikklærerforening Fyikkolympiaen Nork finale. uttakingrune Freag. mar kl. 9. til. Hjelpemiler: Tabell/formelamling, lommeregner og utelt formelark Oppgaveettet betår av 6 oppgaver på ier Lykke til!

Detaljer

Kap. 9: Inferens om én populasjon

Kap. 9: Inferens om én populasjon 2 ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for matematiske fag Ka. 9: Iferes om é oulasjo Hvis σ er ukjet bytter vi ut σ med s i Ny observator blir t = x μ s/ z = x μ σ/ der s = Σx 2 (Σx)

Detaljer

Kapittel 7: Inferens for forventningerukjent standardavvik

Kapittel 7: Inferens for forventningerukjent standardavvik Kapittel 7: Inferens for forventningerukjent standardavvik 7.1: Inferens for forventningen i en populasjon 7.: Inferens for å sammenligne to forventninger 7.1 Inferens for forventningen i en populasjon

Detaljer

Vil du si at en nybegynner i felespill baserer sitt spill hovedsakelig på foroverkopling eller på tilbakekopling? Hva med en profesjonell utøver?

Vil du si at en nybegynner i felespill baserer sitt spill hovedsakelig på foroverkopling eller på tilbakekopling? Hva med en profesjonell utøver? Kapittel 10 Foroverkopling 10.1 Innledning Oppgave 10.1 Felepiller Vil du i at en nybegynner i felepill baerer itt pill hovedakelig på foroverkopling eller på tilbakekopling? Hva med en profejonell utøver?

Detaljer

Kapittel 6: Kontinuerlige sannsynlighetsfordelinger 6.4-5.7: Normalfordelingen, normalapproksimasjon, eksponensial og gamma.

Kapittel 6: Kontinuerlige sannsynlighetsfordelinger 6.4-5.7: Normalfordelingen, normalapproksimasjon, eksponensial og gamma. TMA4240 Statistikk H2010 Kapittel 6: Kontinuerlige sannsynlighetsfordelinger 6.4-5.7: Normalfordelingen, normalapproksimasjon, eksponensial og gamma. Mette Langaas Foreleses mandag 27. september 2010 2

Detaljer

Are Salthaug. Havforskningsinstituttet Postboks 1870 Nordnes 5817 Bergen

Are Salthaug. Havforskningsinstituttet Postboks 1870 Nordnes 5817 Bergen TOKTRAPPORT; F/F G.O. Sar, Lofoten 16.03-02.04.02 Are Salthaug Havforkningintituttet Potbok 1870 Nordne 5817 Bergen 1. Sammendrag Hovedmålet for underøkelen er å oppnå et akutik etimat av kreimengden i

Detaljer

Advarsel: Dette løsningsforslaget er mer omfattende enn hva som ventes av en god besvarelse.

Advarsel: Dette løsningsforslaget er mer omfattende enn hva som ventes av en god besvarelse. Senorveiledning il ekamen i ECON 0 9..006 Vikig informajon il enorene: I den engelke overeelen le likning (3) i ogave (c) deverre feilformuler. Senorene e om å a henyn il dee under enureringen derom de

Detaljer

Svar: Vi bruker Ampères lov for å finne magnetfeltet en avstand r fra lynet.

Svar: Vi bruker Ampères lov for å finne magnetfeltet en avstand r fra lynet. I FYS1120-undervininga legg vi meir vekt på matematikk og numerike metoder enn det oppgåvene i læreboka gjer. Det gjeld òg oppgåvene om vert gitt til ekamen. Difor er det viktig at du gjer vekeoppgåvene

Detaljer

Eksamensoppgave i TFY4190 Instrumentering

Eksamensoppgave i TFY4190 Instrumentering Intitutt for fyikk Ekamenoppgave i FY49 Intrumentering Faglig kontakt under ekamen: Steinar Raaen lf.: 48 96 758 Ekamendato: 3. mai 4 Ekamentid (fra-til): 9: 3: Hjelpemiddelkode/illatte hjelpemidler: Alternativ

Detaljer

Løsningsforslag Analyseøving 4

Løsningsforslag Analyseøving 4 TTT465 Elektronik ytemdeign og -analye II Løningforlag Analyeøving 4 Oppgave a Vi tarter med å finne ytemfunkjonen: H( = /C R + L + /C = RC + LC + = /LC + R L + /LC = ω0 + R L +. ω 0 Videre må vi finne

Detaljer

Løsningsforslag Til Statlab 5

Løsningsforslag Til Statlab 5 Løsningsforslag Til Statlab 5 Jimmy Paul September 6, 007 Oppgave 8.1 Vi skal se på ukentlige forbruk av søtsaker blant barn i et visst område. En pilotstudie gir at standardavviket til det ukentige forbruket

Detaljer

Testobservator for kjikvadrattester

Testobservator for kjikvadrattester ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 11: Anvendelser av kjikvadratfordelingen: Kjikvadrattester Situasjon: Et tilfeldig utvalg av n individer er trukket

Detaljer

Oppgave 1. T = 9 Hypotesetest for å teste om kolesterolnivået har endret seg etter dietten: T observert = 2.16 0

Oppgave 1. T = 9 Hypotesetest for å teste om kolesterolnivået har endret seg etter dietten: T observert = 2.16 0 Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 08. mai 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir

Detaljer

MASTER I IDRETTSVITENSKAP 2013/2015 MASTER I IDRETTSFYSIOTERAPI 2013/2015. Utsatt individuell skriftlig eksamen. STA 400- Statistikk

MASTER I IDRETTSVITENSKAP 2013/2015 MASTER I IDRETTSFYSIOTERAPI 2013/2015. Utsatt individuell skriftlig eksamen. STA 400- Statistikk MSTR I IRTTSVITNSKP 013/015 MSTR I IRTTSFYSIOTRPI 013/015 Utsatt individuell skriftlig eksamen i ST 400- Statistikk Mandag 5. august 014 kl. 10.00-1.00 Hjelpemidler: kalkulator ksamensoppgaven består av

Detaljer

FYS3220 Forelesningsnotat H.Balk

FYS3220 Forelesningsnotat H.Balk FYS3 Foreleningnotat H.Balk Innhold Forelening filter NOMAISEING, POTOTYPEFITE OG SKAEING... POTOTYPE FITE... Frekvenkalering... IMPEDANSSKAEING...4 Ekempel på kombinert frekven- og impedankalering...6

Detaljer

Tilfeldige variable (5.2)

Tilfeldige variable (5.2) Tilfeldige variable (5.) Dersom vi til hvert utfall av eksperimentet tilordner et tall, har vi laget en tilfeldig variabel. Tilfeldig variabel: En variabel som har en numerisk verdi for hvert utfall i

Detaljer

Utvalgsfordelinger (Kapittel 5)

Utvalgsfordelinger (Kapittel 5) Utvalgsfordelinger (Kapittel 5) Oversikt pensum, fortid og fremtid Eksplorativ data-analyse (Kap 1, 2) Hvordan produsere data (Kap 3) Sannsynlighetsteori (Kap 4) Utvalgsfordelinger til observatorer (Kap

Detaljer

Løsningsforslag. n X. n X 1 i=1 (X i X) 2 og SY 2 = 1 ny S 2 X + S2 Y

Løsningsforslag. n X. n X 1 i=1 (X i X) 2 og SY 2 = 1 ny S 2 X + S2 Y Statistiske metoder 1 høsten 004. Løsningsforslag Oppgave 1: a) Begge normalplottene gir punkter som ligger omtrent på ei rett linje så antagelsen om normalfordeling ser ut til å holde. Konfidensintervall

Detaljer

NTNU Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap

NTNU Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap NTNU Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap EKSAMENSOPPGAVE I SVSOS107 SAMFUNNSVITENSKAPELIG FORSKNINGSMETODE Eksamensdato: 18. mai 001 Eksamenssted: Idrettsbygget

Detaljer

STK Oppsummering

STK Oppsummering STK1100 - Oppsummering Geir Storvik 6. Mai 2014 STK1100 Tre temaer Deskriptiv/beskrivende statistikk Sannsynlighetsteori Statistisk inferens Sannsynlighetsregning Hva Matematisk verktøy for å studere tilfeldigheter

Detaljer

Inferens i fordelinger

Inferens i fordelinger Inferens i fordelinger Modifiserer antagelsen om at standardavviket i populasjonen σ er kjent Mer kompleks systematisk del ( her forventningen i populasjonen). Skal se på en situasjon der populasjonsfordelingen

Detaljer

b) Hva er sannsynligheten for at re tilfeldig utvalgte bilmotorer alle har en levetid på minst 17 år?

b) Hva er sannsynligheten for at re tilfeldig utvalgte bilmotorer alle har en levetid på minst 17 år? Oppgave 1 Levetiden T til en bestemt type bilmotor er normalfordelt med forventning µ = 15 år og standardavvik σ = 3 år. a) Vis at sannsynligheten for at en tilfeldig utvalgt bilmotor har en levetid på

Detaljer

Løsning på kontrolloppgaver 1 Rekker

Løsning på kontrolloppgaver 1 Rekker Løning på kontrolloppgver Rekker Oppgve ) ) Når følgen er ritmetik, er: = + d 8 = + d 8 = d d = 6 = 8 = + d = + 8 = 0 ) Når følgen er geometrik, er: = k 8 = k k = 8 = 9 k = eller k = Siden tllfølgen betår

Detaljer