Kap. 10: Inferens om to populasjoner. Eksempel. ST0202 Statistikk for samfunnsvitere

Størrelse: px
Begynne med side:

Download "Kap. 10: Inferens om to populasjoner. Eksempel. ST0202 Statistikk for samfunnsvitere"

Transkript

1 Kap. 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to populasjoner med populasjonsgjennomsnitt henholdsvis μ 1 og μ. Vi trekker da ett utvalg fra hver populasjon. ST00 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag To muligheter: Vi kan ha avhengige eller uavhengige utvalg. Avhengige utvalg: De samme kilder (person, gjenstand, etc.) brukes for å få data fra de to populasjonene. Uavhengige utvalg: Det trekkes ett utvalg fra hver populasjon, og kildene for dataene fra de to populasjonene har ingen sammenheng med hverandre. 3 Eksempel Undersøk om et nytt treningsprogram påvirker det fysiske nivået til elevene ved en videregående skole. Populasjo: Alle elevene før de gjennomgår programmet. Populasjon : Alle elevene etter at de har gjennomgått programmet. Spørsmål: Er populasjon i bedre form enn populasjo? Uavhengige utvalg: Trekk 6 elever som ennå ikke har gjennomgått treningsprogrammet og test dem. Trekk 6 elever som har gjennomgått treningsprogrammet og test dem. Elevene i de to utvalgene er forskjellige. Dataene er et sett med 6 verdier for hvert utvalg. Avhengige utvalg: Trekk 6 elever. Test dem før de gjennomgår treningsprogrammet, la dem så gjennomgå programmet og test de samme elevene etterpå. Elevene i de to utvalgene er de samme. Dataene er to verdier for hver av de 6 elevene (såkalte pardata - paired data )

2 5 Eksempel med avhengige utvalg Sammenligner to typer dekk A og B med hensyn på dekkslitasje. På 6 biler monteres ett bildekk av hver type på forhjulene. Dekkslitasje etter kjøring en viss lengde måles: Bil Dekk A (x 1 ) Dekk B (x ) Pardifferanse (d = x 1 x ) Vil basere analysen på differansene d. Fordel: x-ene varierer mye, da de er påvirket av mange faktorer: Bilens tyngde, type kjøring, førerens kjørevaner etc. Slike effekter elimineres i høy grad ved å basere analysen på d-ene. Dette er essensen i bruk av avhengige utvalg. 6 Inferens om forskjell i forventning ved å bruke to avhengige utvalg (10.3) Har nå pardata, x 1 og x, for hvert av n utvalgte par. Vi ønsker å finne ut om det er forskjell på forventningsverdiene μ 1 og μ i de to populasjonene. For dette ser vi på: Pardifferanse ( paired difference ): d = x 1 x beregnet for hvert av de n parene Antagelse om fordeling for d: Antar at de to populasjonene er normalfordelte og at de n forsøksenhetene er tilfeldig trukket ut. Da danner de beregnede d et tilfeldig utvalg fra en normalfordeling med forventning og standardavvik som vi kaller μ d og σ d. Her er μ d = μ 1 μ forskjellen i forventet verdi mellom de to populasjonene, mens σ d kan estimeres fra utvalget av d. Tilbake til dekk-eksemplet: På 6 biler monteres ett bildekk av hver type på forhjulene. Dekkslitasje etter kjøring en viss lengde måles: Bil Dekk A (x 1 ) Dekk B (x ) Pardifferanse (d = x 1 x ) Beregninger: d = 6.3 (punktestimat for μ d ), s d = 5.1 (utvalgsstandardavvik for d-ene; punktestimat for σ d ) For statistisk inferens om μ d sitter vi dermed med kun ett utvalg (av d-er), og vi er dermed tilbake til situasjonen i kap Konfidensintervall og tester for forventet forskjell μ d ved avhengige utvalg Konfidensintervall og testing er basert på t = d μ d s d / n, som er t-fordelt med df = n 1 frihetsgrader. Et 1 α konfidensintervall for μ d er gitt ved d ± t(n 1,α/) s d n Mest aktuelle nullhypotese er: H 0 : μ d = 0 (hvorfor?) mot ulike alternativer for μ d Testobservator er da: t = d s d / n

3 Oppgave: Finn et 90% konfidensintervall for μ d i dekk-eksemplet. Test H 0 : μ d = 0motH a : μ d > 0med5% signifikansnivå. Beskriv med ord hva vi ønsker å finne ut med denne testen. 10 Inferens om forskjell i forventning ved å bruke to uavhengige utvalg (10.4) Populasjo: Populasjon μ 1 forventning μ forventning (populasjonsgjennomsnitt) (populasjonsgjennomsnitt) σ 1 populasjonsstandardavvik σ populasjonsstandardavvik observasjoner n observasjoner x 1 observert variabel x observert variabel x 1 utvalgsgjennomsnitt x utvalgsgjennomsnitt s 1 utvalgsstandardavvik s utvalgsstandardavvik Vi er nå interessert i μ 1 μ, som har punktestimat x 1 x 11 Utvalgsfordeling for x 1 x Antagelse: Uavhengige utvalg av størrelse og n trekkes tilfeldig fra normalfordelte populasjoner. Da er x 1 x normalfordelt med 1. forventning. standardfeil σ x1 x = μ x1 x = μ 1 μ ) ( σ 1 + ( σ n ) Dette betyr at z = x 1 x (μ 1 μ ) ( ) ( ) σ 1 σ + n er standard normalfordelt og kan brukes til inferens om μ 1 μ hvis σ 1 og σ er kjente. Hvis σ 1 og σ er ukjente, erstattes disse med s 1 og s, og inferens baseres på t = x 1 x (μ 1 μ ) ( ) ( ) s 1 s + n som er tilnærmet t-fordelt med df frihetsgrader (se neste side).

4 Det korrekte antall frihetsgrader for t er df = {( ) ( )} s 1 s + n (s1 /) 1 + (s /n ) n 1 (1) 14 Konfidensintervall for forventet forskjell ved uavhengige utvalg (avrundet nedover til nærmeste hele tall). Dette brukes i kalkulatorer og dataprogrammer, men for å gjøre analyser enklere vil vi bruke som df for t: df = det minste av 1 og n 1 () (Det kan vises at formelen (1) alltid gir en df mellom () og + n ). Et 1 α konfidensintervall for μ 1 μ er gitt ved ) ( ) x 1 x ± t(df,α/) ( s 1 s + n der df er lik det minste av 1ogn 1, eller eventuelt gitt ved formelen på forrige side, Men: Ved å bruke () gjør vi inferensen konservativ i den forstand at vi får lengre konfidensintervall og høyere kritiske verdier for tester enn ved å bruke formelen (1).

5 Fra eksamen 4. mai 003 Oppgave 1 Vekta (i kilogram) til forsvarsspillerne, x, og til angrepsspillerne, y, i Molde Fotballklubbs A-stall (MFK) er slik: Det oppgis at x = 501, x y x =41935, y = 387 og y = a) Finn utvalgsmiddelverdiene og utvalgsstandardavvikene for de to utvalgene. Anta at vi kan betrakte forsvarsspillerne og angrepsspillerne i MFK som uavhengige tilfeldige utvalg fra henholdsvis populasjonen av alle forsvarsspillere og populasjonen av alle angrepsspillere på høyt nivå. b) Foreslå en testmetode for å undersøke om det er noen forskjell i gjennomsnittsvekta til forsvarsspillere og angrepsspillere på høyt nivå. Gjør greie for antakelsene for testmetoden. Løsning: Skriver x 1 for x, x for y μ 1 er forventet vekt for forsvarsspiller μ er forventet vekt for angrepsspiller a) x 1 = 501/6 = 83.5, x = 387/5 = 77.4 s 1 = s = Σx 1 (Σx 1) / 1 Σx (Σx ) /n n 1 = = (501) /6 = (387) /5 = c) Utfør testen med signifikansnivå α = 0,10. b) Bruker t-test for to uavhengige utvalg ( to-utvalgs t-test ). Utvalgene må være uavhengige og tilfeldige, fra normalfordelte populasjoner (viser seg rimelig for vekt). Tester H 0 : μ 1 μ = 0motH 1 : μ 1 μ 0 c) Testobservator t x = 1 x ( ) ( ) = s 1 s + n ) + ( ( ) =.59 Hvis H 0 gjelder er t tilnærmet t-fordelt med df = 4 (minimum av 6-1 og 5-1). Klassisk metode: Forkast H 0 hvis t < t(4, 0.10/) = t(4, 0.05) =.13 (tabell 6), eller hvis t > t(4, 0.05) =.13. Vi forkaster altså H 0 og påstår H a siden.59 >.13. Metode med p-verdi: p-verdi er gitt ved sannsynligheten for å få det vi har fått eller noe mer ekstremt i forhold til nullhypotesen, dvs. her P(t <.59)+P(t >.59) = P(t >.59) når t er t-fordelt med 4 frihetsgrader. Tabell 7 gir at P(t >.6) =0.03, så p-verdien blir ca 0.03 = 0.06, som altså er mindre enn signifikansnivået på Vi forkaster altså H 0. Det er tidligere bemerket at dette er en konservativ metode. Det korrekte antall frihetsgrader er muligens større enn 4, noe som ville ha gitt en mindre p-verdi, og lavere kritisk verdi. Men sålenge vi forkaster, har dette ingen betydning for konklusjonen. (Formelen (1) for df ville gitt 8.7, dvs vi kunne ha brukt 8 frihetsgrader. Kritiske verdier ville da ha blitt ±1.86 istedenfor ±.13, mens p-verdi ville blitt 0.03 istedenfor )

6 Oppgave: Jeg har trukket 10 tall fra populasjo som er normalfordelt med forventning μ 1 og standardavvik σ 1 : med utvalgsgjennomsnitt x 1 = 47.0 og utvalgsstandardavvik s 1 = Dessuten har jeg trukket 10 tall fra en populasjon som er normalfordelt med forventning μ og standardavvik σ : Fordelinger som dataene er trukket fra: Populasjo: Normalfordeling med μ 1 = 50,σ 1 = 10 Populasjon : Normalfordeling med μ = 35,σ = 5 med utvalgsgjennomsnitt x = 3.9 og utvalgsstandardavvik s = 5.6 Finn punktestimat for μ 1 μ Finn 90% konfidensintervall for μ 1 μ. Er μ 1 = μ? Bruk 5% signifikansnivå. 3 Inferens om forskjell mellom andeler i to populasjoner basert på uavhengige utvalg (10.5) p 1 andel suksesser i populasjo p andel suksesser i populasjon x 1 antall suksesser i utvalg 1 x antall suksesser i utvalg p 1 = x 1 andel suksesser i utvalg 1 p = x n andel suksesser i utvalg Vil gjøre inferens om p 1 p ved hjelp av p 1 p. Repetisjon: Binomisk situasjon med ett utvalg Andel med suksess i utvalget er Utvalgsfordelingen: så p = x n μ p = p pq σ p = n z = p p pq n er tilnærmet standard normalfordelt

7 $ " ', -.. % + / 0 ) $ $ ) 5 Binomisk situasjon med to utvalg Hvis uavhengige utvalg på og n trekkes tilfeldig fra store populasjoner med suksess-sannsynligheter p 1 og p,vil utvalgsfordelingen for p 1 p ha egenskapene: 1. forventning:. standardfeil: μ p 1 p = p 1 p σ p 1 p = p1 q 1 + p q n 3. tilnærmet normalfordelt når og n er store Dermed er z = p 1 p (p 1 p ) p1 q 1 + p q n tilnærmet standard normalfordelt når og n er store. Et tilnærmet (1 α)-konfidensintervall for p 1 p er gitt ved Altså som vanlig: p 1 p ± z(α/) p 1 q 1 + p q n punktestimat ± z(α/) standardfeil Hypotesetesting om p 1 p. Vanlig å teste H 0 : p 1 p = 0 som er det samme som H 0 : p 1 = p Tar utgangspunkt i den standard normalfordelte z = p 1 p (p 1 p ) p1 q 1 + p q n og lager testobservatoren z = p 1 p p p q p + p pq p n der p p er et punktestimat for verdien av p 1 = p når H 0 er sann. Et naturlig estimat er p p = x 1 + x + n Da er z tilnærmet standard normalfordelt når H 0 gjelder og vi kan basere testen på den. Fra eksamen 5. desember 005! " #! " $ & "! ' ( % $ * p B p " " T $ 1 / / 3 H : p B = p T H a : p B >p T # , / 3

8 z(α) =z(0.05) = 1.65 < 3.80 C S H K T E G U I C D B G H 0R Løsning 9 : : ; < = >? A B C D E F C B G H I D E G B J B G C K L B J J M N N O P Q E D B C B J B G I D z = p B p T (p B p T ) p B = p T p p (1 p p ) + p p (1 p p ) p p (1 p p ) n + p p (1 p p ) n R p B = p T p B = = p T = = p p = = z = = ( ) ( ) Oppgave: Jeg har utført et binomisk forsøk med = 1000, x 1 = 757 og n = 500, x = 367 suksesser. Finn et punktesimat for p 1 p Finn et 90% konfidensintervall for p 1 p Test hypotesen H 0 : p 1 = p mot H a : p 1 p med signifikansnivå 5% (Dataene er simulert med p 1 = 0.75, p = W K J C D B C K X J K Y U I J C J K H S C E Z X K G T E G U I C D J K J X F N K G V H B G L K B J \ p[ H B G L K = P (z >z )=P (z >3.80) = p[ 31 Inferens om varians og standardavvik for ett normalfordelt utvalg (9.4) Rød kurve χ -fordeling med df=1 frihetsgrad Grønn kurve χ -fordeling med df=4 frihetsgrader Blå kurve χ -fordeling med df=10 frihetsgrader Lilla kurve χ -fordeling med df=0 frihetsgrader Inferens om variansen til en normalfordelt populasjon bruker kjikvadrat-fordelingen ( chi-square distribution ) (der kji er den greske bokstaven χ. Fordelingen kan også skrives χ -fordelingen.) 1. χ er positiv. χ er ikke symmetrisk, men skjev mot høyre. 3. En bestemt χ -fordeling identifiseres ved en parameter df som kalles antall frihetsgrader ( degrees of freedom ). 4. Forventning μ = df 5. Varians σ = df f(x) x

9 33 Notasjon og Tabell 8 χ (df,α) er χ -verdien slik at areal α ligger til høyre, dvs P(χ >χ (df,α)) = α der χ er χ -fordelt med df frihetsgrader. Eksempel: Finn χ (0, 0.05) Bruk Tabell 8 α df Inferens om σ Antagelse: Utvalget er trukket fra en populasjon som er normalfordelt. Vi skal teste hypoteser om σ. (Punktestimat er s). Vi bruker testobservatoren χ = (n 1)s σ som kan vises å være χ -fordelt med df=n-1 frihetsgrader når σ har den korrekte verdien. Merk: Dette er analogt med at vi ved inferens om μ har brukt observatorer z = x μ σ/ x μ og t = n s/ som har kjente, tabellerte n fordelinger. Eksempel: Jeg har trukket 10 tall fra en populasjon som er normalfordelt med forventning μ og standardavvik σ. Tallene ble med s=.64. Finn et punktestimat for σ Jeg sier at σ = 4 for populasjonen. Ta stilling til utsagnet gjennom en hypotesetest. Bruk signifikansnivå α = 0.1. Finn p-verdien.

10 Punktestimat for σ er s =.64. Nullhypotesten H 0 er at σ = 4 mens alternativ hypotese H a er at σ 4. Testobservatoren blir da χ = (n 1)s (n 1)s σ = 4 som er χ -fordelt med df=n-1=9 frihetsgrader under nullhypotesen. Her blir χ (n 1)s (10 1).64 = σ = 4 = 3.9 Spørsmålet er om dette er en urimelig størrelse for en variabel som er kjikvadrat-fordelt med df = 9. Vi vil forkaste H 0 hvis testobservatoren χ blir enten for liten eller for stor. Klassisk metode: Finn kritiske verdier slik at vi forkaster hvis χ ligger utenfor et sentralt område av kjikvadratfordelingen. Vi har at P(χ <χ (df, 1 α/)) = α/ P(χ >χ (df,α/)) = α/ I eksempel, med α = 0.10, blir disse kritiske verdiene (Tabell 8) χ (9, 0.95) = 3.33 χ (9, 0.05) = 16.9 dvs. vi skal forkaste hvis χ < 3.33 eller χ > Dermed forkaster vi ikke H 0, siden vi beregnet testobservatoren χ = 3.9. Metode med p-verdi: Beregner først P(χ 9 < 3.9) =1 P(χ 9 > 3.9) =1 0.9 = 0.08 Her har vi først brukt Tabell 8 til å finne P(χ 9 > 3.33) =0.95 og P(χ 9 > 4.17) =0.90. Dermed vet vi at P(χ 9 > 3.9) er mellom 0.90 og På øyemål har vi da anslått at P(χ 9 > 3.9) =0.9 (som vi også ville få ved formell interpolasjon). Oppgave: Jeg har trukket 10 tall fra en populasjon som er normalfordelt med forventning μ og standardavvik σ. Tallene ble med s=1.73. Siden alternativ hypotese er at σ 4erp-verdien lik arealet av begge halene, dvs p-verdi= 0.08 = Siden p-verdi>α=0.1 kan vi ikke forkaste nullhypotesen. (σ for populasjonen som jeg trakk fra var σ =, med andre ord beholdt vi feilaktig nullhypotesen, dvs. gjorde en feil av type II.) La H 0 være at σ = 4 for populasjonen, mens H a er at σ<4. Finn p-verdien og bruk denne til å velge mellom hypotesene når signifikansnivå α = 0.1. Det er oppgitt at χ (9, 0.99) =1.678

11 41 Inferens om forholdet mellom varianser ved to uavhengige utvalg (10.6) Ser på to normalfordelte populasjoner med standardavvik henholdsvis σ 1 og σ. Ønsker å teste: H 0 : σ 1 σ = 1motH a : σ 1 σ > 1 som er det samme som H 0 : σ 1 = 1motH a : σ 1 > 1 σ σ og det samme som 4 F-fordelingen Egenskaper til F-fordelingen: 1. F er aldri negativ, den er 0 eller positiv.. F er ikke symmetrisk, men såkalt skjev mot høyre (som kjikvadrat-fordelingen) 3. F bestemmes ved de såkalte frihetsgradene df 1 og df. H 0 : σ 1 = σ mot H a : σ 1 >σ Kan selvsagt også ha < og i H a Blå kurve F-fordeling med df 1 = 0, df = 0 frihetsgrader Rød kurve F-fordeling med df 1 = 10, df = 10 frihetsgrad Grønn kurve F-fordeling med df 1 = 4, df = 4 frihetsgrader 44 Tabell 9A, 9B, 9C for F -fordelingen I samsvar med notasjon introdusert før vil F (df 1, df,α) betegne F -verdien slik at et areal α er til høyre: f(x) x F (10, 10, 0.05) =.98 Oppgave: Hva er F (10, 10, 1)?

12 45 Testobservator og test (kalt F -test ) Antagelser: H 0 : σ 1 σ = 1motH a : σ 1 σ > 1 begge populasjonene er normalfordelte utvalgene blir trukket uavhengige av hverandre Bruker testobservatoren f = s 1 s som hvis H 0 gjelder er F -fordelt med df 1 = 1ogdf = n 1 frihetsgrader. Eksempel i boka: Sammenligning av standardavvik for påfylt mengde for to tappemaskiner for brus. La σ 1 være standardavvik for ny maskin, mens σ er standardavvik for nåværende maskin. Vil teste H 0 : σ 1 σ = 1motH a : σ 1 σ > 1 med signifikansnivå 5%. De relevante dataene er: Beregner Utvalg n s Ny maskin (1) Nåværende maskin () f = s 1 s = =.5 Er dette for stort til å kunne komme fra F -fordelingen med (4,1) frihetsgrader? Klassisk metode: Forkast H 0 hvis f > F (4, 1, 0.05) =.05 Anta at vi isteden skal teste H 0 : σ 1 σ Dette er det samme som = 1motH a : σ 1 σ < 1 dvs. H 0 forkastes siden vi har observert f =.5. Vi bruker her Tabell 9A, i kolonnen med 4 og linjen med 1. Husk at numerator betyr teller, og denominator betyr nevner Metode med p-verdi: p-verdi = P(f >.5) når f er F -fordelt med 4 og 1 frihetsgrader. Vi kan ikke finne denne i tabellene, men bruk av 9A gir at P(f >.5) < 0.05 mens 9B gir at P(f >.5) > 0.05, dvs. p-verdi er mellom 0.05 og H 0 : σ σ 1 = 1motH a : σ σ 1 > 1 dvs. vi kan ganske enkelt bytte om rollene til de to utvalgene (og populasjonene). Bruker da testobservatoren f = s s 1 som hvis H 0 gjelder er F -fordelt med df 1 = n 1ogdf = 1 frihetsgrader. (Merk at frihetsgradene df 1 alltid gjelder telleren, mens df gjelder nevneren.)

13 Tosidig test om likhet av varianser Anta at vi skal teste H 0 : σ 1 σ = 1motH a : σ 1 σ 1 med signifikansnivå α. Med testobservatoren f = s 1 skal vi s forkaste H 0 både hvis den blir for liten (under 1) eller stor (større en). Siden våre tabeller bare gjelder store verdier av f (høyre hale), foreslår boka følgende metode i Example side 598: 1. Beregn s 1 og s. Beregn f som forholdet mellom disse, med den største i telleren (slik at vi garantert får f > 1) 3. Klassisk metode: Forkast H 0 hvis f > F (df 1, df,α/), hvor df 1 og df er frihetsgrader til henholdsvis telleren og nevneren. 4. Metode med p-verdi: p-verdi er P(f > f ) der f er F -fordelt med df 1 og df frihetsgrader Oppgave: Gitt utvalgsinformasjonen = 10, n = 8, s 1 = 5.4, s = 3.8, skal du teste H 0 : σ 1 σ med signifikansnivå α = 0.05 = 1motH a : σ 1 σ 1 51 Oppsummering: Testing av varianser og standardavvik i normalfordelte populasjoner Ett utvalg med populasjonsstandardavvik σ (kap. 9.4): Tester hypoteser av formen H 0 : σ = σ 0 mot H a : σ σ 0 (evt. > eller <) for en gitt verdi av σ 0. Bruker testobservatoren χ = (n 1)s σ 0 To utvalg med populasjonsstandardavvik σ 1 og σ (kap. 10.6) Tester hypoteser av formen H 0 : σ 1 σ (evt. > eller <) Bruker testobservatoren f = s 1 s = 1motH a : σ 1 σ 1 som er F -fordelt med df 1 = 1ogdf = n 1 frihetsgrader når H 0 gjelder. Kritiske verdier finnes i Tabell 9. som er χ -fordelt med df=n-1 frihetsgrader når H 0 gjelder. Kritiske verdier finnes i Tabell 8.

14

15

16

17

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to populasjoner med populasjonsgjennomsnitt henholdsvis

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 10: Inferens om to populasjoner Situasjon: Det er to populasjoner som vi ønsker å sammenligne. Vi trekker da et utvalg

Detaljer

Notasjon og Tabell 8. ST0202 Statistikk for samfunnsvitere

Notasjon og Tabell 8. ST0202 Statistikk for samfunnsvitere 2 Inferens om varians og standardavvik for ett normalfordelt utvalg (9.4) Inferens om variansen til en normalfordelt populasjon bruker kjikvadrat-fordelingen ( chi-square distribution ) (der kji er den

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Inferens om varians og standardavvik for ett normalfordelt utvalg (9.4) Inferens om variansen til en normalfordelt populasjon

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 10: Inferens om to populasjoner

ST0202 Statistikk for samfunnsvitere Kapittel 10: Inferens om to populasjoner ST0202 Statistikk for samfunnsvitere Kapittel 10: Inferens om to populasjoner Bo Lindqvist Institutt for matematiske fag 2 Kapittel 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to

Detaljer

ST0103 Brukerkurs i statistikk Forelesning 26, 18. november 2016 Kapittel 8: Sammenligning av grupper

ST0103 Brukerkurs i statistikk Forelesning 26, 18. november 2016 Kapittel 8: Sammenligning av grupper ST0103 Brukerkurs i statistikk Forelesning 26, 18. november 2016 Kapittel 8: Sammenligning av grupper Bo Lindqvist Institutt for matematiske fag 2 Kapittel 8: Sammenligning av grupper Situasjon: Vi ønsker

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon

ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon Bo Lindqvist Institutt for matematiske fag 2 Kap. 9: Inferens om én populasjon Statistisk inferens har som mål å tolke/analysere

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 9: Inferens om én populasjon I Kapittel 8 brukte vi observatoren z = x µ σ/ n for å trekke konklusjoner om µ. Dette

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig

Detaljer

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig om populasjonen. Konkret: Å analysere en utvalgsobservator for å trekke slutninger

Detaljer

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig om populasjonen. Konkret: Analysere en observator for å finne ut noe om korresponderende

Detaljer

Kap. 10: Inferens om to populasjoner. Inferens om forskjell i forventning ved å bruke to avhengige utvalg (10.3) ST0202 Statistikk for samfunnsvitere

Kap. 10: Inferens om to populasjoner. Inferens om forskjell i forventning ved å bruke to avhengige utvalg (10.3) ST0202 Statistikk for samfunnsvitere Kap. 0: Inferen om to populajoner Situajon: Det er to populajoner om vi ønker å ammenligne. Vi trekker da et utvalg fra hver populajon. Vi kan ha avhengige eller uavhengige utvalg. ST00 Statitikk for amfunnvitere

Detaljer

7.2 Sammenligning av to forventinger

7.2 Sammenligning av to forventinger 7.2 Sammenligning av to forventinger To-utvalgs z-observator To-utvalgs t-prosedyrer To-utvalgs t-tester To-utvalgs t-konfidensintervall Robusthet To-utvalgs t-prosedyrerår variansene er like Sammenlikning

Detaljer

Testobservator for kjikvadrattester

Testobservator for kjikvadrattester ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 11: Anvendelser av kjikvadratfordelingen: Kjikvadrattester Situasjon: Et tilfeldig utvalg av n individer er trukket

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 11: Anvendelser av kjikvadratfordelingen: Kjikvadrattester Situasjon: Et tilfeldig utvalg av n individer er trukket

Detaljer

Testobservator for kjikvadrattester

Testobservator for kjikvadrattester ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 11: Anvendelser av kjikvadratfordelingen: Kjikvadrattester Situasjon: t tilfeldig utvalg av n individer er trukket

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Fra første forelesning: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg En delmengde av

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Kapittel 7: Utvalgsfordeling Bo Lindqvist Institutt for matematiske fag 2 Fra kapittel 1: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg

Detaljer

EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE

EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Bokmål Faglig kontakt under eksamen: Bo Lindqvist, tlf. 97589418 EKSAMEN ST00 STATISTIKK FOR SAMFUNNSVITERE Torsdag

Detaljer

TMA4240 Statistikk H2010 (20)

TMA4240 Statistikk H2010 (20) TMA4240 Statistikk H2010 (20) 10.5: Ett normalfordelt utvalg, kjent varians (repetisjon) 10.4: P-verdi 10.6: Konfidensintervall vs. hypotesetest 10.7: Ett normalfordelt utvalg, ukjent varians Mette Langaas

Detaljer

Simulering med Applet fra boken, av z og t basert på en rekke utvalg av en gitt størrelse n fra N(μ,σ). Illustrerer hvordan estimering av variansen

Simulering med Applet fra boken, av z og t basert på en rekke utvalg av en gitt størrelse n fra N(μ,σ). Illustrerer hvordan estimering av variansen Simulering med Applet fra boken, av z og t basert på en rekke utvalg av en gitt størrelse n fra N(μ,σ). Illustrerer hvordan estimering av variansen gir testobservatoren t mer spredning enn testobservatoren

Detaljer

Fra første forelesning:

Fra første forelesning: 2 Fra første forelesning: ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag opulasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg En delmengde av populasjonen

Detaljer

Hypotesetesting. mot. mot. mot. ˆ x

Hypotesetesting. mot. mot. mot. ˆ x Kapittel 6.4-6.5: ypotesetesting ypotesetesting er en standard vitenskapelig fremgangsmåte for å sjekke påstander. Generell problemstilling: Basert på informasjonen i data fra et tilfeldig utvalg ønsker

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 TMA4240 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 11 Oppgavene i denne øvingen dreier seg om hypotesetesting og sentrale begreper

Detaljer

Inferens i fordelinger

Inferens i fordelinger Inferens i fordelinger Modifiserer antagelsen om at standardavviket i populasjonen σ er kjent Mer kompleks systematisk del ( her forventningen i populasjonen). Skal se på en situasjon der populasjonsfordelingen

Detaljer

Statistikk og dataanalyse

Statistikk og dataanalyse Njål Foldnes, Steffen Grønneberg og Gudmund Horn Hermansen Statistikk og dataanalyse En moderne innføring Kapitteloversikt del 1 INTRODUKSJON TIL STATISTIKK Kapittel 1 Populasjon og utvalg 19 Kapittel

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag Situasjonen er som i quiz-eksempelet: n = 4, p = 1/3 ( suksess betyr å gjette riktig alternativ), q = 2/3. Oppgave: Finn

Detaljer

Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans

Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner

Detaljer

ECON240 VÅR / 2016 BOKMÅL

ECON240 VÅR / 2016 BOKMÅL ECON240 VÅR / 2016 BOKMÅL UNIVERSITETET I BERGEN EKSAMEN UNDER SAMFUNNSVITENSKAPELIG GRAD [ DATO og KLOKKESLETT FOR EKSAMEN (START OG SLUTT) ] Tillatte hjelpemidler: Matematisk formelsamling av K. Sydsæter,

Detaljer

Analyse av kontinuerlige data. Intro til hypotesetesting. 21. april 2005. Seksjon for medisinsk statistikk, UIO. Tron Anders Moger

Analyse av kontinuerlige data. Intro til hypotesetesting. 21. april 2005. Seksjon for medisinsk statistikk, UIO. Tron Anders Moger Intro til hypotesetesting Analyse av kontinuerlige data 21. april 2005 Tron Anders Moger Seksjon for medisinsk statistikk, UIO 1 Repetisjon fra i går: Normalfordelingen Variasjon i målinger kan ofte beskrives

Detaljer

Supplement til power-point presentasjonen i medisinsk statistikk, forelesning 7 januar 2013. Skrevet av Stian Lydersen 16 januar 2013

Supplement til power-point presentasjonen i medisinsk statistikk, forelesning 7 januar 2013. Skrevet av Stian Lydersen 16 januar 2013 1 Supplement til power-point presentasjonen i medisinsk statistikk, forelesning 7 januar 013. Skrevet av Stian Lydersen 16 januar 013 Vi antar at vårt utvalg er et tilfeldig og representativt utvalg for

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4 ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 27. mars Bjørn H. Auestad Kp. 6: Hypotesetesting

Detaljer

1 9-3: Sammenligne gjennomsnitt for to uavhengige stikkprøver. 2 9-4: Sammenligne gjennomsnitt for to relaterte stikkprøver

1 9-3: Sammenligne gjennomsnitt for to uavhengige stikkprøver. 2 9-4: Sammenligne gjennomsnitt for to relaterte stikkprøver 1 9-3: Sammenligne gjennomsnitt for to uavhengige stikkprøver 2 9-4: Sammenligne gjennomsnitt for to relaterte stikkprøver 3 Oppvarming til kap 10: Rette linjer Sammenligne to populasjoner Data fra to

Detaljer

1 Section 7-2: Estimere populasjonsandelen. 2 Section 7-4: Estimere µ når σ er ukjent

1 Section 7-2: Estimere populasjonsandelen. 2 Section 7-4: Estimere µ når σ er ukjent 1 Section 7-2: Estimere populasjonsandelen 2 Section 7-4: Estimere µ når σ er ukjent Kapittel 7 Nå begynner vi med statistisk inferens! Bruke stikkprøven til å 1 Estimere verdien til en parameter i populasjonen.

Detaljer

EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE

EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 Bokmål Faglig kontakt under eksamen: Bo Lindqvist, tlf. 97589418 EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE Tirsdag

Detaljer

Kapittel 7: Inferens for forventningerukjent standardavvik

Kapittel 7: Inferens for forventningerukjent standardavvik Kapittel 7: Inferens for forventningerukjent standardavvik 7.1: Inferens for forventningen i en populasjon 7.2: Inferens for å sammenligne to forventninger 7.1 Inferens for forventningen i en populasjon

Detaljer

i x i

i x i TMA4245 Statistikk Vår 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalte oppgaver 11, blokk II Oppgavene i denne øvingen dreier seg om hypotesetesting og sentrale

Detaljer

Kapittel 3: Studieopplegg

Kapittel 3: Studieopplegg Oversikt over pensum Kapittel 1: Empirisk fordeling for en variabel o Begrepet fordeling o Mål for senter (gj.snitt, median) + persentiler/kvartiler o Mål for spredning (Standardavvik s, IQR) o Outliere

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 11: Anvendelser av kjikvadratfordelingen Kapittel 12: Variansanalyse (ANOVA)

ST0202 Statistikk for samfunnsvitere Kapittel 11: Anvendelser av kjikvadratfordelingen Kapittel 12: Variansanalyse (ANOVA) ST0202 Statistikk for samfunnsvitere Kapittel 11: Anvendelser av kjikvadratfordelingen Kapittel 12: Variansanalyse (ANOVA) Bo Lindqvist Institutt for matematiske fag Bo Lindqvist, ST0202 2 Skittles (oppgave

Detaljer

Hypotesetesting. Hvorfor og hvordan? Gardermoen 21. april 2016 Ørnulf Borgan. H. Aschehoug & Co Sehesteds gate 3, 0102 Oslo Tlf:

Hypotesetesting. Hvorfor og hvordan? Gardermoen 21. april 2016 Ørnulf Borgan. H. Aschehoug & Co Sehesteds gate 3, 0102 Oslo Tlf: Hypotesetesting Hvorfor og hvordan? Gardermoen 21. april 2016 Ørnulf Borgan H. Aschehoug & Co Sehesteds gate 3, 0102 Oslo Tlf: 22 400 400 www.aschehoug.no 1 Oversikt Sannsynlighetsregning og statistikk

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 13: Lineær korrelasjons- og regresjonsanalyse Kap. 13.1-13.3: Lineær korrelasjonsanalyse. Disse avsnitt er ikke pensum,

Detaljer

Oppgave 1. T = 9 Hypotesetest for å teste om kolesterolnivået har endret seg etter dietten: T observert = 2.16 0

Oppgave 1. T = 9 Hypotesetest for å teste om kolesterolnivået har endret seg etter dietten: T observert = 2.16 0 Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 08. mai 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir

Detaljer

Fasit for tilleggsoppgaver

Fasit for tilleggsoppgaver Fasit for tilleggsoppgaver Uke 5 Oppgave: Gitt en rekke med observasjoner x i (i = 1,, 3,, n), definerer vi variansen til x i som gjennomsnittlig kvadratavvik fra gjennomsnittet, m.a.o. Var(x i ) = (x

Detaljer

Oppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2.

Oppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2. Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 17 november 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk Tapir

Detaljer

TMA4240 Statistikk Høst 2007

TMA4240 Statistikk Høst 2007 TMA4240 Statistikk Høst 2007 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b4 Løsningsskisse Oppgave 1 Eksamen juni 1999, oppgave 3 av 3 a) µ populasjonsgjennomsnitt,

Detaljer

Krysstabellanalyse (forts.) SOS1120 Kvantitativ metode. 4. Statistisk generalisering. Forelesningsnotater 9. forelesning høsten 2005.

Krysstabellanalyse (forts.) SOS1120 Kvantitativ metode. 4. Statistisk generalisering. Forelesningsnotater 9. forelesning høsten 2005. SOS112 Kvantitativ metode Krysstabellanalyse (forts.) Forelesningsnotater 9. forelesning høsten 25 4. Statistisk generalisering Per Arne Tufte Eksempel: Hypoteser Eksempel: observerte frekvenser (O) Hvordan

Detaljer

2. Hva er en sampelfordeling? Nevn tre eksempler på sampelfordelinger.

2. Hva er en sampelfordeling? Nevn tre eksempler på sampelfordelinger. H12 - Semesteroppgave i statistikk - sensurveiledning Del 1 - teori 1. Gjør rede for resonnementet bak ANOVA. Enveis ANOVA tester om det er forskjeller mellom gjennomsnittene i tre eller flere populasjoner.

Detaljer

Løsning på Dårlige egg med bruk av Tabell 2 i Appendix B

Løsning på Dårlige egg med bruk av Tabell 2 i Appendix B Situasjonen er som i quiz-eksempelet: n = 4, p = 1/3 ( suksess betyr å gjette riktig alternativ), q = 2/3. Oppgave: Finn P(x), x=0,1,2,3,4 fra den generelle formelen for binomisk sannsynlighetsfordeling

Detaljer

EKSAMENSOPPGAVER STAT100 Vår 2011

EKSAMENSOPPGAVER STAT100 Vår 2011 EKSAMENSOPPGAVER STAT100 Vår 2011 Løsningsforslag Oppgave 1 (Med referanse til Tabell 1) a) De 3 fiskene på 2 år hadde lengder på henholdsvis 48, 46 og 35 cm. Finn de manglende tallene i Tabell 1. Test

Detaljer

Hypotesetesting (kp. 6) ÅMA110 Sannsynlighetsregning med statistikk, våren Tre deler av faget/kurset: 1. Beskrivende statistikk

Hypotesetesting (kp. 6) ÅMA110 Sannsynlighetsregning med statistikk, våren Tre deler av faget/kurset: 1. Beskrivende statistikk ÅMA Sannsynlighetsregning med statistikk, våren 2 Kp. 6 Hypotesetesting Hypotesetesting (kp. 6) Tre deler av faget/kurset:. Beskrivende statistikk 2. Sannsynlighetsteori, sannsynlighetsregning 3. Statistisk

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 11, blokk II I denne øvingen skal vi fokusere på hypotesetesting. Vi ønsker å gi dere

Detaljer

6.2 Signifikanstester

6.2 Signifikanstester 6.2 Signifikanstester Konfidensintervaller er nyttige når vi ønsker å estimere en populasjonsparameter Signifikanstester er nyttige dersom vi ønsker å teste en hypotese om en parameter i en populasjon

Detaljer

Kap. 9: Inferens om én populasjon. Egenskaper ved t-fordelingen. ST0202 Statistikk for samfunnsvitere. I Kapittel 8 brukte vi observatoren

Kap. 9: Inferens om én populasjon. Egenskaper ved t-fordelingen. ST0202 Statistikk for samfunnsvitere. I Kapittel 8 brukte vi observatoren 2 Kap. 9: Iferes om é populasjo I Kapittel 8 brukte vi observatore z = x μ σ/ for å trekke koklusjoer om μ. Dette krever kjet σ (urealistisk). ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 20. mars Bjørn H. Auestad Kp. 6: Hypotesetesting

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 20. mars Bjørn H. Auestad Kp. 6: Hypotesetesting

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON2130 - Statistikk 1 Eksamensdag: 19.06.2014 Tid for eksamen: kl. 09:00 12:00 Oppgavesettet er på 4 sider UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Tillatte hjelpemidler: Alle trykte

Detaljer

Eksamensoppgave i TMA4240 Statistikk

Eksamensoppgave i TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Sara Martino a, Torstein Fjeldstad b Tlf: a 994 03 330, b 962 09 710 Eksamensdato: 28. november 2018 Eksamenstid

Detaljer

Eksamensoppgave i TMA4245 Statistikk

Eksamensoppgave i TMA4245 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4245 Statistikk Faglig kontakt under eksamen: Håkon Tjelmeland Tlf: 48 22 18 96 Eksamensdato:??. august 2014 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Hypotesetesting (kp. 6) Hypotesetesting, innledning. Kp.

ÅMA110 Sannsynlighetsregning med statistikk, våren Hypotesetesting (kp. 6) Hypotesetesting, innledning. Kp. ÅMA Sannsynlighetsregning med statistikk, våren 8 Kp. 6 Hypotesetesting Hypotesetesting (kp. 6) Tre deler av faget/kurset:. Beskrivende statistikk. Sannsynlighetsteori, sannsynlighetsregning 3. Statistisk

Detaljer

+ S2 Y ) 2. = 6.737 6 (avrundet nedover til nærmeste heltall) n Y 1

+ S2 Y ) 2. = 6.737 6 (avrundet nedover til nærmeste heltall) n Y 1 Løsningsforslag for: MOT10 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 6. november 007 TILLATTE HJELPEMIDLER: Kalkulator: HP0S, Casio FX8 eller TI-0 Tabeller og formler i statistikk (Tapir forlag) MERKNADER:

Detaljer

Oppgaven består av 9 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom << >>. Oppgave 1

Oppgaven består av 9 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom << >>. Oppgave 1 ECON 0 EKSMEN 007 VÅR SENSORVEILEDNING Oppgaven består av 9 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom >. Oppgave. La begivenhetene BC,, være slik at og

Detaljer

EKSAMEN I FAG TMA4255 ANVENDT STATISTIKK

EKSAMEN I FAG TMA4255 ANVENDT STATISTIKK Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Bo Lindqvist Tlf. 975 89 418 BOKMÅL EKSAMEN I FAG TMA4255 ANVENDT STATISTIKK Onsdag

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 9-10 (oversikt): Inferens om én og to populasjoner

ST0202 Statistikk for samfunnsvitere Kapittel 9-10 (oversikt): Inferens om én og to populasjoner ST0202 Statistikk for samfunnsvitere Kapittel 9-10 (oversikt): Inferens om én og to populasjoner Bo Lindqvist Institutt for matematiske fag 2 Inferens med EN populasjon 3 Oppgave: H2002 # 3 I følge Nielsen

Detaljer

Statistikk, FO242N, AMMT, HiST 2. årskurs, 30. mai 2007 side 1 ( av 8) LØSNINGSFORSLAG HØGSKOLEN I SØR-TRØNDELAG

Statistikk, FO242N, AMMT, HiST 2. årskurs, 30. mai 2007 side 1 ( av 8) LØSNINGSFORSLAG HØGSKOLEN I SØR-TRØNDELAG Statistikk, FO242N, AMMT, HiST 2. årskurs, 30. mai 2007 side 1 ( av 8) LØSNINGSFORSLAG HØGSKOLEN I SØR-TRØNDELAG AVDELING FOR MAT- OG MEDISINSK TEKNOLOGI Matteknologisk utdanning Kandidatnr: Eksamensdato:

Detaljer

TMA4245 Statistikk Eksamen desember 2016

TMA4245 Statistikk Eksamen desember 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer

Detaljer

Denne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans

Denne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 13: Lineær regresjon og korrelasjon

ST0202 Statistikk for samfunnsvitere Kapittel 13: Lineær regresjon og korrelasjon ST0202 Statistikk for samfunnsvitere Kapittel 13: Lineær regresjon og korrelasjon Bo Lindqvist Institutt for matematiske fag http://wiki.math.ntnu.no/st0202/2012h/start 2 Kap. 13: Lineær korrelasjons-

Detaljer

EKSAMEN KANDIDATNUMMER: EKSAMENSDATO: 26. mai 2006. SENSURFRIST: 16. juni 2006. KLASSE: HIS 04 07. TID: kl. 8.00 13.00.

EKSAMEN KANDIDATNUMMER: EKSAMENSDATO: 26. mai 2006. SENSURFRIST: 16. juni 2006. KLASSE: HIS 04 07. TID: kl. 8.00 13.00. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. BtG207 EKSAMENSDATO: 26. mai 2006. SENSURFRIST: 16. juni 2006. KLASSE: HIS 04 07. TID: kl. 8.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER

Detaljer

HØGSKOLEN I STAVANGER

HØGSKOLEN I STAVANGER EKSAMEN I: MOT0 STATISTISKE METODER VARIGHET: TIMER DATO:. NOVEMBER 00 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV OPPGAVER PÅ 7 SIDER HØGSKOLEN

Detaljer

EKSAMEN. EMNEANSVARLIG: Terje Bokalrud og Hans Petter Hornæs. TILLATTE HJELPEMIDLER: Kalkulator og alle trykte og skrevne hjelpemidler.

EKSAMEN. EMNEANSVARLIG: Terje Bokalrud og Hans Petter Hornæs. TILLATTE HJELPEMIDLER: Kalkulator og alle trykte og skrevne hjelpemidler. KANDIDATNUMMER: EKSAMEN EMNENAVN: EMNENUMMER: Kvalitetsledelse med Statistikk. SMF2121 EKSAMENSDATO: 1. juni 2010 KLASSE: Ingeniørutdanning TID: kl. 9.00 13.00. EMNEANSVARLIG: Terje Bokalrud og Hans Petter

Detaljer

EKSAMEN I FAG 75510/75515 STATISTIKK 1 Tirsdag 20. mai 1997 Tid: 09:00 14:00

EKSAMEN I FAG 75510/75515 STATISTIKK 1 Tirsdag 20. mai 1997 Tid: 09:00 14:00 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Håvard Rue 73 59 35 20 Håkon Tjelmeland 73 59 35 20 Bjørn Kåre Hegstad 73 59 35 20

Detaljer

Kap. 12: Variansanalyse

Kap. 12: Variansanalyse 2 Kap. 12: Variansanalyse Situasjon: c populasjoner, hver med sitt populasjonsgjennomsnitt μ i. Vi tester ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag H 0 : Alle populasjonene

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 12: Variansanalyse Situasjon: c populasjoner, hver med sitt populasjonsgjennomsnitt μ i. Vi tester H 0 : Alle populasjonene

Detaljer

Denne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans

Denne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 11: Anvendelser av kjikvadratfordelingen: Kjikvadrattester Situasjon: Et tilfeldig utvalg av n individer er trukket

Detaljer

Kapittel 9 og 10: Hypotesetesting

Kapittel 9 og 10: Hypotesetesting Kapittel 9 og 1: ypotesetesting ypotesetesting er en standard vitenskapelig fremgangsmåte for å sjekke påstander. Generell problemstilling: Basert på informasjonen i data fra et tilfeldig utvalg ønsker

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. BtG207 EKSAMENSDATO: 16. juni 2009. KLASSE: HIS 07 10. TID: kl. 8.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 3 innkl. forside)

Detaljer

Kapittel 9 og 10: Hypotesetesting

Kapittel 9 og 10: Hypotesetesting Kapittel 9 og 1: Hypotesetesting Hypotesetesting er en standard vitenskapelig fremgangsmåte for å sjekke påstander. Generell problemstilling: Basert på informasjonen i data fra et tilfeldig utvalg ønsker

Detaljer

TMA4245 Statistikk Eksamen august 2014

TMA4245 Statistikk Eksamen august 2014 TMA4245 Statistikk Eksamen august 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Oppgave 1 En bedrift produserer en type medisin i pulverform Medisinen selges på flasker

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren

ÅMA110 Sannsynlighetsregning med statistikk, våren ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 3. april Bjørn H. Auestad Kp. 6: Hypotesetesting

Detaljer

Første sett med obligatoriske oppgaver i STK1110 høsten 2015

Første sett med obligatoriske oppgaver i STK1110 høsten 2015 Første sett med obligatoriske oppgaver i STK1110 høsten 2015 Dette er det første obligatoriske oppgavesettet i STK1110 høsten 2015. Oppgavesettet består av fire oppgaver. Du må bruke Matematisk institutts

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 8: Introduksjon til statistisk inferens

ST0202 Statistikk for samfunnsvitere Kapittel 8: Introduksjon til statistisk inferens ST0202 Statistikk for samfunnsvitere Kapittel 8: Introduksjon til statistisk inferens Bo Lindqvist Institutt for matematiske fag 2 Statistisk inferens (kap. 8) Statistisk inferens har som mål å tolke/analysere

Detaljer

KATEGORISKE DATA- TABELLANALYSE ANALYSE AV. Tron Anders Moger. 3. Mai 2005

KATEGORISKE DATA- TABELLANALYSE ANALYSE AV. Tron Anders Moger. 3. Mai 2005 ANALYSE AV KATEGORISKE DATA- TABELLANALYSE 3. Mai 2005 Tron Anders Moger Forrige gang: Snakket om kontinuerlige data, dvs data som måles på en kontinuerlig skala Hypotesetesting med t-tester evt. ikkeparametriske

Detaljer

Kap. 9: Inferens om én populasjon

Kap. 9: Inferens om én populasjon 2 ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for matematiske fag Ka. 9: Iferes om é oulasjo Hvis σ er ukjet bytter vi ut σ med s i Ny observator blir t = x μ s/ z = x μ σ/ der s = Σx 2 (Σx)

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen

ST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen ST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen Bo Lindqvist Institutt for matematiske fag 2 Kap. 6: Normalfordelingen Normalfordelingen regnes som den viktigste statistiske fordelingen!

Detaljer

TMA4240 Statistikk Høst 2009

TMA4240 Statistikk Høst 2009 TMA4240 Statistikk Høst 2009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b5 Løsningsskisse Oppgave 1 Vi ønsker å finne ut om et nytt serum kan stanse leukemi.

Detaljer

betyr begivenheten at det blir trukket en rød kule i første trekning og en hvit i andre, mens B1 B2

betyr begivenheten at det blir trukket en rød kule i første trekning og en hvit i andre, mens B1 B2 ECON30: EKSAMEN 06v SENSORVEILEDNING. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i

Detaljer

Binomisk sannsynlighetsfunksjon

Binomisk sannsynlighetsfunksjon ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Binomisk sannsynlighetsfunksjon La det være n forsøk, sannsynlighet p for suksess og sannsynlighet q for fiasko. Den tilfeldige

Detaljer

Hypotesetest: generell fremgangsmåte

Hypotesetest: generell fremgangsmåte TMA4240 Statistikk H2010 (21) 10.8, 10.10: To normalfordelte utvalg 10.9: Teststyrke og antall observasjoner Mette Langaas Foreleses mandag 1.november, 2010 2 Hypotesetest: generell fremgangsmåte Generell

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Hypotesetesting (kp. 6) Hypotesetesting. Kp. 6 Hypotesetesting ...

ÅMA110 Sannsynlighetsregning med statistikk, våren Hypotesetesting (kp. 6) Hypotesetesting. Kp. 6 Hypotesetesting ... ÅMA Sannsynlighetsregning med statistikk, våren 6 Kp. 6 (kp. 6)... Begrep: nullhypotese alternativhypotese ensidig, tosidig teststørrelse (testobservator) nullfordeling kritisk verdi, forkastningsområde

Detaljer

EKSAMEN I FAG TMA4255 FORSØKSPLANLEGGING OG ANVENDTE STATISTISKE METODER

EKSAMEN I FAG TMA4255 FORSØKSPLANLEGGING OG ANVENDTE STATISTISKE METODER Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 8 Faglig kontakt under eksamen: Bo Lindqvist Tlf. 975 89 418 EKSAMEN I FAG TMA4255 FORSØKSPLANLEGGING OG ANVENDTE

Detaljer

Løsningsforslag til obligatorisk innlevering 3.

Løsningsforslag til obligatorisk innlevering 3. svar3.nb 1 Løsningsforslag til obligatorisk innlevering 3. Oppgave 1 * Vi skal sammenlikne to sensoere A og B. Begge har rettet den samme oppgaven. Hvis populasjonen er eksamensoppgavene, har vi altså

Detaljer

Kapittel 7: Inferens for forventningerukjent standardavvik

Kapittel 7: Inferens for forventningerukjent standardavvik Kapittel 7: Inferens for forventningerukjent standardavvik 7.1: Inferens for forventningen i en populasjon 7.: Inferens for å sammenligne to forventninger 7.1 Inferens for forventningen i en populasjon

Detaljer

EKSAMEN I FAG TMA4260 INDUSTRIELL STATISTIKK

EKSAMEN I FAG TMA4260 INDUSTRIELL STATISTIKK Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 12 Faglig kontakt under eksamen: Bo Lindqvist Tlf. 975 89 418 EKSAMEN I FAG TMA4260 INDUSTRIELL STATISTIKK Onsdag

Detaljer

Oppgave 1. Det oppgis at dersom y ij er observasjon nummer j fra laboratorium i så er SSA = (y ij ȳ i ) 2 = 3.6080.

Oppgave 1. Det oppgis at dersom y ij er observasjon nummer j fra laboratorium i så er SSA = (y ij ȳ i ) 2 = 3.6080. EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 28. FEBRUAR 2005 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV 4 OPPGAVER PÅ

Detaljer

Hypotesetesting av λ og p. p verdi.

Hypotesetesting av λ og p. p verdi. Forelesning 7, kapittel 6 Hypotesetesting av λ og p. p verdi. Det som gjøres i denne forelesningen er nær opptil det vi gjorde da vi konstruerte z test for µ, og styrkefunksjon for denne. I tillegg til

Detaljer

Eksamensoppgave i ST1201/ST6201 Statistiske metoder

Eksamensoppgave i ST1201/ST6201 Statistiske metoder Institutt for matematiske fag Eksamensoppgave i ST1201/ST6201 Statistiske metoder Faglig kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: 20. desember 2016 Eksamenstid (fra til): 09:00

Detaljer

Kapittel 10: Hypotesetesting

Kapittel 10: Hypotesetesting Kapittel 10: Hypotesetesting TMA445 Statistikk 10.1, 10., 10.3: Introduksjon, 10.5, 10.6, 10.7: Test for µ i normalfordeling, 10.4: p-verdi Turid.Follestad@math.ntnu.no p.1/19 Estimering og hypotesetesting

Detaljer

1 8-1: Oversikt. 2 8-2: Grunnleggende hypotesetesting. 3 Section 8-3: Å teste påstander om andeler. 4 Section 8-5: Teste en påstand om gjennomsnittet

1 8-1: Oversikt. 2 8-2: Grunnleggende hypotesetesting. 3 Section 8-3: Å teste påstander om andeler. 4 Section 8-5: Teste en påstand om gjennomsnittet 1 8-1: Oversikt 2 8-2: Grunnleggende hypotesetesting 3 Section 8-3: Å teste påstander om andeler 4 Section 8-5: Teste en påstand om gjennomsnittet Definisjoner Hypotese En hypotese er en påstand om noe

Detaljer