Testobservator for kjikvadrattester

Størrelse: px
Begynne med side:

Download "Testobservator for kjikvadrattester"

Transkript

1 ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 11: Anvendelser av kjikvadratfordelingen: Kjikvadrattester Situasjon: Et tilfeldig utvalg av n individer er trukket fra en populasjon. Hvert individ kan klassifiseres ifølge en kategorisk variabel med k mulige verdier og det telles opp hvor mange (O) som faller i hver kategori (observerte frekvenser). Disse skal så sammenlignes med forventede frekvenser (E) ifølge den teori som skal testes. Kategorier kalles ofte celler i tabeller som den nedenfor. k kategorier k Totalt Observerte frekvenser O 1 O 2 O 3 O k n Forventede frekvenser E 1 E 2 E 3 E k n 3 Testobservator for kjikvadrattester k celler k Totalt Observerte frekvenser O 1 O 2 O 3 O k n Forventede frekvenser E 1 E 2 E 3 E k n χ 2 (O E) 2 = E alle celler Hvis (null)hypotesen som svarer til de forventede frekvenser er sann vil χ 2 være kjikvadratfordelt med df frihetsgrader som avhenger av situasjonen. Hvis χ 2 blir for stor vil vi forkaste nullhypotesen. Eksempel med terningkast: Kast en terning 60 ganger observer antall 1 ere 2 ere... osv. Vi vil teste nullhypotesen at terningen er korrekt dvs. at sannsynlighetene er 1/6 for hvert antall øyne. Forventede frekvenser under denne hypotesen er = 10. Antall øyne Observerte frekvenser Forventede frekvenser

2 Beregning av testobservator: χ 2 (O E) 2 = E alle celler Øyne O E O-E (O E) 2 (O E) 2 /E Totalt n=60 n= dvs. at χ 2 = 2.2. Er dette et stort tall? Vi kommer tilbake til dette siden vi her har et spesialtilfelle av multinomiske eksperimenter - se neste side: 6 Multinomiske eksperimenter (11.3) 1. n identiske uavhengige forsøk. 2. Utfallet av hvert forsøk havner i en av k mulige kategorier (celler) 3. Sannsynlighetene for å havne i hver kategori er de samme i hvert forsøk. p 1 er sannsynligheten for å falle i kategori 1 osv. Vi må ha at p 1 + p p k = 1 4. Eksperimentet resulterer i et sett av observerte frekvenser O 1 O 2 O k ( med sum lik n) Vi sier at (O 1 O 2...O k ) er multinomisk fordelt med n forsøk og sannsynligheter p 1 p 2 p k Vi tester nullhypoteser av formen H 0 : p 1 p 2...p k har gitte verdier mot alternativet H a at minst en av p-ene har en annen verdi. De forventede frekvenser når H 0 gjelder er: E 1 = np 1 E 2 = np 2... E k = np k ( med sum lik n) Det grunnleggende fordelingsresultat er at hvis H 0 gjelder er testobservatoren χ 2 (O E) 2 = E alle celler kjikvadratfordelt med df = k 1 frihetsgrader. Analyse av terningeksemplet Vi hadde n = 60 k = 6 og testet nullhypotesen at alle p ene er lik 1/6 dvs. at alle E-ene er lik 60 1/6 = 10. Hypotestetest ved bruk av p-verdi: p verdi = P(χ 2 >χ 2 )=P(χ 2 > 2.2) =0.821 der χ 2 er kjikvadratfordelt med 6 1 = 5 frihetsgrader. (Vi har ikke tabell for dette men Tabell 8 gir at p-verdien er mellom 0.75 og 0.90). p-verdien er altså større enn signifikansnivå α=0.05 og nullhypotesen forkastes ikke.

3 & $ " ' " ( # ) # * % $ ( " " $ T g h i b o V ` \ ` ^ U e e U a X _ U V p a a U V U a H I F ; A E : ; ; > q Z [ ` a ` e \ W n Z [ [ U c X V [ ` W \ U j r m X \ U W U a X Y ` \ ^ ` V a J k M L s M O P 9 M O R [ _ Z a a U V X ] Y U a a ] n V e Z [ U Y r U \ Z e c ` W \ e U ] U a k Analyse av terningeksemplet Hypotetsetest ved bruk av kritisk verdi: H 0 forkastes med signifikansnivå α hvis χ 2 >χ 2 (k 1α). Vi har fra Tabell 8 at χ 2 (5 0.05) =11.1 og siden χ 2 = 2.2 < 11.1 kan vi ikke forkaste nullhypotesen. Oppgave: En produsent av poleringsmiddel for gulv utførte et eksperiment for å finne ut hvilket av 5 poleringsmidler som hadde det beste resultatet. Et utvalg med 100 konsumenter betraktet fem overflater behandlet med de ulike poleringsmidlene. Hver konsument indikerte hvilken av de 5 overflatene som var finest. Svarene fordelte seg slik: poleringsmiddel A B C D E frekvens a) Sett opp nullhypotesen for konsumentene har ingen spesiell preferanse b) Hvilken testobservator vil du bruke for å teste nullhypotesen? c) Fullfør hypotesetesten med α = 0.1 Løsning Fra eksamen 9. desember H 0 : p barn = 375/1500p kvinne = 607/1500p mann = 522/1500 H A 9 : : ; < = > : A B C C D : = = E > F G :? p I ; ;! " # # K L L N O Q S R Q L O L Q * $ + " ' " H 0 U V V Z [ \ Z ] U V \ U W \ X ^ W U V _ ` \ X V U a U V W X Y & " $ - " - ". " " $ $. - / 0 1 χ 2 = (O i E i ) 2 E i χ 2b c X V d U e \ Y U d f c V Z j U \ W ] V ` d U V l [ W U m \ X Y V n d U ^ e Z V (0χ 2 (2 0.05)) = (0 5.99)k χ 2 = (O i E i ) 2 E i =3.26 H 0 k W X Y U V Z ` [ W U m \ X Y V n d U \ X ] U a ^ U j X e d U V

4 13 Inferens i kontingenstabeller (krysstabeller) (11.4) Individene klassifiseres nå etter to faktorer (kjennetegn). Ønsker å undersøke om faktorene er uavhengige. 14 Uavhengighetstesten Hypoteser i uavhengighetstesten: H 0 : Fagpreferanse (MS SS eller H) er uavhengig av kjønn. H a : Fagpreferanse er avhengig av kjønn. Bruker igjen kjikvadratobservatoren χ 2 (O E) 2 = E alle celler med forventede frekvenser E beregnet for hver celle ved: E = radsum kolonnesum totalt antall i utvalg Begrunnelse for forventede responser: Ved uavhengighet skulle vi forvente at sannsynligheten for at en uttrukket er Male med område MS er lik sannsyligheten for Male multiplisert med sannsynligheten for MS dvs Forventet antall uttrukne med denne kombinasjonen ville i så fall være = =

5 18 Frihetsgrader ved kontingenstabeller: df =(r 1) (c 1) der r er antall rader og c er antall kolonner i tabellen. I eksempel: df =(2 1) (3 1) =1 2 = 2. Klassisk metode med signifikansnivå 5%: Forkast H 0 hvis χ 2 >χ 2 (2 0.05) =5.99 dvs. ikke forkast. Homogenitetstesten Tilfeldige utvalg fra r = 3 populasjoner klassifisert i c = 2 kategorier. H 0 : Andelen stemmeberettigede som er for lovforslaget er den samme i alle de tre bostedsgruppene H a :... er ikke den samme i alle de tre bostedsgruppene Metode med p-verdi: p-verdi = P(χ 2 > 4.61) =0.10 i Tabell 8 så p-verdi er ca Beregner forventede frekvenser som for uavhengighetstesten f.eks. for øverste venstre celle: = Antall frihetsgrader er som for uavhengighetstesten dvs. df =(r 1) (c 1) =(3 1) (2 1) =2 p-value = P(χ 2 > 91.72) = såH 0 forkastes klart med alle tenkelige signifikansnivå!

6 21 Kap. 12: Variansanalyse Situasjon: c populasjoner hver med sitt populasjonsgjennomsnitt μ i. Vi tester H 0 : Alle populasjonene har samme gjennomsnitt dvs. μ 1 = μ 2 =...= μ c H a : Ikke alle populasjonsgjennomsnittene er like. (Tilfellet med to populasjoner ble behandlet i kap. 10.) Eksempel 12.1: Effekt av temperatur på produsert antall. Temperaturnivå 68 o F 72 o F 76 o F Populasjon nr. i = 1 i = 2 i = 3 Utvalg Populasjons- μ 1 μ 2 μ 3 gjennomsnitt Vil teste: H 0 : μ 1 = μ 2 = μ 3 Fra kapittel 10: Testet H 0 : μ 1 = μ 2 mot μ 1 μ 2 t = x 1 x 2 (μ 1 μ 2 ) s 2 1 n 1 + s2 2 n 2 Med flere enn to populasjoner dvs. H 0 : μ 1 = μ 2 =...= μ c kunne man teste to og to μ-er men det ville bli mange tester å utføre. Isteden testes ved såkalt variansanalyse (ANOVA) der det regnes ut én testobservator som kombinerer informasjon fra alle utvalgene. 24 ANOVA Antagelser: c populasjoner skal sammenlignes populasjonsgjennomsnittene er μ 1 μ 2...μ c populasjonsvariansene σ 2 er de samme for alle populasjonene populasjonene antas normalfordelte populasjonene svarer ofte til ulike nivåer av en faktor f.eks. temperatur vi har tilfeldige og uavhengige utvalg fra hver populasjon av størrelse henholdsvis k 1 k 2...k c

7 Eksempel 12.1: Effekt av temperatur på produsert antall. Temperaturnivå 68 o F 72 o F 76 o F Utvalg nr. i = 1 i = 2 i = Utvalgsstørrelse k 1 = 4 k 2 = 5 k 3 = 4 Kolonnesum C 1 = 41 C 2 = 35 C 3 = 15 Utvalgs- x 1 = x 2 = 7.0 x 3 = 3.75 observatorer s1 2 = s2 2 = s2 3 = Populasjons- μ 1 μ 2 μ 3 parametre σ σ σ Intuitivt: Forkast H 0 : μ 1 = μ 2 = μ 3 dersom x 1 x 2 x 3 er tilstrekkelig forskjellige. 26 Kvadratsummer ( Sums of Squares ) Total Sum of Squares SS(total) = (x x) 2 = (x 2 ) ( x) 2 n der n er det totale antall observasjoner i alle utvalgene x er gjennomsnittet av alle observasjonene ( grand mean ) det summeres over alle de n observasjonene (Merk: Hvis dette divideres med n 1 får vi den vanlige s 2.) Sum of Squares Due to Factor SS(factor) = k 1 ( x 1 x) 2 + k 2 ( x 2 x) 2 + k 3 ( x 3 x) 2 + der k i er antall i utvalg nr. i x i er gjennomsnitt i utvalg nr. i og x er grand mean. Fortolkning: SS(factor) blir stor hvis det er stor forskjell mellom populasjonsgjennomsnittene dvs. stor SS(factor) tyder på at H 0 skal forkastes. SS(factor) fortolkes som variasjon mellom populasjoner. Regneformel fra boka: SS(factor) = ( ) C1 2 + C2 2 + C2 3 + ( x) 2 k 1 k 2 k 3 n der C i er kolonnesummer og n og x gjelder observasjonene i alle utvalgene. Sum of Squares Due to Error SS(error) =(k 1 1) s 2 1 +(k 2 1) s 2 2 +(k 3 1) s der k i er antall i utvalg nr. i s 2 i er utvalgsvarians i utvalg nr. i. Fortolkning: SS(error) fortolkes som variasjon innen populasjoner. Hvis den divideres med n c er den et punktestimat for populasjonsvariansen σ 2. Regneformel fra boka: SS(error) = (x 2 ) ( ) C1 2 + C2 2 + C2 3 + k 1 k 2 k 3 der C i er kolonnesummer og (x 2 ) gjelder observasjonene i alle utvalgene.

8 Frihetsgrader for kvadratsummene: Generelle sammenhenger: Mean Squares: df(total) = n 1 df(factor) = c 1 df(error) = n c SS(total) = SS(factor) + SS(error) df(total) = df(factor) + df(error) MS(factor) = SS(factor) df(factor) MS(error) = SS(error) df(error) (Mean Square for Factor) (Mean Square for Error) 30 Testobservator for ANOVA F = MS(factor) MS(error) Hvis H 0 gjelder har F en F -fordeling med df 1 = c 1og df 2 = n c frihetsgrader. ANOVA-tabell: Kilde df SS MS F P Factor df(factor) SS(factor) MS(factor) F p-value Error df(error) SS(error) MS(error) Total df(total) SS(total) Merk at MS(error) er et punktestimat for σ 2. Eksempel 12.1 (forts): Effekt av temperatur på produsert antall. Her er (x 2 )= = 731 og x = = 91 slik at SS(total) = (x 2 ) ( x) 2 = = = 94 ( n ) 13 C1 2 SS(factor) = + C2 2 + C2 3 + ( x) 2 k 1 k 2 k 3 n = ( ) = 84.5 SS(error) = SS(total) SS(factor) = = 9.5 (eller bruk egen formel) ANOVA-tabell: Kilde df SS MS F P Temperatur Error Total F = MS(factor) MS(error) = = Hvis H 0 gjelder har F en F -fordeling med df 1 = 3 1 = 2og df 2 = 13 3 = 10 frihetsgrader. Tabell 9A: Med α = 0.05 forkastes H 0 hvis F > F ( ) =4.10 dvs. klar forkastning. p-verdi: P(F > 44.47) = (fra CD).

9 Eksempel: Sammenligning av slaglengde for ulike typer golfballer. Type Utvalg Sum C i Gj. snitt x i Populasjons- μ 1 μ 2 μ 3 μ 4 μ 5 gjennomsnitt Idé bak ANOVA (12.3) MS(factor) er et mål for variasjonen mellom populasjonene MS(error) er et mål for variasjonen innen populasjonene F er forholdet mellom disse og vi forkaster H 0 hvis dette blir for stort. Vil teste: H 0 : μ 1 = μ 2 = μ 3 = μ 4 = μ 5 ANOVA-tabell: (x 2 ) = = x = = 5575 SS(total) = (x 2 ) ( x) 2 = = ( n ) 20 C1 2 SS(factor) = + C2 2 + C2 3 + C2 4 + C2 5 ( x) 2 k 1 k 2 k 3 k 4 k 5 n = = SS(error) = SS(total) SS(factor) = = Kilde df SS MS F P Balltype Error Total F = MS(factor) MS(error) = = 2.47 Hvis H 0 gjelder har F en F -fordeling med df 1 = 5 1 = 4og df 2 = 20 5 = 15 frihetsgrader. Tabell 9A: Med α = 0.05 forkastes H 0 hvis F > F ( ) =3.06 dvs. vi forkaster ikke H 0. p-verdi: P(F > 2.47) = (fra CD).

10 ~ ˆ } ~ ~ Œ } ~ ˆ ~ ~ ˆ } ~ ˆ } ~ ~ ~ ˆ ~ ~ } ~ } ~ ˆ ~ ~ } Œ ~ ~ Š ~ } ˆ } ~ ˆ ˆ } ƒ ˆ ~ } ~ Œ š ~ } ƒ ~ ƒ } } ƒ ~ } ~ ~ ˆ ~ œ ˆ ƒ ˆ ƒ ~ ƒ ƒ ~ ~ ƒ ~ } ƒ ~ ƒ } ž Œ ~ } ~ Œ ~ ~ ˆ ƒ } ~ } } ~ ƒ ƒ ~ Œ ƒ } ƒ } ƒ ƒ ƒ ~ ~ } ~ } } ~ ƒ ~ } Ÿ ƒ ~ Š ~ } ~ ~ } } ~ } ƒ ~ } ~ ƒ ~ ƒ } } ƒ ~ ~ } ~ ˆ } ~ } ~ Œ ~ ˆ Š ~ ƒ ƒ ~ } ˆ ~ ˆ ˆ } Ÿ Ò Ó Ô Õ Ö Ø Ö Ù Ú Ö Ø Õ Û Ø Ö Ü Ö Û Ö Ý Þ Ú Ù ß Ø Ö à á Õ Ù â ã ã Ö Õ Ü Ü Ö Õ Û Ù Õ ä Ö Ü Ý Ö Û Ö ä å Þ Ù â Ô Õ â Õ Û Ý Õ Û Õ Ü ß Ý Ö Û Ñ Ô Ö Ö Þ à à æ ß Ü Ù ç Þ Ò Ö Ù Õ ã Ù ê Ù Ô Õ Ü ä Ö Ù æ Þ Ý Ú Õ ã Ü ë Ý Ü Þ ã ã Ö Ú Õ Ù Þ ä ê Ù Ô Õ Ü ä Ö Ù æ Þ Ü Þ ã ã Ö Ú Õ Ù Ú Ö Ø Ô Õ Û â Ü å Ö Ý Ú Õ ã í é ì è Ö Ù Þ ê Ù Ô Õ Ü ä Ö Û Ö ê Õ Ô î Ö Û ä â ä Ö ç ï Ö Ý Ù Þ Ú æ Þ Ô Ö Û Ù Û â Û ä Ö Û Ö Ö Ü â ã Ö æ Þ Ø Ö Ù Þ ê Ù Ô Õ Ü ä Ö Û Ö Ô Ö Ø ð ñ Ø â ä Û â ò ã Õ Û Ý Û â Ô á Ý ì ì ª ª é Õ Ý Ö Ù à á Õ Û Õ Ü ß Ý Ö Û Þ Ô Ö î Ô â Ü ã Ö Ï ý þ ÿ ÿ ÿ ÿ ü ý ÿ ÿ ÿ ý ÿ ý ü ÿ ÿ þ þ ÿ û ü ÿ ÿ þ ÿ þ ÿ þ ÿ ÿ 2 + ) " # $ " 3 # ' ( $ # ' + / # " 0 $ & : > ( " % & + # - 6 : 4 A + " " + + ( ) ( " # % & # + 0 " % & " % & # ' + # " # $ ) " # 1 # & & # 3 + & ' ( $ & % & # + 0 " 0 & ' # " ' & ' $ & ) & ) C # 0 & + " # " " * + D Fra eksamen 16. desember 2006 t u u v w x y z } } ~ } ƒ ƒ ˆ ƒ ~ } ~ Š ƒ ~ } ~ Œ ~ ~ ƒ Ž Š ~ ƒ ~ } } } ~ ~ { } ~ ~ } ˆ ~ ~ } ~ ~ Œ ~ ~ ƒ ˆ ƒ } } ~ ƒ } ƒ ˆ ~ Š } ƒ ˆ ~ } Løsning: } ~ } ˆ ˆ ~ ƒ ƒ ~ } } ~ } } ~ ~ ~ ~ } } ƒ ~ ~ ~ ~ } } } ± ² ³ µ ˆ } ~ ƒ ƒ ~ } ~ ˆ Œ ~ ƒ } } ˆ ˆ } Œ ~ { ~ ˆ ƒ } } ~ ~ ˆ ~ } ~ ˆ ~ } ² ¹ º» ¼ ½ ¾ ½ ½ À ¼ ½ ¼ º Á ¼ ½ Â Ã Ä Ä ¼ Å ¹ º Á ¼ Æ Ç ¹ Ç È É Ã Â Ê ¹ ½ ¼ ½ ¼ Ë H Ì 0 ½  ¾ ¼ ½ Ç ¹ Ç È É Ã Â Ê ¹ ½ Í Ã º Å ¹ º Â Î Ê ¼ É É À Å ¹ º» ¼ ½ ¾ ½ ½ À Ë H 1 Š ~ ˆ ƒ ˆ ƒ ~ } } ª Ÿ Ÿ Ÿ ª ª Ÿ F = MS(factor) MS(error) Á»  ΠΠ¼ À º È ½ ½ É Ã À Å ¹ º Ð Å ¹ º Î Ã Â ¾ ¼ SS(factor)/(4 1) = =0.757 <F( ) = 3.24 SS(error)/(20 4) H 0 Ë Ÿ ª SS(factor)= SS(error) = ~ } ~ } } } w «} ~ ˆ ƒ ˆ ~ Š } ~ ˆ } ~ ~ } ~ ˆ ~ ƒ ƒ ~ ƒ ƒ ƒ ~ ˆ ˆ } ƒ ˆ ~ } ~ ˆ ˆ Š Ÿ Løsning (forts.): ý ÿ ü ÿ ÿ ÿ ÿ ü ø ù ú û ü ý þ þ ÿ ý þ ÿ ÿ ÿ ÿ ü ÿ þ ý ü ÿ û ü ÿ Fra eksamen 16. desember 2006 (forts. Oppgave 3) H 0-. & # ) " # $ $ # ' ' % & # ' + / # & + + ' & & + + ' ' $ " 0 1! " # " $ $! % # & ' ( $ # ) # " * + " % $ " ' ' + #. & " " + + " + H ; 4 ; : 4 < ; = : ; : ; 5 4 = ; = = 4 = ó Ò ô Þ Ú Ú Ö Û Ù Ö Ö Ý ê Ü Ù Õ Ù Ö Ù â õ ö â æ Þ î Þ Ü Ø Ù â Ü Ö Ý ê Ü Ù Õ Ù Ö Ù â Õ ö ; ; 9 t = d s D / n = / =4.93 >t( ) = Ý Ü ê Ù Û â Û ä Ö Ô â Ü Ø ê Ù Ö ã ã Ö ç H B A * " # " " * + % & # + 0 ' & ' # ' + / # & " 0 # ' + " # C " $ % & # + 0 ' & ' # ' + # " # " E & " $ ( F " # # ' + G % + # " 0 # ' + A + / + $ & + + ' # & ' D " # ) " #

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 11: Anvendelser av kjikvadratfordelingen: Kjikvadrattester Situasjon: Et tilfeldig utvalg av n individer er trukket

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 11: Anvendelser av kjikvadratfordelingen: Kjikvadrattester Situasjon: Et tilfeldig utvalg av n individer er trukket

Detaljer

Testobservator for kjikvadrattester

Testobservator for kjikvadrattester ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 11: Anvendelser av kjikvadratfordelingen: Kjikvadrattester Situasjon: t tilfeldig utvalg av n individer er trukket

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 11: Anvendelser av kjikvadratfordelingen Kapittel 12: Variansanalyse (ANOVA)

ST0202 Statistikk for samfunnsvitere Kapittel 11: Anvendelser av kjikvadratfordelingen Kapittel 12: Variansanalyse (ANOVA) ST0202 Statistikk for samfunnsvitere Kapittel 11: Anvendelser av kjikvadratfordelingen Kapittel 12: Variansanalyse (ANOVA) Bo Lindqvist Institutt for matematiske fag Bo Lindqvist, ST0202 2 Skittles (oppgave

Detaljer

Kap. 12: Variansanalyse

Kap. 12: Variansanalyse 2 Kap. 12: Variansanalyse Situasjon: c populasjoner, hver med sitt populasjonsgjennomsnitt μ i. Vi tester ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag H 0 : Alle populasjonene

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 12: Variansanalyse Situasjon: c populasjoner, hver med sitt populasjonsgjennomsnitt μ i. Vi tester H 0 : Alle populasjonene

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Inferens om varians og standardavvik for ett normalfordelt utvalg (9.4) Inferens om variansen til en normalfordelt populasjon

Detaljer

Notasjon og Tabell 8. ST0202 Statistikk for samfunnsvitere

Notasjon og Tabell 8. ST0202 Statistikk for samfunnsvitere 2 Inferens om varians og standardavvik for ett normalfordelt utvalg (9.4) Inferens om variansen til en normalfordelt populasjon bruker kjikvadrat-fordelingen ( chi-square distribution ) (der kji er den

Detaljer

ST0103 Brukerkurs i statistikk Forelesning 26, 18. november 2016 Kapittel 8: Sammenligning av grupper

ST0103 Brukerkurs i statistikk Forelesning 26, 18. november 2016 Kapittel 8: Sammenligning av grupper ST0103 Brukerkurs i statistikk Forelesning 26, 18. november 2016 Kapittel 8: Sammenligning av grupper Bo Lindqvist Institutt for matematiske fag 2 Kapittel 8: Sammenligning av grupper Situasjon: Vi ønsker

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to populasjoner med populasjonsgjennomsnitt henholdsvis

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 10: Inferens om to populasjoner Situasjon: Det er to populasjoner som vi ønsker å sammenligne. Vi trekker da et utvalg

Detaljer

Kap. 10: Inferens om to populasjoner. Eksempel. ST0202 Statistikk for samfunnsvitere

Kap. 10: Inferens om to populasjoner. Eksempel. ST0202 Statistikk for samfunnsvitere Kap. 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to populasjoner med populasjonsgjennomsnitt henholdsvis μ 1 og μ. Vi trekker da ett utvalg fra hver populasjon. ST00 Statistikk for

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon

ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon Bo Lindqvist Institutt for matematiske fag 2 Kap. 9: Inferens om én populasjon Statistisk inferens har som mål å tolke/analysere

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig

Detaljer

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig om populasjonen. Konkret: Analysere en observator for å finne ut noe om korresponderende

Detaljer

Forelesning 9 Kjikvadrattesten. Kjikvadrattest for bivariate tabeller (klassisk variant) Når kan vi forkaste H 0?

Forelesning 9 Kjikvadrattesten. Kjikvadrattest for bivariate tabeller (klassisk variant) Når kan vi forkaste H 0? Forelesning 9 Kjikvadrattesten Kjikvadrattesten er den mest benyttede metoden for å utføre statistiske generaliseringer fra bivariate tabeller. Kjikvadrattesten brukes til å teste nullhypotesen om at det

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 9: Inferens om én populasjon I Kapittel 8 brukte vi observatoren z = x µ σ/ n for å trekke konklusjoner om µ. Dette

Detaljer

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig om populasjonen. Konkret: Å analysere en utvalgsobservator for å trekke slutninger

Detaljer

DRIFTSANALYSER 2012/2013 FORELØBIGE RESULTATER

DRIFTSANALYSER 2012/2013 FORELØBIGE RESULTATER DRIFTSANALYSER FORELØBIGE RESULTATER A B C D E F C G H E I J K L B K F G K! " # $ %! & ' ( ) ( * + #, -! &!. & ) /! ( / ) - 0 1 - ' #.! ( ( * ' 1 2 ( (! 3 4 " (! - 5 6!! 7 % ' # 7 4 " (! - 1 2 # 7 4 8-1

Detaljer

EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE

EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Bokmål Faglig kontakt under eksamen: Bo Lindqvist, tlf. 97589418 EKSAMEN ST00 STATISTIKK FOR SAMFUNNSVITERE Torsdag

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Fra første forelesning: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg En delmengde av

Detaljer

Forelesning 10 Kjikvadrattesten

Forelesning 10 Kjikvadrattesten verdier Forelesning 10 Kjikvadrattesten To typer av statistisk generalisering: Statistisk hypotesetesting Statistiske hypoteser (H 0 og H 1 ) om populasjonen Finner forkastningsområdet for H 0 ut fra en

Detaljer

Fra første forelesning:

Fra første forelesning: 2 Fra første forelesning: ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag opulasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg En delmengde av populasjonen

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Kapittel 7: Utvalgsfordeling Bo Lindqvist Institutt for matematiske fag 2 Fra kapittel 1: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg

Detaljer

Krysstabellanalyse (forts.) SOS1120 Kvantitativ metode. 4. Statistisk generalisering. Forelesningsnotater 9. forelesning høsten 2005.

Krysstabellanalyse (forts.) SOS1120 Kvantitativ metode. 4. Statistisk generalisering. Forelesningsnotater 9. forelesning høsten 2005. SOS112 Kvantitativ metode Krysstabellanalyse (forts.) Forelesningsnotater 9. forelesning høsten 25 4. Statistisk generalisering Per Arne Tufte Eksempel: Hypoteser Eksempel: observerte frekvenser (O) Hvordan

Detaljer

EKSAMEN I FAG TMA4260 INDUSTRIELL STATISTIKK

EKSAMEN I FAG TMA4260 INDUSTRIELL STATISTIKK Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 12 Faglig kontakt under eksamen: Bo Lindqvist Tlf. 975 89 418 EKSAMEN I FAG TMA4260 INDUSTRIELL STATISTIKK Onsdag

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 13: Lineær korrelasjons- og regresjonsanalyse Kap. 13.1-13.3: Lineær korrelasjonsanalyse. Disse avsnitt er ikke pensum,

Detaljer

Målet med dette notatet er å dokumentere at det er funnet løsmasser ved grunnen og å dokumentere miljøgiftkonsentrasjonen i sedimentene.

Målet med dette notatet er å dokumentere at det er funnet løsmasser ved grunnen og å dokumentere miljøgiftkonsentrasjonen i sedimentene. NOTAT Oppdrag 1110630 Grunner Indre Oslofjord Kunde Kystverket Notat nr. 001 Dato 07.01.2015 Til Fra Kopi Kristine Pedersen-Rise Tom Øyvind Jahren [Navn] Sedimentundersøkelse ved Belgskjærbåen Kystverket

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 10: Inferens om to populasjoner

ST0202 Statistikk for samfunnsvitere Kapittel 10: Inferens om to populasjoner ST0202 Statistikk for samfunnsvitere Kapittel 10: Inferens om to populasjoner Bo Lindqvist Institutt for matematiske fag 2 Kapittel 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 13: Lineær regresjon og korrelasjon

ST0202 Statistikk for samfunnsvitere Kapittel 13: Lineær regresjon og korrelasjon ST0202 Statistikk for samfunnsvitere Kapittel 13: Lineær regresjon og korrelasjon Bo Lindqvist Institutt for matematiske fag http://wiki.math.ntnu.no/st0202/2012h/start 2 Kap. 13: Lineær korrelasjons-

Detaljer

Tegn og tekst. Et representert tegn kan vises på flere måter. Noen definisjoner. Enda noen definisjoner. \yvind og ]se N{rb}? a a a.

Tegn og tekst. Et representert tegn kan vises på flere måter. Noen definisjoner. Enda noen definisjoner. \yvind og ]se N{rb}? a a a. o o {rb} rprr på r år o prpp rpro r r rr rpro o r o or α r o or bor brp or b rr på ppr r r r r r rrr år på o oroooro o r or o br å r r pår r r orør p o b b år r å r o o o rprrr o p o rprrr o or op r r

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1120 Statistiske metoder og dataanalyse 2 Eksamensdag: Mandag 4. juni 2007. Tid for eksamen: 14.30 17.30. Oppgavesettet er

Detaljer

α =P(type I feil) = P(forkast H 0 H 0 er sann) =1 P(220 < X < 260 p = 0.6)

α =P(type I feil) = P(forkast H 0 H 0 er sann) =1 P(220 < X < 260 p = 0.6) TMA4245 Statistikk Vår 212 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving 4 blokk II Løsningsskisse Oppgave 1 4 personer spurt. Hvis mellom 22 og 26 personer svarer

Detaljer

Datamatrisen: observasjoner, variabler og verdier. Variablers målenivå: Nominal Ordinal Intervall Forholdstall (ratio)

Datamatrisen: observasjoner, variabler og verdier. Variablers målenivå: Nominal Ordinal Intervall Forholdstall (ratio) Datamatrisen: observasjoner, variabler og verdier. Variablers målenivå: Nominal Ordinal Intervall Forholdstall (ratio) Beskrive fordelinger (sentraltendens, variasjon og form): Observasjon y i Sentraltendens

Detaljer

Kort repetisjon fra kapittel 4. Oppsummering kapittel ST0202 Statistikk for samfunnsvitere. Betinget sannsynlighet og trediagram

Kort repetisjon fra kapittel 4. Oppsummering kapittel ST0202 Statistikk for samfunnsvitere. Betinget sannsynlighet og trediagram 2 Kort reetisjo fra kaittel 4 Betiget sasylighet og trediagram Eksemel: Fra e oulasjo av idrettsfolk trekkes e erso tilfeldig og testes for doig. De iteressate hedelsee er D=ersoe er doet, A=teste er ositiv.

Detaljer

TMA4240 Statistikk Høst 2007

TMA4240 Statistikk Høst 2007 TMA4240 Statistikk Høst 2007 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b4 Løsningsskisse Oppgave 1 Eksamen juni 1999, oppgave 3 av 3 a) µ populasjonsgjennomsnitt,

Detaljer

Sammenlikninger av gjennomsnitt. SOS1120 Kvantitativ metode. Kan besvare to spørsmål: Sammenlikning av to gjennomsnitt

Sammenlikninger av gjennomsnitt. SOS1120 Kvantitativ metode. Kan besvare to spørsmål: Sammenlikning av to gjennomsnitt SOS1120 Kvantitativ metode Forelesningsnotater 10. forelesning høsten 2005 Per Arne Tufte Sammenlikninger av gjennomsnitt Sammenlikner gjennomsnittet på avhengig variabel for ulike grupper av enheter Kan

Detaljer

EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE

EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 Bokmål Faglig kontakt under eksamen: Øyvind Bakke, tlf. 99041673 EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE Tirsdag

Detaljer

EKSAMEN I FAG TMA4255 ANVENDT STATISTIKK

EKSAMEN I FAG TMA4255 ANVENDT STATISTIKK Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Bo Lindqvist Tlf. 975 89 418 BOKMÅL EKSAMEN I FAG TMA4255 ANVENDT STATISTIKK Onsdag

Detaljer

Offentlig utvalg for punktskrift, OUP Norsk standard for 8-punktskrift punktskrift 24. oktober 2004 sist endret

Offentlig utvalg for punktskrift, OUP Norsk standard for 8-punktskrift punktskrift 24. oktober 2004 sist endret Offentlig utvalg for punktskrift, OUP Norsk standard for 8-punktskrift punktskrift 24. oktober 2004 sist endret 19.10.2007 Desimal Hex Beskrivelse Tegnets utseende Punktkode 0 0000 4578

Detaljer

ECON240 VÅR / 2016 BOKMÅL

ECON240 VÅR / 2016 BOKMÅL ECON240 VÅR / 2016 BOKMÅL UNIVERSITETET I BERGEN EKSAMEN UNDER SAMFUNNSVITENSKAPELIG GRAD [ DATO og KLOKKESLETT FOR EKSAMEN (START OG SLUTT) ] Tillatte hjelpemidler: Matematisk formelsamling av K. Sydsæter,

Detaljer

TMA4240 Statistikk H2010 (20)

TMA4240 Statistikk H2010 (20) TMA4240 Statistikk H2010 (20) 10.5: Ett normalfordelt utvalg, kjent varians (repetisjon) 10.4: P-verdi 10.6: Konfidensintervall vs. hypotesetest 10.7: Ett normalfordelt utvalg, ukjent varians Mette Langaas

Detaljer

TMA4245 Statistikk Eksamen desember 2016

TMA4245 Statistikk Eksamen desember 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer

Detaljer

EKSAMEN I FAG TMA4255 FORSØKSPLANLEGGING OG ANVENDTE STATISTISKE METODER

EKSAMEN I FAG TMA4255 FORSØKSPLANLEGGING OG ANVENDTE STATISTISKE METODER Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 8 Faglig kontakt under eksamen: Bo Lindqvist Tlf. 975 89 418 EKSAMEN I FAG TMA4255 FORSØKSPLANLEGGING OG ANVENDTE

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 9-10 (oversikt): Inferens om én og to populasjoner

ST0202 Statistikk for samfunnsvitere Kapittel 9-10 (oversikt): Inferens om én og to populasjoner ST0202 Statistikk for samfunnsvitere Kapittel 9-10 (oversikt): Inferens om én og to populasjoner Bo Lindqvist Institutt for matematiske fag 2 Inferens med EN populasjon 3 Oppgave: H2002 # 3 I følge Nielsen

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 11, blokk II I denne øvingen skal vi fokusere på hypotesetesting. Vi ønsker å gi dere

Detaljer

TMA4240 Statistikk H2010 (22)

TMA4240 Statistikk H2010 (22) TMA4240 Statistikk H2010 (22) 10.11-10.12: Testing av andelser 10.13: Testing av varians i ett N utvalg Mette Langaas Foreleses onsdag 3.november, 2010 2 Laban strakk seg ikke lenger, men smaker den bedre?

Detaljer

Godkjenning av møteinnkalling

Godkjenning av møteinnkalling ! " # $ % & ' ( ) * * + *, -. / 0 1 ) + * * ' - 2 2 + *, 3 " 4 3 5 4 " # 5! " # $ % & ' ( ) * * + *, -. 6 7 % 1 % ' % 2 2 8 7 - / 0 1 ) 5 3 4 3 " 4 " # 9 :! " # ; 7 + ) * 1 ) 7 + *, % / < - / / ) * < 2

Detaljer

1 11-1: Kji-kvadrat fordelingen : Krysstabeller og kji-kvadrattesten. 3 Kji-kvadrattesten i JMP

1 11-1: Kji-kvadrat fordelingen : Krysstabeller og kji-kvadrattesten. 3 Kji-kvadrattesten i JMP 1 11-1: Kji-kvadrat fordelingen 2 11-3: Krysstabeller og kji-kvadrattesten 3 Kji-kvadrattesten i JMP Kapittel 11 Samvariasjon mellom to kategoriske variabler Korrelasjon og regresjon handler om samvariasjon

Detaljer

Sannsynligheten for en hendelse (4.2) Empirisk sannsynlighet. ST0202 Statistikk for samfunnsvitere

Sannsynligheten for en hendelse (4.2) Empirisk sannsynlighet. ST0202 Statistikk for samfunnsvitere 2 Sannsynligheten for en hendelse (4.2) Sannsynligheten for en hendelse sier oss hvor ofte vi forventer at hendelsen inntreffer, dvs. den forventede relative frekvens av hendelsen. ST0202 Statistikk for

Detaljer

EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE

EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 Bokmål Faglig kontakt under eksamen: Bo Lindqvist, tlf. 97589418 EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE Tirsdag

Detaljer

Kapittel 3: Studieopplegg

Kapittel 3: Studieopplegg Oversikt over pensum Kapittel 1: Empirisk fordeling for en variabel o Begrepet fordeling o Mål for senter (gj.snitt, median) + persentiler/kvartiler o Mål for spredning (Standardavvik s, IQR) o Outliere

Detaljer

Eksamensoppgave i ST1201/ST6201 Statistiske metoder

Eksamensoppgave i ST1201/ST6201 Statistiske metoder Institutt for matematiske fag Eksamensoppgave i ST1201/ST6201 Statistiske metoder Faglig kontakt under eksamen: Tlf: Eksamensdato: august 2015 Eksamenstid (fra til): Hjelpemiddelkode/Tillatte hjelpemidler:

Detaljer

Oppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2.

Oppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2. Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 17 november 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk Tapir

Detaljer

Tillatte hjelpemidler: C3: alle typer kalkulator, alle andre hjelpemidler

Tillatte hjelpemidler: C3: alle typer kalkulator, alle andre hjelpemidler EKSAMENSOPPGAVER Institutt: Eksamen i: Tid: IKBM STAT100 Torsdag 13.des 2012 STATISTIKK 09.00-12.30 (3.5 timer) Emneansvarlig: Solve Sæbø ( 90065281) Tillatte hjelpemidler: C3: alle typer kalkulator, alle

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Tilfeldige variable (5.2) Dersom vi til hvert utfall av eksperimentet tilordner et tall, har vi laget en tilfeldig variabel.

Detaljer

STK juni 2016

STK juni 2016 Løsningsforslag til eksamen i STK220 3 juni 206 Oppgave a N i er binomisk fordelt og EN i np i, der n 204 Hvis H 0 er sann, er forventningen lik E i n 204/6 34 for i, 2,, 6 6 Hvis H 0 er sann er χ 2 6

Detaljer

Tilfeldige variable (5.2)

Tilfeldige variable (5.2) Tilfeldige variable (5.) Dersom vi til hvert utfall av eksperimentet tilordner et tall, har vi laget en tilfeldig variabel. Tilfeldig variabel: En variabel som har en numerisk verdi for hvert utfall i

Detaljer

TMA4240 Statistikk Eksamen desember 2015

TMA4240 Statistikk Eksamen desember 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4240 Statistikk Eksamen desember 15 Oppgave 1 La den kontinuerlige stokastiske variabelen X ha fordelingsfunksjon (sannsynlighetstetthet

Detaljer

Hypotesetest: generell fremgangsmåte

Hypotesetest: generell fremgangsmåte TMA4240 Statistikk H2010 (21) 10.8, 10.10: To normalfordelte utvalg 10.9: Teststyrke og antall observasjoner Mette Langaas Foreleses mandag 1.november, 2010 2 Hypotesetest: generell fremgangsmåte Generell

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 TMA4240 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 11 Oppgavene i denne øvingen dreier seg om hypotesetesting og sentrale begreper

Detaljer

Handi-Lift EA7 Målskjema

Handi-Lift EA7 Målskjema Handi-Lift EA7 Målskjema Dato: Monteringsdato: Vår ref.: Bestillings nr.: Kunde (HMS): Utprøvingsnr.: Bruker Navn: Bruker nr.: Fødselsdato: Adresse: Postnr.: Poststed: Telefon (priv.): Telefon (arb.):

Detaljer

Eksamensoppgave i TMA4255 Anvendt statistikk

Eksamensoppgave i TMA4255 Anvendt statistikk Institutt for matematiske fag Eksamensoppgave i TMA4255 Anvendt statistikk Faglig kontakt under eksamen: Anna Marie Holand Tlf: 951 38 038 Eksamensdato: 30. mai 2014 Eksamenstid (fra til): 09:00-13:00

Detaljer

Eksamensoppgave i TMA4240 Statistikk

Eksamensoppgave i TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Håkon Tjelmeland a, Sara Martino b Tlf: a 48 22 18 96, b 99 40 33 30 Eksamensdato: 30. november 2017 Eksamenstid

Detaljer

EKSAMENSOPPGAVER STAT100 Vår 2011

EKSAMENSOPPGAVER STAT100 Vår 2011 EKSAMENSOPPGAVER STAT100 Vår 2011 Løsningsforslag Oppgave 1 (Med referanse til Tabell 1) a) De 3 fiskene på 2 år hadde lengder på henholdsvis 48, 46 og 35 cm. Finn de manglende tallene i Tabell 1. Test

Detaljer

Målskjema. Serie nr.: Bruker Navn: Adresse: Kontaktpersoner. E-post: E-post: Levering Adresse:

Målskjema. Serie nr.: Bruker Navn: Adresse: Kontaktpersoner. E-post: E-post: Levering Adresse: Strategos B Målskjema Kunde: Selger: Ordredato: Ordre nr.: Bestillings nr. (HMS): Innkjøps nr. (Handicare): Serie nr.: Bruker Navn: Adresse: Postnr.: Poststed: Telefon (priv.): Telefon (arb.): Mobil: Kontaktpersoner

Detaljer

Handi-Lift EA7 Målskjema

Handi-Lift EA7 Målskjema Handi-Lift EA7 Målskjema Dato: Monteringsdato: Vår ref.: Bestillings nr.: Kunde (HMS): Utprøvingsnr.: Bruker Navn: Bruker nr.: Fødselsdato: Adresse: Postnr.: Poststed: Telefon (priv.): Telefon (arb.):

Detaljer

STRATEGOS B. Målskjema. Serie nr.: Bruker Navn: Adresse: Kontaktpersoner. E-post: E-post: Levering Avd. Bruker Annet: Adresse:

STRATEGOS B. Målskjema. Serie nr.: Bruker Navn: Adresse: Kontaktpersoner. E-post: E-post: Levering Avd. Bruker Annet: Adresse: STRATEGOS B Målskjema Kunde: Ordredato: Bestillings nr. (HMS): Serie nr.: Selger: Ordre nr.: Innkjøps nr. (Handicare): Bruker Navn: Adresse: Postnr.: Telefon (priv.): Mobil: Poststed: Telefon (arb.): E-post:

Detaljer

Eksamensoppgave i TMA4255 Anvendt statistikk

Eksamensoppgave i TMA4255 Anvendt statistikk Institutt for matematiske fag Eksamensoppgave i TMA4255 Anvendt statistikk Faglig kontakt under eksamen: Anna Marie Holand Tlf: 951 38 038 Eksamensdato: 16. mai 2015 Eksamenstid (fra til): 09:00-13:00

Detaljer

EKSAMEN I TMA4255 ANVENDT STATISTIKK

EKSAMEN I TMA4255 ANVENDT STATISTIKK Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Mette Langaas (988 47 649) BOKMÅL EKSAMEN I TMA4255 ANVENDT STATISTIKK Onsdag 8. august

Detaljer

A. i) Sett opp en frekvenstabell over de fire mulige kombinasjonene av kjønn og røykestatus. Dvs. fyll inn. Ikke - røyker Sum Jente Gutt Sum 25

A. i) Sett opp en frekvenstabell over de fire mulige kombinasjonene av kjønn og røykestatus. Dvs. fyll inn. Ikke - røyker Sum Jente Gutt Sum 25 1 ECON21: ESAEN 215v SENSORVEILEDNING. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i > Grensen til bestått bør ligge på ca

Detaljer

i x i

i x i TMA4245 Statistikk Vår 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalte oppgaver 11, blokk II Oppgavene i denne øvingen dreier seg om hypotesetesting og sentrale

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Eksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet STK1110 FASIT. Eksamensdag: Tirsdag 11. desember 2012. Tid for eksamen: 14.30 18.30. Oppgavesettet er på 5 sider. Vedlegg: Tillatte

Detaljer

Kp. 14 Flerfaktoreksperiment. Kp. 14: Flerfaktor-eksperiment; oversikt

Kp. 14 Flerfaktoreksperiment. Kp. 14: Flerfaktor-eksperiment; oversikt uten med Kp 14 Flerfaktor-eksperiment Bjørn H Auestad Kp 14: To-faktor eksperiment 1 / 20 Kp 14: Flerfaktor-eksperiment; oversikt uten med 141 Introduction 142 Interaction in the Two-Factor Experiment

Detaljer

Eksamensoppgave i samfunnsfaglig forskningsmetode 16. mai 2003

Eksamensoppgave i samfunnsfaglig forskningsmetode 16. mai 2003 Eksamensoppgave i samfunnsfaglig forskningsmetode 16. mai 03 Oppgave 1 1 Tabell 1 gjengir data fra en spørreundersøkelse blant personer mellom 17 og 66 år i et sannsynlighetsutvalg fra SSB sitt sentrale

Detaljer

Snøtetthet. Institutt for matematiske fag, NTNU 15. august Notat for TMA4240/TMA4245 Statistikk

Snøtetthet. Institutt for matematiske fag, NTNU 15. august Notat for TMA4240/TMA4245 Statistikk Snøtetthet Notat for TMA424/TMA4245 Statistikk Institutt for matematiske fag, NTNU 5. august 22 I forbindelse med varsling av om, klimaforskning og særlig kraftproduksjon er det viktig å kunne anslå hvor

Detaljer

EKSAMEN I FAG TMA4315 GENERALISERTE LINEÆRE MODELLER Torsdag 14. desember 2006 Tid: 09:0013:00

EKSAMEN I FAG TMA4315 GENERALISERTE LINEÆRE MODELLER Torsdag 14. desember 2006 Tid: 09:0013:00 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Bo Lindqvist, tlf. 975 89 418 EKSAMEN I FAG TMA4315 GENERALISERTE LINEÆRE MODELLER

Detaljer

'f( '?jfj(f{) Pa vegne av styret i Lenningen L(Ilypelag. Til Andelseiere og sponsorer i Lenningen L0ypelag!

'f( '?jfj(f{) Pa vegne av styret i Lenningen L(Ilypelag. Til Andelseiere og sponsorer i Lenningen L0ypelag! Til Andelseiere og sponsorer i Lenningen L0ypelag! Det ble valgt et helt nytt styre i Lenningen L(Ilypelag pa Arsm(lltet 7 oktober i ar. Protokoll fra m(lltet f(lliger vedlagt. Det ble fremlagt et budsjett

Detaljer

TMA4240 Statistikk H2010 (19)

TMA4240 Statistikk H2010 (19) TMA4240 Statistikk H2010 (19) Hypotesetesting 10.1-10.3: Generelt om statistiske hypoteser 10.5: Ett normalfordelt utvalg Mette Langaas Foreleses mandag 25.oktober, 2010 2 Estimering og hypotesetesting

Detaljer

TMA4240 Statistikk Høst 2009

TMA4240 Statistikk Høst 2009 TMA4240 Statistikk Høst 2009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b5 Løsningsskisse Oppgave 1 Vi ønsker å finne ut om et nytt serum kan stanse leukemi.

Detaljer

Statistikk og dataanalyse

Statistikk og dataanalyse Njål Foldnes, Steffen Grønneberg og Gudmund Horn Hermansen Statistikk og dataanalyse En moderne innføring Kapitteloversikt del 1 INTRODUKSJON TIL STATISTIKK Kapittel 1 Populasjon og utvalg 19 Kapittel

Detaljer

Denne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans

Denne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner

Detaljer

MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: n + (x 0 x) 2 σ2

MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: n + (x 0 x) 2 σ2 MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: Oppgave 11.27 (11.6:13) Modell: Y i = α + βx i + ε i der ε 1,..., ε n u.i.f. N(0, σ 2 ). Skal finne konfidensintervall

Detaljer

Høgskolen i Telemark. Institutt for økonomi og informatikk FORMELSAMLING Statistikk I. Til bruk ved eksamen. Per Chr. Hagen

Høgskolen i Telemark. Institutt for økonomi og informatikk FORMELSAMLING Statistikk I. Til bruk ved eksamen. Per Chr. Hagen Høgskolen i Telemark Institutt for økonomi og informatikk FORMELSAMLING 6005 Statistikk I Til bruk ved eksamen Per Chr. Hagen . Sannsynlighetsregning. Regneregler Komplementsetningen: Addisjonssetningen:

Detaljer

Fasit for tilleggsoppgaver

Fasit for tilleggsoppgaver Fasit for tilleggsoppgaver Uke 5 Oppgave: Gitt en rekke med observasjoner x i (i = 1,, 3,, n), definerer vi variansen til x i som gjennomsnittlig kvadratavvik fra gjennomsnittet, m.a.o. Var(x i ) = (x

Detaljer

Godkjenning av møteinnkalling

Godkjenning av møteinnkalling ! "! # $ % & ' ( ) * * + *, -. / 0 1 ) + * * ' - 2 2 + *, 3 4 5 6 3 5! # 7! "! # $ % & ' ( ) * * + *, -. 8 9 % 1 % ' % 2 2 : 9 - / 0 1 )!! 5! 3 5! 4 ;! "! # < 9 + ) * 1 ) 9 + *,. ) & 9 5 % : : ) * 1 2

Detaljer

MOT310 Statistiske metoder 1, høsten 2011 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: n + (x 0 x) 2 1. n + (x 0 x) 1 2 ) = 1 γ

MOT310 Statistiske metoder 1, høsten 2011 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: n + (x 0 x) 2 1. n + (x 0 x) 1 2 ) = 1 γ MOT310 Statistiske metoder 1, høsten 2011 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: Oppgave 11.25 (11.27, 11.6:13) Modell: Y i = α + βx i + ε i der ε 1,..., ε n u.i.f. N(0, σ 2 ). Skal nne

Detaljer

TMA4245 Statistikk Eksamen august 2014

TMA4245 Statistikk Eksamen august 2014 TMA4245 Statistikk Eksamen august 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Oppgave 1 En bedrift produserer en type medisin i pulverform Medisinen selges på flasker

Detaljer

Verdens statistikk-dag.

Verdens statistikk-dag. Verdens statistikk-dag http://unstats.un.org/unsd/wsd/ Signifikanstester Ønsker å teste hypotese om populasjon Bruker data til å teste hypotese Typisk prosedyre Beregn sannsynlighet for utfall av observator

Detaljer

Oppgaver til Studentveiledning 3 MET 3431 Statistikk

Oppgaver til Studentveiledning 3 MET 3431 Statistikk Oppgaver til Studentveiledning 3 MET 3431 Statistikk 24. april 2012 kl 17.15-20.15 i B2 Handelshøyskolen BI 2 Oppgaver 1. Eksamensoppgaver: Eksamen 01/06/2011: Oppgave 1-7. Eksamensoppgaven fra 06/2011

Detaljer

Eksamensoppgave i ST1201/ST6201 Statistiske metoder

Eksamensoppgave i ST1201/ST6201 Statistiske metoder Institutt for matematiske fag Eksamensoppgave i ST1201/ST6201 Statistiske metoder Faglig kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: 20. desember 2016 Eksamenstid (fra til): 09:00

Detaljer

Eksamensoppgave i TMA4255 Anvendt statistikk

Eksamensoppgave i TMA4255 Anvendt statistikk Institutt for matematiske fag Eksamensoppgave i TMA4255 Anvendt statistikk Faglig kontakt under eksamen: Anna Marie Holand Tlf: 951 38 038 Eksamensdato: August 2014 Eksamenstid (fra til): Hjelpemiddelkode/Tillatte

Detaljer

Tegn og tekst. Om tegn og glyfer. Tegnkoder og kodetabeller Kode Noe som representerer noe annet. Et representert tegn kan vises på flere måter

Tegn og tekst. Om tegn og glyfer. Tegnkoder og kodetabeller Kode Noe som representerer noe annet. Et representert tegn kan vises på flere måter r s s {rb} ærb p br brp r bs srr på ppr sr sr ss r r r rrr år på s s s sr rr s ss r r s brs å sr r pår rss r rør sp b b år rss å r s s s rprsr ss på r år prspp rprss r rs rr rprss r s r α r s r br s rprsrr

Detaljer

KATEGORISKE DATA- TABELLANALYSE ANALYSE AV. Tron Anders Moger. 3. Mai 2005

KATEGORISKE DATA- TABELLANALYSE ANALYSE AV. Tron Anders Moger. 3. Mai 2005 ANALYSE AV KATEGORISKE DATA- TABELLANALYSE 3. Mai 2005 Tron Anders Moger Forrige gang: Snakket om kontinuerlige data, dvs data som måles på en kontinuerlig skala Hypotesetesting med t-tester evt. ikkeparametriske

Detaljer

Løsningsforslag eksamen STAT100 Høst 2010

Løsningsforslag eksamen STAT100 Høst 2010 Løsningsforslag eksamen STAT100 Høst 2010 Oppgave 1 a) To-utvalg, parvise data. La Y være tilfeldig variabel som angir antall drepte i periode 1 og tilsvarende X for periode 2. Vi antar parvise avhengigheter

Detaljer

MOT310 Statistiske metoder 1, høsten 2011

MOT310 Statistiske metoder 1, høsten 2011 MOT310 Statistiske metoder 1, høsten 2011 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 30. oktober, 2011 Bjørn H. Auestad Kp. 13: Én-faktor eksperiment 1 / 15 -tabell

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag Situasjonen er som i quiz-eksempelet: n = 4, p = 1/3 ( suksess betyr å gjette riktig alternativ), q = 2/3. Oppgave: Finn

Detaljer

Eksamensoppgave i TMA4240 Statistikk

Eksamensoppgave i TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806

Detaljer

Hypotesetesting. Formulere en hypotesetest: Når vi skal test om en parameter θ kan påstås å være større enn en verdi θ 0 skriver vi dette som:

Hypotesetesting. Formulere en hypotesetest: Når vi skal test om en parameter θ kan påstås å være større enn en verdi θ 0 skriver vi dette som: Hypotesetesting. 10 og fore- Dekkes av pensumsidene i kap. lesingsnotatene. Hypotesetesting er en systematisk fremgangsmåte for å undersøke hypoteser (påstander) knyttet til parametre i sannsynlighetsfordelinger.

Detaljer