ST0202 Statistikk for samfunnsvitere

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "ST0202 Statistikk for samfunnsvitere"

Transkript

1 ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag

2 2 Kap. 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to populasjoner med populasjonsgjennomsnitt henholdsvis µ 1 og µ 2. Vi trekker da ett utvalg fra hver populasjon. To muligheter: Vi kan ha avhengige eller uavhengige utvalg. Avhengige utvalg: De samme kilder (person, gjenstand, etc.) brukes for å få data fra de to populasjonene. Uavhengige utvalg: Det trekkes ett utvalg fra hver populasjon, og kildene for dataene fra de to populasjonene har ingen sammenheng med hverandre.

3 3 Eksempel Undersøk om et nytt treningsprogram påvirker det fysiske nivået til elevene ved en videregående skole. Populasjon 1: Alle elevene før de gjennomgår programmet. Populasjon 2: Alle elevene etter at de har gjennomgått programmet. Spørsmål: Er populasjon 2 i bedre form enn populasjon 1?

4 Uavhengige utvalg: Trekk 6 elever som ennå ikke har gjennomgått treningsprogrammet og test dem. Trekk 6 elever som har gjennomgått treningsprogrammet og test dem. Elevene i de to utvalgene er forskjellige. Dataene er et sett med 6 verdier for hvert utvalg. Avhengige utvalg: Trekk 6 elever. Test dem før de gjennomgår treningsprogrammet, la dem så gjennomgå programmet og test de samme elevene etterpå. Elevene i de to utvalgene er de samme. Dataene er to verdier for hver av de 6 elevene (såkalte pardata - paired data )

5 5 Eksempel med avhengige utvalg Sammenligner to typer dekk A og B med hensyn på dekkslitasje. På 6 biler monteres ett bildekk av hver type på forhjulene. Dekkslitasje etter kjøring en viss lengde måles: Bil Dekk A (x 1 ) Dekk B (x 2 ) Pardifferanse (d = x 1 x 2 ) Vil basere analysen på differansene d. Fordel: x-ene varierer mye, da de er påvirket av mange faktorer: Bilens tyngde, type kjøring, førerens kjørevaner etc. Slike effekter elimineres i høy grad ved å basere analysen på d-ene. Dette er essensen i bruk av avhengige utvalg.

6 6 Inferens om forskjell i forventning ved å bruke to avhengige utvalg (10.3) Har nå pardata, x 1 og x 2, for hvert av n utvalgte par. Vi ønsker å finne ut om det er forskjell på forventningsverdiene µ 1 og µ 2 i de to populasjonene. For dette ser vi på: Pardifferanse ( paired difference ): d = x 1 x 2 beregnet for hvert av de n parene Antagelse om fordeling for d: Antar at de to populasjonene er normalfordelte og at de n forsøksenhetene er tilfeldig trukket ut. Da danner de beregnede d et tilfeldig utvalg fra en normalfordeling med forventning og standardavvik som vi kaller µ d og σ d. Her er µ d = µ 1 µ 2 forskjellen i forventet verdi mellom de to populasjonene, mens σ d kan estimeres fra utvalget av d.

7 Tilbake til dekk-eksemplet: På 6 biler monteres ett bildekk av hver type på forhjulene. Dekkslitasje etter kjøring en viss lengde måles: Bil Dekk A (x 1 ) Dekk B (x 2 ) Pardifferanse (d = x 1 x 2 ) Beregninger: d = 6.3 (punktestimat for µ d ), s d = 5.1 (utvalgsstandardavvik for d-ene; punktestimat for σ d ) For statistisk inferens om µ d sitter vi dermed med kun ett utvalg (av d-er), og vi er dermed tilbake til situasjonen i kap. 9.

8 8 Konfidensintervall og tester for forventet forskjell µ d ved avhengige utvalg Konfidensintervall og testing er basert på t = d µ d s d / n, som er t-fordelt med df = n 1 frihetsgrader. Et 1 α konfidensintervall for µ d er gitt ved d ± t(n 1, α/2) s d n Mest aktuelle nullhypotese er: H 0 : µ d = 0 (hvorfor?) mot ulike alternativer for µ d Testobservator er da: t = d s d / n

9 Oppgave: Finn et 90% konfidensintervall for µ d i dekk-eksemplet. Test H 0 : µ d = 0 mot H a : µ d > 0 med 5% signifikansnivå. Beskriv med ord hva vi ønsker å finne ut med denne testen.

10 10 Inferens om forskjell i forventning ved å bruke to uavhengige utvalg (10.4) Populasjon 1: Populasjon 2 µ 1 forventning µ 2 forventning (populasjonsgjennomsnitt) (populasjonsgjennomsnitt) σ 1 populasjonsstandardavvik σ 2 populasjonsstandardavvik n 1 observasjoner n 2 observasjoner x 1 observert variabel x 2 observert variabel x 1 utvalgsgjennomsnitt x 2 utvalgsgjennomsnitt s 1 utvalgsstandardavvik s 2 utvalgsstandardavvik Vi er nå interessert i µ 1 µ 2, som har punktestimat x 1 x 2

11 11 Utvalgsfordeling for x 1 x 2 Antagelse: Uavhengige utvalg av størrelse n 1 og n 2 trekkes tilfeldig fra normalfordelte populasjoner. Da er x 1 x 2 normalfordelt med 1. forventning 2. standardfeil σ x1 x 2 = µ x1 x 2 = µ 1 µ 2 ) ( σ 2 1 n 1 + ( σ 2 2 n 2 )

12 Dette betyr at z = x 1 x 2 (µ 1 µ 2 ) (σ ) ( ) 2 1 σ 2 n n 2 er standard normalfordelt og kan brukes til inferens om µ 1 µ 2 hvis σ 1 og σ 2 er kjente. Hvis σ 1 og σ 2 er ukjente, erstattes disse med s 1 og s 2, og inferens baseres på t = x 1 x 2 (µ 1 µ 2 ) ( ) ( ) s 2 1 s 2 n n 2 som er tilnærmet t-fordelt med df frihetsgrader (se neste side).

13 Det korrekte antall frihetsgrader for t er df = {( ) ( )} s 2 1 s 2 2 n n 2 (s1 2/n 1) 2 n (s2 2 /n 2) 2 n 2 1 (1) (avrundet nedover til nærmeste hele tall). Dette brukes i kalkulatorer og dataprogrammer, men for å gjøre analyser enklere vil vi bruke som df for t: df = det minste av n 1 1 og n 2 1 (2) (Det kan vises at formelen (1) alltid gir en df mellom (2) og n 1 + n 2 2). Men: Ved å bruke (2) gjør vi inferensen konservativ i den forstand at vi får lengre konfidensintervall og høyere kritiske verdier for tester enn ved å bruke formelen (1).

14 14 Konfidensintervall for forventet forskjell ved uavhengige utvalg Et 1 α konfidensintervall for µ 1 µ 2 er gitt ved ) ( ) x 1 x 2 ± t(df, α/2) ( s 2 1 s n 1 n 2 der df er lik det minste av n 1 1 og n 2 1, eller eventuelt gitt ved formelen på forrige side,

15

16

17 Fra eksamen 24. mai 2003 Oppgave 1 Vekta (i kilogram) til forsvarsspillerne, x, og til angrepsspillerne, y, i Molde Fotballklubbs A-stall (MFK) er slik: x y Det oppgis at x = 501, x 2 = 41935, y = 387 og y 2 = a) Finn utvalgsmiddelverdiene og utvalgsstandardavvikene for de to utvalgene. Anta at vi kan betrakte forsvarsspillerne og angrepsspillerne i MFK som uavhengige tilfeldige utvalg fra henholdsvis populasjonen av alle forsvarsspillere og populasjonen av alle angrepsspillere på høyt nivå. b) Foreslå en testmetode for å undersøke om det er noen forskjell i gjennomsnittsvekta til forsvarsspillere og angrepsspillere på høyt nivå. Gjør greie for antakelsene for testmetoden. c) Utfør testen med signifikansnivå α = 0,10.

18 Løsning: Skriver x 1 for x, x 2 for y µ 1 er forventet vekt for forsvarsspiller µ 2 er forventet vekt for angrepsspiller a) x 1 = 501/6 = 83.5, x 2 = 387/5 = 77.4 s 1 = s 2 = Σx 2 1 (Σx 1) 2 /n 1 n 1 1 Σx 2 2 (Σx 2) 2 /n 2 n 2 1 = = (501) 2 /6 = (387) 2 /5 =

19 b) Bruker t-test for to uavhengige utvalg ( to-utvalgs t-test ). Utvalgene må være uavhengige og tilfeldige, fra normalfordelte populasjoner (viser seg rimelig for vekt). Tester H 0 : µ 1 µ 2 = 0 mot H 1 : µ 1 µ 2 0 c) Testobservator t x = 1 x 2 ( ) ( ) = s 2 1 s 2 n n ) + ( ( ) = 2.59 Hvis H 0 gjelder er t tilnærmet t-fordelt med df = 4 (minimum av 6-1 og 5-1). Klassisk metode: Forkast H 0 hvis t < t(4, 0.10/2) = t(4, 0.05) = 2.13 (tabell 6), eller hvis t > t(4, 0.05) = Vi forkaster altså H 0 og påstår H a siden 2.59 > 2.13.

20 Metode med p-verdi: p-verdi er gitt ved sannsynligheten for å få det vi har fått eller noe mer ekstremt i forhold til nullhypotesen, dvs. her P(t < 2.59) + P(t > 2.59) = 2 P(t > 2.59) når t er t-fordelt med 4 frihetsgrader. Tabell 7 gir at P(t > 2.6) = 0.03, så p-verdien blir ca = 0.06, som altså er mindre enn signifikansnivået på Vi forkaster altså H 0. Det er tidligere bemerket at dette er en konservativ metode. Det korrekte antall frihetsgrader er muligens større enn 4, noe som ville ha gitt en mindre p-verdi, og lavere kritisk verdi. Men sålenge vi forkaster, har dette ingen betydning for konklusjonen. (Formelen (1) for df ville gitt 8.7, dvs vi kunne ha brukt 8 frihetsgrader. Kritiske verdier ville da ha blitt ±1.86 istedenfor ±2.13, mens p-verdi ville blitt istedenfor )

21 Oppgave: Jeg har trukket 10 tall fra populasjon 1 som er normalfordelt med forventning µ 1 og standardavvik σ 1 : med utvalgsgjennomsnitt x 1 = 47.0 og utvalgsstandardavvik s 1 = Dessuten har jeg trukket 10 tall fra en populasjon 2 som er normalfordelt med forventning µ 2 og standardavvik σ 2 : med utvalgsgjennomsnitt x 2 = 32.9 og utvalgsstandardavvik s 2 = 5.6 Finn punktestimat for µ 1 µ 2 Finn 90% konfidensintervall for µ 1 µ 2. Er µ 1 = µ 2? Bruk 5% signifikansnivå.

22 Fordelinger som dataene er trukket fra: Populasjon 1: Normalfordeling med µ 1 = 50, σ 1 = 10 Populasjon 2: Normalfordeling med µ 2 = 35, σ 2 = 5

23 23 Inferens om forskjell mellom andeler i to populasjoner basert på uavhengige utvalg (10.5) p 1 andel suksesser i populasjon 1 p 2 andel suksesser i populasjon 2 x 1 antall suksesser i utvalg 1 x 2 antall suksesser i utvalg 2 p 1 = x 1 n 1 andel suksesser i utvalg 1 p 2 = x 2 n 2 andel suksesser i utvalg 2 Vil gjøre inferens om p 1 p 2 ved hjelp av p 1 p 2.

24 Repetisjon: Binomisk situasjon med ett utvalg Andel med suksess i utvalget er p = x n Utvalgsfordelingen: µ p = p så σ p = pq n z = p p pq n er tilnærmet standard normalfordelt

25 25 Binomisk situasjon med to utvalg Hvis uavhengige utvalg på n 1 og n 2 trekkes tilfeldig fra store populasjoner med suksess-sannsynligheter p 1 og p 2, vil utvalgsfordelingen for p 1 p 2 ha egenskapene: 1. forventning: 2. standardfeil: µ p 1 p 2 = p 1 p 2 σ p 1 p 2 = p1 q 1 n 1 + p 2q 2 n 2 3. tilnærmet normalfordelt når n 1 og n 2 er store

26 Dermed er z = p 1 p 2 (p 1 p 2 ) p1 q 1 n 1 + p 2q 2 n 2 tilnærmet standard normalfordelt når n 1 og n 2 er store. Et tilnærmet (1 α)-konfidensintervall for p 1 p 2 er gitt ved Altså som vanlig: p 1 p 2 ± z(α/2) p 1 q 1 n 1 + p 2 q 2 n 2 punktestimat ± z(α/2) standardfeil

27 Hypotesetesting om p 1 p 2. Vanlig å teste H 0 : p 1 p 2 = 0 som er det samme som H 0 : p 1 = p 2 Tar utgangspunkt i den standard normalfordelte og lager testobservatoren z = p 1 p 2 (p 1 p 2 ) p1 q 1 n 1 + p 2q 2 n 2 z = p 1 p 2 p p q p n 1 + p pq p n 2 der p p er et punktestimat for verdien av p 1 = p 2 når H 0 er sann. Et naturlig estimat er p p = x 1 + x 2 n 1 + n 2 Da er z tilnærmet standard normalfordelt når H 0 gjelder og vi kan basere testen på den.

28 Fra! " #! " $ eksamen 5. desember " ', -.% %& " $! '($) " " $ *p , /3 B p 0#6$ T pt 45 /0)$ 12 /3/ H0 : pb = pt Ha : pb >

29 Løsning 9::;<=>? = p B p T (p B p T ) = p p (1 p p) + p p(1 p p) n1 n2 p B p T p p (1 p p) + p p(1 p p) n1 n2 CKLBJJMNOPQEDBCBJBGIDp B = p TRp B = = p T = = p p = = z R = = ( ) ( ) z(α) = z(0.05) = 1.65 < 3.80CSHKTEGUICDBGH p[hbglk= P(z > z ) = P(z > 3.80) =

30 Oppgave: Jeg har utført et binomisk forsøk med n 1 = 1000, x 1 = 757 og n 2 = 500, x 2 = 367 suksesser. Finn et punktesimat for p 1 p 2 Finn et 90% konfidensintervall for p 1 p 2 Test hypotesen H 0 : p 1 = p 2 mot H a : p 1 p 2 med signifikansnivå 5% (Dataene er simulert med p 1 = 0.75, p 2 = 0.7

31 31 Inferens om varians og standardavvik for ett normalfordelt utvalg (9.4) Inferens om variansen til en normalfordelt populasjon bruker kjikvadrat-fordelingen ( chi-square distribution ) (der kji er den greske bokstaven χ. Fordelingen kan også skrives χ 2 -fordelingen.) 1. χ 2 er positiv 2. χ 2 er ikke symmetrisk, men skjev mot høyre. 3. En bestemt χ 2 -fordeling identifiseres ved en parameter df som kalles antall frihetsgrader ( degrees of freedom ). 4. Forventning µ = df 5. Varians σ 2 = 2df

32 Rød kurve χ 2 -fordeling med df=1 frihetsgrad Grønn kurve χ 2 -fordeling med df=4 frihetsgrader Blå kurve χ 2 -fordeling med df=10 frihetsgrader Lilla kurve χ 2 -fordeling med df=20 frihetsgrader f(x) x

33 33 Notasjon og Tabell 8 χ 2 (df, α) er χ 2 -verdien slik at areal α ligger til høyre, dvs P(χ 2 > χ 2 (df, α)) = α der χ 2 er χ 2 -fordelt med df frihetsgrader.

34 Eksempel: Finn χ 2 (20, 0.05) Bruk Tabell 8 α df

35 35 Inferens om σ Antagelse: Utvalget er trukket fra en populasjon som er normalfordelt. Vi skal teste hypoteser om σ. (Punktestimat er s). Vi bruker testobservatoren χ 2 = (n 1)s2 σ 2 som kan vises å være χ 2 -fordelt med df=n-1 frihetsgrader når σ har den korrekte verdien. Merk: Dette er analogt med at vi ved inferens om µ har brukt observatorer z = x µ σ/ x µ og t = n s/ som har kjente, tabellerte n fordelinger.

36 Eksempel: Jeg har trukket 10 tall fra en populasjon som er normalfordelt med forventning µ og standardavvik σ. Tallene ble med s=2.64. Finn et punktestimat for σ Jeg sier at σ = 4 for populasjonen. Ta stilling til utsagnet gjennom en hypotesetest. Bruk signifikansnivå α = 0.1. Finn p-verdien.

37 Punktestimat for σ er s = Nullhypotesten H 0 er at σ = 4 mens alternativ hypotese H a er at σ 4. Testobservatoren blir da χ 2 = (n 1)s2 (n 1)s2 σ 2 = 4 2 som er χ 2 -fordelt med df=n-1=9 frihetsgrader under nullhypotesen. Her blir χ 2 (n 1)s2 (10 1)2.642 = σ 2 = 4 2 = 3.92 Spørsmålet er om dette er en urimelig størrelse for en variabel som er kjikvadrat-fordelt med df = 9. Vi vil forkaste H 0 hvis testobservatoren χ 2 blir enten for liten eller for stor.

38 Klassisk metode: Finn kritiske verdier slik at vi forkaster hvis χ 2 ligger utenfor et sentralt område av kjikvadratfordelingen. Vi har at P(χ 2 < χ 2 (df, 1 α/2)) = α/2 P(χ 2 > χ 2 (df, α/2)) = α/2 I eksempel, med α = 0.10, blir disse kritiske verdiene (Tabell 8) χ 2 (9, 0.95) = 3.33 χ 2 (9, 0.05) = 16.9 dvs. vi skal forkaste hvis χ 2 < 3.33 eller χ 2 > Dermed forkaster vi ikke H 0, siden vi beregnet testobservatoren χ 2 = 3.92.

39 Metode med p-verdi: Beregner først P(χ 2 9 < 3.92) = 1 P(χ2 9 > 3.92) = = 0.08 Her har vi først brukt Tabell 8 til å finne P(χ 2 9 > 3.33) = 0.95 og P(χ 2 9 > 4.17) = Dermed vet vi at P(χ2 9 > 3.92) er mellom 0.90 og På øyemål har vi da anslått at P(χ 2 9 > 3.92) = 0.92 (som vi også ville få ved formell interpolasjon). Siden alternativ hypotese er at σ 4 er p-verdien lik arealet av begge halene, dvs p-verdi= = Siden p-verdi>α=0.1 kan vi ikke forkaste nullhypotesen. (σ for populasjonen som jeg trakk fra var σ = 2, med andre ord beholdt vi feilaktig nullhypotesen, dvs. gjorde en feil av type II.)

40 Oppgave: Jeg har trukket 10 tall fra en populasjon som er normalfordelt med forventning µ og standardavvik σ. Tallene ble med s=1.73. La H 0 være at σ = 4 for populasjonen, mens H a er at σ < 4. Finn p-verdien og bruk denne til å velge mellom hypotesene når signifikansnivå α = 0.1. Det er oppgitt at χ 2 (9, 0.992) = 1.678

41 41 Inferens om forholdet mellom varianser ved to uavhengige utvalg (10.6) Ser på to normalfordelte populasjoner med standardavvik henholdsvis σ 1 og σ 2. Ønsker å teste: H 0 : σ2 1 σ 2 2 som er det samme som og det samme som = 1 mot H a : σ2 1 σ 2 2 > 1 H 0 : σ 1 σ 2 = 1 mot H a : σ 1 σ 2 > 1 H 0 : σ 1 = σ 2 mot H a : σ 1 > σ 2 Kan selvsagt også ha < og i H a

42 42 F-fordelingen Egenskaper til F-fordelingen: 1. F er aldri negativ, den er 0 eller positiv. 2. F er ikke symmetrisk, men såkalt skjev mot høyre (som kjikvadrat-fordelingen) 3. F bestemmes ved de såkalte frihetsgradene df 1 og df 2.

43 Blå kurve F-fordeling med df 1 = 20, df 2 = 20 frihetsgrader Rød kurve F-fordeling med df 1 = 10, df 2 = 10 frihetsgrad Grønn kurve F-fordeling med df 1 = 4, df 2 = 4 frihetsgrader f(x) x

44 44 Tabell 9A, 9B, 9C for F -fordelingen I samsvar med notasjon introdusert før vil F(df 1, df 2, α) betegne F -verdien slik at et areal α er til høyre: F(10, 10, 0.05) = 2.98 Oppgave: Hva er F(10, 10, 1)?

45 45 Testobservator og test (kalt F -test ) Antagelser: H 0 : σ2 1 σ 2 2 = 1 mot H a : σ2 1 σ 2 2 begge populasjonene er normalfordelte > 1 utvalgene blir trukket uavhengige av hverandre Bruker testobservatoren f = s2 1 s 2 2 som hvis H 0 gjelder er F -fordelt med df 1 = n 1 1 og df 2 = n 2 1 frihetsgrader.

46 Eksempel i boka: Sammenligning av standardavvik for påfylt mengde for to tappemaskiner for brus. La σ 1 være standardavvik for ny maskin, mens σ 2 er standardavvik for nåværende maskin. Vil teste H 0 : σ2 1 σ 2 2 = 1 mot H a : σ2 1 σ 2 2 > 1 med signifikansnivå 5%. De relevante dataene er: Beregner Utvalg n s 2 Ny maskin (1) Nåværende maskin (2) f = s2 1 s 2 2 = = 2.25 Er dette for stort til å kunne komme fra F -fordelingen med (24,21) frihetsgrader?

47 Klassisk metode: Forkast H 0 hvis f > F(24, 21, 0.05) = 2.05 dvs. H 0 forkastes siden vi har observert f = Vi bruker her Tabell 9A, i kolonnen med 24 og linjen med 21. Husk at numerator betyr teller, og denominator betyr nevner Metode med p-verdi: p-verdi = P(f > 2.25) når f er F -fordelt med 24 og 21 frihetsgrader. Vi kan ikke finne denne i tabellene, men bruk av 9A gir at P(f > 2.25) < 0.05 mens 9B gir at P(f > 2.25) > 0.025, dvs. p-verdi er mellom og 0.05.

48 Anta at vi isteden skal teste H 0 : σ2 1 σ 2 2 Dette er det samme som H 0 : σ2 2 σ 2 1 = 1 mot H a : σ2 1 σ 2 2 = 1 mot H a : σ2 2 σ 2 1 < 1 > 1 dvs. vi kan ganske enkelt bytte om rollene til de to utvalgene (og populasjonene). Bruker da testobservatoren f = s2 2 s 2 1 som hvis H 0 gjelder er F -fordelt med df 1 = n 2 1 og df 2 = n 1 1 frihetsgrader. (Merk at frihetsgradene df 1 alltid gjelder telleren, mens df 2 gjelder nevneren.)

49 Tosidig test om likhet av varianser Anta at vi skal teste H 0 : σ2 1 σ 2 2 = 1 mot H a : σ2 1 σ med signifikansnivå α. Med testobservatoren f = s2 1 skal vi s2 2 forkaste H 0 både hvis den blir for liten (under 1) eller stor (større enn 1). Siden våre tabeller bare gjelder store verdier av f (høyre hale), foreslår boka følgende metode i Example side 598: 1. Beregn s 2 1 og s Beregn f som forholdet mellom disse, med den største i telleren (slik at vi garantert får f > 1) 3. Klassisk metode: Forkast H 0 hvis f > F(df 1, df 2, α/2), hvor df 1 og df 2 er frihetsgrader til henholdsvis telleren og nevneren. 4. Metode med p-verdi: p-verdi er 2 P(f > f ) der f er F -fordelt med df 1 og df 2 frihetsgrader

50 Oppgave: Gitt utvalgsinformasjonen n 1 = 10, n 2 = 8, s 1 = 5.4, s 2 = 3.8, skal du teste H 0 : σ2 1 σ 2 2 med signifikansnivå α = 0.05 = 1 mot H a : σ2 1 σ 2 2 1

51 51 Oppsummering: Testing av varianser og standardavvik i normalfordelte populasjoner Ett utvalg med populasjonsstandardavvik σ (kap. 9.4): Tester hypoteser av formen H 0 : σ = σ 0 mot H a : σ σ 0 (evt. > eller <) for en gitt verdi av σ 0. Bruker testobservatoren χ 2 = (n 1)s2 σ 2 0 som er χ 2 -fordelt med df=n-1 frihetsgrader når H 0 gjelder. Kritiske verdier finnes i Tabell 8.

52 To utvalg med populasjonsstandardavvik σ 1 og σ 2 (kap. 10.6) Tester hypoteser av formen H 0 : σ2 1 σ2 2 (evt. > eller <) Bruker testobservatoren f = s2 1 s 2 2 = 1 mot H a : σ2 1 σ som er F -fordelt med df 1 = n 1 1 og df 2 = n 2 1 frihetsgrader når H 0 gjelder. Kritiske verdier finnes i Tabell 9.

Kap. 10: Inferens om to populasjoner. Eksempel. ST0202 Statistikk for samfunnsvitere

Kap. 10: Inferens om to populasjoner. Eksempel. ST0202 Statistikk for samfunnsvitere Kap. 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to populasjoner med populasjonsgjennomsnitt henholdsvis μ 1 og μ. Vi trekker da ett utvalg fra hver populasjon. ST00 Statistikk for

Detaljer

Notasjon og Tabell 8. ST0202 Statistikk for samfunnsvitere

Notasjon og Tabell 8. ST0202 Statistikk for samfunnsvitere 2 Inferens om varians og standardavvik for ett normalfordelt utvalg (9.4) Inferens om variansen til en normalfordelt populasjon bruker kjikvadrat-fordelingen ( chi-square distribution ) (der kji er den

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 10: Inferens om to populasjoner

ST0202 Statistikk for samfunnsvitere Kapittel 10: Inferens om to populasjoner ST0202 Statistikk for samfunnsvitere Kapittel 10: Inferens om to populasjoner Bo Lindqvist Institutt for matematiske fag 2 Kapittel 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon

ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon Bo Lindqvist Institutt for matematiske fag 2 Kap. 9: Inferens om én populasjon Statistisk inferens har som mål å tolke/analysere

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 9: Inferens om én populasjon I Kapittel 8 brukte vi observatoren z = x µ σ/ n for å trekke konklusjoner om µ. Dette

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig

Detaljer

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig om populasjonen. Konkret: Å analysere en utvalgsobservator for å trekke slutninger

Detaljer

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig om populasjonen. Konkret: Analysere en observator for å finne ut noe om korresponderende

Detaljer

Kap. 10: Inferens om to populasjoner. Inferens om forskjell i forventning ved å bruke to avhengige utvalg (10.3) ST0202 Statistikk for samfunnsvitere

Kap. 10: Inferens om to populasjoner. Inferens om forskjell i forventning ved å bruke to avhengige utvalg (10.3) ST0202 Statistikk for samfunnsvitere Kap. 0: Inferen om to populajoner Situajon: Det er to populajoner om vi ønker å ammenligne. Vi trekker da et utvalg fra hver populajon. Vi kan ha avhengige eller uavhengige utvalg. ST00 Statitikk for amfunnvitere

Detaljer

Testobservator for kjikvadrattester

Testobservator for kjikvadrattester ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 11: Anvendelser av kjikvadratfordelingen: Kjikvadrattester Situasjon: Et tilfeldig utvalg av n individer er trukket

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Fra første forelesning: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg En delmengde av

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Kapittel 7: Utvalgsfordeling Bo Lindqvist Institutt for matematiske fag 2 Fra kapittel 1: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg

Detaljer

Løsning på Dårlige egg med bruk av Tabell 2 i Appendix B

Løsning på Dårlige egg med bruk av Tabell 2 i Appendix B Situasjonen er som i quiz-eksempelet: n = 4, p = 1/3 ( suksess betyr å gjette riktig alternativ), q = 2/3. Oppgave: Finn P(x), x=0,1,2,3,4 fra den generelle formelen for binomisk sannsynlighetsfordeling

Detaljer

Fra første forelesning:

Fra første forelesning: 2 Fra første forelesning: ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag opulasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg En delmengde av populasjonen

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 11: Anvendelser av kjikvadratfordelingen Kapittel 12: Variansanalyse (ANOVA)

ST0202 Statistikk for samfunnsvitere Kapittel 11: Anvendelser av kjikvadratfordelingen Kapittel 12: Variansanalyse (ANOVA) ST0202 Statistikk for samfunnsvitere Kapittel 11: Anvendelser av kjikvadratfordelingen Kapittel 12: Variansanalyse (ANOVA) Bo Lindqvist Institutt for matematiske fag Bo Lindqvist, ST0202 2 Skittles (oppgave

Detaljer

Krysstabellanalyse (forts.) SOS1120 Kvantitativ metode. 4. Statistisk generalisering. Forelesningsnotater 9. forelesning høsten 2005.

Krysstabellanalyse (forts.) SOS1120 Kvantitativ metode. 4. Statistisk generalisering. Forelesningsnotater 9. forelesning høsten 2005. SOS112 Kvantitativ metode Krysstabellanalyse (forts.) Forelesningsnotater 9. forelesning høsten 25 4. Statistisk generalisering Per Arne Tufte Eksempel: Hypoteser Eksempel: observerte frekvenser (O) Hvordan

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 13: Lineær korrelasjons- og regresjonsanalyse Kap. 13.1-13.3: Lineær korrelasjonsanalyse. Disse avsnitt er ikke pensum,

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 TMA4240 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 11 Oppgavene i denne øvingen dreier seg om hypotesetesting og sentrale begreper

Detaljer

Inferens i fordelinger

Inferens i fordelinger Inferens i fordelinger Modifiserer antagelsen om at standardavviket i populasjonen σ er kjent Mer kompleks systematisk del ( her forventningen i populasjonen). Skal se på en situasjon der populasjonsfordelingen

Detaljer

TMA4240 Statistikk Høst 2007

TMA4240 Statistikk Høst 2007 TMA4240 Statistikk Høst 2007 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b4 Løsningsskisse Oppgave 1 Eksamen juni 1999, oppgave 3 av 3 a) µ populasjonsgjennomsnitt,

Detaljer

Oppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2.

Oppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2. Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 17 november 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk Tapir

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4 ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 27. mars Bjørn H. Auestad Kp. 6: Hypotesetesting

Detaljer

i x i

i x i TMA4245 Statistikk Vår 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalte oppgaver 11, blokk II Oppgavene i denne øvingen dreier seg om hypotesetesting og sentrale

Detaljer

EKSAMEN I FAG TMA4260 INDUSTRIELL STATISTIKK

EKSAMEN I FAG TMA4260 INDUSTRIELL STATISTIKK Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 12 Faglig kontakt under eksamen: Bo Lindqvist Tlf. 975 89 418 EKSAMEN I FAG TMA4260 INDUSTRIELL STATISTIKK Onsdag

Detaljer

Denne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans

Denne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner

Detaljer

Binomisk sannsynlighetsfunksjon

Binomisk sannsynlighetsfunksjon ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Binomisk sannsynlighetsfunksjon La det være n forsøk, sannsynlighet p for suksess og sannsynlighet q for fiasko. Den tilfeldige

Detaljer

Statistikk og dataanalyse

Statistikk og dataanalyse Njål Foldnes, Steffen Grønneberg og Gudmund Horn Hermansen Statistikk og dataanalyse En moderne innføring Kapitteloversikt del 1 INTRODUKSJON TIL STATISTIKK Kapittel 1 Populasjon og utvalg 19 Kapittel

Detaljer

Kap. 12: Variansanalyse

Kap. 12: Variansanalyse 2 Kap. 12: Variansanalyse Situasjon: c populasjoner, hver med sitt populasjonsgjennomsnitt μ i. Vi tester ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag H 0 : Alle populasjonene

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 20. mars Bjørn H. Auestad Kp. 6: Hypotesetesting

Detaljer

TMA4245 Statistikk Eksamen desember 2016

TMA4245 Statistikk Eksamen desember 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer

Detaljer

Kapittel 3: Studieopplegg

Kapittel 3: Studieopplegg Oversikt over pensum Kapittel 1: Empirisk fordeling for en variabel o Begrepet fordeling o Mål for senter (gj.snitt, median) + persentiler/kvartiler o Mål for spredning (Standardavvik s, IQR) o Outliere

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Hypotesetesting (kp. 6) Hypotesetesting, innledning. Kp.

ÅMA110 Sannsynlighetsregning med statistikk, våren Hypotesetesting (kp. 6) Hypotesetesting, innledning. Kp. ÅMA Sannsynlighetsregning med statistikk, våren 8 Kp. 6 Hypotesetesting Hypotesetesting (kp. 6) Tre deler av faget/kurset:. Beskrivende statistikk. Sannsynlighetsteori, sannsynlighetsregning 3. Statistisk

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 13: Lineær regresjon og korrelasjon

ST0202 Statistikk for samfunnsvitere Kapittel 13: Lineær regresjon og korrelasjon ST0202 Statistikk for samfunnsvitere Kapittel 13: Lineær regresjon og korrelasjon Bo Lindqvist Institutt for matematiske fag http://wiki.math.ntnu.no/st0202/2012h/start 2 Kap. 13: Lineær korrelasjons-

Detaljer

α =P(type I feil) = P(forkast H 0 H 0 er sann) =1 P(220 < X < 260 p = 0.6)

α =P(type I feil) = P(forkast H 0 H 0 er sann) =1 P(220 < X < 260 p = 0.6) TMA4245 Statistikk Vår 212 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving 4 blokk II Løsningsskisse Oppgave 1 4 personer spurt. Hvis mellom 22 og 26 personer svarer

Detaljer

Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans

Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner

Detaljer

Kapittel 7: Inferens for forventningerukjent standardavvik

Kapittel 7: Inferens for forventningerukjent standardavvik Kapittel 7: Inferens for forventningerukjent standardavvik 7.1: Inferens for forventningen i en populasjon 7.2: Inferens for å sammenligne to forventninger 7.1 Inferens for forventningen i en populasjon

Detaljer

Oppgaven består av 9 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom << >>. Oppgave 1

Oppgaven består av 9 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom << >>. Oppgave 1 ECON 0 EKSMEN 007 VÅR SENSORVEILEDNING Oppgaven består av 9 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom >. Oppgave. La begivenhetene BC,, være slik at og

Detaljer

EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE

EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Bokmål Faglig kontakt under eksamen: Bo Lindqvist, tlf. 97589418 EKSAMEN ST00 STATISTIKK FOR SAMFUNNSVITERE Torsdag

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 8: Introduksjon til statistisk inferens

ST0202 Statistikk for samfunnsvitere Kapittel 8: Introduksjon til statistisk inferens ST0202 Statistikk for samfunnsvitere Kapittel 8: Introduksjon til statistisk inferens Bo Lindqvist Institutt for matematiske fag 2 Statistisk inferens (kap. 8) Statistisk inferens har som mål å tolke/analysere

Detaljer

7.2 Sammenligning av to forventinger

7.2 Sammenligning av to forventinger 7.2 Sammenligning av to forventinger To-utvalgs z-observator To-utvalgs t-prosedyrer To-utvalgs t-tester To-utvalgs t-konfidensintervall Robusthet To-utvalgs t-prosedyrerår variansene er like Sammenlikning

Detaljer

1 Section 7-2: Estimere populasjonsandelen. 2 Section 7-4: Estimere µ når σ er ukjent

1 Section 7-2: Estimere populasjonsandelen. 2 Section 7-4: Estimere µ når σ er ukjent 1 Section 7-2: Estimere populasjonsandelen 2 Section 7-4: Estimere µ når σ er ukjent Kapittel 7 Nå begynner vi med statistisk inferens! Bruke stikkprøven til å 1 Estimere verdien til en parameter i populasjonen.

Detaljer

Kapittel 9 og 10: Hypotesetesting

Kapittel 9 og 10: Hypotesetesting Kapittel 9 og 1: Hypotesetesting Hypotesetesting er en standard vitenskapelig fremgangsmåte for å sjekke påstander. Generell problemstilling: Basert på informasjonen i data fra et tilfeldig utvalg ønsker

Detaljer

Hypotesetesting. Formulere en hypotesetest: Når vi skal test om en parameter θ kan påstås å være større enn en verdi θ 0 skriver vi dette som:

Hypotesetesting. Formulere en hypotesetest: Når vi skal test om en parameter θ kan påstås å være større enn en verdi θ 0 skriver vi dette som: Hypotesetesting. 10 og fore- Dekkes av pensumsidene i kap. lesingsnotatene. Hypotesetesting er en systematisk fremgangsmåte for å undersøke hypoteser (påstander) knyttet til parametre i sannsynlighetsfordelinger.

Detaljer

Denne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans

Denne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Hypotesetesting (kp. 6) Hypotesetesting. Kp. 6 Hypotesetesting ...

ÅMA110 Sannsynlighetsregning med statistikk, våren Hypotesetesting (kp. 6) Hypotesetesting. Kp. 6 Hypotesetesting ... ÅMA Sannsynlighetsregning med statistikk, våren 6 Kp. 6 (kp. 6)... Begrep: nullhypotese alternativhypotese ensidig, tosidig teststørrelse (testobservator) nullfordeling kritisk verdi, forkastningsområde

Detaljer

Eksamensoppgave i ST1201/ST6201 Statistiske metoder

Eksamensoppgave i ST1201/ST6201 Statistiske metoder Institutt for matematiske fag Eksamensoppgave i ST1201/ST6201 Statistiske metoder Faglig kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: 20. desember 2016 Eksamenstid (fra til): 09:00

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 11, blokk II I denne øvingen skal vi fokusere på hypotesetesting. Vi ønsker å gi dere

Detaljer

Introduksjon til inferens

Introduksjon til inferens Introduksjon til inferens Hittil: Populasjon der verdien til et individ/enhet beskrives med en fordeling. Her inngår vanligvis ukjente parametre, μ, p,... Enkelt tilfeldig utvalg (SRS), observator p =

Detaljer

Verdens statistikk-dag.

Verdens statistikk-dag. Verdens statistikk-dag http://unstats.un.org/unsd/wsd/ Signifikanstester Ønsker å teste hypotese om populasjon Bruker data til å teste hypotese Typisk prosedyre Beregn sannsynlighet for utfall av observator

Detaljer

Oppgave 1. T = 9 Hypotesetest for å teste om kolesterolnivået har endret seg etter dietten: T observert = 2.16 0

Oppgave 1. T = 9 Hypotesetest for å teste om kolesterolnivået har endret seg etter dietten: T observert = 2.16 0 Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 08. mai 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir

Detaljer

Supplement til power-point presentasjonen i medisinsk statistikk, forelesning 7 januar 2013. Skrevet av Stian Lydersen 16 januar 2013

Supplement til power-point presentasjonen i medisinsk statistikk, forelesning 7 januar 2013. Skrevet av Stian Lydersen 16 januar 2013 1 Supplement til power-point presentasjonen i medisinsk statistikk, forelesning 7 januar 013. Skrevet av Stian Lydersen 16 januar 013 Vi antar at vårt utvalg er et tilfeldig og representativt utvalg for

Detaljer

KATEGORISKE DATA- TABELLANALYSE ANALYSE AV. Tron Anders Moger. 3. Mai 2005

KATEGORISKE DATA- TABELLANALYSE ANALYSE AV. Tron Anders Moger. 3. Mai 2005 ANALYSE AV KATEGORISKE DATA- TABELLANALYSE 3. Mai 2005 Tron Anders Moger Forrige gang: Snakket om kontinuerlige data, dvs data som måles på en kontinuerlig skala Hypotesetesting med t-tester evt. ikkeparametriske

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 20. mars Bjørn H. Auestad Kp. 6: Hypotesetesting

Detaljer

HØGSKOLEN I STAVANGER

HØGSKOLEN I STAVANGER EKSAMEN I: MOT0 STATISTISKE METODER VARIGHET: TIMER DATO:. NOVEMBER 00 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV OPPGAVER PÅ 7 SIDER HØGSKOLEN

Detaljer

Analyse av kontinuerlige data. Intro til hypotesetesting. 21. april 2005. Seksjon for medisinsk statistikk, UIO. Tron Anders Moger

Analyse av kontinuerlige data. Intro til hypotesetesting. 21. april 2005. Seksjon for medisinsk statistikk, UIO. Tron Anders Moger Intro til hypotesetesting Analyse av kontinuerlige data 21. april 2005 Tron Anders Moger Seksjon for medisinsk statistikk, UIO 1 Repetisjon fra i går: Normalfordelingen Variasjon i målinger kan ofte beskrives

Detaljer

TMA4240 Statistikk H2010 (19)

TMA4240 Statistikk H2010 (19) TMA4240 Statistikk H2010 (19) Hypotesetesting 10.1-10.3: Generelt om statistiske hypoteser 10.5: Ett normalfordelt utvalg Mette Langaas Foreleses mandag 25.oktober, 2010 2 Estimering og hypotesetesting

Detaljer

Hypotesetesting (kp. 6) ÅMA110 Sannsynlighetsregning med statistikk, våren Tre deler av faget/kurset: 1. Beskrivende statistikk

Hypotesetesting (kp. 6) ÅMA110 Sannsynlighetsregning med statistikk, våren Tre deler av faget/kurset: 1. Beskrivende statistikk ÅMA Sannsynlighetsregning med statistikk, våren 2 Kp. 6 Hypotesetesting Hypotesetesting (kp. 6) Tre deler av faget/kurset:. Beskrivende statistikk 2. Sannsynlighetsteori, sannsynlighetsregning 3. Statistisk

Detaljer

Oppgave 1. . Vi baserer oss på at p 47 1 og p 2 er tilnærmet normalfordelte (brukbar tilnærming). Vi har tilnærmet at (n 1 = n 2 = 47)

Oppgave 1. . Vi baserer oss på at p 47 1 og p 2 er tilnærmet normalfordelte (brukbar tilnærming). Vi har tilnærmet at (n 1 = n 2 = 47) MOT310 tatistiske metoder 1 Løsningsforslag til eksamen vår 006, s. 1 Oppgave 1 a) En tilfeldig utvalgt besvarelse får F av sensor 1 med sannsynlighet p 1 ; resultatene for ulike besvarelser er uavhengige.

Detaljer

Econ 2130 uke 16 (HG)

Econ 2130 uke 16 (HG) Econ 213 uke 16 (HG) Hypotesetesting I Løvås: 6.4.1 6, 6.5.1-2 1 Testing av µ i uid modellen (situasjon I Z-test ). Grunnbegreper. Eksempel. En lege står overfor følgende problemstilling. Standardbehandling

Detaljer

EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE

EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 Bokmål Faglig kontakt under eksamen: Bo Lindqvist, tlf. 97589418 EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE Tirsdag

Detaljer

Gruppe 1 Gruppe 2 Gruppe a) Finn aritmetisk gjennomsnitt, median, modus og standardavvik for gruppe 2.

Gruppe 1 Gruppe 2 Gruppe a) Finn aritmetisk gjennomsnitt, median, modus og standardavvik for gruppe 2. Sensurveiledning Ped 3001 h12 Oppgave 1 Er det sammenheng mellom støtte fra venner og selvaktelse hos ungdom? Dette spørsmålet ønsket en forsker å undersøke. Han samlet data på 9. klassingers opplevde

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA4240 Statistikk H2010 9.8: To uvalg (siste del) 9.9: Parvise observasjoner 9.10-9.11: Andelser 9.12: Varians Mette Langaas Foreleses onsdag 20.oktober, 2010 2 Norske hoppdommere og Janne Ahonen Janne

Detaljer

Kap. 9: Inferens om én populasjon

Kap. 9: Inferens om én populasjon 2 ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for matematiske fag Ka. 9: Iferes om é oulasjo Hvis σ er ukjet bytter vi ut σ med s i Ny observator blir t = x μ s/ z = x μ σ/ der s = Σx 2 (Σx)

Detaljer

Norske hoppdommere og Janne Ahonen

Norske hoppdommere og Janne Ahonen TMA440 Statistikk H010 9.8: To uvalg (siste del) 9.9: Parvise observasjoner 9.10-9.11: Andelser 9.1: Varians Mette Langaas Foreleses onsdag 0.oktober, 010 Norske hoppdommere og Janne Ahonen Janne Ahonen

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 9-10 (oversikt): Inferens om én og to populasjoner

ST0202 Statistikk for samfunnsvitere Kapittel 9-10 (oversikt): Inferens om én og to populasjoner ST0202 Statistikk for samfunnsvitere Kapittel 9-10 (oversikt): Inferens om én og to populasjoner Bo Lindqvist Institutt for matematiske fag 2 Inferens med EN populasjon 3 Oppgave: H2002 # 3 I følge Nielsen

Detaljer

6.2 Signifikanstester

6.2 Signifikanstester 6.2 Signifikanstester Konfidensintervaller er nyttige når vi ønsker å estimere en populasjonsparameter Signifikanstester er nyttige dersom vi ønsker å teste en hypotese om en parameter i en populasjon

Detaljer

Eksamensoppgave i TMA4240 Statistikk

Eksamensoppgave i TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806

Detaljer

Datamatrisen: observasjoner, variabler og verdier. Variablers målenivå: Nominal Ordinal Intervall Forholdstall (ratio)

Datamatrisen: observasjoner, variabler og verdier. Variablers målenivå: Nominal Ordinal Intervall Forholdstall (ratio) Datamatrisen: observasjoner, variabler og verdier. Variablers målenivå: Nominal Ordinal Intervall Forholdstall (ratio) Beskrive fordelinger (sentraltendens, variasjon og form): Observasjon y i Sentraltendens

Detaljer

Hypotesetesting av λ og p. p verdi.

Hypotesetesting av λ og p. p verdi. Forelesning 7, kapittel 6 Hypotesetesting av λ og p. p verdi. Det som gjøres i denne forelesningen er nær opptil det vi gjorde da vi konstruerte z test for µ, og styrkefunksjon for denne. I tillegg til

Detaljer

TMA4240 Statistikk 2014

TMA4240 Statistikk 2014 TMA4240 Statistikk 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 12, blokk II Oppgave 1 På ein av vegane inn til Trondheim er UP interessert i å måle effekten

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen

ST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen ST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen Bo Lindqvist Institutt for matematiske fag 2 Kap. 6: Normalfordelingen Normalfordelingen regnes som den viktigste statistiske fordelingen!

Detaljer

Kapittel 7: Inferens for forventningerukjent standardavvik

Kapittel 7: Inferens for forventningerukjent standardavvik Kapittel 7: Inferens for forventningerukjent standardavvik 7.1: Inferens for forventningen i en populasjon 7.: Inferens for å sammenligne to forventninger 7.1 Inferens for forventningen i en populasjon

Detaljer

2. Hva er en sampelfordeling? Nevn tre eksempler på sampelfordelinger.

2. Hva er en sampelfordeling? Nevn tre eksempler på sampelfordelinger. H12 - Semesteroppgave i statistikk - sensurveiledning Del 1 - teori 1. Gjør rede for resonnementet bak ANOVA. Enveis ANOVA tester om det er forskjeller mellom gjennomsnittene i tre eller flere populasjoner.

Detaljer

OPPGAVEHEFTE I STK1000 TIL KAPITTEL Regneoppgaver til kapittel 7. X 1,i, X 2 = 1 n 2. D = X 1 X 2. På onsdagsforelesningen påstod jeg at da må

OPPGAVEHEFTE I STK1000 TIL KAPITTEL Regneoppgaver til kapittel 7. X 1,i, X 2 = 1 n 2. D = X 1 X 2. På onsdagsforelesningen påstod jeg at da må OPPGAVEHEFTE I STK000 TIL KAPITTEL 7 Regneoppgaver til kapittel 7 Oppgave Anta at man har resultatet av et randomisert forsøk med to grupper, og observerer fra gruppe, mens man observerer X,, X,2,, X,n

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. BtG207 EKSAMENSDATO: 1. juni 2010. KLASSE: HIS 08 11. TID: kl. 8.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 3 (innkl. forside)

Detaljer

1 9-3: Sammenligne gjennomsnitt for to uavhengige stikkprøver. 2 9-4: Sammenligne gjennomsnitt for to relaterte stikkprøver

1 9-3: Sammenligne gjennomsnitt for to uavhengige stikkprøver. 2 9-4: Sammenligne gjennomsnitt for to relaterte stikkprøver 1 9-3: Sammenligne gjennomsnitt for to uavhengige stikkprøver 2 9-4: Sammenligne gjennomsnitt for to relaterte stikkprøver 3 Oppvarming til kap 10: Rette linjer Sammenligne to populasjoner Data fra to

Detaljer

betyr begivenheten at det blir trukket en rød kule i første trekning og en hvit i andre, mens B1 B2

betyr begivenheten at det blir trukket en rød kule i første trekning og en hvit i andre, mens B1 B2 ECON30: EKSAMEN 06v SENSORVEILEDNING. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i

Detaljer

Løsningsforslag Eksamen i Statistikk SIF5060 Aug 2002

Løsningsforslag Eksamen i Statistikk SIF5060 Aug 2002 Løsningsforslag Eksamen i Statistikk SIF5060 Aug 2002 Oppgave 1 a) En god estimator er forventningsrett og har liten varians. Vi tester forventningsretthet: E[ˆµ] E[Y ] µ E[ µ] E[ 1 2 X + 1 2 Y ] 1 2 E[X]

Detaljer

Kapittel 9 og 10: Hypotesetesting

Kapittel 9 og 10: Hypotesetesting Kapittel 9 og 1: ypotesetesting ypotesetesting er en standard vitenskapelig fremgangsmåte for å sjekke påstander. Generell problemstilling: Basert på informasjonen i data fra et tilfeldig utvalg ønsker

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Løsningsforslag: Statistiske metoder og dataanalys Eksamensdag: Fredag 9. desember 2011 Tid for eksamen: 14.30 18.30

Detaljer

Merk at vi for enkelthets skyld antar at alle som befinner seg i Roma sentrum enten er italienere eller utenlandske turister.

Merk at vi for enkelthets skyld antar at alle som befinner seg i Roma sentrum enten er italienere eller utenlandske turister. ECON230: EKSAMEN 20 VÅR - UTSATT PRØVE 2 TALLSVAR. Oppgave Da Anne var på besøk i Roma, fikk hun raskt problemer med språket. Anne snakker engelsk, men ikke italiensk, og kun av 5 italienere behersker

Detaljer

Snøtetthet. Institutt for matematiske fag, NTNU 15. august Notat for TMA4240/TMA4245 Statistikk

Snøtetthet. Institutt for matematiske fag, NTNU 15. august Notat for TMA4240/TMA4245 Statistikk Snøtetthet Notat for TMA424/TMA4245 Statistikk Institutt for matematiske fag, NTNU 5. august 22 I forbindelse med varsling av om, klimaforskning og særlig kraftproduksjon er det viktig å kunne anslå hvor

Detaljer

Kapittel 10: Hypotesetesting

Kapittel 10: Hypotesetesting Kapittel 10: Hypotesetesting TMA445 Statistikk 10.1, 10., 10.3: Introduksjon, 10.5, 10.6, 10.7: Test for µ i normalfordeling, 10.4: p-verdi Turid.Follestad@math.ntnu.no p.1/19 Estimering og hypotesetesting

Detaljer

Estimering og hypotesetesting

Estimering og hypotesetesting Kapittel 10 Ett- og toutvalgs hypotesetesting TMA4240 H2006: Eirik Mo 2 Estimering og hypotesetesting Fenomen Bilkjøring Høyden til studenter Spørsmål Hvor stor andel av studentene synes de er flinkere

Detaljer

Oppgaven består av 10 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom <<. >>. Oppgave 1

Oppgaven består av 10 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom <<. >>. Oppgave 1 ECON 0 EKSAMEN 004 VÅR SENSORVEILEDNING Oppgaven består av 0 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA4240 Statistikk H2010 Statistisk inferens: 8.1: Tilfeldig utvalg 9.1-9.3: Estimering Mette Langaas Foreleses uke 40, 2010 2 Utfordring Ved en bedrift produseres en elektrisk komponent. Komponenten må

Detaljer

EKSAMEN KANDIDATNUMMER: EKSAMENSDATO: 26. mai 2006. SENSURFRIST: 16. juni 2006. KLASSE: HIS 04 07. TID: kl. 8.00 13.00.

EKSAMEN KANDIDATNUMMER: EKSAMENSDATO: 26. mai 2006. SENSURFRIST: 16. juni 2006. KLASSE: HIS 04 07. TID: kl. 8.00 13.00. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. BtG207 EKSAMENSDATO: 26. mai 2006. SENSURFRIST: 16. juni 2006. KLASSE: HIS 04 07. TID: kl. 8.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER

Detaljer

ÅMA 110 SANNSYNLIGHETSREGNING MED STATISTIKK Løsningsforslag til regneøving nr. 12 (s. 34)

ÅMA 110 SANNSYNLIGHETSREGNING MED STATISTIKK Løsningsforslag til regneøving nr. 12 (s. 34) ÅMA 110 SANNSYNLIGHETSREGNING MED STATISTIKK Løsningsforslag til regneøving nr. s. 34 Oppgave.1 Situasjon betraktes som 7 Bernoulliforsøk; Suksess: dyr velger belønning 1, motsatt fiasko. P suksess = p;

Detaljer

STK Oppsummering

STK Oppsummering STK1100 - Oppsummering Geir Storvik 6. Mai 2014 STK1100 Tre temaer Deskriptiv/beskrivende statistikk Sannsynlighetsteori Statistisk inferens Sannsynlighetsregning Hva Matematisk verktøy for å studere tilfeldigheter

Detaljer

for x 0 F X (x) = 0 ellers Figur 1: Parallellsystem med to komponenter Figur 2: Seriesystem med n komponenter

for x 0 F X (x) = 0 ellers Figur 1: Parallellsystem med to komponenter Figur 2: Seriesystem med n komponenter TMA4245 Statistikk Vår 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Innlevering 3, blokk II Dette er den første av to innleveringer i blokk 2. Denne øvingen skal oppsummere

Detaljer

ÅMA110 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 2010, s. 1. Oppgave 1. Histogram over frekvenser.

ÅMA110 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 2010, s. 1. Oppgave 1. Histogram over frekvenser. ÅMA1 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 0, s. 1 (Det tas forbehold om feil i løsningsforslaget.) a) Gjennomsnitt: x = 1 Emp. standardavvik: Median: 1 (1.33 + 1.) = 1.35

Detaljer

Dekkes av pensumsidene i kap. lesingsnotatene. Hypotesetesting er en systematisk fremgangsmåte

Dekkes av pensumsidene i kap. lesingsnotatene. Hypotesetesting er en systematisk fremgangsmåte Hypotesetesting. 10 og fore- Dekkes av pensumsidene i kap. lesingsnotatene. Hypotesetesting er en systematisk fremgangsmåte for å undersøke hypoteser (påstander) knyttet til parametre i sannsynlighetsfordelinger.

Detaljer

Inferens. STK Repetisjon av relevant stoff fra STK1100. Eksempler. Punktestimering - "Fornuftig verdi"

Inferens. STK Repetisjon av relevant stoff fra STK1100. Eksempler. Punktestimering - Fornuftig verdi Inferens STK1110 - Repetisjon av relevant stoff fra STK1100 Geir Storvik 12. august 2015 Data x 1,..., x n evt også y 1,..., y n Ukjente parametre θ kan være flere Vi ønsker å si noe om θ basert på data.

Detaljer

Tilfeldige variable (5.2)

Tilfeldige variable (5.2) Tilfeldige variable (5.) Dersom vi til hvert utfall av eksperimentet tilordner et tall, har vi laget en tilfeldig variabel. Tilfeldig variabel: En variabel som har en numerisk verdi for hvert utfall i

Detaljer

Eksamensoppgave i TMA4245 Statistikk

Eksamensoppgave i TMA4245 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4245 Statistikk Faglig kontakt under eksamen: Håkon Tjelmeland Tlf: 48 22 18 96 Eksamensdato:??. august 2014 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte

Detaljer

Eksamensoppgave i ST1201/ST6201 Statistiske metoder

Eksamensoppgave i ST1201/ST6201 Statistiske metoder Institutt for matematiske fag Eksamensoppgave i ST1201/ST6201 Statistiske metoder Faglig kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: 04. desember 2015 Eksamenstid (fra til): 09:00

Detaljer

Kapittel 2: Hendelser

Kapittel 2: Hendelser Kapittel 2: Hendelser FENOMEN Eksperiment Utfall Utfallsrom Eksperiment. Utfall. Eksperiment Utfall Hendelse Sannsynlighet: egenskaper, gunstige vs. mulige, relativ frekvens Sannsynlighet for mer enn en

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON30 Statistikk UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 03.06.06 Sensur kunngjøres: 4.06.06 Tid for eksamen: kl. 09:00 :00 Oppgavesettet er på 5 sider Tillatte hjelpemidler:

Detaljer

Estimering og hypotesetesting

Estimering og hypotesetesting Kapittel 10 Ett- og toutvalgs hypotesetesting TMA4245 V2007: Eirik Mo 2 Estimering og hypotesetesting Fenomen Bilkjøring Høyden til studenter Spørsmål Hvor stor andel av studentene synes de er flinkere

Detaljer

EKSAMEN. Flexibel ingeniørutdanning, 2kl. Bygg.

EKSAMEN. Flexibel ingeniørutdanning, 2kl. Bygg. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. REA 1081F REA1081) EKSAMENSDATO: 1. juni 2010. KLASSE: Flexibel ingeniørutdanning, 2kl. Bygg. TID: kl. 9.00 12.00. FAGLÆRER: Hans Petter Hornæs ANTALL

Detaljer