Statistikk og dataanalyse
|
|
- Halvard Hoff
- 7 år siden
- Visninger:
Transkript
1
2 Njål Foldnes, Steffen Grønneberg og Gudmund Horn Hermansen Statistikk og dataanalyse En moderne innføring
3 Kapitteloversikt del 1 INTRODUKSJON TIL STATISTIKK Kapittel 1 Populasjon og utvalg 19 Kapittel 2 Utvalgsmetoder 33 Kapittel 3 Observere eller eksperimentere? 47 Kapittel 4 Datamaskinens rolle i statistisk analyse 57 del 2 BESKRIVENDE STATISTIKK: OPPSUMMERING OG VISUALISERING AV DATA Kapittel 5 Variabler 67 Kapittel 6 Bruk av grafer for å beskrive data 79 Kapittel 7 Bruk av tall til å oppsummere data 104 Kapittel 8 Samvariasjon mellom to variabler 132 del 3 SANNSYNLIGHET Kapittel 9 Grunnleggende sannsynlighetsteori 157 Kapittel 10 Generell sannsynlighets regning 186 Kapittel 11 Mer om sannsynlighetsregler (*) 208 Kapittel 12 Diskrete tilfeldige variabler 216 Kapittel 13 Kontinuerlige tilfeldige variabler 237 Kapittel 14 Sentraltendens, spredning og samvariasjon for tilfeldige variabler 265 Kapittel 15 Utvalgsfordelinger og sentralgrenseteoremet 292 Kapittel 16 Flere egenskaper ved normal fordelte variabler (*) 317 del 4 STATISTISK INFERENS: TEORI Kapittel 17 Introduksjon til statistisk inferens 327 Kapittel 18 Oversikt over konfidensintervaller 338 Kapittel 19 Oversikt over hypotesetesting 352 Kapittel 20 Mer om hypotesetester 382 del 5 STATISTISK INFERENS: PRAKSIS Kapittel 21 Inferens for et gjennomsnitt i små utvalg 411 Kapittel 22 Inferens for en andel 432 Kapittel 23 Inferens for å sammenlikne to grupper 447 Kapittel 24 Khikvadrattest for sannsynligheter 468 del 6 INFERENS MED FLERE VARIABLER Kapittel 25 Inferens for enkel regresjon 483 Kapittel 26 Samvariasjon for to kategoriske variabler 518 Vedlegg 531 Stikkordregister 540
4 Innhold del 1 INTRODUKSJON TIL STATISTIKK Kapittel 1 Populasjon og utvalg Om statistikk Et reelt eksempel: Spørre undersøkelse om bankbransjen Populasjon og utvalg Elementene i en statistisk analyse Beskrivende statistikk og statistisk inferens Parametre og observatorer Hva har vi lært? Oppgaver Oppgaveløsninger 32 Kapittel 2 Utvalgsmetoder En analogi Om gode og dårlige utvalgsmetoder Tilfeldig utvalg Klyngeutvalg (*) Stratifisert utvalg (*) Hva har vi lært? Oppgaver Oppgaveløsninger 46 Kapittel 3 Observere eller eksperimentere? Årsakssammenheng eller skjulte variabler? Randomiserte eksperimenter Observasjonelle studier Hva har vi lært? Oppgaver Oppgaveløsninger 56 Kapittel 4 Datamaskinens rolle i statistisk analyse Statistisk programvare Datafila Hva har vi lært? Oppgaver Oppgaveløsninger 63 del 2 BESKRIVENDE STATISTIKK: OPPSUMMERING OG VISUALISERING AV DATA Kapittel 5 Variabler Variabler Kategoriske og kvantitative variabler Variabler i gråsonen mellom kategorisk og kvantitativ Målenivå Respons- og prediktorvariabler Hva har vi lært? Oppgaver Oppgaveløsninger 78 Kapittel 6 Bruk av grafer for å beskrive data Et første blikk på dataene Grafer for kategoriske data Grafer for kvantitative data Litt om skjeve og symmetriske fordelinger Fra histogram til tetthetskurve Grafer som viser samvariasjon for to variabler Hva har vi lært? Oppgaver Oppgaveløsninger 102
5 10 INNHOLD Kapittel 7 Bruk av tall til å oppsummere data Oppsummere kategoriske variabler Sentraltendens: Gjennomsnitt og median Spredning: Standardavvik og varians Tolkning av s når histogrammet er nær normalfordelt Standardisere en observasjon: z-verdien Standardisering av normalfordelingskurver Å sjekke normalfordelingen med QQ-plott En alternativ måte å måle spredning på: Interkvartilbredde Kalkulatortrening Hva har vi lært? Oppgaver Oppgaveløsninger 130 Kapittel 8 Samvariasjon mellom to variabler Samvariasjon mellom to kategoriske variabler Samvariasjon mellom to kvantitative variabler Korrelasjon Om rette linjer Minste kvadraters metode og regresjonslinja Tolkning og prognose Hva har vi lært? Oppgaver Oppgaveløsninger 153 del 3 SANNSYNLIGHET Kapittel 9 Grunnleggende sannsynlighetsteori Hvorfor trenger vi sannsynlighetsregning i statistikk? Hva er en sannsynlighet? Tilfeldige eksperimenter og utfallsrommet Hendelser og mengdelære De første sannsynlighetsmodellene Telling, permutasjoner og kombinatorikk Hva har vi lært? Oppgaver Oppgaveløsninger 184 Kapittel 10 Generell sannsynlighets regning Betinget sannsynlighet Uavhengighet Loven om total sannsynlighet Bayes formel Anvendelse i DNA-testing Hva har vi lært? Oppgaver Oppgaveløsninger 207 Kapittel 11 Mer om sannsynlighetsregler (*) Forklaring av hvorfor «gunstige delt på mulige» holder Mer om addisjonsregelen for disjunkte hendelser Begrunnelse av formelen for betinget sannsynlighet Utvidelse av addisjonsloven til ikke-disjunkte mengder Hva har vi lært? Oppgaver Oppgaveløsninger 215 Kapittel 12 Diskrete tilfeldige variabler Tilfeldige variabler og hendelser Sannsynlighetsfordelinger for diskrete variabler Binomisk fordeling Hypergeometrisk fordeling Poisson-fordeling Hva har vi lært? Oppgaver Oppgaveløsninger 235
6 INNHOLD 11 Kapittel 13 Kontinuerlige tilfeldige variabler Tetthetsfordelingen til en kontinuerlig tilfeldig variabel Normalfordelingen Å finne sannsynligheter for normalfordelingen Den uniforme sannsynlighetsfordelingen Eksponentialfordelingen Kvantiler Hva har vi lært? Oppgaver Oppgaveløsninger 263 Kapittel 14 Sentraltendens, spredning og samvariasjon for tilfeldige variabler De store talls lov Forventning til en tilfeldig variabel Varians og standardavvik til en tilfeldig variabel Forventning og varians til noen kjente fordelinger Samvariasjon mellom to tilfeldige variabler Hva har vi lært? Oppgaver Oppgaveløsninger 290 Kapittel 15 Utvalgsfordelinger og sentralgrenseteoremet Å tilpasse til en sannsynlighetsfordeling ved å trekke fra en tilfeldig variabel Om utvalgsfordelingen til gjennomsnittet Mer om de store talls lov Forventning og varians til en sum Forventning og varians til gjennomsnittet Sentralgrenseteoremet Hva har vi lært? Oppgaver Oppgaveløsninger 315 Kapittel 16 Flere egenskaper ved normalfordelte variabler (*) Affine transformasjoner og standardisering av en normalfordelt variabel Sum av uavhengige normalfordelte variabler Fordelingen til gjennomsnittet når vi trekker fra en normalfordelt variabel Hva har vi lært? 323 del 4 STATISTISK INFERENS: TEORI Kapittel 17 Introduksjon til statistisk inferens Estimatorer og deres usikkerhet Hvordan estimere en populasjonsparameter? En eksplorativ analyse Estimator for populasjonsandel Estimatorer for varians og standardavvik Notasjon for estimatorer Hva har vi lært? 337 Kapittel 18 Oversikt over konfidensintervaller Konfidensintervaller for populasjonsgjennomsnitt Hva påvirker konfidensintervallet? Mer om antagelsene som ligger bak konfidensintervallet (*) Hva har vi lært? Oppgaver Oppgaveløsninger 351
7 12 INNHOLD Kapittel 19 Oversikt over hypotesetesting Introduksjon til hypotesetesting En generell beskrivelse av hypotesetester Tosidige hypotesetester for populasjonsgjennomsnitt p-verdier Utregning av p-verdien for tosidige hypotesetester Testobservatorer: Et annet perspektiv på testing Hva hvis H A er sann? Signifikansnivået. Hva må til for å kalle H 0 urimelig? Forholdet mellom konfidens intervaller og tosidige hypotesetester En matematisk forklaring (*) Beskrivelse av en tosidig hypotesetest med mer matematikk (*) Hva har vi lært? Oppgaver Oppgaveløsninger 381 Kapittel 20 Mer om hypotesetester Praktisk signifikans og statistisk signifikans To vanlige misforståelser om p-verdier Ensidige hypotesetester for populasjonsgjennomsnitt Hvorfor nullhypotesen kan settes som en likhet (*) Beslutninger, formelle hypotese tester og type I- og type II-feil Type I- og type II-feil for store utvalg: Konsistente tester Fordelingen til p-verdien Konsistens og definisjonen av p-verdier for ensidige tester (*) Hva skal vi velge som nullhypotese og alternativ hypotese? En introduksjon til teststyrke og utvalgsstørrelse (*) Hva har vi lært? Oppgaver Oppgaveløsninger 407 del 5 STATISTISK INFERENS: PRAKSIS Kapittel 21 Inferens for et gjennomsnitt i små utvalg t-fordelingen Er t-metodene robuste? Konfidensintervall for populasjonsgjennomsnitt Hypotesetest for et gjennomsnitt Hva har vi lært? Oppgaver Oppgaveløsninger 430 Kapittel 22 Inferens for en andel Utvalgsfordelingen til utvalgsandelen Konfidensintervall for en andel Hypotesetest for en andel Hva har vi lært? Oppgaver Oppgaveløsninger 445 Kapittel 23 Inferens for å sammenlikne to grupper Relaterte og uavhengige utvalg Sammenlikne to gjennomsnitt Sammenlikning av andeler i to grupper Hva har vi lært? Oppgaver Oppgaveløsninger 466
8 INNHOLD 13 Kapittel 24 Khikvadrattest for sannsynligheter Observerte og forventete verdier Test for sannsynligheter Hva har vi lært? Oppgaver Oppgaveløsninger 479 del 6 INFERENS MED FLERE VARIABLER Kapittel 25 Inferens for enkel regresjon Regresjonsmodellen: Gjennomsnittet til y avhenger av x Når er den enkle lineære regresjonsmodellen rimelig å bruke? Inferens for ß 0 og ß Regresjonstabell fra statistikkprogram En nærmere kikk på residualene Konfidensintervall for regresjonsmodellen Mer om hypotesetester for regresjonsmodellen Regresjonens standardfeil og standardfeilen til b Prediksjonsintervall (*) Mer om normalitetsantagelsen. En simulering (*) Veien videre: Multippel lineær regresjon Hva har vi lært? Oppgaver Oppgaveløsninger 516 Kapittel 26 Samvariasjon for to kategoriske variabler Er variablene uavhengige, eller samvarierer de? Observerte og forventete verdier i krysstabellen Khikvadrattesten for samvariasjon mellom kategoriske variabler Hva har vi lært? Oppgaver Oppgaveløsninger 528 VEDLEGG 531 Tabell A 532 Tabell B 534 Tabell C 536 Tabell D 538 STIKKORDREGISTER 540
9 Eksempler Eksempel 1 21 Eksempel 2 35 Eksempel 3 35 Eksempel 4 36 Eksempel 5 36 Eksempel 6 39 Eksempel 7 39 Eksempel 8 41 Eksempel 9 42 Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel
10 EKSEMPLER 15 Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel Eksempel
Innhold. Innledning. Del I
Del I Innledning 1 Hva er statistikk?... 19 1.1 Bokas innhold 20 1.1.1 Noen eksempler 20 1.1.2 Historie 23 1.1.3 Bokas oppbygning 25 1.2 Noen viktige begreper 26 1.2.1 Populasjon og utvalg 26 1.2.2 Variasjon
Kapittel 3: Studieopplegg
Oversikt over pensum Kapittel 1: Empirisk fordeling for en variabel o Begrepet fordeling o Mål for senter (gj.snitt, median) + persentiler/kvartiler o Mål for spredning (Standardavvik s, IQR) o Outliere
Kort overblikk over kurset sålangt
Kort overblikk over kurset sålangt Kapittel 1: Deskriptiv statististikk for en variabel Kapittel 2: Deskriptiv statistikk for samvariasjon mellom to variable (regresjon) Kapittel 3: Metoder for å innhente
Innhold. Innledning. Del I
Innhold Del I Innledning 1 Hva er statistikk?...17 1.1 Bokas innhold 18 1.1.1 Noen eksempler 18 1.1.2 Historie 21 1.1.3 Bokas oppbygning 22 1.2 Noen viktige begreper 23 1.2.1 Populasjon og utvalg 23 1.2.2
Utvalgsfordelinger (Kapittel 5)
Utvalgsfordelinger (Kapittel 5) Oversikt pensum, fortid og fremtid Eksplorativ data-analyse (Kap 1, 2) Hvordan produsere data (Kap 3) Sannsynlighetsteori (Kap 4) Utvalgsfordelinger til observatorer (Kap
Et lite notat om og rundt normalfordelingen. Anta at vi har kontinuerlige data. Hva er likt og ulikt for histogrammer og fordelingskurver?
Et lite notat om og rundt normalfordelingen. Anta at vi har kontinuerlige data. Hva er likt og ulikt for histogrammer og fordelingskurver? Boka (Ch 1.4) motiverer dette ved å gå fra histogrammer til tetthetskurver.
ST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig
STK1000 Uke 36, Studentene forventes å lese Ch 1.4 ( ) i læreboka (MMC). Tetthetskurver. Eksempel: Drivstofforbruk hos 32 biler
STK1000 Uke 36, 2016. Studentene forventes å lese Ch 1.4 (+ 3.1-3.3 + 3.5) i læreboka (MMC). Tetthetskurver Eksempel: Drivstofforbruk hos 32 biler Fra histogram til tetthetskurver Anta at vi har kontinuerlige
Denne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans
Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner
Et lite notat om og rundt normalfordelingen.
Et lite notat om og rundt normalfordelingen. Anta at vi har kontinuerlige data. Hva er likt og ulikt for histogrammer og fordelingskurver? Observasjoner Histogram Viser fordelingen av faktiske observerte
STK Oppsummering
STK1100 - Oppsummering Geir Storvik 6. Mai 2014 STK1100 Tre temaer Deskriptiv/beskrivende statistikk Sannsynlighetsteori Statistisk inferens Sannsynlighetsregning Hva Matematisk verktøy for å studere tilfeldigheter
Et lite notat om og rundt normalfordelingen.
Et lite notat om og rundt normalfordelingen. Anta at vi har kontinuerlige data. Hva er likt og ulikt for histogrammer og fordelingskurver? Observasjoner Histogram Viser fordelingen av faktiske observerte
Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere
2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig om populasjonen. Konkret: Å analysere en utvalgsobservator for å trekke slutninger
Inferens i regresjon
Strategi som er fulgt hittil: Inferens i regresjon Deskriptiv analyse og dataanalyse først. Analyse av en variabel før studie av samvariasjon. Emne for dette kapittel er inferens når det er en respons
ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering
ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 21. april Bjørn H. Auestad Oppsummering våren
ÅMA110 Sannsynlighetsregning med statistikk, våren
ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Oppsummering Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 24. april Bjørn H. Auestad Oppsummering våren
DEL 1 GRUNNLEGGENDE STATISTIKK
INNHOLD 1 INNLEDNING 15 1.1 Parallelle verdener........................... 18 1.2 Telle gunstige.............................. 20 1.3 Regneverktøy og webstøtte....................... 22 1.4 Oppgaver................................
Dataanalyse. Hva er en dataanalyse og hvordan gå frem for å gjennomføre en dataanalyse av det innsamlede datagrunnlaget fra en feltundersøkelse?
Hva er en dataanalyse og hvordan gå frem for å gjennomføre en dataanalyse av det innsamlede datagrunnlaget fra en feltundersøkelse? Skrevet av: Kjetil Sander Utgitt av: estudie.no Revisjon: 1.0 (Sept.
ST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig
TMA4245 Statistikk Eksamen desember 2016
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer
Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans
Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner
ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon
ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon Bo Lindqvist Institutt for matematiske fag 2 Kap. 9: Inferens om én populasjon Statistisk inferens har som mål å tolke/analysere
Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere
2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig om populasjonen. Konkret: Analysere en observator for å finne ut noe om korresponderende
Introduksjon til inferens
Introduksjon til inferens Hittil: Populasjon der verdien til et individ/enhet beskrives med en fordeling. Her inngår vanligvis ukjente parametre, μ, p,... Enkelt tilfeldig utvalg (SRS), observator p =
Inferens i fordelinger
Inferens i fordelinger Modifiserer antagelsen om at standardavviket i populasjonen σ er kjent Mer kompleks systematisk del ( her forventningen i populasjonen). Skal se på en situasjon der populasjonsfordelingen
Høgskolen i Telemark. Institutt for økonomi og informatikk FORMELSAMLING Statistikk I. Til bruk ved eksamen. Per Chr. Hagen
Høgskolen i Telemark Institutt for økonomi og informatikk FORMELSAMLING 6005 Statistikk I Til bruk ved eksamen Per Chr. Hagen . Sannsynlighetsregning. Regneregler Komplementsetningen: Addisjonssetningen:
Kap. 10: Inferens om to populasjoner. Eksempel. ST0202 Statistikk for samfunnsvitere
Kap. 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to populasjoner med populasjonsgjennomsnitt henholdsvis μ 1 og μ. Vi trekker da ett utvalg fra hver populasjon. ST00 Statistikk for
TMA4240 Statistikk H2017 [15]
TMA4240 Statistikk H207 [5] Del 2: Statistisk inferens Populasjon og utvalg [8.] Observatorer og utvalgsfordelinger [8.2-8.3] Fordeling til gjennomsnittet og sentralgrenseteoremet [8.4] Normalplott [8.8]
ST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to populasjoner med populasjonsgjennomsnitt henholdsvis
I enkel lineær regresjon beskrev linja. μ y = β 0 + β 1 x
Multiple regresjon Her utvider vi perspektivet for enkel lineær regresjon til også å omfatte flere forklaringsvariable.det er fortsatt en responsvariabel. Måten dette gjøre på er nokså naturlig. Prediktoren
Denne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans
Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner
1 10-2: Korrelasjon. 2 10-3: Regresjon
1 10-2: Korrelasjon 2 10-3: Regresjon Example Krysser y-aksen i 1: b 0 = 1 Stiger med 2 hver gang x øker med 1: b 1 = 2 Formelen til linja er derfor y = 1 + 2x Eksempel Example Vi lar fem personer se en
Sensorveiledning: skoleeksamen i SOS Kvantitativ metode
Sensorveiledning: skoleeksamen i SOS1120 - Kvantitativ metode Tirsdag 30. mai 2016 (4 timer) Poenggivning og karakter I del 1 gis det ett poeng for hvert riktige svar. Ubesvart eller feil svar gis 0 poeng.
Kapittel 2: Hendelser
Kapittel 2: Hendelser FENOMEN Eksperiment Utfall Utfallsrom Eksperiment. Utfall. Eksperiment Utfall Hendelse Sannsynlighet: egenskaper, gunstige vs. mulige, relativ frekvens Sannsynlighet for mer enn en
Multippel regresjon. Her utvider vi perspektivet for enkel lineær regresjon til også å omfatte flere forklaringsvariable x 1, x 2,, x p.
Multippel regresjon Her utvider vi perspektivet for enkel lineær regresjon til også å omfatte flere forklaringsvariable x 1, x 2,, x p. Det er fortsatt en responsvariabel y. Måten dette gjøre på er nokså
TMA4240 Statistikk H2010
TMA4240 Statistikk H2010 Statistisk inferens: 8.1: Tilfeldig utvalg 9.1-9.3: Estimering Mette Langaas Foreleses uke 40, 2010 2 Utfordring Ved en bedrift produseres en elektrisk komponent. Komponenten må
Utfordring. TMA4240 Statistikk H2010. Mette Langaas. Foreleses uke 40, 2010
TMA4240 Statistikk H2010 Statistisk inferens: 8.1: Tilfeldig utvalg 9.1-9.3: Estimering Mette Langaas Foreleses uke 40, 2010 2 Utfordring Ved en bedrift produseres en elektrisk komponent. Komponenten må
Utvalgsfordelinger. Utvalg er en tilfeldig mekanisme. Sannsynlighetsregning dreier seg om tilfeldige mekanismer.
Utvalgsfordelinger Vi har sett at utvalgsfordelinger til en statistikk (observator) er fordelingen av verdiene statistikken tar ved mange gjenttatte utvalg av samme størrelse fra samme populasjon. Utvalg
Simulering med Applet fra boken, av z og t basert på en rekke utvalg av en gitt størrelse n fra N(μ,σ). Illustrerer hvordan estimering av variansen
Simulering med Applet fra boken, av z og t basert på en rekke utvalg av en gitt størrelse n fra N(μ,σ). Illustrerer hvordan estimering av variansen gir testobservatoren t mer spredning enn testobservatoren
Hypotesetesting (kp. 6) ÅMA110 Sannsynlighetsregning med statistikk, våren Tre deler av faget/kurset: 1. Beskrivende statistikk
ÅMA Sannsynlighetsregning med statistikk, våren 2 Kp. 6 Hypotesetesting Hypotesetesting (kp. 6) Tre deler av faget/kurset:. Beskrivende statistikk 2. Sannsynlighetsteori, sannsynlighetsregning 3. Statistisk
Oppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2.
Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 17 november 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk Tapir
Skoleeksamen i SOS Kvantitativ metode
Skoleeksamen i SOS1120 - Kvantitativ metode Hjelpemidler Ordbok Alle typer kalkulatorer Tirsdag 30. mai 2017 (4 timer) Lærerbok (det er mulig mulig å ha med en annen, tilsvarende pensumbok, som erstatning
Utvalgsfordelinger; utvalg, populasjon, grafiske metoder, X, S 2, t-fordeling, χ 2 -fordeling
Kapittel 8 Utvalgsfordelinger; utvalg, populasjon, grafiske metoder, X, S 2, t-fordeling, χ 2 -fordeling TMA4240 H2006: Eirik Mo 2 Til nå... Definert sannsynlighet og stokastiske variabler (kap. 2 & 3).
Om eksamen. Never, never, never give up!
I dag I dag Rekning av eksamensoppgåver Eksamen Mai 2014, oppgåve 2 (inkl normal fordeling, lin.reg. og deskriptiv statistikk) Eksamen August 2012, oppgåve 3 a og b (inkl SME) Om eksamen (Truleg) 10 punkt.
ST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 13: Lineær korrelasjons- og regresjonsanalyse Kap. 13.1-13.3: Lineær korrelasjonsanalyse. Disse avsnitt er ikke pensum,
ST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 10: Inferens om to populasjoner Situasjon: Det er to populasjoner som vi ønsker å sammenligne. Vi trekker da et utvalg
Regler i statistikk STAT 100
TORIL FJELDAAS RYGG - VÅREN 2010 Regler i statistikk STAT 100 Innhold side Sannsynlighetsregning 3 - Uttrykk 3 - Betinget sannsynlighet 4 - Regler for sannsynlighet 4 - Bayes teorem 4 - Uavhengige begivenheter
Eksamensoppgave i TMA4240 Statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806
Formelsamling i medisinsk statistikk
Formelsamling i medisinsk statistikk Versjon av 6. mai 208 Dette er en formelsamling til O. O. Aalen (red.): Statistiske metoder i medisin og helsefag, Gyldendal, 208. Gjennomsnitt x = n (x + x 2 + x 3
Om eksamen. Never, never, never give up!
Plan vidare Onsdag Gjere ferdig kap 11 + repetisjon Fredag Rekning av eksamensoppgåver Eksamen Mai 2014, oppgåve 2 (inkl normal fordeling, lin.reg. og deskriptiv statistikk) Eksamen August 2012, oppgåve
ÅMA110 Sannsynlighetsregning med statistikk, våren Hypotesetesting (kp. 6) Hypotesetesting, innledning. Kp.
ÅMA Sannsynlighetsregning med statistikk, våren 8 Kp. 6 Hypotesetesting Hypotesetesting (kp. 6) Tre deler av faget/kurset:. Beskrivende statistikk. Sannsynlighetsteori, sannsynlighetsregning 3. Statistisk
Krysstabellanalyse (forts.) SOS1120 Kvantitativ metode. 4. Statistisk generalisering. Forelesningsnotater 9. forelesning høsten 2005.
SOS112 Kvantitativ metode Krysstabellanalyse (forts.) Forelesningsnotater 9. forelesning høsten 25 4. Statistisk generalisering Per Arne Tufte Eksempel: Hypoteser Eksempel: observerte frekvenser (O) Hvordan
HØGSKOLEN I STAVANGER
HØGSKOLEN I STAVANGER Avdeling for TEKNISK NATURVITEN- EKSAMEN I: TE199 SANNSYNLIGHETSREGNING MED STATISTIKK SKAPELIGE FAG VARIGHET: 4 TIMER DATO: 5. JUNI 2003 TILLATTE HJELPEMIDLER: KALKULATOR OPPGAVESETTET
6.2 Signifikanstester
6.2 Signifikanstester Konfidensintervaller er nyttige når vi ønsker å estimere en populasjonsparameter Signifikanstester er nyttige dersom vi ønsker å teste en hypotese om en parameter i en populasjon
ST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 9: Inferens om én populasjon I Kapittel 8 brukte vi observatoren z = x µ σ/ n for å trekke konklusjoner om µ. Dette
Seksjon 1.3 Tetthetskurver og normalfordelingen
Seksjon 1.3 Tetthetskurver og normalfordelingen Har sett på ulike metoder for å plotte eller oppsummere data Vil nå starte på hvordan beskrive data ved modeller Hovedmetode er tetthetskurver Tetthetskurver
Hypotesetesting. Hvorfor og hvordan? Gardermoen 21. april 2016 Ørnulf Borgan. H. Aschehoug & Co Sehesteds gate 3, 0102 Oslo Tlf:
Hypotesetesting Hvorfor og hvordan? Gardermoen 21. april 2016 Ørnulf Borgan H. Aschehoug & Co Sehesteds gate 3, 0102 Oslo Tlf: 22 400 400 www.aschehoug.no 1 Oversikt Sannsynlighetsregning og statistikk
ST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Inferens om varians og standardavvik for ett normalfordelt utvalg (9.4) Inferens om variansen til en normalfordelt populasjon
MAT4010 PROSJEKTOPPGAVE: Statistikk i S2. Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem
MAT400 PROSJEKTOPPGAVE: Statistikk i S2 Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem 20. mai 205 Innhold. Stokastisk Variabel.. Stokastiske variable som funksjoner 3 2. Forventningsverdi
Gruppe 1 Gruppe 2 Gruppe a) Finn aritmetisk gjennomsnitt, median, modus og standardavvik for gruppe 2.
Sensurveiledning Ped 3001 h12 Oppgave 1 Er det sammenheng mellom støtte fra venner og selvaktelse hos ungdom? Dette spørsmålet ønsket en forsker å undersøke. Han samlet data på 9. klassingers opplevde
STK Oppsummering
STK1110 - Oppsummering Geir Storvik 11. November 2015 STK1110 To hovedtemaer Introduksjon til inferensmetoder Punktestimering Konfidensintervall Hypotesetesting Inferens innen spesifikke modeller/problemer
Oppgave 1. T = 9 Hypotesetest for å teste om kolesterolnivået har endret seg etter dietten: T observert = 2.16 0
Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 08. mai 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir
Oppgaver til Studentveiledning 3 MET 3431 Statistikk
Oppgaver til Studentveiledning 3 MET 3431 Statistikk 24. april 2012 kl 17.15-20.15 i B2 Handelshøyskolen BI 2 Oppgaver 1. Eksamensoppgaver: Eksamen 01/06/2011: Oppgave 1-7. Eksamensoppgaven fra 06/2011
Notasjon og Tabell 8. ST0202 Statistikk for samfunnsvitere
2 Inferens om varians og standardavvik for ett normalfordelt utvalg (9.4) Inferens om variansen til en normalfordelt populasjon bruker kjikvadrat-fordelingen ( chi-square distribution ) (der kji er den
Ferdig før tiden 4 7 Ferdig til avtalt tid 12 7 Forsinket 1 måned 2 6 Forsinket 2 måneder 4 4 Forsinket 3 måneder 6 2 Forsinket 4 måneder 0 2
Besvar alle oppgavene. Hver deloppgave har lik vekt. Oppgave I En kommune skal bygge ny idrettshall og vurderer to entreprenører, A og B. Begge gir samme pristilbud, men kommunen er bekymret for forsinkelser.
Forelesing 27 Oppsummering. Torstein Fjeldstad Institutt for matematiske fag, NTNU
Forelesing 27 Oppsummering Torstein Fjeldstad Institutt for matematiske fag, NTNU 18.04.2018 I dag Lineær regresjon (sjekk av modellantagelser) Praktisk informasjon Andre statistikk-kurs Oversikt over
Kapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering
Kapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering TMA4245 Statistikk Kapittel 8.1-8.5. Kapittel 9.1-9.3+9.15 Turid.Follestad@math.ntnu.no p.1/21 Har sett
MATEMATIKK 1 (for 8. 10. trinn) Emnebeskrivelser for studieåret 2014/2015
MATEMATIKK 1 (for 8. 10. trinn) Emnebeskrivelser for studieåret 2014/2015 Emnenavn Grunnleggende matematikk Precalculus MA6001 Undervisningssemester Høst 2014 Professor Petter Bergh petter.bergh@math.ntnu.no
Verdens statistikk-dag. Signifikanstester. Eksempel studentlån. http://unstats.un.org/unsd/wsd/
Verdens statistikk-dag http://unstats.un.org/unsd/wsd/ Signifikanstester Ønsker å teste hypotese om populasjon Bruker data til å teste hypotese Typisk prosedyre Beregn sannsynlighet for utfall av observator
ST0103 Brukerkurs i statistikk Forelesning 26, 18. november 2016 Kapittel 8: Sammenligning av grupper
ST0103 Brukerkurs i statistikk Forelesning 26, 18. november 2016 Kapittel 8: Sammenligning av grupper Bo Lindqvist Institutt for matematiske fag 2 Kapittel 8: Sammenligning av grupper Situasjon: Vi ønsker
Emnenavn: Eksamenstid: 4 timer. Faglærer: Hans Kristian Bekkevard
EKSAMEN Emnekode: SFB107111 Emnenavn: Metode 1, statistikk deleksamen Dato: 16. mai 2017 Hjelpemidler: Godkjent kalkulator og vedlagt formelsamling m/tabeller Eksamenstid: 4 timer Faglærer: Hans Kristian
Forelesning 23 og 24 Wilcoxon test, Bivariate Normal fordeling
Forelesning 23 og 24 Wilcoxon test, Bivariate Normal fordeling Wilcoxon Signed-Rank Test I uke, bruker vi Z test eller t-test for hypotesen H:, og begge tester er basert på forutsetningen om normalfordeling
Hypotesetesting. mot. mot. mot. ˆ x
Kapittel 6.4-6.5: ypotesetesting ypotesetesting er en standard vitenskapelig fremgangsmåte for å sjekke påstander. Generell problemstilling: Basert på informasjonen i data fra et tilfeldig utvalg ønsker
Utvalgsfordelinger. Utvalg er en tilfeldig mekanisme. Sannsynlighetsregning dreier seg om tilfeldige mekanismer.
Utvalgsfordelinger Vi har sett at utvalgsfordelinger til en observator er fordelingen av verdiene observatoren tar ved mange gjenttatte utvalg av samme størrelse fra samme populasjon. Utvalg er en tilfeldig
ST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Fra første forelesning: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg En delmengde av
TMA4240 Statistikk H2010 (20)
TMA4240 Statistikk H2010 (20) 10.5: Ett normalfordelt utvalg, kjent varians (repetisjon) 10.4: P-verdi 10.6: Konfidensintervall vs. hypotesetest 10.7: Ett normalfordelt utvalg, ukjent varians Mette Langaas
HØGSKOLEN I STAVANGER
EKSAMEN I: MOT0 STATISTISKE METODER VARIGHET: TIMER DATO:. NOVEMBER 00 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV OPPGAVER PÅ 7 SIDER HØGSKOLEN
Oppgaven består av 9 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom << >>. Oppgave 1
ECON 0 EKSMEN 007 VÅR SENSORVEILEDNING Oppgaven består av 9 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom >. Oppgave. La begivenhetene BC,, være slik at og
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Underveiseksamen i: STK1000 Innføring i anvendt statistikk. Eksamensdag: Fredag 13.10.2006. Tid for eksamen: Kl. 09.00 11.00. Tillatte hjelpemidler:
Eksamensoppgave i TMA4245 Statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4245 Statistikk Faglig kontakt under eksamen: Ingelin Steinsland a, Øyvind Bakke b Tlf: a 73 59 02 39, 926 63 096, b 73 59 81 26, 990 41 673 Eksamensdato:
Fordelinger, mer om sentralmål og variasjonsmål. Tron Anders Moger
Fordelinger, mer om sentralmål og variasjonsmål Tron Anders Moger 20. april 2005 1 Forrige gang: Så på et eksempel med data over medisinerstudenter Lærte hvordan man skulle få oversikt over dataene ved
ST0202 Statistikk for samfunnsvitere. Bo Lindqvist Institutt for matematiske fag
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Lærebok Robert Johnson og Patricia Kuby: Elementary Statistics, 10. utgave 3 Pensumoversikt Kap. 2 Beskrivende statistikk,
EKSAMENSOPPGAVER STAT100 Vår 2011
EKSAMENSOPPGAVER STAT100 Vår 2011 Løsningsforslag Oppgave 1 (Med referanse til Tabell 1) a) De 3 fiskene på 2 år hadde lengder på henholdsvis 48, 46 og 35 cm. Finn de manglende tallene i Tabell 1. Test
Fra første forelesning:
2 Fra første forelesning: ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag opulasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg En delmengde av populasjonen
TMA4240 Statistikk H2010
TMA4240 Statistikk H2010 Statistisk inferens: 9.14: Sannsynlighetsmaksimeringsestimatoren 8.5: Fordeling til gjennomsnittet 9.4: Konfidensintervall for µ (σ kjent) Mette Langaas Foreleses mandag 11.oktober,
10.1 Enkel lineær regresjon Multippel regresjon
Inferens for regresjon 10.1 Enkel lineær regresjon 11.1-11.2 Multippel regresjon 2012 W.H. Freeman and Company Denne uken: Enkel lineær regresjon Litt repetisjon fra kapittel 2 Statistisk modell for enkel
Tabell 1: Beskrivende statistikker for dataene
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7, blokk II Løsningsskisse Oppgave 1 a) Utfør en beskrivende analyse av datasettet % Data for Trondheim: TRD_mean=mean(TRD);
Statistisk inferens: 9.14: Sannsynlighetsmaksimeringsestimatoren 8.5: Fordeling til gjennomsnittet 9.4: Konfidensintervall for µ (σ kjent)
TMA440 Statistikk H010 Statistisk inferens: 9.14: Sannsynlighetsmaksimeringsestimatoren 8.5: Fordeling til gjennomsnittet 9.4: Konfidensintervall for µ (σ kjent) Mette Langaas Foreleses mandag 11.oktober,
Fasit for tilleggsoppgaver
Fasit for tilleggsoppgaver Uke 5 Oppgave: Gitt en rekke med observasjoner x i (i = 1,, 3,, n), definerer vi variansen til x i som gjennomsnittlig kvadratavvik fra gjennomsnittet, m.a.o. Var(x i ) = (x
Oppfriskning av blokk 1 i TMA4240
Oppfriskning av blokk 1 i TMA4240 Geir-Arne Fuglstad November 21, 2016 2 Hva har vi gjort i dette kurset? Vi har studert to sterkt relaterte grener av matematikk Sannsynlighetsteori: matematisk teori for
Kapittel 4.4: Forventning og varians til stokastiske variable
Kapittel 4.4: Forventning og varians til stokastiske variable Forventning og varians til stokastiske variable Histogrammer for observerte data: Sannsynlighets-histogrammer og tetthetskurver for stokastiske
ST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Kapittel 7: Utvalgsfordeling Bo Lindqvist Institutt for matematiske fag 2 Fra kapittel 1: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg
Seksjon 1.3 Tetthetskurver og normalfordelingen
Seksjon 1.3 Tetthetskurver og normalfordelingen Har sett på ulike metoder for å plotte eller oppsummere data ved tall Vil nå starte på hvordan beskrive data ved modeller Hovedmetode er tetthetskurver Tetthetskurver
TMA4245 Statistikk Eksamen desember 2016
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 Ei bedrift produserer elektriske komponentar. Komponentane kan ha to typar
Forslag til endringar
Forslag til endringar Bakgrunn: Vi har ingen forelesningar veka etter påske. Eg skal bort 18. og 19. april. Eksamen er 30.mai Forslag til endringar: Ekstra forelesningar onsdag 16.mars og onsdag 30 mars
OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 6 SIDER MERKNADER: Alle deloppgaver vektlegges likt.
EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 08. mai 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir forlag) OPPGAVESETTET
(b) På slutten av dagen legger sekretæren inn all innsamlet informasjon i en ny JMP datafil. Hvor mange rader og søyler(kolonner) har datafila?
Institutt for samfunnsøkonomi Skriftlig eksamen i: MET 34311 Statistikk Eksamensdato: 01.06.11, kl. 09.00-14.00 Tillatte hjelpemidler: Alle + BI-definert eksamenskalkulator : TEXAS INTRUMENTS BA II Plus
Verdens statistikk-dag.
Verdens statistikk-dag http://unstats.un.org/unsd/wsd/ Signifikanstester Ønsker å teste hypotese om populasjon Bruker data til å teste hypotese Typisk prosedyre Beregn sannsynlighet for utfall av observator
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i STK1000 Innføring i anvendt statistikk. Eksamensdag: Torsdag 9. oktober 2008. Tid for eksamen: 15:00 17:00. Oppgavesettet er på
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
Utsatt eksamen i: ECON2130 - Statistikk 1 Eksamensdag: 19.06.2014 Tid for eksamen: kl. 09:00 12:00 Oppgavesettet er på 4 sider UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Tillatte hjelpemidler: Alle trykte