ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering"

Transkript

1 ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 21. april Bjørn H. Auestad Oppsummering våren / 50

2 Oversikt over delene i Bjørn H. Auestad Oppsummering våren / 50

3 Oversikt over delene i Kp. 1: Kp. 2, 3, 4: Sannsynlighetsregning (sannsynlighetsteori) Kp. 5: konfidensintervall Kp. 6: Bjørn H. Auestad Oppsummering våren / 50

4 Beskrivende statistikk Bjørn H. Auestad Oppsummering våren / 50

5 Beskrivende statistikk Vi studerer data og er vanligvis interessert i: sentrum/belilggenhet til dataene spredning til dataene Grafiske metoder: Histogram, relativfrekvenshistogram ikke gjør dette (enkle) feil! Prikkdiagram (boksdiagram) Bjørn H. Auestad Oppsummering våren / 50

6 Beskrivende statistikk Numeriske mål (data: x 1,...,x n ): (relativ)frekvensfordeling (i tabell, f.eks.) klasse (intervall) 1 2 g frekvens n 1 n 2 n g n rel.frekv. 1 n 2 n n n g n Gjennomsnitt, empirisk median, empirisk prosentil empirisk varians (s 2 = 1 n n 1 i=1 (x i x) 2 ) og 1 emp. standardavvik (s = n n 1 i=1 (x i x) 2 ), variasjonsbredde, kvartilbredde Summasjon n a i = a m +a m+1 + +a n i=m Bjørn H. Auestad Oppsummering våren / 50

7 Grunnleggende sannsynlighetsteori (kp. 2) Viktige sannsynlighetsfordelinger (kp. 3) Bjørn H. Auestad Oppsummering våren / 50

8 Grunnleggende sannsynlighetsteori (kp. 2) Grunnleggende sannsynlighetsteori (kp. 2) Viktige sannsynlighetsfordelinger (kp. 3) Grunnleggende definisjoner (stokastisk forsøk, (enkelt)utfall, utfallsrom: Ω, sannsynligheter, relativfrekvenser, begivenheter) Sannsynlighetsmodell: Ω = {u 1,u 2,...}; P(u i ) = p i, i = 1,2,... Uniform sannsynlighetsmodell: Ω = {u 1,u 2,...,u k }; P(u i ) = p i = 1 k, i = 1,2,...,k Gyldig modell? realistisk modell?? Bjørn H. Auestad Oppsummering våren / 50

9 Grunnleggende sannsynlighetsteori (kp. 2) Grunnleggende sannsynlighetsteori (kp. 2) Viktige sannsynlighetsfordelinger (kp. 3) Operasjoner med begivenheter: Venndiagram; Union, snitt, komplement; disjunkte begivenheter Operasjon Skrivemåte Inntreffer Unionen mellom A og B A B A eller B inntreffer Snittet mellom A og B A B, AB A og B inntreffer Komplementet til A A C, A A ikke inntreffer Vi sier at A og B er disjunkte dersom A B = φ (ingen felles utfall). Regneregler for sannsynligheter: komplementsetningen (P(A) = 1 P(A)), addisjonssetningen (P(A B) = P(A)+P(B) P(A B)) Bjørn H. Auestad Oppsummering våren / 50

10 Grunnleggende sannsynlighetsteori (kp. 2) Grunnleggende sannsynlighetsteori (kp. 2) Viktige sannsynlighetsfordelinger (kp. 3) Kombinatorikk: Opptellingsregler: Produktregelen: m 1 m 2, permutasjonsregelen: (N) s,(n) N = N! ( ) N utvalgsregelen: = (N) s s s! ; ikke-ordnede utvalg uten tilbakelegging (det er kun denne situasjonen vi ser på), tilfeldig utvalg Bjørn H. Auestad Oppsummering våren / 50

11 Grunnleggende sannsynlighetsteori (kp. 2) Grunnleggende sannsynlighetsteori (kp. 2) Viktige sannsynlighetsfordelinger (kp. 3) Betinget sannsynlighet: P(A B) = P(A B) P(B) Multiplikasjonssetningen for sannsynligheter: P(A B) = P(A B)P(B) Statistisk uavhengighet; P(A B) = P(A) (Ekvivalent med: P(A B) = P(A)P(B)) Setning om total sannsynlighet (forenklet): P(A) = P(A B)P(B)+P(A B)P(B) Bjørn H. Auestad Oppsummering våren / 50

12 Grunnleggende sannsynlighetsteori (kp. 3) Grunnleggende sannsynlighetsteori (kp. 2) Viktige sannsynlighetsfordelinger (kp. 3) Tilfeldig variabel, sannsynlighetsfordeling (diskret, kontinuerlig) Tilfeldig variabel: abstrakt størrelse Tilf.var. og data betraktet som utfall av tilf.var. (eks. terningkast; viktig for forståelse av statistisk modellering) Forventning; Varians/standardavvik Regneregler... E(a 1 X 1 + +a n X n ) = a 1 E(X 1 )+ +a n E(X n ) Var(a 1 X 1 + +a n X n ) = a 2 1 Var(X 1)+ +a 2 nvar(x n ), når X i ene er ukorrelerte (alle parvise kovarianser er null). Bjørn H. Auestad Oppsummering våren / 50

13 Grunnleggende sannsynlighetsteori (kp. 3) Grunnleggende sannsynlighetsteori (kp. 2) Viktige sannsynlighetsfordelinger (kp. 3) Generelt: Var(X +Y) = Var(X)+Var(Y)+2Cov(X,Y) { (X )( ) } Kovarians: Cov(X,Y) = E µx Y µy Korrelasjon: Corr(X,Y) = Cov(X,Y) SD(X)SD(Y) Uavhengige tilfeldige variable; uavhengighet og korrelasjon Bjørn H. Auestad Oppsummering våren / 50

14 Viktige (diskrete) sannsynlighetsfordelinger (kp. 3) Grunnleggende sannsynlighetsteori (kp. 2) Viktige sannsynlighetsfordelinger (kp. 3) Binomisk modell: (Binomisk forsøksrekke, utledning av binomiske sannsynligheter, beregninger, bruk av tabell; Utledning av forventning og varians) Hypergeometrisk modell: (Definisjon, forventning og varians, beregne sannsynligheter, binomisk tilnærming) Geometrisk modell: (definisjon, forventning og varians, beregne sannsynligheter) Poissonmodell: (definisjon, forventning og varians, beregne sannsynligheter, tabellbruk) Bjørn H. Auestad Oppsummering våren / 50

15 Viktige (diskrete) sannsynlighetsfordelinger (kp. 3) Grunnleggende sannsynlighetsteori (kp. 2) Viktige sannsynlighetsfordelinger (kp. 3) Det er viktig å kunne gjenkjenne hvilken situasjon som passer til hvilken modell. Binomisk modell: X = antall sukesser i n delforsøk (i en binomisk forsøksrekke). Hypergeometrisk modell: X = antall defekte i et utvalg fra en populasjon av defekte og ikkedefekte. Geometrisk modell: X = antall forsøk til første suksess (forsøk som i en binomisk forsøksrekke). Poissonmodell: X = antall ganger en bestemt begivenhet inntreffer i et tidsrom, på et areal eller i et volum. Bjørn H. Auestad Oppsummering våren / 50

16 Viktige (kontinuerlige) sannsynlighetsfordelinger (kp. 4) Grunnleggende sannsynlighetsteori (kp. 2) Viktige sannsynlighetsfordelinger (kp. 3) Kontinuerlige sannsynlighetsfordelinger generelt: Sannsynlighetstetthet Sannsynliget: areal under tetthetskurve: Dersom X har tettheten f(x), så P(a < X < b) = b a f(x)dx Definisjon av forventning og varians Bjørn H. Auestad Oppsummering våren / 50

17 Viktige (kontinuerlige) sannsynlighetsfordelinger (kp. 4) Grunnleggende sannsynlighetsteori (kp. 2) Viktige sannsynlighetsfordelinger (kp. 3) 1. Eksponesialfordelingen: (Definisjon, forventning og varians, spesielle egenskaper, beregne sannsynligheter) 2. Normalfordelingen: (Definisjon, forventning og varians, spesielle egenskaper, beregne sannsynligheter) anvendelser, beregne sannsynligheter (standardisering og bruk av N(0,1)-tabell) to setninger; 1) a+bx, 2) X 1 +X 2 Normaltilnærming til binomisk fordeling Sentralgrensesetningen 3. (Students) t-fordeling: (anvendelser, bruk av tabell) Bjørn H. Auestad Oppsummering våren / 50

18 Estimering Konfidensintervall Bjørn H. Auestad Oppsummering våren / 50

19 Estimering. Målemodellen. Konfidensintervall (kp. Estimering Konfidensintervall Oversikt: (Punkt)estimering Målemodellen (Punkt)estimering i målemodellen (Intervallestimering) Konfidensintervall estimering og konfidensintervall i ulike situasjoner (modeller); jf. oversikt... Bjørn H. Auestad Oppsummering våren / 50

20 Estimering. Målemodellen. Konfidensintervall (kp. Estimering Konfidensintervall Begrep: estimator (tilfeldig variabel, θ) estimat (utfall (verdi) av θ) fortolkning av statistisk usikkerhet (jf.: fordeling til estimator) standardfeil: SD( θ); forventningsretthet: E( θ) = θ best estimator Bjørn H. Auestad Oppsummering våren / 50

21 Estimering i binomisk modell Estimering Konfidensintervall Modell: Y B(n, p); (ukjent) parameter: p Estimator: p = Y n Standardfeil: SD( p) = p(1 p) n Estimator av standardfeil: ŜD( p) = p(1 p) n Bjørn H. Auestad Oppsummering våren / 50

22 Estimering i målemodellen Estimering Konfidensintervall Modell: X 1,...,X n er n uif. tilf.var. med E(X i ) = µ og Var(X i ) = σ 2. (ukjente) parametere: µ, σ 2 Estimator for µ: µ = X Standardfeil: SD( µ) = σ 2 n Estimator av standardfeil: ŜD( µ) = S 2 n Estimator av σ 2 : σ 2 = S 2 = 1 n 1 n i=1 (X i X) 2 Bjørn H. Auestad Oppsummering våren / 50

23 Estimering i Poissonmodellen Modell: Y Poisson(λt); (ukjent) parameter: λ Estimering Konfidensintervall Estimator: λ = Y t ( λt = Y er estimator for λt.) Standardfeil: SD( λ) = λ t Estimator av standardfeil: ŜD( λ) = λ t Bjørn H. Auestad Oppsummering våren / 50

24 Konfidensintervall Estimering Konfidensintervall Generell definisjon av konfidensintervall: Situasjon: Data x 1,...,x n ; utfall av : X 1,...,X n ; n u.i.f. tilfeldige variable Ukjent parameter (i fordelingen til X i ene): θ Dersom L og U (L < U) er to funksjoner av X 1,...,X n, som er slik at: ( ) 1 α = P L θ U, sier vi at det utregnete intervallet (l, u) er et (1 α) 100% konfidensintervall for θ. Typisk: L = θ z α/2 SD( θ), U = θ +z α/2 SD( θ) Bjørn H. Auestad Oppsummering våren / 50

25 Konfidensintervall Estimering Konfidensintervall Obs. 1: (1 α): konfidensgrad Obs. 2: Det utregnete intervallet (l, u): Framkommer når vi setter dataverdiene x 1,...,x n inn i funksjonene L og U. Obs. 3: a) Eventuelt tilnærmede intervall (for p i binomisk modell og for µ i målemodellen med n stor og uten normalantakelse); b) Bytt z α/2 med t n 1,α/2 for t-intervall (for µ i målemodellen med normalantakelse, ukjent varians) Obs. 4, fortolkning Strengt tatt: Intervallet (l, u) er konfidensintervallet; ( ) Vi kan ikke si: P l θ u = 1 α Bjørn H. Auestad Oppsummering våren / 50

26 Konfidensintervall Estimering Konfidensintervall Målemodell 1; (1 α) 100% konfidensintervall for µ er ) σ (X z 2 α/2, X +z σ 2 n α/2 n Målemodell 2; tiln. (1 α) 100% konfidensintervall for µ er ) S (X z 2 α/2, X +z S 2 n α/2 n Binomisk modell; tiln. (1 α) 100% konfidensintervall for p er ( ) p(1 p) p(1 p) p z α/2, p+z n α/2 n Målemodell 3; (1 α) 100% konfidensintervall for µ er S (X t 2 α/2,n 1, X +t n α/2,n 1 S 2 n ) Bjørn H. Auestad Oppsummering våren / 50

27 Introduksjon Standardtester µ, målemodell, 3 Teori Bjørn H. Auestad Oppsummering våren / 50

28 Hypotesetesting Introduksjon Standardtester µ, målemodell, 3 Teori : Trekke konklusjoner på bakgrunn av data med statistisk usikkerhet. Hypotesetesting, Kp. 6 i Begrep: null- og alternativhypotese (ensidig / tosidig) teststørrelse (testobservator), nullfordeling kritisk verdi, forkastningsområde signifiaknsnivå styrke, styrkefunksjon p-verdi hypotesetest vs. konfidensintervall Bjørn H. Auestad Oppsummering våren / 50

29 Hypotesetesting Introduksjon Standardtester µ, målemodell, 3 Teori Eksempel på problemstilling: 10 ph-målinger: 6.00, 5.59, 5.74, 3.43, 5.30, 6.48, 5.15, 4.28, 4.52, 6.20; Gjennomsnitt: ph-data Målemodell: målingene oppfattes som utfall av 10 u.i.f. tilfeldigevariable X 1,...,X 10. E(X i ) = µ: virkelig ph, ukjent størrelse 5.27 er et estimat av µ med statistisk usikkerhet! Kan vi hevde at µ < 6.0?? Bjørn H. Auestad Oppsummering våren / 50

30 Hypotesetesting Vi betrakter våre data som utfall av tilfeldige variable (X 1,...,X 10 ). Forventningen, µ, kjenner vi ikke. (Var(X i ) = σ 2 = 1 antas å være riktig, kjent.) Introduksjon Standardtester µ, målemodell, 3 Teori Tyder dataene (klart) på at µ < 6? Kan datene med rimelighet sees på som utfall av N(6, 1)-tettheten (heltrukket linje)? Eller må vi bruke µ < 6 for å få det til å virke rimelig? (Jf. f.eks. tetthet med prikket linje.) Bjørn H. Auestad Oppsummering våren / 50

31 Hypotesetesting Introduksjon Standardtester µ, målemodell, 3 Teori Spørsmålet besvares ved å teste H 0 : µ = 6 mot H 1 : µ < 6 Vi baserer oss på gjennomsnittsresultatet 5.27 Omfanget av statistisk usikkerhet i estimatet 5.27, gjenspeiles av variansen eller fordelingen til gjennomsnittet av X 1,...,X 10, X. Nullfordeling til X: N(6, 0.1) (Var(X) = σ2 n = 1 10 ) (Normalantakelse og kjent σ 2 = 1.) Er 5.27 et rimelig utfall av X dersom µ = 6? N (6, 0.1) tetthet Bjørn H. Auestad Oppsummering våren / 50

32 Hypotesetesting Introduksjon Standardtester µ, målemodell, 3 Teori Test (sign.nivå α) for: H 0 : µ = µ 0 mot H 1 : µ < µ 0 Forkast H 0 dersom X µ 0 σ 2 n z α Fork.omr.: (, z α ) α ) ( Skisse av N(0, 1)-fordeling og forkastningsområde. Bjørn H. Auestad Oppsummering våren / 50

33 Hypotesetesting Introduksjon Standardtester µ, målemodell, 3 Teori Begrepene null- og alternativhypotese (ensidig/tosidig) teststørrelse (testobservator), nullfordeling kritisk verdi, forkastningsområde signifiaknsnivå styrke, styrkefunksjon p-verdi hypotesetest vs. konfidensintervall Bjørn H. Auestad Oppsummering våren / 50

34 µ, målemodell, normalantakelse, kjent varians Målemodellen m/normalantakelse og kjent σ 2 : n målinger: x 1,...,x n ; betraktes som utfall av: X 1,...,X n, u.i.f. tilfeldige variable E(X i ) = µ og Var(X i ) = σ 2, i = 1,...,n Introduksjon Standardtester µ, målemodell, 3 Teori X i normalfordelt og σ 2 kjent. Bjørn H. Auestad Oppsummering våren / 50

35 µ, målemodell, normalantakelse, kjent varians Introduksjon Standardtester µ, målemodell, 3 Teori Test (sign.nivå α) for: H 0 : µ = µ 0 mot H 1 : µ < µ 0 Forkast H 0 dersom X µ 0 σ 2 n z α Fork.omr.: (, z α ) α ) ( Skisse av N(0, 1)-fordeling og forkastningsområde. Test (sign.nivå α) for: H 0 : µ = µ 0 mot H 1 : µ > µ 0 Forkast H 0 dersom X µ 0 σ 2 n Fork.omr.: (z α, ) z α )( α Skisse av N(0, 1)-fordeling og forkastningsområde. Bjørn H. Auestad Oppsummering våren / 50

36 µ, målemodell, normalantakelse, kjent varians Introduksjon Standardtester µ, målemodell, 3 Teori Tosidig: Vil teste: H 0 : µ = µ 0 mot H 1 : µ µ 0 Teststørrelse: Z = X µ 0 σ 2 n Test (m/sign.nivå α): Forkast H 0 dersom Z z α/2 eller Z z α/2, Nullfordeling: N(0, 1) Fork.område: 0 (, z α/2 ) (z α/2, ) ) ( α/2 α/ N(0, 1) tetthet. )( Bjørn H. Auestad Oppsummering våren / 50

37 µ, målemodell, n stor og tilnærmet normalfordeling Introduksjon Standardtester µ, målemodell, 3 Teori Målemodellen: n målinger: x 1,...,x n ; betraktes som utfall av: X 1,...,X n, u.i.f. tilfeldige variable E(X i ) = µ og Var(X i ) = σ 2, i = 1,...,n. σ 2 (og µ ) ukjent; (ingen forutsetning om fordeling til X i ene eller om kjent varians) Estimator for variansen: S 2 = σ 2 = 1 n 1 n i=1 ( Xi X ) 2 Bjørn H. Auestad Oppsummering våren / 50

38 µ, målemodell, n stor og tilnærmet normalfordeling Introduksjon Standardtester µ, målemodell, 3 Teori Test (tiln. sign.nivå α) for: H 0 : µ = µ 0 mot H 1 : µ < µ 0 Forkast H 0 dersom X µ 0 S 2 n z α Fork.omr.: (, z α ) α ) ( Skisse av N(0, 1)-fordeling og forkastningsområde. Test (tiln. sign.nivå α) for: H 0 : µ = µ 0 mot H 1 : µ > µ 0 Forkast H 0 dersom X µ 0 S 2 n Fork.omr.: (z α, ) z α )( α Skisse av N(0, 1)-fordeling og forkastningsområde. Bjørn H. Auestad Oppsummering våren / 50

39 µ, målemodell, n stor og tilnærmet normalfordeling Introduksjon Standardtester µ, målemodell, 3 Teori Tosidig: Vil teste: H 0 : µ = µ 0 mot H 1 : µ µ 0 Teststørrelse: Z = X µ 0 S 2 n Test (m/tiln. sign.nivå α): Forkast H 0 dersom Z z α/2 eller Z z α/2, Nullfordeling: N(0, 1), tiln Fork.område: 0 (, z α/2 ) (z α/2, ) ) ( α/2 α/ N(0, 1) tetthet. )( Bjørn H. Auestad Oppsummering våren / 50

40 p, i binomisk modell; n stor og normaltilnærming Introduksjon Standardtester µ, målemodell, 3 Teori Generelt Situasjon: Binomisk modell (ev. som tilnærming til hypergeom.) Data: antall suksesser av n mulige er registrert. Resultatet betraktes som utfall av den tilfeldige variable Y der Y B(n,p) n og p er slik at fordelingen til Y kan tilnærmes med normalfordelingen. La p = Y n (estimator for p). Bjørn H. Auestad Oppsummering våren / 50

41 p, i binomisk modell; n stor og normaltilnærming Introduksjon Standardtester µ, målemodell, 3 Teori Test (tiln. sign.nivå α) for: H 0 : p = p 0 mot H 1 : p < p 0 Forkast H 0 dersom p p 0 p 0 (1 p 0 ) n z α Fork.omr.: (, z α ) α ) ( Skisse av N(0, 1)-fordeling og forkastningsområde. Test (tiln. sign.nivå α) for: H 0 : p = p 0 mot H 1 : p > p 0 Forkast H 0 dersom p p 0 p 0 (1 p 0 ) n Fork.omr.: (z α, ) z α )( α Skisse av N(0, 1)-fordeling og forkastningsområde. Bjørn H. Auestad Oppsummering våren / 50

42 p, i binomisk modell; n stor og normaltilnærming Introduksjon Standardtester µ, målemodell, 3 Teori Tosidig test: Vil teste: H 0 : p = p 0 mot H 1 : p p 0 Teststørrelse: Z = p p 0 p 0 (1 p 0 ) n Test (m/tiln. sign.nivå α): Forkast H 0 dersom Z z α/2 eller Z z α/2, Nullfordeling: N(0, 1), tiln Fork.område: 0 (, z α/2 ) (z α/2, ) ) ( α/2 α/ N(0, 1) tetthet. )( Bjørn H. Auestad Oppsummering våren / 50

43 Binomisk og Poisson uten normaltilnærming Tester kan også gjennomføres i binomisk- og Poissonmodell uten bruk av normaltilnærming. Se eksempler i forelesningsnotatene Introduksjon Standardtester µ, målemodell, 3 Teori Bjørn H. Auestad Oppsummering våren / 50

44 µ, målemodell, normalantakelse, ukjent varians, n liten Generelt, t-tester Introduksjon Standardtester µ, målemodell, 3 Teori Målemodellen: n målinger: x 1,...,x n ; betraktes som utfall av: X 1,...,X n, u.i.f. tilfeldige variable E(X i ) = µ og Var(X i ) = σ 2, i = 1,...,n X i normalfordelt og σ 2 ukjent. Målemodell 3 Estimator for variansen: S 2 = σ 2 = 1 n 1 n i=1 ( Xi X ) 2 Bjørn H. Auestad Oppsummering våren / 50

45 µ, målemodell, normalantakelse, ukjent varians, n liten. t-test, ensidig. Introduksjon Standardtester µ, målemodell, 3 Teori Test (sign.nivå α) for: H 0 : µ = µ 0 mot H 1 : µ < µ 0 Forkast H 0 dersom X µ 0 S 2 n t α,n 1 Fork.omr.: (, t α,n 1 ) α ) ( Skisse av t-fordeling og forkastningsområde. Test (sign.nivå α) for: H 0 : µ = µ 0 mot H 1 : µ > µ 0 Forkast H 0 dersom X µ 0 S 2 n t α,n 1 Fork.omr.: (t α,n 1, ) ) ( α Skisse av t-fordeling og forkastningsområde. Bjørn H. Auestad Oppsummering våren / 50

46 µ, målemodell, normalantakelse, ukjent varians, n liten. t-test, tosidig. Introduksjon Standardtester µ, målemodell, 3 Teori Generelt; tosidig t-test: Vil teste: H 0 : µ = µ 0 mot H 1 : µ µ 0 Teststørrelse: T = X µ 0 S 2 n Test (m/sign.nivå α): Forkast H 0 dersom T t α/2,n 1 eller T t α/2,n 1, Nullfordeling: t(n 1) Fork.område: 0 (, t α/2,n 1 ) (t α/2,n 1, ) ) ( α/2 α/ t tetthet og forkastningsområde. )( Bjørn H. Auestad Oppsummering våren / 50

47 Hypotesetesting Def.: Signifikansnivå til test = P(forkaste H 0 H 0 riktig) Signifikansnivået er sannsynligheten at utfallet faller i forkastningsområdet ved en tilfeldighet (og at vi konkluderer med H 1 ), når i virkeligheten H 0 er riktig. Introduksjon Standardtester µ, målemodell, 3 Teori Bjørn H. Auestad Oppsummering våren / 50

48 Hypotesetesting Introduksjon Standardtester µ, målemodell, 3 Teori Styrke, generell definisjon: Situasjon og modell fastlagt; test ang. parameteren θ Følgende er også fastlagt: H 0 og H 1 Teststørrelse, sign.nivå og forkastningsområde / kritisk verdi Def.: Styrkefunksjonen, γ, er definert ved: γ(θ) = P(forkaste H 0 θ). For en bestemt verdi θ 1 (slik at H 1 er riktig), kalles sannsynligheten γ(θ 1 ) for styrken i alternativet θ 1. Styrke (ev. tilnærmet styrke) kan finnes for alle testene vi har sett på til nå, på tilsvarende måte som i de to foregående eksemplene. Se eksempler i forelesningsnotatene Bjørn H. Auestad Oppsummering våren / 50

49 Hypotesetesting Introduksjon Standardtester µ, målemodell, 3 Teori p-verdi, generelt: Dersom p-verdien er lavere enn fastlagt signifikansnivå, forkastes H 0. (Da har teststørrelsen verdi i forkastningsområdet.) Generell definisjon av p-verdi: Def.: p-verdien til et resultat er sannsynligheten beregnet under H 0 for å få det observerte resultatet eller et som i enda sterkere grad peker i retning av at H 1 er riktig. Se eksempler i forelesningsnotatene Bjørn H. Auestad Oppsummering våren / 50

50 Hypotesetesting Introduksjon Standardtester µ, målemodell, 3 Teori Konfidensintervall vs. test, generelt: La (L,U) være et (ev. tilnærmet) 100(1 α)% konfidensintervall for parameteren θ. Vi vil teste H 0 : θ = θ 0 mot H 1 : θ θ 0 Test: Forkast H 0 dersom θ 0 (L,U). Testen har signifikansnivå α (ev. tilnærmet). Veldig god måte å gjennomføre (tosidige) tester på! Obs.: dersom dette blir brukt for ensidig test får vi en annen sammenheng mellom intervallets konfidensgrad og sign.nivået til testen. Se eksempler i forelesningsnotatene Bjørn H. Auestad Oppsummering våren / 50

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4 ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 27. mars Bjørn H. Auestad Kp. 6: Hypotesetesting

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 20. mars Bjørn H. Auestad Kp. 6: Hypotesetesting

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 20. mars Bjørn H. Auestad Kp. 6: Hypotesetesting

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Hypotesetesting (kp. 6) Hypotesetesting, innledning. Kp.

ÅMA110 Sannsynlighetsregning med statistikk, våren Hypotesetesting (kp. 6) Hypotesetesting, innledning. Kp. ÅMA Sannsynlighetsregning med statistikk, våren 8 Kp. 6 Hypotesetesting Hypotesetesting (kp. 6) Tre deler av faget/kurset:. Beskrivende statistikk. Sannsynlighetsteori, sannsynlighetsregning 3. Statistisk

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Hypotesetesting (kp. 6) Hypotesetesting. Kp. 6 Hypotesetesting ...

ÅMA110 Sannsynlighetsregning med statistikk, våren Hypotesetesting (kp. 6) Hypotesetesting. Kp. 6 Hypotesetesting ... ÅMA Sannsynlighetsregning med statistikk, våren 6 Kp. 6 (kp. 6)... Begrep: nullhypotese alternativhypotese ensidig, tosidig teststørrelse (testobservator) nullfordeling kritisk verdi, forkastningsområde

Detaljer

Hypotesetesting (kp. 6) ÅMA110 Sannsynlighetsregning med statistikk, våren Tre deler av faget/kurset: 1. Beskrivende statistikk

Hypotesetesting (kp. 6) ÅMA110 Sannsynlighetsregning med statistikk, våren Tre deler av faget/kurset: 1. Beskrivende statistikk ÅMA Sannsynlighetsregning med statistikk, våren 2 Kp. 6 Hypotesetesting Hypotesetesting (kp. 6) Tre deler av faget/kurset:. Beskrivende statistikk 2. Sannsynlighetsteori, sannsynlighetsregning 3. Statistisk

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 3 Diskrete tilfeldige variable. Diskrete tilfeldige variable, varians (kp. 3.

ÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 3 Diskrete tilfeldige variable. Diskrete tilfeldige variable, varians (kp. 3. ÅMA Sannsynlighetsregning med statistikk, våren 8 Kp. Diskrete tilfeldige variable Kp. Diskrete tilfeldige variable Har sett på (tidligere: begrep/definisjoner; tilfeldig (stokastisk variabel sannsynlighetsfordeling

Detaljer

ÅMA110 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 2010, s. 1. Oppgave 1. Histogram over frekvenser.

ÅMA110 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 2010, s. 1. Oppgave 1. Histogram over frekvenser. ÅMA1 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 0, s. 1 (Det tas forbehold om feil i løsningsforslaget.) a) Gjennomsnitt: x = 1 Emp. standardavvik: Median: 1 (1.33 + 1.) = 1.35

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Oppsummering

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Oppsummering ÅMA110 Sasylighetsregig med statistikk, våre 2007 Oppsummerig Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 19. april Bjør H. Auestad Oppsummerig våre 2006 1 / 37 Oversikt

Detaljer

ÅMA 110 SANNSYNLIGHETSREGNING MED STATISTIKK Løsningsforslag til regneøving nr. 12 (s. 34)

ÅMA 110 SANNSYNLIGHETSREGNING MED STATISTIKK Løsningsforslag til regneøving nr. 12 (s. 34) ÅMA 110 SANNSYNLIGHETSREGNING MED STATISTIKK Løsningsforslag til regneøving nr. s. 34 Oppgave.1 Situasjon betraktes som 7 Bernoulliforsøk; Suksess: dyr velger belønning 1, motsatt fiasko. P suksess = p;

Detaljer

STK Oppsummering

STK Oppsummering STK1100 - Oppsummering Geir Storvik 6. Mai 2014 STK1100 Tre temaer Deskriptiv/beskrivende statistikk Sannsynlighetsteori Statistisk inferens Sannsynlighetsregning Hva Matematisk verktøy for å studere tilfeldigheter

Detaljer

Motivasjon for kurset. ÅMA110 Sannsynlighetsregning med statistikk, våren 2008. Oppsummering. ÅMA110 Sannsynlighetsregning med statistikk våren 2008

Motivasjon for kurset. ÅMA110 Sannsynlighetsregning med statistikk, våren 2008. Oppsummering. ÅMA110 Sannsynlighetsregning med statistikk våren 2008 ÅMA0 Sannsynlighetsregning med statistikk, våren 008 Oppsummering ÅMA0 Sannsynlighetsregning med statistikk våren 008 Pensum: Pensumbok: Per Chr. Hagen: "Innføring i sannsynlighetsregning og statistikk",

Detaljer

ÅMA 110 (TE 199) Sannsylighetsregning og statistikk Løsningsforslag til eksamen vår 2005, s. 1. Oppgave 1

ÅMA 110 (TE 199) Sannsylighetsregning og statistikk Løsningsforslag til eksamen vår 2005, s. 1. Oppgave 1 ÅMA 0 (TE 99) Sannsylighetsregning og statistikk Løsningsforslag til eksamen vår 005, s. Oppgave a) P (X 0) 0.04 + 0.04 + 0.06 + 0.06 + 0. + 0. + 0. 0.6 P (0 X 40) 0.0 + 0.0 + 0.04 + 0.04 + 0.06 0.0 P

Detaljer

statistikk, våren 2011

statistikk, våren 2011 ÅMA110 Sannsynlighetsregning med statistikk, våren 011 Kp. 3 Diskrete tilfeldige variable 1 Diskrete tilfeldige variable, innledning Hva er en tilfeldig variabel (stokastisk variabel)? Diskret tilfeldig

Detaljer

Oppgaven består av 9 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom << >>. Oppgave 1

Oppgaven består av 9 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom << >>. Oppgave 1 ECON 0 EKSMEN 007 VÅR SENSORVEILEDNING Oppgaven består av 9 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom >. Oppgave. La begivenhetene BC,, være slik at og

Detaljer

Formelsamling V-2014 MAT110. Statistikk 1. Per Kristian Rekdal

Formelsamling V-2014 MAT110. Statistikk 1. Per Kristian Rekdal Formelsamling V-2014 MAT110 Statistikk 1 Per Kristian Rekdal 2 Forord Dette er formelsamlingen i emnet MAT110 Statistikk 1 ved høgskolen i Molde. Formlene i denne formelsamlingen er stort sett de formlene

Detaljer

Kapittel 2: Hendelser

Kapittel 2: Hendelser Kapittel 2: Hendelser FENOMEN Eksperiment Utfall Utfallsrom Eksperiment. Utfall. Eksperiment Utfall Hendelse Sannsynlighet: egenskaper, gunstige vs. mulige, relativ frekvens Sannsynlighet for mer enn en

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA4240 Statistikk H2010 Statistisk inferens: 8.1: Tilfeldig utvalg 9.1-9.3: Estimering Mette Langaas Foreleses uke 40, 2010 2 Utfordring Ved en bedrift produseres en elektrisk komponent. Komponenten må

Detaljer

Statistikk og dataanalyse

Statistikk og dataanalyse Njål Foldnes, Steffen Grønneberg og Gudmund Horn Hermansen Statistikk og dataanalyse En moderne innføring Kapitteloversikt del 1 INTRODUKSJON TIL STATISTIKK Kapittel 1 Populasjon og utvalg 19 Kapittel

Detaljer

TMA4245 Statistikk Eksamen desember 2016

TMA4245 Statistikk Eksamen desember 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008 ÅMA0 Sannsynlighetsregning med statistikk, våren 008 Kp. Sannsynlighetsregning (sannsynlighetsteori).5 Betinget sannsynlighet Betinget sannsynlighet (kp..5) - innledning Eks.: Et terningkast; {,, 3, 4,

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig

Detaljer

FORMELSAMLING TIL STK1100 OG STK1110

FORMELSAMLING TIL STK1100 OG STK1110 FORMELSAMLING TIL STK1100 OG STK1110 (Versjon av 16. november 2009) 1. Sannsynlighet La A, B, A 1, A 2,...,B 1, B 2,... være begivenheter, dvs. delmengder av et utfallsrom Ω. a) Aksiomene: Et sannsynlighetsmål

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 2 Sannsynlighetsregning (sannsynlighetsteori) 1 Grunnbegrep Stokastisk forsøk: forsøk med uforutsigbart utfall Enkeltutfall: et av de mulige

Detaljer

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig om populasjonen. Konkret: Å analysere en utvalgsobservator for å trekke slutninger

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 ÅMA0 Sannsynlighetsregning med statistikk, våren 0 Kp. 3 Diskrete tilfeldige variable Noen viktige sannsynlighetsmodeller Noen viktige sannsynlighetsmodeller ( Sanns.modell : nå betyr det klasse/type sanns.fordeling.

Detaljer

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig om populasjonen. Konkret: Analysere en observator for å finne ut noe om korresponderende

Detaljer

Kapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering

Kapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering Kapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering TMA4245 Statistikk Kapittel 8.1-8.5. Kapittel 9.1-9.3+9.15 Turid.Follestad@math.ntnu.no p.1/21 Har sett

Detaljer

Betinget sannsynlighet

Betinget sannsynlighet Betinget sannsynlighet Multiplikasjonsloven for sannsynligheter (s. 49 i bok): P( AB ) = P( A B ) P(B) Veldig viktig verktøy for å finne sannsynligheter for snitt. (Bevises ved rett fram manipulering av

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. ÅMA110 Sannsynlighetsregning med statistikk, våren 2010

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 ÅMA Sannsynlighetsregning med statistikk, våren Kp. Diskrete tilfeldige variable ÅMA Sannsynlighetsregning med statistikk, våren Kp. Diskrete tilfeldige variable Diskrete tilfeldige variable, innledning

Detaljer

Oppgave 1. . Vi baserer oss på at p 47 1 og p 2 er tilnærmet normalfordelte (brukbar tilnærming). Vi har tilnærmet at (n 1 = n 2 = 47)

Oppgave 1. . Vi baserer oss på at p 47 1 og p 2 er tilnærmet normalfordelte (brukbar tilnærming). Vi har tilnærmet at (n 1 = n 2 = 47) MOT310 tatistiske metoder 1 Løsningsforslag til eksamen vår 006, s. 1 Oppgave 1 a) En tilfeldig utvalgt besvarelse får F av sensor 1 med sannsynlighet p 1 ; resultatene for ulike besvarelser er uavhengige.

Detaljer

Hypotesetesting. Formulere en hypotesetest: Når vi skal test om en parameter θ kan påstås å være større enn en verdi θ 0 skriver vi dette som:

Hypotesetesting. Formulere en hypotesetest: Når vi skal test om en parameter θ kan påstås å være større enn en verdi θ 0 skriver vi dette som: Hypotesetesting. 10 og fore- Dekkes av pensumsidene i kap. lesingsnotatene. Hypotesetesting er en systematisk fremgangsmåte for å undersøke hypoteser (påstander) knyttet til parametre i sannsynlighetsfordelinger.

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 Kp. 2 Sannsynlighetsregning (sannsynlighetsteori) 1 Grunnbegrep Stokastisk forsøk: forsøk med uforutsigbart utfall Enkeltutfall: et av de mulige

Detaljer

Oppfriskning av blokk 1 i TMA4240

Oppfriskning av blokk 1 i TMA4240 Oppfriskning av blokk 1 i TMA4240 Geir-Arne Fuglstad November 21, 2016 2 Hva har vi gjort i dette kurset? Vi har studert to sterkt relaterte grener av matematikk Sannsynlighetsteori: matematisk teori for

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Grunnbegrep. Grunnbegrep, sannsynligheten for et utfall

ÅMA110 Sannsynlighetsregning med statistikk, våren Grunnbegrep. Grunnbegrep, sannsynligheten for et utfall ÅM110 Sannsynlighetsregning med statistikk, våren 006 Kp. Sannsynlighetsregning (sannsynlighetsteori) 1 Grunnbegrep Stokastisk forsøk: forsøk med uforutsigbart utfall Enkeltutfall: et av de mulige utfallen

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 4

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 4 ÅMA11 Sasylighetsregig med statistikk, våre 21 Kp. 6, del 4 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 22. mars Bjør H. Auestad Kp. 6: Hypotesetestig del 4 1/ 29 Bjør

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk (5sp), våren 2012 BMF100 Sannsynlighetsregning og statistikk 1 (10sp), våren 2012

ÅMA110 Sannsynlighetsregning med statistikk (5sp), våren 2012 BMF100 Sannsynlighetsregning og statistikk 1 (10sp), våren 2012 Introduksjon Prakstisk informasjon, s. 1 ÅMA110 Sannsynlighetsregning med statistikk (5sp), våren 2012 BMF100 Sannsynlighetsregning og statistikk 1 (10sp), våren 2012 Ny rammeplan for ingeniørfag Sannsynlighetsregning

Detaljer

Oppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2.

Oppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2. Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 17 november 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk Tapir

Detaljer

TMA4240 Statistikk Høst 2008

TMA4240 Statistikk Høst 2008 TMA4240 Statistikk Høst 2008 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7 Oppgave 1 Tippekonkurranse Denne oppgaven er ment som en kjapp test på hva du har

Detaljer

Eksamensoppgave i TMA4240 Statistikk

Eksamensoppgave i TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806

Detaljer

A. i) Sett opp en frekvenstabell over de fire mulige kombinasjonene av kjønn og røykestatus. Dvs. fyll inn. Ikke - røyker Sum Jente Gutt Sum 25

A. i) Sett opp en frekvenstabell over de fire mulige kombinasjonene av kjønn og røykestatus. Dvs. fyll inn. Ikke - røyker Sum Jente Gutt Sum 25 1 ECON21: ESAEN 215v SENSORVEILEDNING. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i > Grensen til bestått bør ligge på ca

Detaljer

TMA4240 Statistikk Høst 2007

TMA4240 Statistikk Høst 2007 TMA4240 Statistikk Høst 2007 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b4 Løsningsskisse Oppgave 1 Eksamen juni 1999, oppgave 3 av 3 a) µ populasjonsgjennomsnitt,

Detaljer

Eksamensoppgave i ST1201/ST6201 Statistiske metoder

Eksamensoppgave i ST1201/ST6201 Statistiske metoder Institutt for matematiske fag Eksamensoppgave i ST1201/ST6201 Statistiske metoder Faglig kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: 20. desember 2016 Eksamenstid (fra til): 09:00

Detaljer

Høgskoleni Øs fold EKSAMEN. Om noe er uklart eller mangelfullt i oppgaven inngår det som en del av oppgaven å ta de nødvendige forutsetninger.

Høgskoleni Øs fold EKSAMEN. Om noe er uklart eller mangelfullt i oppgaven inngår det som en del av oppgaven å ta de nødvendige forutsetninger. Høgskoleni Øs fold EKSAMEN Emnekode: Emne: SFB10711 Metodekurs 1: Grunnleggende matematikk og statistikk Deleksameni statistikk Dato: 3. januar 2014 Eksamenstid: kl. 0900 til kl. 1300 Hjelpemidler: Faglærer:

Detaljer

Utvalgsfordelinger. Utvalg er en tilfeldig mekanisme. Sannsynlighetsregning dreier seg om tilfeldige mekanismer.

Utvalgsfordelinger. Utvalg er en tilfeldig mekanisme. Sannsynlighetsregning dreier seg om tilfeldige mekanismer. Utvalgsfordelinger Vi har sett at utvalgsfordelinger til en statistikk (observator) er fordelingen av verdiene statistikken tar ved mange gjenttatte utvalg av samme størrelse fra samme populasjon. Utvalg

Detaljer

Kapittel 4.4: Forventning og varians til stokastiske variable

Kapittel 4.4: Forventning og varians til stokastiske variable Kapittel 4.4: Forventning og varians til stokastiske variable Forventning og varians til stokastiske variable Histogrammer for observerte data: Sannsynlighets-histogrammer og tetthetskurver for stokastiske

Detaljer

Kapittel 3: Studieopplegg

Kapittel 3: Studieopplegg Oversikt over pensum Kapittel 1: Empirisk fordeling for en variabel o Begrepet fordeling o Mål for senter (gj.snitt, median) + persentiler/kvartiler o Mål for spredning (Standardavvik s, IQR) o Outliere

Detaljer

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>. 1 ECON130: EKSAMEN 014 VÅR - UTSATT PRØVE TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variason i vanskelighetsgrad. Svarene er gitt i >. Oppgave 1 Fra en eldre

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Noen viktige sannsynlighetsmodeller. Binomisk modell. Kp. 3 Diskrete tilfeldige variable

ÅMA110 Sannsynlighetsregning med statistikk, våren Noen viktige sannsynlighetsmodeller. Binomisk modell. Kp. 3 Diskrete tilfeldige variable ÅMA Sannsynlighetsregning med statistikk, våren 006. 3 Diskrete tilfeldige variable Noen viktige sannsynlighetsmodeller Noen viktige sannsynlighetsmodeller (k. 3.6 Hyergeometrisk modell (k. 3.7 Geometrisk

Detaljer

STK Oppsummering

STK Oppsummering STK1110 - Oppsummering Geir Storvik 11. November 2015 STK1110 To hovedtemaer Introduksjon til inferensmetoder Punktestimering Konfidensintervall Hypotesetesting Inferens innen spesifikke modeller/problemer

Detaljer

Dataanalyse. Hva er en dataanalyse og hvordan gå frem for å gjennomføre en dataanalyse av det innsamlede datagrunnlaget fra en feltundersøkelse?

Dataanalyse. Hva er en dataanalyse og hvordan gå frem for å gjennomføre en dataanalyse av det innsamlede datagrunnlaget fra en feltundersøkelse? Hva er en dataanalyse og hvordan gå frem for å gjennomføre en dataanalyse av det innsamlede datagrunnlaget fra en feltundersøkelse? Skrevet av: Kjetil Sander Utgitt av: estudie.no Revisjon: 1.0 (Sept.

Detaljer

Kapittel 10: Hypotesetesting

Kapittel 10: Hypotesetesting Kapittel 10: Hypotesetesting TMA445 Statistikk 10.1, 10., 10.3: Introduksjon, 10.5, 10.6, 10.7: Test for µ i normalfordeling, 10.4: p-verdi Turid.Follestad@math.ntnu.no p.1/19 Estimering og hypotesetesting

Detaljer

a ) Forventningen estimeres med gjennomsnittet: x = 1 12 (x 1 + + x 12 ) = 1 (755 + 708 + + 748) = 8813/12 = 734.4

a ) Forventningen estimeres med gjennomsnittet: x = 1 12 (x 1 + + x 12 ) = 1 (755 + 708 + + 748) = 8813/12 = 734.4 ÅMA110 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 011, s. 1 (Det tas forbehold om feil i løsningsforslaget. Oppgave 1 Vi betrakter dataene x 1,..., x 1 somutfall av n = 1 u.i.f.

Detaljer

Innhold. Innledning. Del I

Innhold. Innledning. Del I Innhold Del I Innledning 1 Hva er statistikk?...17 1.1 Bokas innhold 18 1.1.1 Noen eksempler 18 1.1.2 Historie 21 1.1.3 Bokas oppbygning 22 1.2 Noen viktige begreper 23 1.2.1 Populasjon og utvalg 23 1.2.2

Detaljer

Econ 2130 uke 16 (HG)

Econ 2130 uke 16 (HG) Econ 213 uke 16 (HG) Hypotesetesting I Løvås: 6.4.1 6, 6.5.1-2 1 Testing av µ i uid modellen (situasjon I Z-test ). Grunnbegreper. Eksempel. En lege står overfor følgende problemstilling. Standardbehandling

Detaljer

Høgskoleni østfold EKSAMEN

Høgskoleni østfold EKSAMEN et) Høgskoleni østfold EKSAMEN Emnekode:Emne: SFB10711Metode 1 Statistikkdel Dato: 5. feb. 2016Eksamenstid: kl. 1400 Hjelpemidler: Kalkulator Utlevert formelsamling til kl. 1800 Faglærer: Nils Ingar Arvidsen

Detaljer

Oppgaven består av 10 delspørsmål som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom <<, >>, Oppgave 1

Oppgaven består av 10 delspørsmål som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom <<, >>, Oppgave 1 ECON 130 EKSAMEN 005 VÅR SENSORVEILEDNING Oppgaven består av 10 delspørsmål som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom , Oppgave 1 I denne oppgaven kan du anta at

Detaljer

Kap. 6, Kontinuerlege Sannsynsfordelingar

Kap. 6, Kontinuerlege Sannsynsfordelingar Kapittel 6, Kontinuerlege Sannsynsfordelingar Sjå på eit utval av ofte brukte kontinuerlege sannsynsfordelingar Uniform I går Normal I går Eksponensial I dag Gamma I dag Kji-kvadrat I dag Nokre eigenskapar

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 Kp. 2 Sannsynlighetsregning i (sannsynlighetsteori) t i) 2.5 Betinget sannsynlighet 1 Betinget sannsynlighet (kp. 2.5) - innledning Eks.: Et terningkast;

Detaljer

Statistisk inferens: 9.14: Sannsynlighetsmaksimeringsestimatoren 8.5: Fordeling til gjennomsnittet 9.4: Konfidensintervall for µ (σ kjent)

Statistisk inferens: 9.14: Sannsynlighetsmaksimeringsestimatoren 8.5: Fordeling til gjennomsnittet 9.4: Konfidensintervall for µ (σ kjent) TMA440 Statistikk H010 Statistisk inferens: 9.14: Sannsynlighetsmaksimeringsestimatoren 8.5: Fordeling til gjennomsnittet 9.4: Konfidensintervall for µ (σ kjent) Mette Langaas Foreleses mandag 11.oktober,

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008 Kp. 6, del 5

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008 Kp. 6, del 5 ÅMA110 Sasylighetsregig med statistikk, våre 2008 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 26. mars Bjør H. Auestad Kp. 6: Hypotesetestig del 5 1/ 53

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON2130 - Statistikk 1 Eksamensdag: 19.06.2014 Tid for eksamen: kl. 09:00 12:00 Oppgavesettet er på 4 sider UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Tillatte hjelpemidler: Alle trykte

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Noen viktige sannsynlighetsmodeller. Noen viktige sannsynlighetsmodeller

ÅMA110 Sannsynlighetsregning med statistikk, våren Noen viktige sannsynlighetsmodeller. Noen viktige sannsynlighetsmodeller ÅMA0 Sannsnlighetsregning med statistikk, våren 008 Kp. 3 Diskrete tilfeldige variable Noen viktige sannsnlighetsmodeller Noen viktige sannsnlighetsmodeller Binomisk modell (kp. 3.6) Hpergeometrisk modell

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 5

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 5 ÅMA110 Sasylighetsregig med statistikk, våre 2006 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 3. april Bjør H. Auestad Kp. 6: Hypotesetestig del 5 1 / 56

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON30 Statistikk UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 03.06.06 Sensur kunngjøres: 4.06.06 Tid for eksamen: kl. 09:00 :00 Oppgavesettet er på 5 sider Tillatte hjelpemidler:

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 9 Løsningsskisse Oppgave 1 a) Vi lar her Y være antall fugler som kolliderer med vindmølla i løpet av den gitte

Detaljer

Om eksamen. Never, never, never give up!

Om eksamen. Never, never, never give up! Plan vidare Onsdag Gjere ferdig kap 11 + repetisjon Fredag Rekning av eksamensoppgåver Eksamen Mai 2014, oppgåve 2 (inkl normal fordeling, lin.reg. og deskriptiv statistikk) Eksamen August 2012, oppgåve

Detaljer

Estimering og hypotesetesting

Estimering og hypotesetesting Kapittel 10 Ett- og toutvalgs hypotesetesting TMA4240 H2006: Eirik Mo 2 Estimering og hypotesetesting Fenomen Bilkjøring Høyden til studenter Spørsmål Hvor stor andel av studentene synes de er flinkere

Detaljer

Kap. 6, Kontinuerlege Sannsynsfordelingar

Kap. 6, Kontinuerlege Sannsynsfordelingar Kapittel 6, Kontinuerlege Sannsynsfordelingar Sjå på eit utval av ofte brukte kontinuerlege sannsynsfordelingar Uniform I går Normal I går Eksponensial I dag Gamma I dag Kji-kvadrat I dag Nokre eigenskapar

Detaljer

Estimering og hypotesetesting

Estimering og hypotesetesting Kapittel 10 Ett- og toutvalgs hypotesetesting TMA4245 V2007: Eirik Mo 2 Estimering og hypotesetesting Fenomen Bilkjøring Høyden til studenter Spørsmål Hvor stor andel av studentene synes de er flinkere

Detaljer

Kapittel 9 og 10: Hypotesetesting

Kapittel 9 og 10: Hypotesetesting Kapittel 9 og 1: Hypotesetesting Hypotesetesting er en standard vitenskapelig fremgangsmåte for å sjekke påstander. Generell problemstilling: Basert på informasjonen i data fra et tilfeldig utvalg ønsker

Detaljer

MAT4010 PROSJEKTOPPGAVE: Statistikk i S2. Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem

MAT4010 PROSJEKTOPPGAVE: Statistikk i S2. Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem MAT400 PROSJEKTOPPGAVE: Statistikk i S2 Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem 20. mai 205 Innhold. Stokastisk Variabel.. Stokastiske variable som funksjoner 3 2. Forventningsverdi

Detaljer

TMA4240 Statistikk H2010 (19)

TMA4240 Statistikk H2010 (19) TMA4240 Statistikk H2010 (19) Hypotesetesting 10.1-10.3: Generelt om statistiske hypoteser 10.5: Ett normalfordelt utvalg Mette Langaas Foreleses mandag 25.oktober, 2010 2 Estimering og hypotesetesting

Detaljer

Løsningsforslag til eksamen i TMA4245 Statistikk 7. juni 2007

Løsningsforslag til eksamen i TMA4245 Statistikk 7. juni 2007 Løsningsforslag til eksamen i TMA4245 Statistikk 7. juni 2007 Oppgave 1: Pengespill a) For hver deltaker har vi følgende situasjon: Deltakeren får en serie oppgaver. Hver runde har to mulige utfall: Deltakeren

Detaljer

1.1.1 Rekke med konstante ledd. En rekke med konstante ledd er gitt som. a n (1) n=m

1.1.1 Rekke med konstante ledd. En rekke med konstante ledd er gitt som. a n (1) n=m Formelsamling og tabeller FO020E Matte 2000 for elektroprogrammet 1 Matematikk 1.1 Denisjoner av ulike typer polynomer og rekker 1.1.1 Rekke med konstante ledd En rekke med konstante ledd er gitt som a

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 ÅM0 Sannsynlighetsregning med statistikk, våren 00 Kp. Sannsynlighetsregning (sannsynlighetsteori).5 (kp..5) - innledning Eks.: Et terningkast; {,, 3, 4, 5, 6}. Ved bruk av uniform modell: hvert utfall

Detaljer

TMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger

TMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger TMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger Binomisk fordeling* ( ) n b(x; n, p) = p x (1 p) n x = x ( ) n p x q n x, x x = 0, 1, 2,..., n Fenomén: i) n forsøk. ii) Suksess/fiasko

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 ÅMA110 Sasylighetsregig med statistikk, våre 2006 Kp. 6, del 2 Bjør H. Auestad Kp. 6: Hypotesetesig del 2 1/ 38 Bjør H. Auestad Kp. 6: Hypotesetesig del 2 2/ 38 Oversikt 1. Hva er hypotesetestig? 2. Hypotesetestig

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 11, blokk II I denne øvingen skal vi fokusere på hypotesetesting. Vi ønsker å gi dere

Detaljer

Høgskoleni østfold EKSAMEN. SFB10711 Metodekurs 1: Grunnleggende matematikk og statistikk Skriftlig eksamen, vår, statistikk

Høgskoleni østfold EKSAMEN. SFB10711 Metodekurs 1: Grunnleggende matematikk og statistikk Skriftlig eksamen, vår, statistikk Høgskoleni østfold EKSAMEN Emnekode: Emne: SFB10711 Metodekurs 1: Grunnleggende matematikk og statistikk Skriftlig eksamen, vår, statistikk Dato: 4. mai 2015 Eksamenstid: kl. 09.00 til kl. 13.00 Hjelpemidler:

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008 Kp. 6, del 5

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008 Kp. 6, del 5 ÅMA110 Sasylighetsregig med statistikk, våre 2008 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 3. april Bjør H. Auestad Kp. 6: Hypotesetestig del 5 1/ 56

Detaljer

Hypotesetesting, del 4

Hypotesetesting, del 4 Oversikt, del 4 t-fordelig t-test t-itervall Del 5 Kofidesitervall vs. test p-verdi t-fordelig Rett på defiisjo: Utgagspuktet er målemodelle med ormalatakelse: X 1,...,X,u.i.f.tilf.var.derX i Nμ, σ 2 ).La

Detaljer

Medisinsk statistikk Del I høsten 2009:

Medisinsk statistikk Del I høsten 2009: Medisinsk statistikk Del I høsten 2009: Kontinuerlige sannsynlighetsfordelinger Pål Romundstad Beregning av sannsynlighet i en binomisk forsøksrekke generelt Sannsynligheten for at suksess intreffer X

Detaljer

TMA4240 Statistikk H2010 Kapittel 5: Diskrete sannsynlighetsfordelinger : Uniform, binomisk, hypergeometrisk fordeling

TMA4240 Statistikk H2010 Kapittel 5: Diskrete sannsynlighetsfordelinger : Uniform, binomisk, hypergeometrisk fordeling TMA4240 Statistikk H2010 Kapittel 5: Diskrete sannsynlighetsfordelinger 5.1-5.4: Uniform, binomisk, hypergeometrisk fordeling Mette Langaas 2 Arbeidshverdag etter endt studium Studere et fenomen (f.eks.

Detaljer

Observatorer. STK Observatorer - Kap 6. Utgangspunkt. Eksempel høyde Oxford studenter

Observatorer. STK Observatorer - Kap 6. Utgangspunkt. Eksempel høyde Oxford studenter Observatorer STK00 - Observatorer - Kap 6 Geir Storvik 4. april 206 Så langt: Sannsynlighetsteori Stokastiske modeller Nå: Data Knytte data til stokastiske modeller Utgangspunkt Eksempel høyde Oxford studenter

Detaljer

Regler i statistikk STAT 100

Regler i statistikk STAT 100 TORIL FJELDAAS RYGG - VÅREN 2010 Regler i statistikk STAT 100 Innhold side Sannsynlighetsregning 3 - Uttrykk 3 - Betinget sannsynlighet 4 - Regler for sannsynlighet 4 - Bayes teorem 4 - Uavhengige begivenheter

Detaljer

Utvalgsfordelinger; utvalg, populasjon, grafiske metoder, X, S 2, t-fordeling, χ 2 -fordeling

Utvalgsfordelinger; utvalg, populasjon, grafiske metoder, X, S 2, t-fordeling, χ 2 -fordeling Kapittel 8 Utvalgsfordelinger; utvalg, populasjon, grafiske metoder, X, S 2, t-fordeling, χ 2 -fordeling TMA4240 H2006: Eirik Mo 2 Til nå... Definert sannsynlighet og stokastiske variabler (kap. 2 & 3).

Detaljer

Hypotesetesting av λ og p. p verdi.

Hypotesetesting av λ og p. p verdi. Forelesning 7, kapittel 6 Hypotesetesting av λ og p. p verdi. Det som gjøres i denne forelesningen er nær opptil det vi gjorde da vi konstruerte z test for µ, og styrkefunksjon for denne. I tillegg til

Detaljer

betyr begivenheten at det blir trukket en rød kule i første trekning og en hvit i andre, mens B1 B2

betyr begivenheten at det blir trukket en rød kule i første trekning og en hvit i andre, mens B1 B2 ECON30: EKSAMEN 06v SENSORVEILEDNING. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i

Detaljer

Dekkes av pensumsidene i kap. lesingsnotatene. Hypotesetesting er en systematisk fremgangsmåte

Dekkes av pensumsidene i kap. lesingsnotatene. Hypotesetesting er en systematisk fremgangsmåte Hypotesetesting. 10 og fore- Dekkes av pensumsidene i kap. lesingsnotatene. Hypotesetesting er en systematisk fremgangsmåte for å undersøke hypoteser (påstander) knyttet til parametre i sannsynlighetsfordelinger.

Detaljer

+ S2 Y ) 2. = 6.737 6 (avrundet nedover til nærmeste heltall) n Y 1

+ S2 Y ) 2. = 6.737 6 (avrundet nedover til nærmeste heltall) n Y 1 Løsningsforslag for: MOT10 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 6. november 007 TILLATTE HJELPEMIDLER: Kalkulator: HP0S, Casio FX8 eller TI-0 Tabeller og formler i statistikk (Tapir forlag) MERKNADER:

Detaljer

Løsningsforslag til andre sett med obligatoriske oppgaver i STK1110 høsten 2010

Løsningsforslag til andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Løsningsforslag til andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Oppgave 1 a Forventet antall dødsulykker i år i er E(X i λ i. Dermed er θ i λ i E(X i forventet antall dødsulykker per 100

Detaljer

TMA4245 Statistikk Eksamen desember 2016

TMA4245 Statistikk Eksamen desember 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 Ei bedrift produserer elektriske komponentar. Komponentane kan ha to typar

Detaljer

α =P(type I feil) = P(forkast H 0 H 0 er sann) =1 P(220 < X < 260 p = 0.6)

α =P(type I feil) = P(forkast H 0 H 0 er sann) =1 P(220 < X < 260 p = 0.6) TMA4245 Statistikk Vår 212 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving 4 blokk II Løsningsskisse Oppgave 1 4 personer spurt. Hvis mellom 22 og 26 personer svarer

Detaljer

Rep.: generelle begrep og definisjoner Kp. 10.1, 10.2 og 10.3

Rep.: generelle begrep og definisjoner Kp. 10.1, 10.2 og 10.3 Kp. 1, oversikt ; oversikt, t- ; oversikt ; stor ; Hypoteseig; ett- og to-utvalg Rep.: geerelle begrep og defiisjoer Kp. 1.1, 1.2 og 1.3 Rep.: ett-utvalgser for μ (...), p Kp. 1 og 1.8 Nytt: ett-utvalgs

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon

ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon Bo Lindqvist Institutt for matematiske fag 2 Kap. 9: Inferens om én populasjon Statistisk inferens har som mål å tolke/analysere

Detaljer

A) B) 400 C) 120 D) 60 E) 10. Rett svar: C. Fasit: ( 5 6 = 60. Hvis A, B, C er en partisjon av utfallsrommet S, så er P (A B) lik.

A) B) 400 C) 120 D) 60 E) 10. Rett svar: C. Fasit: ( 5 6 = 60. Hvis A, B, C er en partisjon av utfallsrommet S, så er P (A B) lik. Oppgave 1 Det skal velges en komité bestående av 2 menn og 1 kvinne. Komitéen skal velges fra totalt 5 menn og 6 kvinner. Hvor mange ulike komitéer kan dannes? A) 86400 B) 400 C) 120 D) 60 E) 10 Rett svar:

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 5. Hypotesetesting, del 5

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 5. Hypotesetesting, del 5 ÅMA11 Sasylighetsregig med statistikk, våre 7 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 26. mars Bjør H. Auestad Kp. 6: Hypotesetestig del 5 1/ 59 Bjør

Detaljer

Norske hoppdommere og Janne Ahonen

Norske hoppdommere og Janne Ahonen TMA440 Statistikk H010 9.8: To uvalg (siste del) 9.9: Parvise observasjoner 9.10-9.11: Andelser 9.1: Varians Mette Langaas Foreleses onsdag 0.oktober, 010 Norske hoppdommere og Janne Ahonen Janne Ahonen

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA4240 Statistikk H2010 9.8: To uvalg (siste del) 9.9: Parvise observasjoner 9.10-9.11: Andelser 9.12: Varians Mette Langaas Foreleses onsdag 20.oktober, 2010 2 Norske hoppdommere og Janne Ahonen Janne

Detaljer