Seksjon 1.3 Tetthetskurver og normalfordelingen
|
|
- Karsten Gabrielsen
- 8 år siden
- Visninger:
Transkript
1 Seksjon 1.3 Tetthetskurver og normalfordelingen Har sett på ulike metoder for å plotte eller oppsummere data ved tall Vil nå starte på hvordan beskrive data ved modeller Hovedmetode er tetthetskurver
2 Tetthetskurver Alternativ til histogram Glatt tilnærming av de irregulære boksene i histogram
3 Tetthetskurve og histogram gir det samme bildet med hensyn til både entoppethet og at fordelingen er symmetrisk
4 Tetthetskurve og histogram gir det samme bildet med hensyn til både småtopper i høyre hale og at fordelingen er skjev Tetthetskurven har høyere topp ved senter av fordelingen, dette er fordi histogrammet fordeler observasjonene rundt toppene i to klasser
5 Tetthetskurver Mer robuste Resultatene man får fra dataprogrammer er mindre tilfeldige enn ved å velge klasser for et histogram En idealisering som viser det generelle mønsteret til dataene, uten å vise mindre irregulariteter
6 Figur viser histogram og tetthetskurve for poengene til 947 syvendeklasse-elever på en nasjonal, amerikansk prøve. Histogrammet er relativt symmetrisk, en-toppet og uten gap eller klare uteliggere Tetthetskurven stemmer godt overens med mønsteret i histogrammet
7 Andel mindre enn 6 i histogrammet (farget rødt) er 287/947=0.303 (287 er antallet i hver av klassene opp til 6) Dersom histogrammet var angitt med relativ andel (frekvens), kunne vi lagt sammen andelene i klassene opp til 6 og fått 0.303
8 Arealet av tetthetskurven til venstre for 6 (farget rødt) er 0.293, tett på Stemmer godt med at man ser at arealet under tetthetskurven gir en god tilnærming til arealene gitt av histogrammet
9 Tetthetskurver En tetthetskurve er en kurve som Alltid er ovenfor den horisontale aksen Har areal eksakt lik 1 Modell (idealisert) for beskrivelse av data Uteliggere, som avviker fra det overordnede mønsteret, beskrives ikke av kurven/modellen
10 En tetthetskurve beskriver det overordnede mønstret i en fordeling. Arealet nedenfor en verdi beskriver andelen av observasjoner som faller innenfor dette området.
11 Senter og spredning for tetthetskurver Har tidligere sett på mål for senter og spredning for data Ønsker tilsvarende mål for tetthetskurver
12 Median i en tetthetskurve Punktet der halvparten av arealet under kurven er nedenfor og halvparten er ovenfor Mål på senter i fordeling Kaller denne noen ganger for teoretisk median for å skille den fra median av data som kalles empirisk median
13 Forventning i tetthetskurve Forventning av en tetthetskurve er balansepunktet der kurven ville balansere hvis den var laget av solid materiale På engelsk, mean svarer både til gjennomsnitt og forventning På norsk skiller vi mellom disse
14
15
16
17 Matematisk formel forventning Kan matematisk regne ut forventing ved Et slags vektet gjennomsnitt
18 Idealisering Tetthetskurve: Idealisert beskrivelse av fordeling til data Teoretisk median: Idealisert beskrivelse av empirisk median Forventning: Idealisert beskrivelse av gjennomsnitt Vi vil også skille mellom empirisk og teoretisk standardavvik
19 Symmetriske fordelinger Ofte brukt i statistikk Matematisk bekvemme Realistiske i mange sammenhenger Positive og negative målefeil har samme fordeling For symmetriske fordelinger er forventning og median like
20
21 Normalfordelingen Ofte bekvemt å anta kurven har en bestemt form Normalfordelingen: Viktig klasse av tetthetskurver Unimodal, klokkeformet, symmetrisk God beskrivelse av fordeling for reelle data for mange individer, f.eks. Poeng på prøver tatt av mange mennesker Gjentatte målinger av samme størrelse i et laboratorium Egenskaper til individer, som f.eks. høyde eller vekt
22 Normalfordeling Viktigste fordeling innen statistikk God tilnærming til fordeling av mange oppsummerende mål (gjennomsnitt etc) Statistiske metoder basert på normalfordeling fungerer godt for data som er tilnærmet symmetrisk fordelte.
23 Normalfordelingen Spesifisert av senterpunkt μ og spredningsmål σ Senterpunkt μ svarer til forventning (og median) Spredningsmål σ svarer til standardavvik Matematisk beskrivelse Bruker ofte N(μ,σ)
24
25 regelen Tilnærmet 68% av fordelingen faller innenfor intervallet [μ-σ,μ+σ] Tilnærmet 95% av fordelingen faller innenfor intervallet [μ-2σ,μ+2σ] Tilnærmet 99.7% av fordelingen faller innenfor intervallet [μ-3σ,μ+3σ]
26
27 Eksempel høyde kvinner Høyden til kvinner mellom 18 og 24 er tilnærmet normalfordelt med forventning μ=64.5 tommer og standardavvik σ=2.5 tommer. 95% innenfor [64.5-2*2.5,64.5+2*2.5] eller [59.5,69.5] (tilnærmet fordi fordelingen er en tilnærming) 2.5% lavere enn % over 69.5
28
29 ph-målinger i 105 prøver av regnvann Gjennomsnitt = og standardavvik s= Omtrent 68% (71/105 ) av ph-målingene er i intervallet +/- s = 4.89 til Omtrent 95% (100/105) av målingene er i intervallet +/- 2s = 4.35 til 6.50 Alle (100%) målingene er i intervallet +/-3s = 3.81 to 7.04
30 Standardisering regelen er et eksempel på at alle normalfordelinger deler egenskaper Dersom vi måler i enheter standardavvik σ rundt forventningen μ er alle normalfordelinger like Dette gjør det nyttig å standardisere normalfordelte variable
31 Standardisering og z-skår Hvis x er en observasjon fra en fordeling som har forventing μ og standard avvik σ, så er den standardiserte verdien av x lik z = (x-μ)/σ En standardisert verdi kalles ofte z-skår
32 z-skår Forteller hvor mange standard avvik den opprinnelige observasjon er forskjellig fra forventningen x større enn forventningen μ får positiv z- skår x mindre enn μ får negativ z-skår
33 Eksempel, høyde kvinner Høyden til kvinner mellom 18 og 24 er tilnærmet normalfordelte med forventning μ=64.5 tommer og standardavvik σ=2.5 tommer Standardisert høyde: z=(høyde-64.5)/2.5 Høyde=68 gir z=( )/2.5=1.4, dvs 1.4 standardavvik større enn forventningen Høyde=60 gir z=( )/2.5 = -1.8, dvs 1.8 standardavvik mindre enn forventningen Store eller små z-verdier svarer til ekstreme observasjoner
34 (Fra kapittel 1.2) Lineær transformasjon x har forventning μ og standardavvik σ En lineær transformasjon z=a+bx har samme form på fordeling som x, men forventning og standardavvik endres z har forventning a+bμ z har standardavvik bσ
35 Standardisering=lineær transformasjon x har forventning μ og standard avvik σ z = (x-μ)/σ = - μ/σ + x/σ = a + bx der a = - μ/σ og b = 1/σ Fra forrige slide: z har forventning a+bμ=0 z har standard avvik bσ=1
36 Standard normalfordeling Standard normalfordeling er normalfordeling med forventning=0 og standardavvik=1 dvs. N(0,1) Hvis en variabel X har en normalfordeling N(μ,σ) med forventning=μ og standardavvik=σ, da har den standardiserte variabelen Z = (X-μ)/σ en standard normalfordeling
37 Beregninger for normalfordeling Arealet av normalfordelingskurven nedenfor en verdi x beskriver andelen av observasjoner som er mindre enn x kalles også kumulativ andel
38 Beregninger for normalfordeling Vanskelig å beregne slike arealer for generelle normalfordelinger Arealene er regnet ut for standard normalfordeling og kan finnes i tabell Enkelt å slå opp i tabell for standard normalfordeling Derfor standardiserer man normalfordelte observasjoner slik at tabellen kan brukes
39 Eksempel Ønsker å beregne andelen med høyde x < 60 Standardiser! x < 60 er ekvivalent med z = (x-64.5)/2.5 < /2.5 = -1.8 Fra tabell: z < -1.8 har sannsynlighet eller 3.59%
40 Andre beregninger Vi har sett at arealet av normalfordelingskurven nedenfor en verdi x beskriver andelen av observasjoner som er mindre enn x Arealet av kurven ovenfor en verdi x beskriver andelen av observasjoner som er større enn x Arealet av kurven mellom verdiene x1 og x2 beskriver andelen av observasjoner som er større enn x1 og mindre enn x2
41
42 Beregninger: Eksempel SAT-poeng for 1.4 mill studenter har forventning 1026 og standardavvik 209. Idrettsutøvere må ha minst 820 poeng for å få lov til å konkurrere. Hvor stor andel av studentene har minst 820 poeng? Areal over 820 = totalareal - areal under 820 Totalareal = 1 Areal under 820 = areal under z=( )/209= i standard normalfordelingen (eller mer eksakt ved bruk av dataprogram) Areal over 820 = = ( 84%)
43
44 Beregninger: Eksempel Idrettsutøvere med mellom 720 og 820 poeng får stipend, men ikke lov til å konkurrere. Hvor stor andel av studentene har mellom 720 og 820 poeng poeng? Areal mellom 720 og 820 = areal under areal under 720 Areal under 820 = Areal under 720 = areal under z= Areal mellom 720 og 820 =
45 Beregninger: Eksempel
46 Inverse beregninger Vi har sett hvordan vi kan finne andelen observasjoner som faller i et gitt sett av verdier, f.eks. lavere enn 60 Inverse beregninger er å finne hvilket sett av verdier som svarer til en gitt andel Eksempel: Poeng på en verbal test følger tilnærmet en N(505,110)- fordeling. Hvor høy poengsum må en student ha for å være blant de 10% beste? Hvilken x-verdi har 10% av arealet over seg Hvilken z=(x-505)/110 har 10% av arealet over seg?
47 Finner z=1.28 i tabell z=1.28 = (x-505)/110 gir = 1.28* = Intuitivt riktig fordi z=1.28 betyr at x ligger 1.28 standardavvik (110) over forventningen (505), dvs x=1.28* Generelt for å tilbakestille standardisering: x=μ+zσ x
48 Sjekking av normalfordeling Normalfordeling ofte brukt Bør sjekke om data er tilnærmet normalfordelt Histogram/tetthetsplot nyttige men litt vanskelige å evaluere Bedre metode: Kvantil-plott
49 Fremgangsmåte: Kvantil-plott 1. Sorter data fra minste til største verdi. Finn hvilken persentil hver dataverdi svarer til (dvs hvor mange prosent av observasjonene har samme eller lavere verdi enn dette) 2. Finn z-skårene som hører til disse persentilene (invers bruk av tabellen). F.eks. får 1%-persentilen z= Plott hver observasjon x mot den tilhørende z-skår som ble funnet i punkt 2 Dersom observasjonene er tilnærmet normalfordelte vil punktene ligge omtrent langs en rett linje Se etter systematiske avvik fra rett linje, som indikerer en annen fordeling enn normal Uteliggere vil sees som punkter som ligger langt unna det overordnede mønsteret
50 Eksempel ph-målinger i regnvann Formen på histogrammene varierer med valg av klasser Derfor vanskelig å se om dataene er tilnærmet normalfordelt fra histogrammer Lager histogrammer med forskjellige klasser (Minitab)
51
52 Kvantilplott (Minitab)
53 Kvantil-plott av bruddstyrker i ledninger Ligger omtrent langs en rett linje Granularitet: Noen målinger har eksakt samme verdi, som gir små, horisontale linjer. Dette pga begrenset presisjon i måleinstrumentet En høy og to lave uteliggere som bør undersøkes nærmere
54 Kvantil-plott til levetidene til marsvin Dersom man trekker en linje gjennom hovedmønsteret, ser man at de høye verdiene ligger langt over linjen Dette indikerer sterk høyre-skjevhet, dvs en lang hale mot høyre Dataene følger altså ikke normalfordelingen
Seksjon 1.3 Tetthetskurver og normalfordelingen
Seksjon 1.3 Tetthetskurver og normalfordelingen Har sett på ulike metoder for å plotte eller oppsummere data Vil nå starte på hvordan beskrive data ved modeller Hovedmetode er tetthetskurver Tetthetskurver
Eksempel på data: Karakterer i «Stat class» Introduksjon
Eksempel på data: Karakterer i «Stat class» Introduksjon Viktige begreper for å beskrive data: Enheter som er objektene i datasettet «label» som av og til brukes for å skille enhetene En variabel er en
Et lite notat om og rundt normalfordelingen. Anta at vi har kontinuerlige data. Hva er likt og ulikt for histogrammer og fordelingskurver?
Et lite notat om og rundt normalfordelingen. Anta at vi har kontinuerlige data. Hva er likt og ulikt for histogrammer og fordelingskurver? Boka (Ch 1.4) motiverer dette ved å gå fra histogrammer til tetthetskurver.
STK1000 Uke 36, Studentene forventes å lese Ch 1.4 ( ) i læreboka (MMC). Tetthetskurver. Eksempel: Drivstofforbruk hos 32 biler
STK1000 Uke 36, 2016. Studentene forventes å lese Ch 1.4 (+ 3.1-3.3 + 3.5) i læreboka (MMC). Tetthetskurver Eksempel: Drivstofforbruk hos 32 biler Fra histogram til tetthetskurver Anta at vi har kontinuerlige
Et lite notat om og rundt normalfordelingen.
Et lite notat om og rundt normalfordelingen. Anta at vi har kontinuerlige data. Hva er likt og ulikt for histogrammer og fordelingskurver? Observasjoner Histogram Viser fordelingen av faktiske observerte
Et lite notat om og rundt normalfordelingen.
Et lite notat om og rundt normalfordelingen. Anta at vi har kontinuerlige data. Hva er likt og ulikt for histogrammer og fordelingskurver? Observasjoner Histogram Viser fordelingen av faktiske observerte
Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans
Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner
Denne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans
Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner
Utvalgsfordelinger (Kapittel 5)
Utvalgsfordelinger (Kapittel 5) Oversikt pensum, fortid og fremtid Eksplorativ data-analyse (Kap 1, 2) Hvordan produsere data (Kap 3) Sannsynlighetsteori (Kap 4) Utvalgsfordelinger til observatorer (Kap
Løsning på Dårlige egg med bruk av Tabell 2 i Appendix B
Situasjonen er som i quiz-eksempelet: n = 4, p = 1/3 ( suksess betyr å gjette riktig alternativ), q = 2/3. Oppgave: Finn P(x), x=0,1,2,3,4 fra den generelle formelen for binomisk sannsynlighetsfordeling
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Underveiseksamen i: STK1000 Innføring i anvendt statistikk. Eksamensdag: Onsdag 22/3, 2006. Tid for eksamen: Kl. 09.00 11.00. Tillatte hjelpemidler:
Kapittel 4.4: Forventning og varians til stokastiske variable
Kapittel 4.4: Forventning og varians til stokastiske variable Forventning og varians til stokastiske variable Histogrammer for observerte data: Sannsynlighets-histogrammer og tetthetskurver for stokastiske
ST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag Situasjonen er som i quiz-eksempelet: n = 4, p = 1/3 ( suksess betyr å gjette riktig alternativ), q = 2/3. Oppgave: Finn
Utvalgsfordelinger. Utvalg er en tilfeldig mekanisme. Sannsynlighetsregning dreier seg om tilfeldige mekanismer.
Utvalgsfordelinger Vi har sett at utvalgsfordelinger til en statistikk (observator) er fordelingen av verdiene statistikken tar ved mange gjenttatte utvalg av samme størrelse fra samme populasjon. Utvalg
Introduksjon. Viktige begreper for å beskrive data: Enheter som er objektene i datasettet. «label» som av og til brukes for å skille enhetene
Introduksjon Viktige begreper for å beskrive data: Enheter som er objektene i datasettet «label» som av og til brukes for å skille enhetene En variabel er en karakteristikk av hver enhet Variablene angis
ST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen
ST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen Bo Lindqvist Institutt for matematiske fag 2 Kap. 6: Normalfordelingen Normalfordelingen regnes som den viktigste statistiske fordelingen!
Kapittel 1: Data og fordelinger
STK Innføring i anvendt statistikk Mandag 8. august 8 Ingrid K. lad I løpet av dette kurset skal dere bli fortrolig med statistisk tenkemåte forstå teori og metoder som ligger bak knappene/menyene i vanlige
UNIVERSITETET I OSLO
Deleksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet STK1000 Innføring i anvendt statistikk. Eksamensdag: Onsdag 13. oktober 2010. Tid for eksamen: 15:00 17:00. Oppgavesettet
Utvalgsfordelinger. Utvalg er en tilfeldig mekanisme. Sannsynlighetsregning dreier seg om tilfeldige mekanismer.
Utvalgsfordelinger Vi har sett at utvalgsfordelinger til en observator er fordelingen av verdiene observatoren tar ved mange gjenttatte utvalg av samme størrelse fra samme populasjon. Utvalg er en tilfeldig
(Det tas forbehold om feil i løsningsforslaget.) Oppgave 1
ÅMA1 Sannsylighetsregning og statistikk Løsningsforslag til eksamen vår 2011, s. 1 (Det tas forbehold om feil i løsningsforslaget.) Oppgave 1 a) Data: x 1, x 2, x 3, x 4, x 5 Gjennomsnitt: x = 1 5 (x 1
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i STK1000 Innføring i anvendt statistikk. Eksamensdag: Torsdag 9. oktober 2008. Tid for eksamen: 15:00 17:00. Oppgavesettet er på
Denne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans
Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner
1 Sec 3-2: Hvordan beskrive senteret i dataene. 2 Sec 3-3: Hvordan beskrive spredningen i dataene
1 Sec 3-2: Hvordan beskrive senteret i dataene 2 Sec 3-3: Hvordan beskrive spredningen i dataene Todeling av statistikk Deskriptiv statistikk Oppsummering og beskrivelse av den stikkprøven du har. Statistisk
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1000 Innføring i anvendt statistikk Eksamensdag: Fredag 28. oktober 2016 Tid for eksamen: 14.00 16.00 Oppgavesettet er på
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Underveiseksamen i: STK1000 Innføring i anvendt statistikk. Eksamensdag: Onsdag 28/3, 2007. Tid for eksamen: Kl. 09.00 11.00. Tillatte hjelpemidler:
Utvalgsfordelinger (Kapittel 5)
Utvalgsfordelinger (Kapittel 5) Observator En observator er en funksjon av data for mange individer, for eksempel Gjennomsnitt Andel Stigningstall i regresjonslinje En observator er en tilfeldig variabel
ÅMA110 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 2010, s. 1. Oppgave 1. Histogram over frekvenser.
ÅMA1 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 0, s. 1 (Det tas forbehold om feil i løsningsforslaget.) a) Gjennomsnitt: x = 1 Emp. standardavvik: Median: 1 (1.33 + 1.) = 1.35
Inferens i fordelinger
Inferens i fordelinger Modifiserer antagelsen om at standardavviket i populasjonen σ er kjent Mer kompleks systematisk del ( her forventningen i populasjonen). Skal se på en situasjon der populasjonsfordelingen
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1000 Innføring i anvendt statistikk Eksamensdag: Onsdag 12. oktober 2016 Tid for eksamen: 10.00 12.00 Oppgavesettet er på
Binomisk sannsynlighetsfunksjon
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Binomisk sannsynlighetsfunksjon La det være n forsøk, sannsynlighet p for suksess og sannsynlighet q for fiasko. Den tilfeldige
Dataens tidsalder. Hvorfor data? Data, data, data. STK1000 Innføring i anvendt statistikk. Tirsdag 24. august 2010
STK1000 Innføring i anvendt statistikk Tirsdag 24. august 2010 Geir Storvik (modifisert etter I. Glad s tidligere presentasjon) 1 Data, data, data Genetiske data World Wide Web Overvåkning Medisinske bilder
Statistikk og dataanalyse
Njål Foldnes, Steffen Grønneberg og Gudmund Horn Hermansen Statistikk og dataanalyse En moderne innføring Kapitteloversikt del 1 INTRODUKSJON TIL STATISTIKK Kapittel 1 Populasjon og utvalg 19 Kapittel
Løsningsforslag til obligatorisk oppgave i ECON2130 våren 2014 av Jonas Schenkel.
Løsningsforslag til obligatorisk oppgave i ECON2130 våren 2014 av Jonas Schenkel. Det er i flere av oppgavene flere fremgangsmåter. Om din måte var riktig burde komme frem i rettingen. A Både X og Y tilfredsstiller
I dag. Konfidensintervall og hypotesetes4ng ukjent standardavvik (kap. 7.1) t-fordelingen
I dag Konfidensintervall og hypotesetes4ng ukjent standardavvik (kap. 7.1) t-fordelingen Inferens for forventningen 4l en populasjon (7.1) Kapi@el 6: En antagelse om kjent standardavvik s i populasjonen
Fordelinger, mer om sentralmål og variasjonsmål. Tron Anders Moger
Fordelinger, mer om sentralmål og variasjonsmål Tron Anders Moger 20. april 2005 1 Forrige gang: Så på et eksempel med data over medisinerstudenter Lærte hvordan man skulle få oversikt over dataene ved
Simulering med Applet fra boken, av z og t basert på en rekke utvalg av en gitt størrelse n fra N(μ,σ). Illustrerer hvordan estimering av variansen
Simulering med Applet fra boken, av z og t basert på en rekke utvalg av en gitt størrelse n fra N(μ,σ). Illustrerer hvordan estimering av variansen gir testobservatoren t mer spredning enn testobservatoren
Kapittel 3: Studieopplegg
Oversikt over pensum Kapittel 1: Empirisk fordeling for en variabel o Begrepet fordeling o Mål for senter (gj.snitt, median) + persentiler/kvartiler o Mål for spredning (Standardavvik s, IQR) o Outliere
Deskriptiv statistikk., Introduksjon til dataanalyse
Introduksjon til dataanalyse Deskriptiv statistikk 2 Kapittel 1 Denne timen og delvis forrige time er inspirert av Kapittel 1, men vi kommer ikke til å gå igjennom alt fra dette kapittelet i forelesning.
Løsningsforslag ECON 2130 Obligatorisk semesteroppgave 2017 vår
Løsningsforslag ECON 130 Obligatorisk semesteroppgave 017 vår Andreas Myhre Oppgave 1 1. (i) Siden X og Z er uavhengige, vil den simultane fordelingen mellom X og Z kunne skrives som: f(x, z) = P(X = x
Econ 2130 Forelesning uke 10 (HG) Geometrisk og normal fordeling
Econ 2130 Forelesning uke 10 (HG) Geometrisk og normal fordeling 1 Geometrisk fordeling Binomisk forsøks-serie En serie likeartete forsøk med to mulige utfall, S og F, i hvert. (Modell) forutsetninger
Deskriptiv statistikk., Introduksjon til dataanalyse
Introduksjon til dataanalyse Deskriptiv statistikk 2 Kapittel 1 Denne timen og delvis forrige time er inspirert av Kapittel 1, men vi kommer ikke til å gå igjennom alt fra dette kapittelet i forelesning.
STK1100 våren Normalfordelingen. Normalfordelingen er den viktigste av alle sannsynlighetsfordelinger
STK00 våren 206 Normalfordelingen Svarer til avsnitt 4.3 i læreboka Geir Storvik Matematisk institutt Universitetet i Oslo Normalfordelingen er den viktigste av alle sannsynlighetsfordelinger Normalfordelingen
Medisinsk statistikk Del I høsten 2009:
Medisinsk statistikk Del I høsten 2009: Kontinuerlige sannsynlighetsfordelinger Pål Romundstad Beregning av sannsynlighet i en binomisk forsøksrekke generelt Sannsynligheten for at suksess intreffer X
Forelesning 5: Kontinuerlige fordelinger, normalfordelingen. Jo Thori Lind
Forelesning 5: Kontinuerlige fordelinger, normalfordelingen Jo Thori Lind j.t.lind@econ.uio.no Oversikt 1. Kontinuerlige fordelinger 2. Uniform fordeling 3. Normal-fordelingen 1. Kontinuerlige fordelinger
Kapittel 7: Inferens for forventningerukjent standardavvik
Kapittel 7: Inferens for forventningerukjent standardavvik 7.1: Inferens for forventningen i en populasjon 7.2: Inferens for å sammenligne to forventninger 7.1 Inferens for forventningen i en populasjon
Tabell 1: Beskrivende statistikker for dataene
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7, blokk II Løsningsskisse Oppgave 1 a) Utfør en beskrivende analyse av datasettet % Data for Trondheim: TRD_mean=mean(TRD);
TMA4240 Statistikk H2010
TMA4240 Statistikk H2010 Statistisk inferens: 9.14: Sannsynlighetsmaksimeringsestimatoren 8.5: Fordeling til gjennomsnittet 9.4: Konfidensintervall for µ (σ kjent) Mette Langaas Foreleses mandag 11.oktober,
Utvalgsfordelinger; utvalg, populasjon, grafiske metoder, X, S 2, t-fordeling, χ 2 -fordeling
Kapittel 8 Utvalgsfordelinger; utvalg, populasjon, grafiske metoder, X, S 2, t-fordeling, χ 2 -fordeling TMA4240 H2006: Eirik Mo 2 Til nå... Definert sannsynlighet og stokastiske variabler (kap. 2 & 3).
ØVINGER 2017 Løsninger til oppgaver. Øving 1
ØVINGER 017 Løsninger til oppgaver Øving 1.1. Frekvenstabell For å lage en frekvenstabell må vi telle antall observasjoner av hvert antall henvendelser. Siden antall henvendelser på en gitt dag alltid
ST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Kapittel 7: Utvalgsfordeling Bo Lindqvist Institutt for matematiske fag 2 Fra kapittel 1: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg
Statistisk inferens: 9.14: Sannsynlighetsmaksimeringsestimatoren 8.5: Fordeling til gjennomsnittet 9.4: Konfidensintervall for µ (σ kjent)
TMA440 Statistikk H010 Statistisk inferens: 9.14: Sannsynlighetsmaksimeringsestimatoren 8.5: Fordeling til gjennomsnittet 9.4: Konfidensintervall for µ (σ kjent) Mette Langaas Foreleses mandag 11.oktober,
Løsningsforslag til obligatorisk oppgave i ECON 2130
Andreas Mhre April 15 Løsningsforslag til obligatorisk oppgave i ECON 13 Oppgave 1: E(XY) = E(X(Z X)) Setter inn Y = Z - X E(XY) = E(XZ X ) E(XY) = E(XZ) E(X ) E(XY) = - E(X ) X og Z er uavhengige, så
1 Section 6-2: Standard normalfordelingen. 2 Section 6-3: Anvendelser av normalfordelingen. 3 Section 6-4: Observator fordeling
1 Section 6-2: Standard normalfordelingen 2 Section 6-3: Anvendelser av normalfordelingen 3 Section 6-4: Observator fordeling 4 Section 6-5: Sentralgrenseteoremet Oversikt Kapittel 6 Kontinuerlige tilfeldige
ST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Fra første forelesning: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg En delmengde av
Kort overblikk over kurset sålangt
Kort overblikk over kurset sålangt Kapittel 1: Deskriptiv statististikk for en variabel Kapittel 2: Deskriptiv statistikk for samvariasjon mellom to variable (regresjon) Kapittel 3: Metoder for å innhente
Forkurs i kvantitative metoder ILP 2019
Forkurs i kvantitative metoder ILP 2019 Dag 2. Forkurs som arbeidskrav for kvantitativ deler av PED-3055 Gregor Maxwell og Bent-Cato Hustad Førsteamanuensis i spesialpedagogikk Hva lærte vi i går? Hva
Akkurat den samme begrunnelsen som vi brukte med variabelen X 2. "Jeg bruker internett mye mer på i-phone nå enn det jeg gjorde før på mobilen.
1 Øving 1 Oppgave 1.5 (Leie av studentbolig) Et datasett gir oversikt over ledige studentboliger til leie. Opplysninger om boligene er angitt. Hensikten med denne oppgave er å bestemme hva slags type variablene
Introduksjon til statistikk og dataanalyse. Arild Brandrud Næss TMA4240 Statistikk NTNU, høsten 2013
Introduksjon til statistikk og dataanalyse Arild Brandrud Næss TMA4240 Statistikk NTNU, høsten 2013 Introduksjon til statistikk og dataanalyse Hollywood-filmer fra 2011 135 filmer Samla budsjett: $ 7 166
Fra første forelesning:
2 Fra første forelesning: ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag opulasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg En delmengde av populasjonen
Forelesning 6: Punktestimering, usikkerhet i estimering. Jo Thori Lind
Forelesning 6: Punktestimering, usikkerhet i estimering Jo Thori Lind j.t.lind@econ.uio.no Oversikt 1. Trekke utvalg 2. Estimatorer og observatorer som stokastiske variable 3. Egenskapene til en estimator
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i STK1000 Innføring i anvendt statistikk. Eksamensdag: Onsdag 7. oktober 2009. Tid for eksamen: 15:00 17:00. Oppgavesettet er på
UNIVERSITETET I OSLO Matematisk Institutt
UNIVERSITETET I OSLO Matematisk Institutt Midtveiseksamen i: STK 1000: Innføring i anvendt statistikk Tid for eksamen: Onsdag 9. oktober 2013, 11:00 13:00 Hjelpemidler: Lærebok, ordliste for STK1000, godkjent
Ekstreme bølger. Geir Storvik Matematisk institutt, Universitetet i Oslo. 5. mars 2014
Ekstreme bølger Geir Storvik Matematisk institutt, Universitetet i Oslo 5. mars 2014 Bølger Timesvise max-bølger ved bøye utenfor østkyst av USA (17/12/1991-23/2-1992) Størrelse på bølger varierer sterkt
ST0202 Statistikk for samfunnsvitere. Bo Lindqvist Institutt for matematiske fag
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Lærebok Robert Johnson og Patricia Kuby: Elementary Statistics, 10. utgave 3 Pensumoversikt Kap. 2 Beskrivende statistikk,
Forelesning 3. april, 2017
Forelesning 3. april, 2017 APPENDIX TIL KAP. 6 Sentralgrenseteoremet AVSNITT 6.3 Anvendelser av sentralgrenseteoremet Histogrammer S-kurver Q-Q-plot Diverse eksempler MGF for følger av uavhengige identisk
Denne uken: Kapittel 4.3 og 4.4
Sist: Kapittel 4.1, 4.2, 4.5 Tilfeldighet Sannsynlighetsmodeller Regler for sannsynlighet Denne uken: Kapittel 4.3 og 4.4 Tilfeldige variable Forventning og varians til tilfeldige variable Litt repetisjon:
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: STK1000 Innføring i avvendt statistikk Eksamensdag: Onsdag 7. oktober 2015 Tid for eksamen: 11.00 13.00 Oppgavesettet er på
Kapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering
Kapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering TMA4245 Statistikk Kapittel 8.1-8.5. Kapittel 9.1-9.3+9.15 Turid.Follestad@math.ntnu.no p.1/21 Har sett
TMA4245 Statistikk Eksamen desember 2016
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer
DEL 1 GRUNNLEGGENDE STATISTIKK
INNHOLD 1 INNLEDNING 15 1.1 Parallelle verdener........................... 18 1.2 Telle gunstige.............................. 20 1.3 Regneverktøy og webstøtte....................... 22 1.4 Oppgaver................................
ting å gjøre å prøve å oppsummere informasjonen i Hva som er hensiktsmessig måter å beskrive dataene på en hensiktsmessig måte.
Kapittel : Beskrivende statistikk Etter at vi har samlet inn data er en naturlig første ting å gjøre å prøve å oppsummere informasjonen i dataene på en hensiktsmessig måte. Hva som er hensiktsmessig måter
Snøtetthet. Institutt for matematiske fag, NTNU 15. august Notat for TMA4240/TMA4245 Statistikk
Snøtetthet Notat for TMA424/TMA4245 Statistikk Institutt for matematiske fag, NTNU 5. august 22 I forbindelse med varsling av om, klimaforskning og særlig kraftproduksjon er det viktig å kunne anslå hvor
ÅMA110 Sannsynlighetsregning med statistikk, våren
ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Oppsummering Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 24. april Bjørn H. Auestad Oppsummering våren
Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.20).
Econ 130 HG mars 017 Supplement til forelesningen 7. februar Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.0). Regel 5.19 sier at summer, Y X1 X X
Transformasjoner av stokastiske variabler
Transformasjoner av stokastiske variabler Notasjon merkelapper på fordelingene Sannsynlighetstettheten og den kumulative fordelingen til en stokastisk variabel X betegnes hhv. f X og F X. Indeksen er altså
UNIVERSITETET I OSLO
Deleksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet STK1000 Innføring i anvendt statistikk. Eksamensdag: Onsdag 10. oktober 2012. Tid for eksamen: 15:00 17:00. Oppgavesettet
Oppgaver til Studentveiledning 4 MET 3431 Statistikk
Oppgaver til Studentveiledning 4 MET 3431 Statistikk 8. mai 2012 kl 17.15-20.15 i B2 Handelshøyskolen BI 2 Oppgaver 1. Eksamensoppgaver: Eksamen 22/11/2011: Oppgave 1-7. Eksamensoppgaven fra 11/2011 er
Kap. 8: Utvalsfordelingar og databeskrivelse
Kap. 8: Utvalsfordelingar og databeskrivelse Utvalsfordelingar Utvalsfordeling for gjennomsnitt (med kjent varians) ( X ) Sentralgrenseteoremet (SGT) Utvalsfordeling for varians (normalfordeling) Utvalfordeling
ST0103 Brukerkurs i statistikk Forelesning 26, 18. november 2016 Kapittel 8: Sammenligning av grupper
ST0103 Brukerkurs i statistikk Forelesning 26, 18. november 2016 Kapittel 8: Sammenligning av grupper Bo Lindqvist Institutt for matematiske fag 2 Kapittel 8: Sammenligning av grupper Situasjon: Vi ønsker
Formelsamling i medisinsk statistikk
Formelsamling i medisinsk statistikk Versjon av 6. mai 208 Dette er en formelsamling til O. O. Aalen (red.): Statistiske metoder i medisin og helsefag, Gyldendal, 208. Gjennomsnitt x = n (x + x 2 + x 3
Kapittel 2. Utforske og beskrive data. Sammenhenger mellom variable Kap. 2.1 om assosiasjon og kryssplott forrige uke. Kap. 2.2, 2.3, 2.
Kapittel 2 Utforske og beskrive data Sammenhenger mellom variable Kap. 2.1 om assosiasjon og kryssplott forrige uke. Kap. 2.2, 2.3, 2.4 denne uken To kryssplott av samme datasett, men med forskjellig skala
Statistisk beskrivelse av enkeltvariabler. SOS1120 Kvantitativ metode. Disposisjon. Datamatrisen. Forelesningsnotater 6. forelesning høsten 2005
SOS110 Kvantitativ metode Forelesningsnotater 6 forelesning høsten 005 Statistisk beskrivelse av enkeltvariabler (Univariat analyse) Per Arne Tufte Disposisjon Datamatrisen Variabler Datamatrisen Frekvensfordelinger
Statistikk 1. Nico Keilman. ECON 2130 Vår 2014
Statistikk 1 Nico Keilman ECON 2130 Vår 2014 Pensum Kap 1-7.3.6 fra Løvås «Statistikk for universiteter og høgskoler» 3. utgave 2013 (eventuelt 2. utgave) Se overspringelsesliste på emnesiden Supplerende
OPPGAVEHEFTE I STK1000 TIL KAPITTEL Regneoppgaver til kapittel 7. X 1,i, X 2 = 1 n 2. D = X 1 X 2. På onsdagsforelesningen påstod jeg at da må
OPPGAVEHEFTE I STK000 TIL KAPITTEL 7 Regneoppgaver til kapittel 7 Oppgave Anta at man har resultatet av et randomisert forsøk med to grupper, og observerer fra gruppe, mens man observerer X,, X,2,, X,n
Diskrete sannsynlighetsfordelinger som histogram. Varians. Histogram og kumulativ sannsynlighet. Forventning (gjennomsnitt) (X=antall mynt i tre kast)
Diskret sannsynlighetsfordeling (kap 1.1-1.6) Oversikt Utfallsrom (sample space) Sannsynlighetsfordeling Forventning (expectation), E(X), populasjonsgjennomsnitt Bruk av figurer og histogram Binomialfordelingen
ST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Introduksjon til ST0202 Kapittel 1: Statistikk Kapittel 2: Beskrivende analyse og presentasjon av data for én variabel Bo Lindqvist Institutt for matematiske fag http://wiki.math.ntnu.no/st0202/2012h/start
Eksamensoppgave i TMA4240 Statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Underveiseksamen i: STK1000 Innføring i anvendt statistikk. Eksamensdag: Fredag 13.10.2006. Tid for eksamen: Kl. 09.00 11.00. Tillatte hjelpemidler:
Kapittel 4.3: Tilfeldige/stokastiske variable
Kapittel 4.3: Tilfeldige/stokastiske variable Litt repetisjon: Sannsynlighetsteori Stokastisk forsøk og sannsynlighet Tilfeldig fenomen Individuelle utfall er usikre, men likevel et regulært mønster for
TMA4240 Statistikk H2017 [15]
TMA4240 Statistikk H207 [5] Del 2: Statistisk inferens Populasjon og utvalg [8.] Observatorer og utvalgsfordelinger [8.2-8.3] Fordeling til gjennomsnittet og sentralgrenseteoremet [8.4] Normalplott [8.8]
Lærebok Robert Johnson og Patricia Kuby: Elementary Statistics, 10. utgave. Pensumoversikt. Oversikt. ST0202 Statistikk for samfunnsvitere
2 Lærebok Robert Johnson og Patricia Kuby: Elementary Statistics, 10. utgave ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 3 4 Pensumoversikt Oversikt Kap. 2 Beskrivende
Tema: Deskriptiv statistikk for kontinuerlige data. Av Kathrine Frey Frøslie,
Tema: Deskriptiv statistikk for kontinuerlige data. Av Kathrine Frey Frøslie, www.statistrikk.no Kontinuerlige data er målinger som gjøres langs en skala, for eksempel tid, lengde og vekt. Noen ganger
ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3
ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 20. mars Bjørn H. Auestad Kp. 6: Hypotesetesting
Lærebok Robert Johnson og Patricia Kuby: Elementary Statistics, 10. utgave. Pensumoversikt. Forelesninger og øvinger
2 Lærebok Robert Johnson og Patricia Kuby: Elementary Statistics, 10. utgave ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 3 4 Pensumoversikt Forelesninger og øvinger
ST0202 Statistikk for samfunnsvitere. Bo Lindqvist Institutt for matematiske fag
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Lærebok Robert Johnson og Patricia Kuby: Elementary Statistics, 10. utgave 3 Pensumoversikt Kap. 2 Beskrivende statistikk,
STK Oppsummering
STK1100 - Oppsummering Geir Storvik 6. Mai 2014 STK1100 Tre temaer Deskriptiv/beskrivende statistikk Sannsynlighetsteori Statistisk inferens Sannsynlighetsregning Hva Matematisk verktøy for å studere tilfeldigheter
Inferens i regresjon
Strategi som er fulgt hittil: Inferens i regresjon Deskriptiv analyse og dataanalyse først. Analyse av en variabel før studie av samvariasjon. Emne for dette kapittel er inferens når det er en respons
Forslag til endringar
Forslag til endringar Bakgrunn: Vi har ingen forelesningar veka etter påske. Eg skal bort 18. og 19. april. Eksamen er 30.mai Forslag til endringar: Ekstra forelesningar onsdag 16.mars og onsdag 30 mars
ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4
ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 27. mars Bjørn H. Auestad Kp. 6: Hypotesetesting
Sted Gj.snitt Median St.avvik Varians Trondheim 6.86 7.50 6.52 42.49 Værnes 7.07 7.20 6.79 46.05 Oppdal 4.98 5.80 7.00 48.96
Vår 213 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 8, blokk II Matlabøving Løsningsskisse Oppgave 1 a) Ingen løsningsskisse. b) Finn, for hvert datasett,