Formelsamling i medisinsk statistikk

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Formelsamling i medisinsk statistikk"

Transkript

1 Formelsamling i medisinsk statistikk Versjon av 6. mai 208 Dette er en formelsamling til O. O. Aalen (red.): Statistiske metoder i medisin og helsefag, Gyldendal, 208. Gjennomsnitt x = n (x + x 2 + x x n ) Median Alle observasjoner ordnes i stigende rekkefølge. Ved ulike antall observasjoner, er medianen definert som den midterste av dem.ved like antall, er medianen definert som gjennomsnittet av de to midterste. Standardavvik s = n (x i x) 2 n i= Grupperte data Intervallmidtpunkter m, m 2,..., m k. Hyppigheter f, f 2,..., f k. Totalt antall observasjoner: n. Gjennomsnitt og standardavvik er gitt ved: x = n (m f + m 2 f m k f k ) = n s = k n { (m j x) 2 f j } j= k m j f j Median og fraktiler for grupperte data finnes ved lineær interpolasjon. Insidens og prevalens Prevalens angir andelen i befolkningen som har en viss sykdom. Insidensraten beregnes som antall nye tilfeller av sykdommen over et tidsintervall, dividert med totalt antall personår under risiko. j=

2 Regneregler for sannsynlighet Hvis begivenhetene A og B er disjunkte has For alle begivenheter A og B has Definisjon av betinget sannsynlighet P (A B) = P (A) + P (B) P (A B) = P (A) + P (B) P (A B) P (A B) P (A B) = P (B) Begivenhetene A og B er uavhengige hvis P (A B) = P (A) P (B) En tilsvarende produktregel er gyldig om vi har flere uavhengige begivenheter. Regelen om total sannsynlighet Bayes lov P (A) = P (A B) P (B) + P (A B) P (B) P (B A) = Diagnostiske tester P (B)P (A B) P (B)P (A B) + P (B)P (A B) Sensitivitet: Sannsynlighet for positiv test gitt at det foreligger sykdom. Spesifisitet: Sannsynlighet for negativ test gitt at det ikke foreligger sykdom. Positiv prediktiv verdi: Sannsynlighet for at det foreligger sykdom gitt postiv test. Negativ prediktiv verdi: Sannsynlighet for at det ikke foreligger sykdom gitt negativ test. Kombinatorikk Trekning av s kuler fra en boks med n kuler. Antall ordnede utvalg med tilbakelegging n s Antall ordnede utvalg uten tilbakelegging n(n )(n 2) (n s + ) Antall ikke-ordnede utvalg uten tilbakelegging ( ) n n(n )(n 2) (n s + ) = s s! 2

3 Forventning og varians for teoretisk fordeling E(X) = alle x i x i P (X = x i ) Var(X) = alle x i (x i E(X)) 2 P (X = x i ) Regneregler for forventning og varians Var(aX + b) = a 2 Var(X), E(aX + b) = ae(x) + b, SD(aX + b) = a SD(X) E(X + X X n ) = E(X ) + E(X 2 ) + + E(X n ) Hvis X, X 2,..., X n er parvis stokastisk uavhengige has: Var(X + X X n ) = Var(X ) + Var(X 2 ) + + Var(X n ) Binomisk fordeling Sannsynligheten for at en begivenhet A inntreffer x ganger i løpet av n binomiske forsøk, er ( ) n P (X = x) = p x ( p) n x, x = 0,,..., n x Forventning og varians i binomisk fordeling er gitt ved: Poissonfordeling E(X) = np, Var(X) = np( p) Sannsynligheten for x forekomster, når forventning er lik λ, er gitt ved: P (X = x) = λx e λ x! Forventning og varians er gitt ved: for x = 0,, 2,.... E(X) = λ og Var(X) = λ Poissonfordelingen anvendes også ved Poissonprosesser. Normalfordeling En stokastisk variabel X sies å være normal (µ, σ) hvis den følger en normalfordeling med forventning (sentrum) µ og standardavvik (spredning) σ. Den standardiserte variable Y = (X µ)/σ er normal (0,). Sannsynlighetstettheten til normalfordelingen er gitt ved følgende formel: f(x) = (x µ)2 exp( 2πσ 2σ 2 ) der exp(a) er det samme som eksponensialfunksjonen e a. 3

4 Formler for gjennomsnitt La X være gjennomsnittet av de uavhengige varablene X, X 2,..., X n. gjelder: Da E(X) = µ, Var(X) = σ2 n, SD(X) = σ n, s X = s n Hvis variablene også er normalfordelte, vil et konfidensintervall være gitt ved X ± c s X der c bestemmes ut fra Studentfordelingen med n frihetsgrader. En teststørrelse er gitt ved t = X a s X = X a n s og denne er Studentfordelt med n frihetsgrader når H 0 : µ = a gjelder. Sammenlikning av pardata Man tar differansen innenfor hvert par og bruker konfidensintervallet og teststørrelsen over med a = 0. Forutsetningen er at differansene er uavhengige og normalfordelte. Sammenlikning av to gjennomsnitt Vi forutsetter uavhengige og normalfordelte observasjoner. Forøvrig antas gjennomsnittene å komme fra to uavhengige utvalg. Følgende teststørrelse er Studentfordelt med n + n 2 2 frihetsgrader når H 0 gjelder der s f er definert ved s f = Et konfidensintervall er gitt ved t = X X 2 s f n + n 2 (n )s 2 + (n 2 )s 2 2 n + n 2 2 X X 2 ± c s f n + n 2 der c er bestemt av Studentfordelingen med n + n 2 2 frihetsgrader. 4

5 Poissonfordeling som tilnærming til binomisk fordeling Binomisk fordeling kan tilnærmes med en Poissonfordeling hvis: () p 0.05 og (2) n 50 Normalfordeling som tilnærming til binomisk fordeling Når n i en binomisk fordeling er så stor at np 5 og n( p) 5, vil den binomiske fordelingen likne mye på en normalfordeling med parametre µ = np, σ = np( p) Normalfordeling som tilnærming til Poissonfordeling Når λ i en Poissonfordeling er minst lik 5, vil Poissonfordelingen likne mye på en normalfordeling med parametre µ = λ, σ = λ Estimering av sannsynlighet (andel) Hvis det er observert X forekomster ved n binomiske forsøk, er estimatet for sannsynligheten p gitt ved p, mens estimert standardfeil er gitt ved s p p p ( p = X/n, s p = ) n Fordelingen til p er tilnærmet normalfordelt under de samme forutsetninger p( p) som for binomisk fordeling, med µ = p og σ = n. Et 95% konfidensintervall for p er gitt ved p ± 2s p Testing av nullhypotese om en sannsynlighet Z = X np 0 np0 ( p 0 ) Teststørrelse for sammenlikning av to sannsynligheter (andeler) p p 2 Y = ( n + n 2 )p( p) 5

6 Konfidensintervall for differanse mellom to andeler p p p 2 ±.96 ( p ) + p 2 ( p 2 ) n n 2 Teststørrelse for sammenlikning av to Poissonvariabler Y = X X 2 X + X 2 Konfidensintervall for relativ risiko Relativ risiko: Hjelpestørrelse: RR = a/(a + c) b/(b + d) s RR = 95% konfidensintervall for RR: a + b a + c b + d (RR e.96 s RR, RR e.96 s RR ) Konfidensintervall for odds-ratio Odds-ratio: Hjelpestørrelse: OR = a/c b/d = a d b c s OR = 95% konfidensintervall for OR: Kji-kvadrattest a + b + c + d (OR e.96 s OR, OR e.96 s OR ) Kji-kvadrattesten for en 2 2-tabell kan beregnes ut fra følgende formel: χ 2 = N(ad bc) 2 (a + b)(a + c)(b + d)(c + d) 6

7 Formelen er basert på oppsettet i tabellen øverst s. 32 i læreboken, der N er summen av tallene i tabellen. Formelen er ikke gitt i boken, men gir samme svar som beregningen av størrelsen S på s. 39. En formel som også er gyldig for større tabeller, med k kolonner og r rader, er den følgende: χ 2 = (O E) 2 E Her er O og E det observerte og forventede antall forekomster i de enkelte celler og summen skal tas over alle cellene i tabellen. Antall frihetsgrader i kji-kvadratfordelingen er (k ) (r ). For en 2 2-tabell gir dette én frihetsgrad. Regresjonsanalyse Helningskoeffisienten, b, og skjæringspunktet med y-aksen, a, for minste-kvadraterslinjen er gitt ved ˆb = sxy /s 2 x, â = y ˆb x der s x og s y er standardavvikene til henholdsvis x- og y-verdiene, mens s xy er definert ved s xy = n (x i x)(y i y) n Minste kvadratsum er gitt ved rest = i= n (y i â ˆb x i ) 2 = (n )(s 2 y ˆb s xy ) i= Standardavvik som måler variasjonen i punktene rundt den beste linjen: rest s reg = n 2 Konfidensintervall for ˆb bestemmes ut fra formelen: ˆb ± c s reg (n ) s 2 x der c bestemmes ut fra en studentfordeling med n 2 frihetsgrader. Korrelasjon Korrelasjonskoeffisienten er definert på følgende måte: r = s xy s x s y 7

8 Utvalgsstørrelse Parallellgruppestudie målevariabler: ( σ ) 2 n = 2 k Overkrysningsstudie målevariabler: ( σd ) 2 n = k Utvalgsstørrelse binomisk responsvariabel: k bestemmes av tabellen: n = p ( p ) + p 2 ( p 2 ) (p 2 p ) 2 k Teststyrke Siginifikans nivå (tosidig) Utvalgsstørrelse basert på presisjon i estimater Binomisk respons: Kontinuerlig respons: ( ) 2.96 n = p( p) d (.96 σ n = d ) 2 8

Formelsamling i medisinsk statistikk

Formelsamling i medisinsk statistikk Fomelsamling i medisinsk statistikk Dette e fomelsamling til O. O. Aalen: Innføing i statistikk med medisinske eksemple, 2. utg., Ad Notam Gyldendal, 998. Fomelsamlingen e utabeidet i okt. 2000, med små

Detaljer

Formelsamling i medisinsk statistikk

Formelsamling i medisinsk statistikk Fomelsamling i medisinsk statistikk Vesjon av 5. juni 2009 Dette e en fomelsamling til O. O. Aalen (ed.): Statistiske metode i medisin og helsefag, Gyldendal, 2006. Mek at boken ha en nettside de det e

Detaljer

Høgskolen i Telemark. Institutt for økonomi og informatikk FORMELSAMLING Statistikk I. Til bruk ved eksamen. Per Chr. Hagen

Høgskolen i Telemark. Institutt for økonomi og informatikk FORMELSAMLING Statistikk I. Til bruk ved eksamen. Per Chr. Hagen Høgskolen i Telemark Institutt for økonomi og informatikk FORMELSAMLING 6005 Statistikk I Til bruk ved eksamen Per Chr. Hagen . Sannsynlighetsregning. Regneregler Komplementsetningen: Addisjonssetningen:

Detaljer

DEL 1 GRUNNLEGGENDE STATISTIKK

DEL 1 GRUNNLEGGENDE STATISTIKK INNHOLD 1 INNLEDNING 15 1.1 Parallelle verdener........................... 18 1.2 Telle gunstige.............................. 20 1.3 Regneverktøy og webstøtte....................... 22 1.4 Oppgaver................................

Detaljer

FORMELSAMLING TIL STK1100 OG STK1110

FORMELSAMLING TIL STK1100 OG STK1110 FORMELSAMLING TIL STK1100 OG STK1110 (Versjon av 16. november 2009) 1. Sannsynlighet La A, B, A 1, A 2,...,B 1, B 2,... være begivenheter, dvs. delmengder av et utfallsrom Ω. a) Aksiomene: Et sannsynlighetsmål

Detaljer

Kap. 6, Kontinuerlege Sannsynsfordelingar

Kap. 6, Kontinuerlege Sannsynsfordelingar Kapittel 6, Kontinuerlege Sannsynsfordelingar Sjå på eit utval av ofte brukte kontinuerlege sannsynsfordelingar Uniform I går Normal I går Eksponensial I dag Gamma I dag Kji-kvadrat I dag Nokre eigenskapar

Detaljer

Kap. 6, Kontinuerlege Sannsynsfordelingar

Kap. 6, Kontinuerlege Sannsynsfordelingar Kapittel 6, Kontinuerlege Sannsynsfordelingar Sjå på eit utval av ofte brukte kontinuerlege sannsynsfordelingar Uniform I går Normal I går Eksponensial I dag Gamma I dag Kji-kvadrat I dag Nokre eigenskapar

Detaljer

Løsningsforslag ECON 2130 Obligatorisk semesteroppgave 2017 vår

Løsningsforslag ECON 2130 Obligatorisk semesteroppgave 2017 vår Løsningsforslag ECON 130 Obligatorisk semesteroppgave 017 vår Andreas Myhre Oppgave 1 1. (i) Siden X og Z er uavhengige, vil den simultane fordelingen mellom X og Z kunne skrives som: f(x, z) = P(X = x

Detaljer

Oppfriskning av blokk 1 i TMA4240

Oppfriskning av blokk 1 i TMA4240 Oppfriskning av blokk 1 i TMA4240 Geir-Arne Fuglstad November 21, 2016 2 Hva har vi gjort i dette kurset? Vi har studert to sterkt relaterte grener av matematikk Sannsynlighetsteori: matematisk teori for

Detaljer

TMA4240 Statistikk Høst 2008

TMA4240 Statistikk Høst 2008 TMA4240 Statistikk Høst 2008 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7 Oppgave 1 Tippekonkurranse Denne oppgaven er ment som en kjapp test på hva du har

Detaljer

Fasit for tilleggsoppgaver

Fasit for tilleggsoppgaver Fasit for tilleggsoppgaver Uke 5 Oppgave: Gitt en rekke med observasjoner x i (i = 1,, 3,, n), definerer vi variansen til x i som gjennomsnittlig kvadratavvik fra gjennomsnittet, m.a.o. Var(x i ) = (x

Detaljer

KATEGORISKE DATA- TABELLANALYSE ANALYSE AV. Tron Anders Moger. 3. Mai 2005

KATEGORISKE DATA- TABELLANALYSE ANALYSE AV. Tron Anders Moger. 3. Mai 2005 ANALYSE AV KATEGORISKE DATA- TABELLANALYSE 3. Mai 2005 Tron Anders Moger Forrige gang: Snakket om kontinuerlige data, dvs data som måles på en kontinuerlig skala Hypotesetesting med t-tester evt. ikkeparametriske

Detaljer

Formelsamling V-2014 MAT110. Statistikk 1. Per Kristian Rekdal

Formelsamling V-2014 MAT110. Statistikk 1. Per Kristian Rekdal Formelsamling V-2014 MAT110 Statistikk 1 Per Kristian Rekdal 2 Forord Dette er formelsamlingen i emnet MAT110 Statistikk 1 ved høgskolen i Molde. Formlene i denne formelsamlingen er stort sett de formlene

Detaljer

FORMELSAMLING TIL STK1100 OG STK1110

FORMELSAMLING TIL STK1100 OG STK1110 FORMELSAMLING TIL STK1100 OG STK1110 (Versjon av 11. november 2017) 1. Sannsynlighet La A, B, A 1, A 2,..., B 1, B 2,... være begivenheter, dvs. delmengder av et utfallsrom Ω. a) Aksiomene: Et sannsynlighetsmål

Detaljer

Oppgaven består av 9 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom << >>. Oppgave 1

Oppgaven består av 9 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom << >>. Oppgave 1 ECON 0 EKSMEN 007 VÅR SENSORVEILEDNING Oppgaven består av 9 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom >. Oppgave. La begivenhetene BC,, være slik at og

Detaljer

TMA4240 Statistikk Eksamen desember 2015

TMA4240 Statistikk Eksamen desember 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4240 Statistikk Eksamen desember 15 Oppgave 1 La den kontinuerlige stokastiske variabelen X ha fordelingsfunksjon (sannsynlighetstetthet

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 21. april Bjørn H. Auestad Oppsummering våren

Detaljer

Kapittel 3: Studieopplegg

Kapittel 3: Studieopplegg Oversikt over pensum Kapittel 1: Empirisk fordeling for en variabel o Begrepet fordeling o Mål for senter (gj.snitt, median) + persentiler/kvartiler o Mål for spredning (Standardavvik s, IQR) o Outliere

Detaljer

Statistikk og dataanalyse

Statistikk og dataanalyse Njål Foldnes, Steffen Grønneberg og Gudmund Horn Hermansen Statistikk og dataanalyse En moderne innføring Kapitteloversikt del 1 INTRODUKSJON TIL STATISTIKK Kapittel 1 Populasjon og utvalg 19 Kapittel

Detaljer

TMA4245 Statistikk Eksamen desember 2016

TMA4245 Statistikk Eksamen desember 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer

Detaljer

Eksamensoppgave i Løsningsskisse TMA4240 Statistikk

Eksamensoppgave i Løsningsskisse TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgave i Løsningsskisse TMA440 Statistikk Faglig kontakt under eksamen: Håkon Tjelmeland a, Sara Martino b Tlf: a 48 18 96, b 99 40 33 30 Eksamensdato: 30. november

Detaljer

1.1.1 Rekke med konstante ledd. En rekke med konstante ledd er gitt som. a n (1) n=m

1.1.1 Rekke med konstante ledd. En rekke med konstante ledd er gitt som. a n (1) n=m Formelsamling og tabeller FO020E Matte 2000 for elektroprogrammet 1 Matematikk 1.1 Denisjoner av ulike typer polynomer og rekker 1.1.1 Rekke med konstante ledd En rekke med konstante ledd er gitt som a

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST0 Innføring i statistikk og sannsynlighetsregning. Eksamensdag: Torsdag 9. mai 994. Tid for eksamen: 09.00 5.00. Oppgavesettet

Detaljer

Observatorer. STK Observatorer - Kap 6. Utgangspunkt. Eksempel høyde Oxford studenter

Observatorer. STK Observatorer - Kap 6. Utgangspunkt. Eksempel høyde Oxford studenter Observatorer STK00 - Observatorer - Kap 6 Geir Storvik 4. april 206 Så langt: Sannsynlighetsteori Stokastiske modeller Nå: Data Knytte data til stokastiske modeller Utgangspunkt Eksempel høyde Oxford studenter

Detaljer

Kapittel 2: Hendelser

Kapittel 2: Hendelser Kapittel 2: Hendelser FENOMEN Eksperiment Utfall Utfallsrom Eksperiment. Utfall. Eksperiment Utfall Hendelse Sannsynlighet: egenskaper, gunstige vs. mulige, relativ frekvens Sannsynlighet for mer enn en

Detaljer

Hypotesetesting. Hvorfor og hvordan? Gardermoen 21. april 2016 Ørnulf Borgan. H. Aschehoug & Co Sehesteds gate 3, 0102 Oslo Tlf:

Hypotesetesting. Hvorfor og hvordan? Gardermoen 21. april 2016 Ørnulf Borgan. H. Aschehoug & Co Sehesteds gate 3, 0102 Oslo Tlf: Hypotesetesting Hvorfor og hvordan? Gardermoen 21. april 2016 Ørnulf Borgan H. Aschehoug & Co Sehesteds gate 3, 0102 Oslo Tlf: 22 400 400 www.aschehoug.no 1 Oversikt Sannsynlighetsregning og statistikk

Detaljer

Eksamensoppgave i ST1201/ST6201 Statistiske metoder

Eksamensoppgave i ST1201/ST6201 Statistiske metoder Institutt for matematiske fag Eksamensoppgave i ST1201/ST6201 Statistiske metoder Faglig kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: 20. desember 2016 Eksamenstid (fra til): 09:00

Detaljer

Tyngdepunkt. Togforsinkelsen (Eksamen Des2003.1a) I denne oppgaven kan du bruke uten å vise det at. Kapittel 4

Tyngdepunkt. Togforsinkelsen (Eksamen Des2003.1a) I denne oppgaven kan du bruke uten å vise det at. Kapittel 4 3 Tyngdepunkt Kapittel 4 Forventningsverdi, varians, kovarians for én stokastisk variabel og funksjoner av stokastiske variabler TMA4240 H2006: Eirik Mo 2 4.1 Forventing til en stokastisk variabel DEF

Detaljer

Seksjon 1.3 Tetthetskurver og normalfordelingen

Seksjon 1.3 Tetthetskurver og normalfordelingen Seksjon 1.3 Tetthetskurver og normalfordelingen Har sett på ulike metoder for å plotte eller oppsummere data Vil nå starte på hvordan beskrive data ved modeller Hovedmetode er tetthetskurver Tetthetskurver

Detaljer

for x 0 F X (x) = 0 ellers Figur 1: Parallellsystem med to komponenter Figur 2: Seriesystem med n komponenter

for x 0 F X (x) = 0 ellers Figur 1: Parallellsystem med to komponenter Figur 2: Seriesystem med n komponenter TMA4245 Statistikk Vår 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Innlevering 3, blokk II Dette er den første av to innleveringer i blokk 2. Denne øvingen skal oppsummere

Detaljer

Emnenavn: Deleksamen i Statistikk. Eksamenstid: Faglærer: Tore August Kro. Oppgaven er kontrollert:

Emnenavn: Deleksamen i Statistikk. Eksamenstid: Faglærer: Tore August Kro. Oppgaven er kontrollert: EKSAMEN Emnekode: IRB22515, IRBIO22013, IRE22518, IRM23116 Emnenavn: Deleksamen i Statistikk Dato: Sensurfrist: 03.01.19 24.01.19 Eksamenstid: 09.00 12.00 Antall oppgavesider: 6 Antall vedleggsider: 9

Detaljer

Løsningsforslag Eksamen i Statistikk SIF5060 Aug 2002

Løsningsforslag Eksamen i Statistikk SIF5060 Aug 2002 Løsningsforslag Eksamen i Statistikk SIF5060 Aug 2002 Oppgave 1 a) En god estimator er forventningsrett og har liten varians. Vi tester forventningsretthet: E[ˆµ] E[Y ] µ E[ µ] E[ 1 2 X + 1 2 Y ] 1 2 E[X]

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag Situasjonen er som i quiz-eksempelet: n = 4, p = 1/3 ( suksess betyr å gjette riktig alternativ), q = 2/3. Oppgave: Finn

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to populasjoner med populasjonsgjennomsnitt henholdsvis

Detaljer

STK juni 2016

STK juni 2016 Løsningsforslag til eksamen i STK220 3 juni 206 Oppgave a N i er binomisk fordelt og EN i np i, der n 204 Hvis H 0 er sann, er forventningen lik E i n 204/6 34 for i, 2,, 6 6 Hvis H 0 er sann er χ 2 6

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 3 Diskrete tilfeldige variable. Diskrete tilfeldige variable, varians (kp. 3.

ÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 3 Diskrete tilfeldige variable. Diskrete tilfeldige variable, varians (kp. 3. ÅMA Sannsynlighetsregning med statistikk, våren 8 Kp. Diskrete tilfeldige variable Kp. Diskrete tilfeldige variable Har sett på (tidligere: begrep/definisjoner; tilfeldig (stokastisk variabel sannsynlighetsfordeling

Detaljer

ÅMA110 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 2010, s. 1. Oppgave 1. Histogram over frekvenser.

ÅMA110 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 2010, s. 1. Oppgave 1. Histogram over frekvenser. ÅMA1 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 0, s. 1 (Det tas forbehold om feil i løsningsforslaget.) a) Gjennomsnitt: x = 1 Emp. standardavvik: Median: 1 (1.33 + 1.) = 1.35

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA4240 Statistikk H2010 9.8: To uvalg (siste del) 9.9: Parvise observasjoner 9.10-9.11: Andelser 9.12: Varians Mette Langaas Foreleses onsdag 20.oktober, 2010 2 Norske hoppdommere og Janne Ahonen Janne

Detaljer

Forventning og varians.

Forventning og varians. Forventning og varians. Dekkes av kapittel 4 i læreboka. Forventning (4.) Forventningsverdi gjennomsnitt i det lange løp. Defininsjon: Forventningsverdien til en stokastisk variabel X er: E(X) f(),x diskret

Detaljer

UNIVERSITETET I OSLO Matematisk Institutt

UNIVERSITETET I OSLO Matematisk Institutt UNIVERSITETET I OSLO Matematisk Institutt Midtveiseksamen i: STK 1000: Innføring i anvendt statistikk Tid for eksamen: Onsdag 9. oktober 2013, 11:00 13:00 Hjelpemidler: Lærebok, ordliste for STK1000, godkjent

Detaljer

ST0103 Brukerkurs i statistikk Forelesning 26, 18. november 2016 Kapittel 8: Sammenligning av grupper

ST0103 Brukerkurs i statistikk Forelesning 26, 18. november 2016 Kapittel 8: Sammenligning av grupper ST0103 Brukerkurs i statistikk Forelesning 26, 18. november 2016 Kapittel 8: Sammenligning av grupper Bo Lindqvist Institutt for matematiske fag 2 Kapittel 8: Sammenligning av grupper Situasjon: Vi ønsker

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Løsningsforslag: Statistiske metoder og dataanalys Eksamensdag: Fredag 9. desember 2011 Tid for eksamen: 14.30 18.30

Detaljer

Medisinsk statistikk Del I høsten 2009:

Medisinsk statistikk Del I høsten 2009: Medisinsk statistikk Del I høsten 2009: Kontinuerlige sannsynlighetsfordelinger Pål Romundstad Beregning av sannsynlighet i en binomisk forsøksrekke generelt Sannsynligheten for at suksess intreffer X

Detaljer

Norske hoppdommere og Janne Ahonen

Norske hoppdommere og Janne Ahonen TMA440 Statistikk H010 9.8: To uvalg (siste del) 9.9: Parvise observasjoner 9.10-9.11: Andelser 9.1: Varians Mette Langaas Foreleses onsdag 0.oktober, 010 Norske hoppdommere og Janne Ahonen Janne Ahonen

Detaljer

Eksamensoppgave i ST1201/ST6201 Statistiske metoder

Eksamensoppgave i ST1201/ST6201 Statistiske metoder Institutt for matematiske fag Eksamensoppgave i ST1201/ST6201 Statistiske metoder Faglig kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: 04. desember 2015 Eksamenstid (fra til): 09:00

Detaljer

Kontinuerlige sannsynlighetsfordelinger.

Kontinuerlige sannsynlighetsfordelinger. Kontinuerlige sannsynlighetsfordelinger. Dekkes av kap. 6 og deler av kap. 8.5 i boka. Husk: f(x) er sannsynlighetstettheten til en kontinuerlig X dersom: 1. f(x) 0 for alle x R 2. f(x)dx =1 3. P (a

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST 101 Innføring i statistikk og sannsynlighetsregning. Eksamensdag: Mandag 30. november 1992. Tid for eksamen: 09.00 15.00.

Detaljer

Kort overblikk over kurset sålangt

Kort overblikk over kurset sålangt Kort overblikk over kurset sålangt Kapittel 1: Deskriptiv statististikk for en variabel Kapittel 2: Deskriptiv statistikk for samvariasjon mellom to variable (regresjon) Kapittel 3: Metoder for å innhente

Detaljer

Econ 2130 Forelesning uke 10 (HG) Geometrisk og normal fordeling

Econ 2130 Forelesning uke 10 (HG) Geometrisk og normal fordeling Econ 2130 Forelesning uke 10 (HG) Geometrisk og normal fordeling 1 Geometrisk fordeling Binomisk forsøks-serie En serie likeartete forsøk med to mulige utfall, S og F, i hvert. (Modell) forutsetninger

Detaljer

Hogskoleni Østfold EKSAMEN. Eksamenstid: kl til k

Hogskoleni Østfold EKSAMEN. Eksamenstid: kl til k Hogskoleni Østfold EKSAMEN Emnekode: SFB10711 Dato: 5. jan 2015 Hjelpemidler: Kalkulator Utlevert formelsamling Emne: Metodekurs I: Grunnleggende matematikk og statistikk (Statistikk, ny og utsatt eksamen)

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 9, blokk II Oppgave 1 X er kontinuerlig fordelt med sannsynlighetstetthet f(x) = 2xe

Detaljer

Eksamensoppgåve i ST1201/ST6201 Statistiske metoder

Eksamensoppgåve i ST1201/ST6201 Statistiske metoder Institutt for matematiske fag Eksamensoppgåve i ST1201/ST6201 Statistiske metoder Fagleg kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: 04. desember 2015 Eksamenstid (frå til): 09:00

Detaljer

Forventning og varians.

Forventning og varians. Forventning og varians. Dekkes av kapittel 4 i læreboka. Forventning (4.1) Forventningsverdi = gjennomsnitt i det lange løp. Defininsjon: Forventningsverdien til en stokastisk variabel X er: x xf(x),x

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: STK Sannsynlighetsregning og statistisk modellering Eksamensdag: Mandag 4. mars 26 Tid for eksamen: 5. 7. Oppgavesettet er

Detaljer

Togforsinkelsen (Eksamen Des2003.1a) I denne oppgaven kan du bruke uten å vise det at

Togforsinkelsen (Eksamen Des2003.1a) I denne oppgaven kan du bruke uten å vise det at Kapittel 4 Forventningsverdi, varians, kovarians for én stokastisk variabel og funksjoner av stokastiske variabler TMA4245 V2007: Eirik Mo 2 4.1 Forventing til en stokastisk variabel DEF 4.1: La X være

Detaljer

Forelesing 27 Oppsummering. Torstein Fjeldstad Institutt for matematiske fag, NTNU

Forelesing 27 Oppsummering. Torstein Fjeldstad Institutt for matematiske fag, NTNU Forelesing 27 Oppsummering Torstein Fjeldstad Institutt for matematiske fag, NTNU 18.04.2018 I dag Lineær regresjon (sjekk av modellantagelser) Praktisk informasjon Andre statistikk-kurs Oversikt over

Detaljer

Eksamensoppgave i TMA4240 Statistikk

Eksamensoppgave i TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806

Detaljer

Eksamensoppgave i TMA4240 / TMA4245 Statistikk

Eksamensoppgave i TMA4240 / TMA4245 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4240 / TMA4245 Statistikk Faglig kontakt under eksamen: Håkon Tjelmeland Tlf: 48 22 18 96 Eksamensdato: 10. august 2017 Eksamenstid (fra til): 09.00-13.00

Detaljer

Binomisk sannsynlighetsfunksjon

Binomisk sannsynlighetsfunksjon ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Binomisk sannsynlighetsfunksjon La det være n forsøk, sannsynlighet p for suksess og sannsynlighet q for fiasko. Den tilfeldige

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4 ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 27. mars Bjørn H. Auestad Kp. 6: Hypotesetesting

Detaljer

Oppgave 1. . Vi baserer oss på at p 47 1 og p 2 er tilnærmet normalfordelte (brukbar tilnærming). Vi har tilnærmet at (n 1 = n 2 = 47)

Oppgave 1. . Vi baserer oss på at p 47 1 og p 2 er tilnærmet normalfordelte (brukbar tilnærming). Vi har tilnærmet at (n 1 = n 2 = 47) MOT310 tatistiske metoder 1 Løsningsforslag til eksamen vår 006, s. 1 Oppgave 1 a) En tilfeldig utvalgt besvarelse får F av sensor 1 med sannsynlighet p 1 ; resultatene for ulike besvarelser er uavhengige.

Detaljer

Forelesning 5: Kontinuerlige fordelinger, normalfordelingen. Jo Thori Lind

Forelesning 5: Kontinuerlige fordelinger, normalfordelingen. Jo Thori Lind Forelesning 5: Kontinuerlige fordelinger, normalfordelingen Jo Thori Lind j.t.lind@econ.uio.no Oversikt 1. Kontinuerlige fordelinger 2. Uniform fordeling 3. Normal-fordelingen 1. Kontinuerlige fordelinger

Detaljer

STK Oppsummering

STK Oppsummering STK1100 - Oppsummering Geir Storvik 6. Mai 2014 STK1100 Tre temaer Deskriptiv/beskrivende statistikk Sannsynlighetsteori Statistisk inferens Sannsynlighetsregning Hva Matematisk verktøy for å studere tilfeldigheter

Detaljer

betyr begivenheten at det blir trukket en rød kule i første trekning og en hvit i andre, mens B1 B2

betyr begivenheten at det blir trukket en rød kule i første trekning og en hvit i andre, mens B1 B2 ECON30: EKSAMEN 06v SENSORVEILEDNING. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i

Detaljer

FORMELSAMLING STATISTIKK, HiG

FORMELSAMLING STATISTIKK, HiG FORMELSAMLING STATISTIKK, HiG Hans Petter Hornæs hans.hornaes@hig.no Versjon per 18. februar 2004 Innhold 1 EMPIRISKE STATISTISKE MÅL 1 1.1 Forventningsverdi, varians og standardavvik.....................

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. REA1081 EKSAMENSDATO: 11. juni 2007. KLASSE: Ingeniørklasser. TID: kl. 9.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 4 (innkl.

Detaljer

Løsning eksamen desember 2016

Løsning eksamen desember 2016 Løsning eksamen desember 016 Oppgave 1 a) En drone har to uavhengige motorer. Vi innfører hendelsene A: motor 1 svikter B: motor svikter Dronen er avhengig av at begge virker, slik at sannsynligheten for

Detaljer

FORMELSAMLING STATISTIKK, HiG

FORMELSAMLING STATISTIKK, HiG Høgskolen i Gjøvik Avdeling for ingeniørfag Versjon fra mai 2007 FORMELSAMLING STATISTIKK, HiG Hans Petter Hornæs hans.hornaes@hig.no ISSN:??????? Innledning. Denne formelsamlingen er skrevet for bruk

Detaljer

TMA4240 Statistikk Eksamen desember 2015

TMA4240 Statistikk Eksamen desember 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4240 Statistikk Eksamen desember 15 Oppgave 1 La den kontinuerlege stokastiske variabelen X ha fordelingsfunksjon (sannsynstettleik

Detaljer

Tilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk

Tilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk MAT0100V Sannsynlighetsregning og kombinatorikk Forventning, varians og standardavvik Tilnærming av binomiske sannsynligheter Konfidensintervall Ørnulf Borgan Matematisk institutt Universitetet i Oslo

Detaljer

A. i) Sett opp en frekvenstabell over de fire mulige kombinasjonene av kjønn og røykestatus. Dvs. fyll inn. Ikke - røyker Sum Jente Gutt Sum 25

A. i) Sett opp en frekvenstabell over de fire mulige kombinasjonene av kjønn og røykestatus. Dvs. fyll inn. Ikke - røyker Sum Jente Gutt Sum 25 1 ECON21: ESAEN 215v SENSORVEILEDNING. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i > Grensen til bestått bør ligge på ca

Detaljer

Gammafordelingen og χ 2 -fordelingen

Gammafordelingen og χ 2 -fordelingen Gammafordelingen og χ 2 -fordelingen Gammafunksjonen Gammafunksjonen er en funksjon som brukes ofte i sannsynlighetsregning. I mange fordelinger dukker den opp i konstantleddet. Hvis man plotter n-fakultet

Detaljer

Eksamensoppgave i ST0103 Brukerkurs i statistikk

Eksamensoppgave i ST0103 Brukerkurs i statistikk Institutt for matematiske fag Eksamensoppgave i ST0103 Brukerkurs i statistikk Faglig kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: August 2018 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte

Detaljer

Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.

Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>. ECON 0 EKSAMEN 0 VÅR TALLSVAR Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i

Detaljer

Et lite notat om og rundt normalfordelingen.

Et lite notat om og rundt normalfordelingen. Et lite notat om og rundt normalfordelingen. Anta at vi har kontinuerlige data. Hva er likt og ulikt for histogrammer og fordelingskurver? Observasjoner Histogram Viser fordelingen av faktiske observerte

Detaljer

FORMELSAMLING STATISTIKK, HiG Versjon per 10. januar 2002, ved Hornæs

FORMELSAMLING STATISTIKK, HiG Versjon per 10. januar 2002, ved Hornæs FORMELSAMLING STATISTIKK, HiG Versjon per 10 januar 2002, ved Hornæs 1 EMPIRISKE STATISTISKE MÅL 11 Forventningsverdi, varians og standardavvik La x {x 1,x 2, x n } være et datasett av (reelle) tall: 111

Detaljer

STK1000 Uke 36, Studentene forventes å lese Ch 1.4 ( ) i læreboka (MMC). Tetthetskurver. Eksempel: Drivstofforbruk hos 32 biler

STK1000 Uke 36, Studentene forventes å lese Ch 1.4 ( ) i læreboka (MMC). Tetthetskurver. Eksempel: Drivstofforbruk hos 32 biler STK1000 Uke 36, 2016. Studentene forventes å lese Ch 1.4 (+ 3.1-3.3 + 3.5) i læreboka (MMC). Tetthetskurver Eksempel: Drivstofforbruk hos 32 biler Fra histogram til tetthetskurver Anta at vi har kontinuerlige

Detaljer

Formelsamling V MAT110 Statistikk 1. Per Kristian Rekdal

Formelsamling V MAT110 Statistikk 1. Per Kristian Rekdal Formelsamling V-2016 MAT110 Statistikk 1 Per Kristian Rekdal Figur 1: Statistikk. 3 Innhold 1 Beskrivende statistikk 9 1.1 Populasjon og utvalg.................................. 9 1.2 Statistiske mål

Detaljer

MAT4010 PROSJEKTOPPGAVE: Statistikk i S2. Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem

MAT4010 PROSJEKTOPPGAVE: Statistikk i S2. Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem MAT400 PROSJEKTOPPGAVE: Statistikk i S2 Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem 20. mai 205 Innhold. Stokastisk Variabel.. Stokastiske variable som funksjoner 3 2. Forventningsverdi

Detaljer

Siden vi her har brukt første momentet i fordelingen (EX = EX 1 ) til å konstruere estimatoren kalles denne metoden for momentmetoden.

Siden vi her har brukt første momentet i fordelingen (EX = EX 1 ) til å konstruere estimatoren kalles denne metoden for momentmetoden. Estimeringsmetoder Momentmetoden La X, X 2,..., X n være uavhengige variable som er rektangulært fordelte på intervallet [0, θ]. Vi vet da at forventningsverdiene til hver observasjon og forventningen

Detaljer

Kapittel 4.4: Forventning og varians til stokastiske variable

Kapittel 4.4: Forventning og varians til stokastiske variable Kapittel 4.4: Forventning og varians til stokastiske variable Forventning og varians til stokastiske variable Histogrammer for observerte data: Sannsynlighets-histogrammer og tetthetskurver for stokastiske

Detaljer

Utvalgsfordelinger; utvalg, populasjon, grafiske metoder, X, S 2, t-fordeling, χ 2 -fordeling

Utvalgsfordelinger; utvalg, populasjon, grafiske metoder, X, S 2, t-fordeling, χ 2 -fordeling Kapittel 8 Utvalgsfordelinger; utvalg, populasjon, grafiske metoder, X, S 2, t-fordeling, χ 2 -fordeling TMA4240 H2006: Eirik Mo 2 Til nå... Definert sannsynlighet og stokastiske variabler (kap. 2 & 3).

Detaljer

6.5 Normalapproksimasjon til. binomisk fordeling

6.5 Normalapproksimasjon til. binomisk fordeling ....3.4.5..5..5..5...4.6.8....4.6.8....3.4..5..5 Kaittel 6: Kontinuerlige sannsynsfordelingar TMA445 Statistikk Ka 6.5-6.8. 6.5: Normal aroksimasjon til binomisk fordeling, 6.6-6.8: Eksonensialfordeling,

Detaljer

statistikk, våren 2011

statistikk, våren 2011 ÅMA110 Sannsynlighetsregning med statistikk, våren 011 Kp. 3 Diskrete tilfeldige variable 1 Diskrete tilfeldige variable, innledning Hva er en tilfeldig variabel (stokastisk variabel)? Diskret tilfeldig

Detaljer

STK1100 våren Normalfordelingen. Normalfordelingen er den viktigste av alle sannsynlighetsfordelinger

STK1100 våren Normalfordelingen. Normalfordelingen er den viktigste av alle sannsynlighetsfordelinger STK00 våren 206 Normalfordelingen Svarer til avsnitt 4.3 i læreboka Geir Storvik Matematisk institutt Universitetet i Oslo Normalfordelingen er den viktigste av alle sannsynlighetsfordelinger Normalfordelingen

Detaljer

STK1100 våren 2019 Mere om konfidensintevaller

STK1100 våren 2019 Mere om konfidensintevaller STK1100 våren 2019 Mere om konfidensintevaller Svarer til avsnitt 8.2 i læreboka Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Konfidensintervall for µ i store utvalg Anta at de stokastiske

Detaljer

Regler i statistikk STAT 100

Regler i statistikk STAT 100 TORIL FJELDAAS RYGG - VÅREN 2010 Regler i statistikk STAT 100 Innhold side Sannsynlighetsregning 3 - Uttrykk 3 - Betinget sannsynlighet 4 - Regler for sannsynlighet 4 - Bayes teorem 4 - Uavhengige begivenheter

Detaljer

ECON Statistikk 1 Forelesning 4: Stokastiske variable, fordelinger. Jo Thori Lind

ECON Statistikk 1 Forelesning 4: Stokastiske variable, fordelinger. Jo Thori Lind ECON2130 - Statistikk 1 Forelesning 4: Stokastiske variable, fordelinger Jo Thori Lind j.t.lind@econ.uio.no Oversikt 1. Betinget sannsynlighet 2. Stokastiske variable 3. Forventning og varians 4. Regneregler

Detaljer

Løsningsforslag til obligatorisk oppgave i ECON 2130

Løsningsforslag til obligatorisk oppgave i ECON 2130 Andreas Mhre April 15 Løsningsforslag til obligatorisk oppgave i ECON 13 Oppgave 1: E(XY) = E(X(Z X)) Setter inn Y = Z - X E(XY) = E(XZ X ) E(XY) = E(XZ) E(X ) E(XY) = - E(X ) X og Z er uavhengige, så

Detaljer

LØSNING: Eksamen 22. mai 2018

LØSNING: Eksamen 22. mai 2018 LØSNING: Eksamen 22. mai 2018 MAT110 Statistikk 1, vår 2018 Oppgave 1: ( logistikk a Sannsynlighetene p i, med i = 1, 2, 3,..., 8 utgjør en gyldig sannsynlighetsfordeling fordi: 8 p i = i=1 + 5 + 40 +

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 20. mars Bjørn H. Auestad Kp. 6: Hypotesetesting

Detaljer

Løsningsforslag Til Statlab 5

Løsningsforslag Til Statlab 5 Løsningsforslag Til Statlab 5 Jimmy Paul September 6, 007 Oppgave 8.1 Vi skal se på ukentlige forbruk av søtsaker blant barn i et visst område. En pilotstudie gir at standardavviket til det ukentige forbruket

Detaljer

Et lite notat om og rundt normalfordelingen.

Et lite notat om og rundt normalfordelingen. Et lite notat om og rundt normalfordelingen. Anta at vi har kontinuerlige data. Hva er likt og ulikt for histogrammer og fordelingskurver? Observasjoner Histogram Viser fordelingen av faktiske observerte

Detaljer

Løsning på Dårlige egg med bruk av Tabell 2 i Appendix B

Løsning på Dårlige egg med bruk av Tabell 2 i Appendix B Situasjonen er som i quiz-eksempelet: n = 4, p = 1/3 ( suksess betyr å gjette riktig alternativ), q = 2/3. Oppgave: Finn P(x), x=0,1,2,3,4 fra den generelle formelen for binomisk sannsynlighetsfordeling

Detaljer

SFB LØSNING PÅ EKSAMEN HØSTEN 2018

SFB LØSNING PÅ EKSAMEN HØSTEN 2018 SFB107111 - LØSNING PÅ EKSAMEN HØSTEN 018 Eksamen høsten 018 Oppgave 1 Anta at 70% av studentene spiller fotball og at 0% ikke spiller fotball. Anta at av de som spiller fotball så er det 40% som spiller

Detaljer

Løsningsforslag til eksamen i TMA4245 Statistikk 7. juni 2007

Løsningsforslag til eksamen i TMA4245 Statistikk 7. juni 2007 Løsningsforslag til eksamen i TMA4245 Statistikk 7. juni 2007 Oppgave 1: Pengespill a) For hver deltaker har vi følgende situasjon: Deltakeren får en serie oppgaver. Hver runde har to mulige utfall: Deltakeren

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Hypotesetesting (kp. 6) Hypotesetesting, innledning. Kp.

ÅMA110 Sannsynlighetsregning med statistikk, våren Hypotesetesting (kp. 6) Hypotesetesting, innledning. Kp. ÅMA Sannsynlighetsregning med statistikk, våren 8 Kp. 6 Hypotesetesting Hypotesetesting (kp. 6) Tre deler av faget/kurset:. Beskrivende statistikk. Sannsynlighetsteori, sannsynlighetsregning 3. Statistisk

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA4240 Statistikk H2010 Statistisk inferens: 9.6: Prediksjonsintervall 9.8: To utvalg, differanse µ 1 µ 2 Mette Langaas Foreleses mandag 18.oktober, 2010 2 Prediksjonsintervall for fremtidig observasjon,

Detaljer

Høgskoleni østfold EKSAMEN

Høgskoleni østfold EKSAMEN et) Høgskoleni østfold EKSAMEN Emnekode:Emne: SFB10711Metode 1 Statistikkdel Dato: 5. feb. 2016Eksamenstid: kl. 1400 Hjelpemidler: Kalkulator Utlevert formelsamling til kl. 1800 Faglærer: Nils Ingar Arvidsen

Detaljer