Løsningsforslag Fysikk 1 (FO300A)

Størrelse: px
Begynne med side:

Download "Løsningsforslag Fysikk 1 (FO300A)"

Transkript

1 øningforlag Fi (FO00A) vår 00 utatt eaen 9. augut, tier Oppgave (%) Ei ule av etall ed te horiontalt (vannrett) ut fra en atapult. (Kula beveveger eg altå horiontalt i uttningøebliet.) Uttningpuntet O (origo) ligger,8 over et horiontalt gulv o ula treffer etter ei lita tund. Avtanden fra uttningpuntet og til nedlagpuntet B (det tedet der den treffer gulvet) er,97 i luftlinje. Se bort fra luftottanden og regn ed at tørrelen til etallula i oppgaven ie har noen betdning for utregningene. Oppgave I denne oppgaven al vi e bort fra luftottanden og tørrelen til etallula. = 0,6g Figuren vier ituajonen. Vi regner poitiv retning ned. a) Farten i punt O: For bevegelen i -retningen har vi: A =,8 v O = A /t A = ( A - A ) ½ /t A og A = ½g t A v O = A /t A = [( A - A )/( A /g)] ½ =[g( A - A )/( A )] ½ [(9,8/ ) ((,97) (,8) )/( (,8)] ½ = O v O =? A =,97 t A = ( A /g ) ½ A =? punt A 5,8 / b) Stålfjær o pree aen z =5 c, og uten energitap er den potenielle energien i fjæra lie tor o den inetie energien i ula når fjæra utløe: ½ v O = ½ z = ½K z der jeg toler K, den tørte rafta når fjæra penne, o varet på oppgaven: ½K z = ½ v O Oppgave (%) Gitt poijonen til en partiel o funjon av tida : (t) = 0, co(5 - t) og K = v O /z = 0,6g (5,8 /) /0,5 = 6N (t) = 0, in(5 - t) a) Banefarten finne ved hjelp av derivajon: v (t) = '(t) = 0, 5 - (-in(5 - t) = -,5/ in(5 - t) v (t) = '(t) = og aenetting av fartoponentene: v = [v + v ] ½ =,5/ co(5 - t) [(-,5/ in(5 - t)) + (,5/ co(5 - t)) ] ½ =,5 / b) Fortatt derivajon gir: a (t) = v'(t) =,5/ 5 - (-co(5 - t) = -7,5/ co(5 - t) a (t) = v'(t) = -7,5/ in(5 - t) HIO/IU/F/V08/EX Side av 5 Rolf Ingebrigten

2 Vi har da: a = [a + a ] ½ = [(-7,5/ co(5 - t)) + (-7,5/ in(5 - t)) ] ½ = 7,5 / Vi er at lengden av poijonvetoren er 0,. Dette er altå irelbevegele ed ontant banefart (pt a)), og aelerajonvetoren peer derfor hele tida inn ot irelentret. Oppgave (9%) Stanga har lengden =,60, vært tnn i forhold til uleradien = 00 g og = 00 g. Vi er bort fra frijon og regner ula o puntforet. a) Poijonen C til teet aeenter: ( + ) C = + (/) C = ( + (/))/( + ) = Rotajonae z Stang Kule (0,g,60/4 + 0,g (,60/))/0,5g = 0,56 I z = + / + (/) = + / = + / = 0,g (0,40) + 0,g (,60) / = 0,9g b) Farten til ula i det den når den nederte tillingen, finne vha energibetrtning. Tapet av poteniell energi aller vi E p0 = g C, o å være li ineti energi: g C = ½I ( g C /I) ½ Og farten v til ula blir da: v = (g C /I) ½ = 0,40( 0,5g (9,8/ ) 0,56/(0,9g )) ½ =,0/ I den nederte, vertiale tillingen er det bare vertiale refter tiltede og ingen vinelaelerajon. Vi an derfor nøe o ed å e på entripetalaelerajonen til aeenteret. Den øte raften K fra z virer oppover, og tngen nedover. N'.lov gir da: K G = v C / C K = g + C (g C /I)/ C =g( + /I) = 0,5g (9,8/ )( + 0,5g (0,56) /0,9g ) =,9N c) Vinelaelerajonen til tanga er tørt i øebliet etter at tanga lippe, en den ennå er horiontal. Men dette vil ogå gi aial vinelfart i den nederte tillingen, og vi an derfor brue reultater fra a) og b) får: () = g C /I = g ( + (/))/)/[ + / ] HIO/IU/F/V08/EX Side av 5 Rolf Ingebrigten

3 ( ) g C / I z g g f ( ) Maial () finne ved å ette '() = 0: '( ) g g,5 (,5 (,5 ) ( ( ) ),5 )( ) g g 9 6 ( ) ( ),5 Så løer vi lininga '() = 0, og får varet på oppgaven: ( ) 0 9 ( ),6 ( ) 0,9 Oppgave 4 (0%) I et rettvinlet oordinatte ed -ae og -ae er det plaert to lie tore, poitive ladninger =,0 C. Den ene ligger i puntet (0, 4c), og den andre ligger i puntet (0, - 4c). (Origo ligger altå idt ello de to ladningene, og de ligger 8 c fra hverandre). a) Den innbrde eletrie raften finne vha Coulob lov: 6 9 N (,0 0 C) F 0 8,99 0 5, 6N r C (0,08) Siden ladningene har li polaritet, å er det na o tiltreende refter, og dered vil begge die reftene pee rett inn ot origo i oordinatteet. b) Sie av feltet er plaert på. 5. c) E(), den eletrie felttren i (,0): So figuren vier, vil E( ) e E E E co e ( ) / = 4c + O + E E E =E Vier at E(0) = 0, deretter voer E(), for å å gå ot 0 igjen fordi nevneren har en telleren bare har. Oppgave 5 (6%) a) Gitt = 0,50, d = c, og I = 00A i begge lederne. Vi har raften F på en leder i et B-felt o F = I B in der vinelen ello en av lederne og B-feltet fra den andre er 90, og B = 0I/( d) o gir: F = 0I /( d) =,6 0-6 /A 0,50 (00A) /( 0,0) = 0,40N HIO/IU/F/V08/EX Side av 5 Rolf Ingebrigten

4 Figuren til høre vier et tverrnitt gjenno de to lederne. B-feltet fra den ventre er vit o irulære feltlinjer, og ved å brue hørehåndregelen på F I l B der l går inn i papirplanet, er vi at det opptår tiltreende refter ello de to lederne. Figuren til høre vier et hoogent agnetfelt o tår noralt edere opp fra et rettvinlet --plan (i ae retning o z-aen, o ie er tegnet inn i figuren). Den tiplede firanten vier grenene til agnetfeltet. I ituajonene berevet under vil det unne opptå refter på ringen, og trø i ringen. Forlar i hvert enelt tilfelle hvilen retning eventuelle refter vil ha, og hvilen retning en eventuell trø vil ha (ed eller ot urvierne): c) Jeg definerer flatevetoren poitiv lang z-aen. Poitiv oløpretning blir da ot urvierne. Den agnetie raften alle K.. Stren til agnetfeltet øer en ringen ligger i Hoogent ro. Da øer fluen, og den induerte trøen å agnetfelt otvire detteog gå i negativ retning, dv. ed lang z-aen utvierne. K virer da i poitiv z-rening.. Når ringen beveger eg fra og tilbae lang - aen uten å berøre den tiplede firanten, er det ingen fluendring, og det induere ingen trø og det opptår ingen agnetie refter.. Når ringen lee aen li at arealet blir indre, blir ogå fluen indre. Den induerte trøen går da i poitiv retning og K virer i neg. z-retning. 4. Sløfa roterer o -aen: Fluen (t) = B A = BAco( t) og den induerte penningen i ringen blir E(t) = -d (t)/dt = - BAin( t) Metallring ed areal A Strøen avhenger da av reitanen i ringen, og reftene vil lage et raftoent o virer ot rotajonretningen. 5. Når løfa roterer o z-aen, er det ingen fluendring, og det induere ingen trø og det opptår ingen agnetie refter. F B b) Figuren vier en pole o iert i oppgaven. Strøretningen i polen gir et B- felt ot høre. Integrjonløfa vi vil brue, er retangelet Del er idt inne i polen, og vi antar feltet er hoogent her. B- feltet rundt delene og 4 anta å være lie (etri), og del ligger "uendelig langt ve li at B = 0. Vi bruer Apère lov: B dl I = B l + B l + B l + B 4 l 4 C 0 Strøretning Integrajonløfe der I i forelen er uen av trøen i de vilingene o jærer integrajonløfa, dv li. Deuten er B l + B l = 0 pga av etri, li at vi får: HIO/IU/F/V08/EX Side 4 av 5 Rolf Ingebrigten 4 B

5 B l = 0 NI(l /) B = 0 I(N/) Figur til oppgave 4b) NB! Retning på feltet er hele tiden fra + og til. + + HIO/IU/F/V08/EX Side 5 av 5 Rolf Ingebrigten

Høst 97 Utsatt eksamen

Høst 97 Utsatt eksamen Høt 97 Utatt ekaen. Vi tenker o at en partikkel beveger eg lang en rett linje (lang x-aken). Partikkelen tarter i ro i origo ve tien t =. ekuner. Partikkelen hatighet v o funkjon av tien t er gitt ve:

Detaljer

1 t f Bestem de partielle deriverte. når 2 2. og f y. Oppgave 2

1 t f Bestem de partielle deriverte. når 2 2. og f y. Oppgave 2 FOA50 eamen høt 004 ide av 5 Oppgave a) Regn ut f ( ) når (i) f( ) = e in (ii) f( ) = ln(+ ) (iii) = + t b) f Betem de partielle deriverte og f y når f(, y) = + y + y. c) Regn ut: f( ) t dt (i) 4 ln d

Detaljer

FAG: FYS105 Fysikk LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: FYS105 Fysikk LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNVETETET AGDE Gritad E A E N O G A V E : FAG: FY05 Fyikk ÆE: er Henrik Hogtad lae(r: Dato: 8.05.0 Ekaentid, ra-til: 09.00.00 Ekaenoppgaven betår av ølgende Antall ider: 5 (inkl. oride Antall oppgaver:

Detaljer

FAG: FYS114 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann

FAG: FYS114 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann UNIVERSITETET I AGDER Gritad E K S A M E N S O G A V E : FAG: FYS4 Fyikk/Kjei LÆRER: Fyikk : er Henrik Hogtad Kjei : Grethe Lehrann Klae(r): Dato: 5.5. Ekaentid, fra-til: 9. 4. Ekaenoppgaven betår av følgende

Detaljer

Kap 10 Dynamikk av rotasjons-bevegelse

Kap 10 Dynamikk av rotasjons-bevegelse Kap Dynaikk av rotajon-bevegele. Bete kraftoentet (tørrele og retning) o en ake noralt på papirplanet gjenno O o kraften F i hver av ituajonene er årak til. Objektet o F virker på har i hvert av tilfellene

Detaljer

FAG: FYS105 Fysikk LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: FYS105 Fysikk LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVERITETET I AGDER Gritad E K A M E N O G A V E : FAG: FY5 Fyikk ÆRER: er Henrik Hogtad Klaer: Dato: 9.5.9 Ekaentid, ra-til: 9. 4. Ekaenoppgaen betår a ølgende Antall ider: 5 inkl. oride Antall oppgaer:

Detaljer

For bedre visualisering tegner vi

For bedre visualisering tegner vi MSK MSKIKOSTRUKSJO ØSIGSORSG TI ØVIGSOPPGVR Oppgave 8. 8.5 ØVIG 9: DIMSJORIG V SKRUORBIDSR Oppgave 8- a) Totalraften i ruen er gitt ved: b der er forpenningraften og er andelen av ytre raften o ta av en

Detaljer

Løsningsforslag Fysikk 2 V2016

Løsningsforslag Fysikk 2 V2016 Løsningsforslag Fysikk, Vår 016 Løsningsforslag Fysikk V016 Oppgave Svar Forklaring a) B Faradays induksjonslov: ε = Φ, so gir at Φ = ε t t Det betyr at Φ åles i V s b) D L in = 0,99 10 = 9,9 L aks = 1,04

Detaljer

FAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann

FAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann UNIVERSITETET I AGDER Gritad E K S A M E N S O G A V E : FAG: FYS6 Fyikk/Kjei LÆRER: Fyikk : er Henrik Hogtad Kjei : Grethe Lehrann Klae(r): Dato: 5.5. Ekaentid, fra-til: 9. 4. Ekaenoppgaven betår av følgende

Detaljer

Kap 14 Periodisk bevegelse

Kap 14 Periodisk bevegelse K 4 Periodi evegele 4. Glideren å fig - i læreoen lere 0.0 fr in lieveilling og lie ed rhighe null. er 0.800 eunder er glideren oijon 0.0 å den ndre iden v lieveillingen og glideren hr er lieveillingen

Detaljer

Norsk Fysikklærerforening Norsk Fysisk Selskaps faggruppe for undervisning

Norsk Fysikklærerforening Norsk Fysisk Selskaps faggruppe for undervisning Nork Fikklærerforenin Nork Fik Selkap faruppe for underinin FYSIKK-OLYMPIADEN 4 5 Andre runde: 3/ 5 Skri øert: Nan, fødeldato, hjeeadree o eentuell e-potadree, kolen nan o adree. Varihet: 3 klokketier

Detaljer

Høst 96 Ordinær eksamen

Høst 96 Ordinær eksamen Høt 96 Ordinær ekaen. a) Vi tenker o at en partikkel eveger eg lang en rett linje (lang x-aken). Partikkelen poijon o unkjon av tiden t er gitt ved: ( t) t Bt hvor. B 8. Beregn partikkelen hatighet etter.

Detaljer

Fysikkolympiaden Norsk finale 2012

Fysikkolympiaden Norsk finale 2012 Nors Fysilærerforening Fysiolympiaden Nors finale 3. uttaingsrunde Fredag 3. mars l. 9. til. Hjelpemidler: Tabell/formelsamling, lommeregner og utdelt formelar Oppgavesettet består av 7 oppgaver på 3 sider

Detaljer

FAG: FYS113 Fysikk/Kjemi ÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann

FAG: FYS113 Fysikk/Kjemi ÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann UNIVERSITETET I GDER Gritad E K S M E N S O G V E : FG: FYS Fyikk/Kjei ÆRER: Fyikk : er Henrik Hogtad Kjei : Grethe Lehrann Klae(r): Dato: 5.5. Ekaentid, ra-til: 9. 4. Ekaenoppgaven betår av ølgende ntall

Detaljer

Eksamensoppgave i FY0001 Brukerkurs i fysikk (V2017)

Eksamensoppgave i FY0001 Brukerkurs i fysikk (V2017) ntitutt for fyikk Ekaenoppgave i FY000 Brukerkur i fyikk (V07) Faglig kontakt under ekaen: Mikael Lindgren Tlf.: 4 46 65 0 Ekaendato: 4. ai 07 Ekaentid (fra-til): 0900-300 Hjelpeiddelkode/Tillatte hjelpeidler:

Detaljer

Svar: Vi bruker Ampères lov for å finne magnetfeltet en avstand r fra lynet.

Svar: Vi bruker Ampères lov for å finne magnetfeltet en avstand r fra lynet. I FYS1120-undervininga legg vi meir vekt på matematikk og numerike metoder enn det oppgåvene i læreboka gjer. Det gjeld òg oppgåvene om vert gitt til ekamen. Difor er det viktig at du gjer vekeoppgåvene

Detaljer

Kap 01 Enheter, fysiske størrelser og vektorer

Kap 01 Enheter, fysiske størrelser og vektorer Kap Enheter, fyike tørreler og vektorer.7 Concorde er det rakete paajerflyet. Det har en hatighet på 45 mi/h (ca ganger lyden hatighet, dv Mach). mi = 69 m. a) Hva er Concorde-flyet hatighet i km/h? b)

Detaljer

Oppgave 1 Forenklet modell av hjulopphenget Hjulopphenget er dimensjonert slik at polene til modellen blir 5±

Oppgave 1 Forenklet modell av hjulopphenget Hjulopphenget er dimensjonert slik at polene til modellen blir 5± LM6M- Mateatikk : Utatt ekaen 9 Oppgave Forenklet odell av hjulopphenget Hjulopphenget er dienjonert lik at polene til odellen blir 5± j 5. Fjærtivheten til fjæra er da lik: 3 5 75 48 Oppgave Forenklet

Detaljer

Fysikkolympiaden Norsk finale 2013

Fysikkolympiaden Norsk finale 2013 Nork fyikklærerforening Fyikkolympiaen Nork finale. uttakingrune Freag. mar kl. 9. til. Hjelpemiler: Tabell/formelamling, lommeregner og utelt formelark Oppgaveettet betår av 6 oppgaver på ier Lykke til!

Detaljer

TALM1003-A Matematikk 1 Grunnlagsfag - 10 studiepoeng

TALM1003-A Matematikk 1 Grunnlagsfag - 10 studiepoeng HØGSKOLEN I SØR-RØNDELAG Avdeling for teknologi Progra for elektro- og datateknikk 7004 RONDHEIM ALM1003-A Mateatikk 1 Grunnlagfag - 10 tudiepoeng Cae: Regulering av vækenivået i en tank Høt 013 Le dette

Detaljer

Fysikkolympiaden 1. runde 28. oktober 8. november 2013

Fysikkolympiaden 1. runde 28. oktober 8. november 2013 Norsk Fysikklærerforening i saarbeid ed Skolelaboratoriet Universitetet i Oslo Fysikkolypiaden 1. runde 8. oktober 8. noveber 013 Hjelpeidler: Tabell og forelsalinger i fysikk og ateatikk Loeregner Tid:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side UNIVRSI I OSO Det matemati-aturviteapelige faultet ame i: amedag: id for eame: Oppgaveettet er på 4 ider Vedlegg: illatte jelpemidler: Me454 Kompoittmaterialer. Madag 4-6-7. 4 7. Formelar ide). Rottma

Detaljer

STK1100 våren Betinget sannsynlighet og uavhengighet. Vi trenger en definisjon av betinget sannsynlighet! Eksempel 1

STK1100 våren Betinget sannsynlighet og uavhengighet. Vi trenger en definisjon av betinget sannsynlighet! Eksempel 1 STK00 våren 07 Betinget sannsynlighet og uavhengighet Esempel Vi vil først ved hjelp av et esempel se intuitivt på hva betinget sannsynlighet betyr. Vi legger fire røde ort og to svarte ort i en bune.

Detaljer

Løsningsforslag Eksamen i Fys-mek1110 våren 2008

Løsningsforslag Eksamen i Fys-mek1110 våren 2008 Side 1 a 9 Løsningsforslag Esaen i Fys-e111 åren 8 På denne esaenen sal i studere en ollisjon ello to identise partiler (atoer) so begge påires a refter fra en assi, stasjonær partiel (f.es. et oleyl).

Detaljer

1) Hva blir akselerasjonen til en kloss som glir nedover et friksjonsfritt skråplan med helningsvinkel 30?

1) Hva blir akselerasjonen til en kloss som glir nedover et friksjonsfritt skråplan med helningsvinkel 30? FY1001/TFY4145 Mekanisk Fysikk Eksaen Tirsdag 16. Deseber 2014 OKMÅL OPPGVE 1: Flervalgsoppgaver (Teller 45%, 18 stk so teller 2.5% hver) 1) Hva blir akselerasjonen til en kloss so glir nedover et friksjonsfritt

Detaljer

Kap. 10: Inferens om to populasjoner. Inferens om forskjell i forventning ved å bruke to avhengige utvalg (10.3) ST0202 Statistikk for samfunnsvitere

Kap. 10: Inferens om to populasjoner. Inferens om forskjell i forventning ved å bruke to avhengige utvalg (10.3) ST0202 Statistikk for samfunnsvitere Kap. 0: Inferen om to populajoner Situajon: Det er to populajoner om vi ønker å ammenligne. Vi trekker da et utvalg fra hver populajon. Vi kan ha avhengige eller uavhengige utvalg. ST00 Statitikk for amfunnvitere

Detaljer

Løsningsforslag til eksamen i TFY4205 Kvantemekanikk 12. august 2004

Løsningsforslag til eksamen i TFY4205 Kvantemekanikk 12. august 2004 NTNU Side 1 av 6 Institutt for fysi Faultet for naturvitensap og tenologi Løsningsforslag til esaen i TFY405 Kvanteeani 1. august 004 Dette løsningsforslaget er på 6 sider. Oppgave 1. To-diensjonal eletron-gass

Detaljer

Norsk Fysikklærerforening Norsk Fysisk Selskaps faggruppe for undervisning

Norsk Fysikklærerforening Norsk Fysisk Selskaps faggruppe for undervisning Norsk Fysikklærerforening Norsk Fysisk Selskaps faggruppe for unervisning FYSIKK-KONKURRANSE 00 00 Anre rune: 7/ 00 Skriv øverst: Navn, føselsato, hjeearesse og eventuell e-postaresse, skolens navn og

Detaljer

FAG: FYS105 Fysikk LÆRER: Fysikk : Per Henrik Hogstad

FAG: FYS105 Fysikk LÆRER: Fysikk : Per Henrik Hogstad UNIVERSIEE I GDER Grid E K S M E N S O G V E : FG: FYS5 Fyikk LÆRER: Fyikk : er Henrik Hogd Kle(r: Do: 5.5. Ekenid, r-il: 9. 4. Ekenoppgven beår v ølgende nll ider: 4 (inkl. oride nll oppgver: 4 nll vedlegg:

Detaljer

ØVING 4. @V @x i. @V @x

ØVING 4. @V @x i. @V @x FY006/TFY425 - Øving 4 Frit for innlevering: tirdag 8. februar, kl 7.00 Oppgåve ØVING 4 Vibrerande to-partikkel-ytem Som dikutert på ide 0 i boka til Hemmer, er det eit viktig poeng både i klaik mekanikk

Detaljer

EKSAMEN I FAG SIF 4014 FYSIKK 3 Onsdag 2. desember 1998 kl

EKSAMEN I FAG SIF 4014 FYSIKK 3 Onsdag 2. desember 1998 kl Side av 7 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under ekamen: Førteamanueni Knut Arne Strand Telefon: 73 59 34 6 EKSAMEN I FAG SIF 44 FYSIKK 3 Ondag. deember

Detaljer

PD-regulator med faseforbedrende egenskaper. Denne ma dessuten klare

PD-regulator med faseforbedrende egenskaper. Denne ma dessuten klare Norge teknik naturvitenkapelige univeritet Intitutt for teknik kybernetikk Oktober 99/PJN, September 9 /MPF Utlevert:..9 0 SERVOTENI Lningforlag ving 0 a) Oppgave Vi kriver h() pa formen ( +0:)( ; 0:)

Detaljer

Løsningsforslag for øvningsoppgaver: Kapittel 1

Løsningsforslag for øvningsoppgaver: Kapittel 1 Løningforlag for øvningoppgaver: Kapittel 1 Jon Walter Lundberg 07.01.2015 1.02 Symbol Navn Verdi v yokto 10 24 z zepto 10 21 a atto 10 18 f femto 10 15 p piko 10 12 n nano 10 9 µ mikro 10 6 m mili 10

Detaljer

ØVING 12. Vinkelfunksjonar, radialfunksjonar og orbitalar for hydrogenliknande. Y lm ; l =0, 1, ; m = l,,l.

ØVING 12. Vinkelfunksjonar, radialfunksjonar og orbitalar for hydrogenliknande. Y lm ; l =0, 1, ; m = l,,l. FY1006/TFY4215 - Øving 12 1 Frit for innlevering: Tirdag 22. april kl.1700 Oppgåve 1 ytem ØVING 12 Vinkelfunkjonar, radialfunkjonar og orbitalar for hydrogenliknande For ein partikkel om bevegar eg i eit

Detaljer

Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt.

Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt. Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 27. Veiledning: 29. september kl 12:15 15:. Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt. Oppgave 1 a) C. Elektrisk

Detaljer

KONTINUASJONSEKSAMEN I EMNE TDT4230 VISUALISERING TIRSDAG 7. AUGUST 2007 KL LØSNINGSFORSLAG

KONTINUASJONSEKSAMEN I EMNE TDT4230 VISUALISERING TIRSDAG 7. AUGUST 2007 KL LØSNINGSFORSLAG Side av 7 NTNU Norges tenis-naturvitensapelige universitet Faultet for fysi, inforati og ateati Institutt for datateni og inforasjonsvitensap KONTINUASJONSEKSAMEN I EMNE TT23 VISUALISERING TIRSAG 7. AUGUST

Detaljer

Oppgave 1 Forenklet modell av hjulopphenget Hjulopphenget er dimensjonert slik at polene til modellen blir 4± fjæra er da lik:

Oppgave 1 Forenklet modell av hjulopphenget Hjulopphenget er dimensjonert slik at polene til modellen blir 4± fjæra er da lik: LM6M- Mateatikk : Ekaen andag.ai, 9 Oppgave Forenklet odell av hjulopphenget Hjulopphenget er dienjonert lik at polene til odellen blir 4± j 3 fjæra er da lik:. Fjærtivheten til 3 75 48 7 N N N N Oppgave

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi LM6M- Matematikk -Ekamen 9.mai HØGSKOLEN I SØR-TRØNELG veling for teknologi Kaniatnr: Ekamenato: Varighet/ekamenti: Emnekoe: Manag 9.mai 9-4 LM6M Emnenavn: Matematikk Klae(r): EL Stuiepoeng: Faglærer(e):

Detaljer

Oblig 6 i Fys-Mek1110

Oblig 6 i Fys-Mek1110 Sindre Ranne Bilden, Idun Osnes & Ingrid Marie Bergh Bakke Oblig 6 i Fys-Mek1110 a) Akselerasjon Fart Siden det ikke er noen for for friksjon eller andre ikke-konservative krefter i bildet, vil forholdet

Detaljer

Fysikk 2 Eksamen våren Løsningsforslag

Fysikk 2 Eksamen våren Løsningsforslag Fyikk - Løningforlag Ogae 1 a) B Partikkel X må ære oiti for at det elektrike feltet kal eke radielt bort fra denne artikkelen. Partikkel Y må ære negati for at det elektrike feltet kal eke radielt mot

Detaljer

FAG: FYS105 Fysikk (utsatt eksamen) LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: FYS105 Fysikk (utsatt eksamen) LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVERSITETET I AGDER Gristad E K S A M E N S O P P G A V E : FAG: FYS105 Fysikk (utsatt eksaen) LÆRER: Per Henrik Hogstad Klasse(r): Dato: 6.11.11 Eksaenstid, fra-til: 09.00 14.00 Eksaensoppgaven består

Detaljer

Repetisjonsoppgaver kapittel 4 løsningsforslag

Repetisjonsoppgaver kapittel 4 løsningsforslag epetisjonsoppgaver kapittel 4 løsningsforslag nergi Oppgave a) Arbeidet gjort av kraften har forelen: s cos Her er s strekningen kraften virker over, og vinkelen ello kraftverktoren og strekningen. b)

Detaljer

R Differensialligninger

R Differensialligninger R - 6.0.05 - Differensialligninger Løsningssisser Oppgave Løs differensialligningene y x y b) y y x c) y 8y 7y 0 Separabel: y y x y dy xdx y x C y x 4 C y C x 4 Da ligningen er ulineær, bør vi også se

Detaljer

FAG: FYS105 Fysikk LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: FYS105 Fysikk LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVERITETET I AGDER Grid E K A E N O P P G A V E : FAG: FY05 Fyikk ÆRER: Per enrik ogd Kler: Do: 6.05. Ekenid, fr-il: 09.00 4.00 Ekenoppgen beår følgende Anll ider: 5 inkl. foride Anll oppger: 3 Anll

Detaljer

FASIT UTSETT EKSAMEN VÅREN 2006. Oppg. 1 (25 %)

FASIT UTSETT EKSAMEN VÅREN 2006. Oppg. 1 (25 %) FASIT UTSETT EKSAMEN VÅREN 006 SENSORTEORI Oppg. 1 (5 %) Ein elatik pendel har eit lodd ed ae 0,0 kg og ei fjør ed fjørkontant 0,0 N/. Pendelen vingar ed aplitude 10. a) Finn vingetida (perioden) til pendelen.

Detaljer

(12) PATENT (19) NO (11) (13) B1. NORGE (51) Int Cl. Patentstyret

(12) PATENT (19) NO (11) (13) B1. NORGE (51) Int Cl. Patentstyret () PATENT (9) NO () 337 (3) B NORGE () Int Cl. G0V /36 (006.0) Patenttyret () Sønadnr 00373 (86) Int.inng.dag og ønadnr () Inng.dag 00.07.6 (8) Videreføringdag () Løpedag 00.07.6 () Prioritet 00.07.3,

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi ALM6M-A Matematikk : Kontinuajonekamen augut HØGSKOLEN I SØR-TRØNELAG Avdeling for teknologi Kandidatnr: Ekamendato: Varighet/ekamentid: Emnekode: Augut 9-4 ALM6M Emnenavn: Matematikk Klae(r): EL Studiepoeng:

Detaljer

løsningsforslag - skrueforbindelser

løsningsforslag - skrueforbindelser lønngforlag - krueforbneler OGVE guren er e kruetnge o tltrekke e kftnøkkel. Tltrekkngoentet er N, og u kan regne at % a ette oentet tapt på grunn a frkon ello kruen og arbetykket. rkonkoeffenten gengen

Detaljer

Fysikk-OL Norsk finale 2004

Fysikk-OL Norsk finale 2004 Universitetet i Oslo Norsk Fysikklærerforening Fysikk-OL Norsk finale 004 3. uttakingsrunde Fredag. april kl 09.00 til.00 Hjelpeidler: abell/forelsaling og loeregner Oppgavesettet består av 6 oppgaver

Detaljer

Fysikk 2 Eksamen våren Løsningsforslag

Fysikk 2 Eksamen våren Løsningsforslag Fysikk - Løsningsforslag Oppgae a) C Q Det elektriske feltet fra en punktladning Q er gitt ed E ke r, og feltstyrken il ata ed astand til ladningen. Retningen til feltet er definert slik at det peker i

Detaljer

FYS2130. Tillegg til kapittel 13. Harmonisk oscillator. Løsning med komplekse tall

FYS2130. Tillegg til kapittel 13. Harmonisk oscillator. Løsning med komplekse tall FYS130. Tillegg til kapittel 13 Haronisk oscillator. Løsning ed koplekse tall Differensialligningen for en udepet haronisk oscillator er && x+ ω x = 0 (1) so er en hoogen lineær differensialligning av.

Detaljer

Oppgaver i kapittel 1 - Løsningsskisser og kommentarer Lærebok:

Oppgaver i kapittel 1 - Løsningsskisser og kommentarer Lærebok: Oppgaver i apittel - Løsningssisser og ommentarer Lærebo:.6 Vitig oppgave, viser hvordan ree-summer an tilnærmes med integraler. Atuelt hvis vi har formelen for n te ledd, men ie har noen summeformel.

Detaljer

FYS 105 Fysikk Ordinær eksamen vår 2005

FYS 105 Fysikk Ordinær eksamen vår 2005 FYS 5 Fyikk Ordinær ekaen år 5. En bil kjører lang en re linje (-aken og paerer origo ed haigheen 7. k/h ( =. / i poii -rening ed iden =. Haigheen o unkjon a iden er gi ed: hor (.6. a ee bilen akelerajon

Detaljer

MA1301/MA6301 Tallteori Høst 2016

MA1301/MA6301 Tallteori Høst 2016 Norges tenis naturvitensapelige universitet Institutt for ateatise fag MA/MA6 Tallteori Høst 6 a Vi starter ed å sjee at liheten steer for n. Vi har at i. Heldigvis er (, så vi ser at påstanden steer i

Detaljer

Spinn og Impulsbalanse HIA Avd. teknologi Morten Ottestad

Spinn og Impulsbalanse HIA Avd. teknologi Morten Ottestad Ipuls og spinn balanse 4.0.005 Side av Spinn og Ipulsbalanse HIA Avd. teknologi Morten Ottestad. ynaikk rettlinjede bevegelser. Ipuls balansen Newtons I lov). Eleenter i ekaniske syste.. jær 3.. eper 4..3

Detaljer

Hydraulisk system. Tanken har rette vegger. Vannspeilarealet A[m 2 ] er da konstant og uavhengig nivået x[m]. Generell balanseligning:

Hydraulisk system. Tanken har rette vegger. Vannspeilarealet A[m 2 ] er da konstant og uavhengig nivået x[m]. Generell balanseligning: Hyraulik yte. / / Tanken har rette eer. Vanneilarealet er a kontant o uaheni niået. Generell balanelinin: kkuulert olu r tienhet i tank Inntrønin Uttrønin t V V t t V t Syte 0: t t t 0 0 Niåenrin: Tranferfunkjon:

Detaljer

FYSIKK-OLYMPIADEN

FYSIKK-OLYMPIADEN Nors Fysilærerforening Nors Fysis Selss fggrue for undervisning FYSIKK-OLYMPIADEN 3 Andre runde: 6/ Sriv øverst: Nvn, fødselsdto, e-ostdresse og solens nvn Vrighet: 3 loetimer Hjelemidler: Tbell med formelsmling,

Detaljer

Løsningsforslag til eksamen i jernbaneteknikk HiOA

Løsningsforslag til eksamen i jernbaneteknikk HiOA Løningforlag til ekamen i jernbaneteknikk HiOA 9.1.011 Oppgave 1 Gitt kurvekombinajonen rettlinje - overgangkurve - irkelkurve - overgangkurve - rettlinje, der irkelkurven har en radiu på 600 meter og

Detaljer

LINSEKIKKERTER. Jeg har nå endelig fått laget noen slike skisser, og du finner dem på de neste sidene.

LINSEKIKKERTER. Jeg har nå endelig fått laget noen slike skisser, og du finner dem på de neste sidene. LINSEKIKKERTER Maiken purte meg for en tid tilbake om jeg kunne lage en tegning av trålegangen i en linekikkert, iden un adde fått pørmål om dette på gruppetimene ine og det er jo alltid litt tyr å få

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematik-naturvitenkapelige fakultet Ekamen i: Oppgaveettet er på: Vedlegg: Tilatte hjelpemidler Fy60 4 ider ingen Elektronik kalkulator, godkjent for videregående kole Rottman:

Detaljer

TFY4106 Eksamen 9 aug Løsningsforslag

TFY4106 Eksamen 9 aug Løsningsforslag TFY416 Ekamen 9 aug 14. Løningforlag Oppgave 1 a) Når m 1 og m er i ro er trekkraften i tauet om holder m 1 lik tyngdekraften: F1 m1 F betemme ut fra at det totale dreiemomentet om aken av trinen er null

Detaljer

Vedlegg 6.1 KAPASITETSBEREGNING FOR INNSTØPTE STÅLPLATER MED FORANKRING TYPE KL

Vedlegg 6.1 KAPASITETSBEREGNING FOR INNSTØPTE STÅLPLATER MED FORANKRING TYPE KL edlegg 6. KAPASITETSBEREGIG FOR ISTØPTE STÅLPLATER ED FORAKRIG TYPE KL Etter Betongelementboken bind B kapittel 9. Kapaitetkontrollen utøre i bruddgrenetiltanden. De ytre latene dele i latvirkninger på

Detaljer

Fysikkolympiaden Norsk finale 2016

Fysikkolympiaden Norsk finale 2016 Nosk fysikklæefoening Fysikkolypiaden Nosk finale 16 Fedag 8. apil kl. 9. til 11.3 Hjelpeidle: abell/foelsaling, loeegne og utdelt foelak Oppgaesettet bestå a 6 oppgae på side Lykke til! Oppgae 1 En patikkel

Detaljer

FY1006/TFY Øving 4 1 ØVING 4

FY1006/TFY Øving 4 1 ØVING 4 FY1006/TFY4215 - Øving 4 1 Oppgave 13 ØVING 4 Vibrerende to-partiel-system Som disutert side 110 i boa, er det et vitig poeng både i lassis meani og i vantemeani at et to-partiel-problem essensielt an

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Ekaendato: Varighet/ekaentid: Enekode: Enenavn: Klae(r): Studiepoeng: Faglærer(e): Tordag 1.6. 014 5 klokketier TALM100-A Mateatikk 1 EL FEN

Detaljer

Plan. MAT1030 Diskret matematikk. Eksamen 12/6-06 Oppgave 2. Noen tips til eksamen

Plan. MAT1030 Diskret matematikk. Eksamen 12/6-06 Oppgave 2. Noen tips til eksamen Plan MAT1030 Disret matemati Plenumsregning 12: Diverse oppgaver Roger Antonsen Matematis Institutt, Universitetet i Oslo 22. mai 2008 Dette er siste plenumsregning. Vi regner stort sett esamensoppgaver.

Detaljer

Normalfordeling. Høgskolen i Gjøvik Avdeling for teknologi, økonomi og ledelse. Statistikk Ukeoppgaver uke 7

Normalfordeling. Høgskolen i Gjøvik Avdeling for teknologi, økonomi og ledelse. Statistikk Ukeoppgaver uke 7 Ueoppgaver i BtG207 Statisti, ue 7 : Normalfordeling. 1 Høgsolen i Gjøvi Avdeling for tenologi, øonomi og ledelse. Statisti Ueoppgaver ue 7 Normalfordeling. Oppgave 1 Anta Z N(0, 1), dvs. Z er standard

Detaljer

Kap 02 Posisjon / Hastighet / Akselerasjon 2D - Bevegelse langs en rett linje

Kap 02 Posisjon / Hastighet / Akselerasjon 2D - Bevegelse langs en rett linje Kp Poijon / Highe / kelerjon D - Beegele lng en re linje Løning Lufpuebenk Highe: oocellene kn flye Siden ognen hr konn highe ed beegele på lufpuebenken, il beregningen highe ære uhengig foocellene poijon

Detaljer

FAG: FYS122 Fysikk LÆRER: Fysikk : Per Henrik Hogstad

FAG: FYS122 Fysikk LÆRER: Fysikk : Per Henrik Hogstad UNVEEE AGDE Gid E K A M E N O G A V E : FAG: FY Fi ÆE: Fi : e Heni Hod Kle: Do: 8.5.5 Eenid, f-il: 9. 4. Eenoppen beå følende Anll ide: 6 inl. foide Anll oppe: Anll edle: ille hjelpeidle e: Klulo Foellin:

Detaljer

FAG: FYS115 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Turid Knutsen

FAG: FYS115 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Turid Knutsen UNIVRSITTT I AGDR Griad K S A M N S O P P G A V : FAG: FYS5 Fikk/Kjei LÆRR: Fikk : Per Henrik Hogad Kjei : Turid Knuen Klaer: Dao:..3 kaenid, fra-il: 9. 4. kaenoppgaen beår a følgende Anall ider: 6 inkl.

Detaljer

FAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Grethe Lehrmann

FAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Grethe Lehrmann UNIVERSITETET I AGDER Griad E K S A M E N S O P P G A V E : FAG: FYS6 Fyikk/Kjei LÆRER: Fyikk : Per Henrik Hogad Grehe Lehrann Klaer: Dao:.. Ekaenid, fra-il: 9. 4. Ekaenoppgaen beår a følgende Anall ider:

Detaljer

Løsningsforslag til øving 10

Løsningsforslag til øving 10 FY11/TFY4145 Meanis fysi. Institutt for fysi, NTNU. Høsten 211. Løsningsforslag til øving 1 Vi utleder aller først ligningen som fastlegger vinelen φ r, dvs overgangen fra ren rulling til sluring. N2 for

Detaljer

Løsningsforslag. Midtveiseksamen i Fys-Mek1110 våren 2008

Løsningsforslag. Midtveiseksamen i Fys-Mek1110 våren 2008 Side av Løsningsforslag idtveiseksaen i Fys-ek våren 8 Oppgave a) En roer sitter i en båt på vannet og ror ed konstant fart. Tegn et frilegeediagra for roeren, og navngi alle kreftene. Suen av kreftene

Detaljer

"firklover" plansje 1. oversiktsperspektiv SANDNES RÅDHUS. perspektiv, oyehoyde. fasade m. sor 1:500 (A3 1:1000) situasjonsplan 1:500 (A3 1:1000)

firklover plansje 1. oversiktsperspektiv SANDNES RÅDHUS. perspektiv, oyehoyde. fasade m. sor 1:500 (A3 1:1000) situasjonsplan 1:500 (A3 1:1000) planje 1 N i overitperpet SNDNES RÅDHUS GENERELT Rådhut er plart ntralt i tadvyen Derfor är løningen bart på maimal øppenhet för tadinbyggerne Utiden av bygningen, de dobble glafaader, om vender ut mot

Detaljer

Løsningsforslag til ukeoppgave 4

Løsningsforslag til ukeoppgave 4 Oppgaver FYS1001 Vår 2018 1 Løsningsforslag til ukeoppgave 4 Oppgave 4.03 W = F s cos(α) gir W = 1, 2 kj b) Det er ingen bevegelse i retning nedover, derfor gjør ikke tyngdekraften noe arbeid. Oppgave

Detaljer

Differensiallikninger

Differensiallikninger Differeniallikninger I er enn 300 år har ateatik analye vært et vært viktig kapittel i faget. Teaet differeniallikninger blir av ange ateatikere betraktet o diaanten i ateatik analye eller kalkulu. Det

Detaljer

3 Sannsynlighet, Quiz

3 Sannsynlighet, Quiz 3 Sannsynlighet, Quiz Innhold 3.1 Begreper i sannsynlighetsregning... 1 3.2 Addisjon av sannsynligheter... 3.3 Produtsetningen for sannsynlighet... 11 3. Binomis sannsynlighet... 17 3.1 Begreper i sannsynlighetsregning

Detaljer

Fagnr: FIOIA I - Dato: Antall oppgaver: 2 : Antall vedlegg: 3 - - -

Fagnr: FIOIA I - Dato: Antall oppgaver: 2 : Antall vedlegg: 3 - - - ;ag: Fysikk i-gruppe: Maskin! EkSarnensoppgav-en I består av ~- - Tillatte hjelpemidler: Fagnr: FIOIA A Faglig veileder: FO lo' Johan - Hansteen I - - - - Dato: Eksamenstidt 19. August 00 Fra - til: 09.00-1.00

Detaljer

Repetisjonsoppgaver kapittel 8 løsningsforslag

Repetisjonsoppgaver kapittel 8 løsningsforslag epetisjosoppgaver apittel 8 løsigsforslag Eletrisitet Oppgave 1 a) Ett eletro har ladige 1,6 10 19 C. Dee ladige aller vi e (egativ) elemetærladig. b) Siletørleet får e egativ ladig på 3,0 10 8 C. c) Stave

Detaljer

FAG: FYS117 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Turid Knutsen

FAG: FYS117 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Turid Knutsen UNIVERSITETET I AGDER Griad E K S A M E N S O P P G A V E : FAG: FYS7 Fikk/Kjei LÆRER: Fikk : Per Henrik Hogad Kjei : Turid Knuen Klaer: Dao:..3 Ekaenid, fra-il: 9.. Ekaenoppgaen beår a følgende Anall

Detaljer

2 1 -- 1 = = = 2. 2 2 --mv2 1. Energi. k,t

2 1 -- 1 = = = 2. 2 2 --mv2 1. Energi. k,t 1 Kortfattet løsningsforslag / fasit Eksaen i: FYS-MEK 1110 - Mekanikk / FYS-MEF 1110 - Mekanikk for MEF Konteeksaen: Fredag 18. august 2006 Det tas forbehold o at løsningsforslaget kan inneholde feil!

Detaljer

Løsningsforslag LO346E Dynamiske Systemer H 06 eksamen 21. november 2006

Løsningsforslag LO346E Dynamiske Systemer H 06 eksamen 21. november 2006 øningforlag O346E Dynamike Syemer H 6 ekamen. november 6 Oppgave Gi e yem med ranferfnkjonen H 58 + a Tidkonanen for yeme er T 8 4. Den aike forerkningen er H 5 Saik forerkning for en varmvannank kan handle

Detaljer

ECON 2200 VÅREN 2014: Oppgaver til plenumsøvelse den 12.mars

ECON 2200 VÅREN 2014: Oppgaver til plenumsøvelse den 12.mars Jo Vislie; mars 04 Ogave ECO 00 VÅRE 04: Ogaver til leumsøvelse de.mars E bedrift har rodutfusjoe = - b, der b er e ositiv ostat. Sisser grafe til dee og agi egesaee til rodutfusjoe (ved gjeomsittsrodutivitet,

Detaljer

Fysikk 2 Eksamen høsten Løsningsforslag

Fysikk 2 Eksamen høsten Løsningsforslag Fysikk - Løsningsforslag Ogae a) D Saenhengen ello kraft og arbeid er W = Fs der s er strekning. Da har i for enhetene at J = N. J N N b) C Feltet fra den negatie ladningen Q e har retning radielt inn

Detaljer

A) 1 B) 2 C) 3 D) 4 E) 5

A) 1 B) 2 C) 3 D) 4 E) 5 Side 2 av 5 Oppgave 1 Hvilket av de følgende fritt-legeme diagrammene representerer bilen som kjører nedover uten å akselerere? Oppgave 2 A) 1 B) 2 C) 3 D) 4 E) 5 En lampe med masse m er hengt opp fra

Detaljer

Et godt tips er at du for din egen del lager figurer og gjør notater der du ikke er helt sikker på svaret.

Et godt tips er at du for din egen del lager figurer og gjør notater der du ikke er helt sikker på svaret. Utsatt og ny eksamen i fys for elektro feb. Les dette først! De 7 første oppgavene besvares ved at du setter et kryss i valgt alternativ og leverer disse arkene (s. 3 7) inn som svar sammen med din løsning

Detaljer

KAPASITETSBEREGNING FOR INNSTØPTE STÅLPLATER MED FORANKRING TYPE PBKL

KAPASITETSBEREGNING FOR INNSTØPTE STÅLPLATER MED FORANKRING TYPE PBKL KAPASITETSBEREGIG FOR ISTPTE STÅLPLATER MED FORAKRIG TYPE PBKL Etter Betongelementboken bind B kaittel 9. Kaaitetkontrollen utøre i bruddgrenetiltanden. De ytre latene dele i latvirkninger å tållaten.

Detaljer

Fasit GF-GG141 Eksamen 2003

Fasit GF-GG141 Eksamen 2003 Fait GF-GG141 Ekamen 3 Oppgave 1 a) Vannføringkurven gir o ammenhengen mellom vanntand og vannføring. I den daglig drift er det vanntand om måle og vannføring om etimere. For å etablere kurven må det gjøre

Detaljer

VPIYK5FJ. Organisasjonene til internasjonalt konkurranseutsatt industri forhandler først og danner en norm for de øvrige lønnsoppgjørene utover våren.

VPIYK5FJ. Organisasjonene til internasjonalt konkurranseutsatt industri forhandler først og danner en norm for de øvrige lønnsoppgjørene utover våren. VPIYK5FJ Edit Quiz SVE ND EXIT Enable Shaing SO-39057369 beidsaedet og Penge og Keditt lign quiz to standad #1 Hva enes ed fontfagssteet fo lønnsoppgjø? Oganisasjonene til intenasjonalt onuanseutsatt industi

Detaljer

Øving 9. Oppgave 1. E t0 = 2. Her er

Øving 9. Oppgave 1. E t0 = 2. Her er FY00/TFY460 Bølgefysi. Institutt for fysi, NTNU. Høsten 03. Veiledning: Mandag. og 8 og fredag 6. otober. Innleveringsfrist: tirsdag 9. otober l :00. Øving 9 Tema: Dipol-Ståling, reflesjon og transmisjon

Detaljer

14.1 Doble og itererte integraler over rektangler

14.1 Doble og itererte integraler over rektangler Kapittel Mltiple Integals I dette apitlet sal i se på integale a fnsjone a to aiable f og a te aiable f z.. Doble og iteete integale oe etangle Vi ønse å integee en ontinelig fnsjon f oe et etangel. :

Detaljer

Matematikk S2 kapittel 5 Sannsynlighet Utvalgte løsninger oppgavesamlingen

Matematikk S2 kapittel 5 Sannsynlighet Utvalgte løsninger oppgavesamlingen Matemati S2 apittel 5 Sannsynlighet Utvalgte løsninger oppgavesamlingen 508 a Utfall: 1 og 2, 1 og 3, 1 og 4, 2 og 3, 2 og 4, 3 og 4. De ses utfallene er lie sannsynlige, så de har hver sannsynlighet 1

Detaljer

Løsningsforslag til eksamen i FYS1000, 13/6 2016

Løsningsforslag til eksamen i FYS1000, 13/6 2016 Løsningsforslag til eksamen i FYS1000, 13/6 2016 Oppgave 1 a) Sola skinner både på snøen og på treet. Men snøen er hvit og reflekterer det meste av sollyset. Derfor varmes den ikke så mye opp. Treet er

Detaljer

FAG: FYS105 Fysikk LÆRER: Fysikk : Per Henrik Hogstad

FAG: FYS105 Fysikk LÆRER: Fysikk : Per Henrik Hogstad UNVERSTETET AGDER Griad E K S A M E N S O P P G A V E : FAG: FYS5 Fyikk LÆRER: Fyikk : Per Henrik Hogad Klaer: Dao:.. Ekaenid, fra-il: 9. 4. Ekaenogaen beår a følgende Anall ider: 4 inkl. foride Anall

Detaljer

FAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Turid Knutsen

FAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Turid Knutsen UNIVERSITETET I AGDER Griad E K S A M E N S O P P G A V E : FAG: FYS6 Fikk/Kjei LÆRER: Fikk : Per Henrik Hogad Kjei : Turid Knuen Klaer: Dao:.. Ekaenid, fra-il: 9. 4. Ekaenoppgaen beår a følgende Anall

Detaljer

Høst 98 Ordinær eksamen

Høst 98 Ordinær eksamen ø 98 Ordiær ekae. Vi eker o a e parikkel beeger eg lag e re lije lag -ake. Parikkele arer i ro i origo ed ide =. ekuder. Parikkele haighe o ukjo a ide er gi ed: A B hor A. B. a Bereg parikkele akelerajo

Detaljer

Høst 95 Test-eksamen. 1. Et legeme A med masse m = kg påvirkes av en kraft F gitt ved: F x = - t F y = k t 2 = 5.00N = 4.00 N/s k = 1.

Høst 95 Test-eksamen. 1. Et legeme A med masse m = kg påvirkes av en kraft F gitt ved: F x = - t F y = k t 2 = 5.00N = 4.00 N/s k = 1. Hø 95 Te-ekaen. E legee ed ae =.4 kg pårke a en kraf F g ed: F = - F = k = 5.N = 4. N/ k =.N/ llegg rker ngdekrafen nega -renng. a Bee reulankrafekoren. b Ved den = er legee ro orgo. Fnn pojon og haghe

Detaljer

Oppgaver. HIN IBDK RA 07.12.07 Side 1 av 6. Oppgave 1. Ved prøving av metalliske materialer kan man finne strekkfastheten,.

Oppgaver. HIN IBDK RA 07.12.07 Side 1 av 6. Oppgave 1. Ved prøving av metalliske materialer kan man finne strekkfastheten,. Side 1 av 6 Oppgaver Oppgave 1. Ved prøving av etalliske aterialer kan an finne strekkfastheten, ( eh og ) og p02. og flytegrensene e e er egentlig flytegrense, dvs. der den kan fastlegges utvetydig. p02

Detaljer

Arbeid og kinetisk energi

Arbeid og kinetisk energi Arbei og kineik energi 9..8 YS-MEK 9..8 rikjon empirik lov for aik frikjon: f < f, ma µ N µ : aik frikjonkoeffiien empirik lov for ynamik frikjon: f µ N µ : ynamik frikjonkoeffiien µ < µ kraf virker moa

Detaljer

Eksamen i FYS-0100. Oppgavesettet, inklusiv ark med formler, er på 8 sider, inkludert forside. FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI

Eksamen i FYS-0100. Oppgavesettet, inklusiv ark med formler, er på 8 sider, inkludert forside. FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI Eksamen i FYS-0100 Eksamen i : Fys-0100 Generell fysikk Eksamensdag : 23. februar, 2012 Tid for eksamen : kl. 9.00-13.00 Sted : Administrasjonsbygget, Rom B154 Hjelpemidler : K. Rottmann: Matematisk Formelsamling,

Detaljer