Løsningsforslag Fysikk 1 (FO300A)
|
|
- Stefan Hjelle
- 7 år siden
- Visninger:
Transkript
1 øningforlag Fi (FO00A) vår 00 utatt eaen 9. augut, tier Oppgave (%) Ei ule av etall ed te horiontalt (vannrett) ut fra en atapult. (Kula beveveger eg altå horiontalt i uttningøebliet.) Uttningpuntet O (origo) ligger,8 over et horiontalt gulv o ula treffer etter ei lita tund. Avtanden fra uttningpuntet og til nedlagpuntet B (det tedet der den treffer gulvet) er,97 i luftlinje. Se bort fra luftottanden og regn ed at tørrelen til etallula i oppgaven ie har noen betdning for utregningene. Oppgave I denne oppgaven al vi e bort fra luftottanden og tørrelen til etallula. = 0,6g Figuren vier ituajonen. Vi regner poitiv retning ned. a) Farten i punt O: For bevegelen i -retningen har vi: A =,8 v O = A /t A = ( A - A ) ½ /t A og A = ½g t A v O = A /t A = [( A - A )/( A /g)] ½ =[g( A - A )/( A )] ½ [(9,8/ ) ((,97) (,8) )/( (,8)] ½ = O v O =? A =,97 t A = ( A /g ) ½ A =? punt A 5,8 / b) Stålfjær o pree aen z =5 c, og uten energitap er den potenielle energien i fjæra lie tor o den inetie energien i ula når fjæra utløe: ½ v O = ½ z = ½K z der jeg toler K, den tørte rafta når fjæra penne, o varet på oppgaven: ½K z = ½ v O Oppgave (%) Gitt poijonen til en partiel o funjon av tida : (t) = 0, co(5 - t) og K = v O /z = 0,6g (5,8 /) /0,5 = 6N (t) = 0, in(5 - t) a) Banefarten finne ved hjelp av derivajon: v (t) = '(t) = 0, 5 - (-in(5 - t) = -,5/ in(5 - t) v (t) = '(t) = og aenetting av fartoponentene: v = [v + v ] ½ =,5/ co(5 - t) [(-,5/ in(5 - t)) + (,5/ co(5 - t)) ] ½ =,5 / b) Fortatt derivajon gir: a (t) = v'(t) =,5/ 5 - (-co(5 - t) = -7,5/ co(5 - t) a (t) = v'(t) = -7,5/ in(5 - t) HIO/IU/F/V08/EX Side av 5 Rolf Ingebrigten
2 Vi har da: a = [a + a ] ½ = [(-7,5/ co(5 - t)) + (-7,5/ in(5 - t)) ] ½ = 7,5 / Vi er at lengden av poijonvetoren er 0,. Dette er altå irelbevegele ed ontant banefart (pt a)), og aelerajonvetoren peer derfor hele tida inn ot irelentret. Oppgave (9%) Stanga har lengden =,60, vært tnn i forhold til uleradien = 00 g og = 00 g. Vi er bort fra frijon og regner ula o puntforet. a) Poijonen C til teet aeenter: ( + ) C = + (/) C = ( + (/))/( + ) = Rotajonae z Stang Kule (0,g,60/4 + 0,g (,60/))/0,5g = 0,56 I z = + / + (/) = + / = + / = 0,g (0,40) + 0,g (,60) / = 0,9g b) Farten til ula i det den når den nederte tillingen, finne vha energibetrtning. Tapet av poteniell energi aller vi E p0 = g C, o å være li ineti energi: g C = ½I ( g C /I) ½ Og farten v til ula blir da: v = (g C /I) ½ = 0,40( 0,5g (9,8/ ) 0,56/(0,9g )) ½ =,0/ I den nederte, vertiale tillingen er det bare vertiale refter tiltede og ingen vinelaelerajon. Vi an derfor nøe o ed å e på entripetalaelerajonen til aeenteret. Den øte raften K fra z virer oppover, og tngen nedover. N'.lov gir da: K G = v C / C K = g + C (g C /I)/ C =g( + /I) = 0,5g (9,8/ )( + 0,5g (0,56) /0,9g ) =,9N c) Vinelaelerajonen til tanga er tørt i øebliet etter at tanga lippe, en den ennå er horiontal. Men dette vil ogå gi aial vinelfart i den nederte tillingen, og vi an derfor brue reultater fra a) og b) får: () = g C /I = g ( + (/))/)/[ + / ] HIO/IU/F/V08/EX Side av 5 Rolf Ingebrigten
3 ( ) g C / I z g g f ( ) Maial () finne ved å ette '() = 0: '( ) g g,5 (,5 (,5 ) ( ( ) ),5 )( ) g g 9 6 ( ) ( ),5 Så løer vi lininga '() = 0, og får varet på oppgaven: ( ) 0 9 ( ),6 ( ) 0,9 Oppgave 4 (0%) I et rettvinlet oordinatte ed -ae og -ae er det plaert to lie tore, poitive ladninger =,0 C. Den ene ligger i puntet (0, 4c), og den andre ligger i puntet (0, - 4c). (Origo ligger altå idt ello de to ladningene, og de ligger 8 c fra hverandre). a) Den innbrde eletrie raften finne vha Coulob lov: 6 9 N (,0 0 C) F 0 8,99 0 5, 6N r C (0,08) Siden ladningene har li polaritet, å er det na o tiltreende refter, og dered vil begge die reftene pee rett inn ot origo i oordinatteet. b) Sie av feltet er plaert på. 5. c) E(), den eletrie felttren i (,0): So figuren vier, vil E( ) e E E E co e ( ) / = 4c + O + E E E =E Vier at E(0) = 0, deretter voer E(), for å å gå ot 0 igjen fordi nevneren har en telleren bare har. Oppgave 5 (6%) a) Gitt = 0,50, d = c, og I = 00A i begge lederne. Vi har raften F på en leder i et B-felt o F = I B in der vinelen ello en av lederne og B-feltet fra den andre er 90, og B = 0I/( d) o gir: F = 0I /( d) =,6 0-6 /A 0,50 (00A) /( 0,0) = 0,40N HIO/IU/F/V08/EX Side av 5 Rolf Ingebrigten
4 Figuren til høre vier et tverrnitt gjenno de to lederne. B-feltet fra den ventre er vit o irulære feltlinjer, og ved å brue hørehåndregelen på F I l B der l går inn i papirplanet, er vi at det opptår tiltreende refter ello de to lederne. Figuren til høre vier et hoogent agnetfelt o tår noralt edere opp fra et rettvinlet --plan (i ae retning o z-aen, o ie er tegnet inn i figuren). Den tiplede firanten vier grenene til agnetfeltet. I ituajonene berevet under vil det unne opptå refter på ringen, og trø i ringen. Forlar i hvert enelt tilfelle hvilen retning eventuelle refter vil ha, og hvilen retning en eventuell trø vil ha (ed eller ot urvierne): c) Jeg definerer flatevetoren poitiv lang z-aen. Poitiv oløpretning blir da ot urvierne. Den agnetie raften alle K.. Stren til agnetfeltet øer en ringen ligger i Hoogent ro. Da øer fluen, og den induerte trøen å agnetfelt otvire detteog gå i negativ retning, dv. ed lang z-aen utvierne. K virer da i poitiv z-rening.. Når ringen beveger eg fra og tilbae lang - aen uten å berøre den tiplede firanten, er det ingen fluendring, og det induere ingen trø og det opptår ingen agnetie refter.. Når ringen lee aen li at arealet blir indre, blir ogå fluen indre. Den induerte trøen går da i poitiv retning og K virer i neg. z-retning. 4. Sløfa roterer o -aen: Fluen (t) = B A = BAco( t) og den induerte penningen i ringen blir E(t) = -d (t)/dt = - BAin( t) Metallring ed areal A Strøen avhenger da av reitanen i ringen, og reftene vil lage et raftoent o virer ot rotajonretningen. 5. Når løfa roterer o z-aen, er det ingen fluendring, og det induere ingen trø og det opptår ingen agnetie refter. F B b) Figuren vier en pole o iert i oppgaven. Strøretningen i polen gir et B- felt ot høre. Integrjonløfa vi vil brue, er retangelet Del er idt inne i polen, og vi antar feltet er hoogent her. B- feltet rundt delene og 4 anta å være lie (etri), og del ligger "uendelig langt ve li at B = 0. Vi bruer Apère lov: B dl I = B l + B l + B l + B 4 l 4 C 0 Strøretning Integrajonløfe der I i forelen er uen av trøen i de vilingene o jærer integrajonløfa, dv li. Deuten er B l + B l = 0 pga av etri, li at vi får: HIO/IU/F/V08/EX Side 4 av 5 Rolf Ingebrigten 4 B
5 B l = 0 NI(l /) B = 0 I(N/) Figur til oppgave 4b) NB! Retning på feltet er hele tiden fra + og til. + + HIO/IU/F/V08/EX Side 5 av 5 Rolf Ingebrigten
Høst 97 Utsatt eksamen
Høt 97 Utatt ekaen. Vi tenker o at en partikkel beveger eg lang en rett linje (lang x-aken). Partikkelen tarter i ro i origo ve tien t =. ekuner. Partikkelen hatighet v o funkjon av tien t er gitt ve:
Detaljer1 t f Bestem de partielle deriverte. når 2 2. og f y. Oppgave 2
FOA50 eamen høt 004 ide av 5 Oppgave a) Regn ut f ( ) når (i) f( ) = e in (ii) f( ) = ln(+ ) (iii) = + t b) f Betem de partielle deriverte og f y når f(, y) = + y + y. c) Regn ut: f( ) t dt (i) 4 ln d
DetaljerFAG: FYS105 Fysikk LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG
UNVETETET AGDE Gritad E A E N O G A V E : FAG: FY05 Fyikk ÆE: er Henrik Hogtad lae(r: Dato: 8.05.0 Ekaentid, ra-til: 09.00.00 Ekaenoppgaven betår av ølgende Antall ider: 5 (inkl. oride Antall oppgaver:
DetaljerFAG: FYS114 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann
UNIVERSITETET I AGDER Gritad E K S A M E N S O G A V E : FAG: FYS4 Fyikk/Kjei LÆRER: Fyikk : er Henrik Hogtad Kjei : Grethe Lehrann Klae(r): Dato: 5.5. Ekaentid, fra-til: 9. 4. Ekaenoppgaven betår av følgende
DetaljerKap 10 Dynamikk av rotasjons-bevegelse
Kap Dynaikk av rotajon-bevegele. Bete kraftoentet (tørrele og retning) o en ake noralt på papirplanet gjenno O o kraften F i hver av ituajonene er årak til. Objektet o F virker på har i hvert av tilfellene
DetaljerFAG: FYS105 Fysikk LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG
UNIVERITETET I AGDER Gritad E K A M E N O G A V E : FAG: FY5 Fyikk ÆRER: er Henrik Hogtad Klaer: Dato: 9.5.9 Ekaentid, ra-til: 9. 4. Ekaenoppgaen betår a ølgende Antall ider: 5 inkl. oride Antall oppgaer:
DetaljerFor bedre visualisering tegner vi
MSK MSKIKOSTRUKSJO ØSIGSORSG TI ØVIGSOPPGVR Oppgave 8. 8.5 ØVIG 9: DIMSJORIG V SKRUORBIDSR Oppgave 8- a) Totalraften i ruen er gitt ved: b der er forpenningraften og er andelen av ytre raften o ta av en
DetaljerLøsningsforslag Fysikk 2 V2016
Løsningsforslag Fysikk, Vår 016 Løsningsforslag Fysikk V016 Oppgave Svar Forklaring a) B Faradays induksjonslov: ε = Φ, so gir at Φ = ε t t Det betyr at Φ åles i V s b) D L in = 0,99 10 = 9,9 L aks = 1,04
DetaljerFAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann
UNIVERSITETET I AGDER Gritad E K S A M E N S O G A V E : FAG: FYS6 Fyikk/Kjei LÆRER: Fyikk : er Henrik Hogtad Kjei : Grethe Lehrann Klae(r): Dato: 5.5. Ekaentid, fra-til: 9. 4. Ekaenoppgaven betår av følgende
DetaljerKap 14 Periodisk bevegelse
K 4 Periodi evegele 4. Glideren å fig - i læreoen lere 0.0 fr in lieveilling og lie ed rhighe null. er 0.800 eunder er glideren oijon 0.0 å den ndre iden v lieveillingen og glideren hr er lieveillingen
DetaljerNorsk Fysikklærerforening Norsk Fysisk Selskaps faggruppe for undervisning
Nork Fikklærerforenin Nork Fik Selkap faruppe for underinin FYSIKK-OLYMPIADEN 4 5 Andre runde: 3/ 5 Skri øert: Nan, fødeldato, hjeeadree o eentuell e-potadree, kolen nan o adree. Varihet: 3 klokketier
DetaljerHøst 96 Ordinær eksamen
Høt 96 Ordinær ekaen. a) Vi tenker o at en partikkel eveger eg lang en rett linje (lang x-aken). Partikkelen poijon o unkjon av tiden t er gitt ved: ( t) t Bt hvor. B 8. Beregn partikkelen hatighet etter.
DetaljerFysikkolympiaden Norsk finale 2012
Nors Fysilærerforening Fysiolympiaden Nors finale 3. uttaingsrunde Fredag 3. mars l. 9. til. Hjelpemidler: Tabell/formelsamling, lommeregner og utdelt formelar Oppgavesettet består av 7 oppgaver på 3 sider
DetaljerFAG: FYS113 Fysikk/Kjemi ÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann
UNIVERSITETET I GDER Gritad E K S M E N S O G V E : FG: FYS Fyikk/Kjei ÆRER: Fyikk : er Henrik Hogtad Kjei : Grethe Lehrann Klae(r): Dato: 5.5. Ekaentid, ra-til: 9. 4. Ekaenoppgaven betår av ølgende ntall
DetaljerEksamensoppgave i FY0001 Brukerkurs i fysikk (V2017)
ntitutt for fyikk Ekaenoppgave i FY000 Brukerkur i fyikk (V07) Faglig kontakt under ekaen: Mikael Lindgren Tlf.: 4 46 65 0 Ekaendato: 4. ai 07 Ekaentid (fra-til): 0900-300 Hjelpeiddelkode/Tillatte hjelpeidler:
DetaljerSvar: Vi bruker Ampères lov for å finne magnetfeltet en avstand r fra lynet.
I FYS1120-undervininga legg vi meir vekt på matematikk og numerike metoder enn det oppgåvene i læreboka gjer. Det gjeld òg oppgåvene om vert gitt til ekamen. Difor er det viktig at du gjer vekeoppgåvene
DetaljerKap 01 Enheter, fysiske størrelser og vektorer
Kap Enheter, fyike tørreler og vektorer.7 Concorde er det rakete paajerflyet. Det har en hatighet på 45 mi/h (ca ganger lyden hatighet, dv Mach). mi = 69 m. a) Hva er Concorde-flyet hatighet i km/h? b)
DetaljerOppgave 1 Forenklet modell av hjulopphenget Hjulopphenget er dimensjonert slik at polene til modellen blir 5±
LM6M- Mateatikk : Utatt ekaen 9 Oppgave Forenklet odell av hjulopphenget Hjulopphenget er dienjonert lik at polene til odellen blir 5± j 5. Fjærtivheten til fjæra er da lik: 3 5 75 48 Oppgave Forenklet
DetaljerFysikkolympiaden Norsk finale 2013
Nork fyikklærerforening Fyikkolympiaen Nork finale. uttakingrune Freag. mar kl. 9. til. Hjelpemiler: Tabell/formelamling, lommeregner og utelt formelark Oppgaveettet betår av 6 oppgaver på ier Lykke til!
DetaljerTALM1003-A Matematikk 1 Grunnlagsfag - 10 studiepoeng
HØGSKOLEN I SØR-RØNDELAG Avdeling for teknologi Progra for elektro- og datateknikk 7004 RONDHEIM ALM1003-A Mateatikk 1 Grunnlagfag - 10 tudiepoeng Cae: Regulering av vækenivået i en tank Høt 013 Le dette
DetaljerFysikkolympiaden 1. runde 28. oktober 8. november 2013
Norsk Fysikklærerforening i saarbeid ed Skolelaboratoriet Universitetet i Oslo Fysikkolypiaden 1. runde 8. oktober 8. noveber 013 Hjelpeidler: Tabell og forelsalinger i fysikk og ateatikk Loeregner Tid:
DetaljerUNIVERSITETET I OSLO
Side UNIVRSI I OSO Det matemati-aturviteapelige faultet ame i: amedag: id for eame: Oppgaveettet er på 4 ider Vedlegg: illatte jelpemidler: Me454 Kompoittmaterialer. Madag 4-6-7. 4 7. Formelar ide). Rottma
DetaljerSTK1100 våren Betinget sannsynlighet og uavhengighet. Vi trenger en definisjon av betinget sannsynlighet! Eksempel 1
STK00 våren 07 Betinget sannsynlighet og uavhengighet Esempel Vi vil først ved hjelp av et esempel se intuitivt på hva betinget sannsynlighet betyr. Vi legger fire røde ort og to svarte ort i en bune.
DetaljerLøsningsforslag Eksamen i Fys-mek1110 våren 2008
Side 1 a 9 Løsningsforslag Esaen i Fys-e111 åren 8 På denne esaenen sal i studere en ollisjon ello to identise partiler (atoer) so begge påires a refter fra en assi, stasjonær partiel (f.es. et oleyl).
Detaljer1) Hva blir akselerasjonen til en kloss som glir nedover et friksjonsfritt skråplan med helningsvinkel 30?
FY1001/TFY4145 Mekanisk Fysikk Eksaen Tirsdag 16. Deseber 2014 OKMÅL OPPGVE 1: Flervalgsoppgaver (Teller 45%, 18 stk so teller 2.5% hver) 1) Hva blir akselerasjonen til en kloss so glir nedover et friksjonsfritt
DetaljerKap. 10: Inferens om to populasjoner. Inferens om forskjell i forventning ved å bruke to avhengige utvalg (10.3) ST0202 Statistikk for samfunnsvitere
Kap. 0: Inferen om to populajoner Situajon: Det er to populajoner om vi ønker å ammenligne. Vi trekker da et utvalg fra hver populajon. Vi kan ha avhengige eller uavhengige utvalg. ST00 Statitikk for amfunnvitere
DetaljerLøsningsforslag til eksamen i TFY4205 Kvantemekanikk 12. august 2004
NTNU Side 1 av 6 Institutt for fysi Faultet for naturvitensap og tenologi Løsningsforslag til esaen i TFY405 Kvanteeani 1. august 004 Dette løsningsforslaget er på 6 sider. Oppgave 1. To-diensjonal eletron-gass
DetaljerNorsk Fysikklærerforening Norsk Fysisk Selskaps faggruppe for undervisning
Norsk Fysikklærerforening Norsk Fysisk Selskaps faggruppe for unervisning FYSIKK-KONKURRANSE 00 00 Anre rune: 7/ 00 Skriv øverst: Navn, føselsato, hjeearesse og eventuell e-postaresse, skolens navn og
DetaljerFAG: FYS105 Fysikk LÆRER: Fysikk : Per Henrik Hogstad
UNIVERSIEE I GDER Grid E K S M E N S O G V E : FG: FYS5 Fyikk LÆRER: Fyikk : er Henrik Hogd Kle(r: Do: 5.5. Ekenid, r-il: 9. 4. Ekenoppgven beår v ølgende nll ider: 4 (inkl. oride nll oppgver: 4 nll vedlegg:
DetaljerØVING 4. @V @x i. @V @x
FY006/TFY425 - Øving 4 Frit for innlevering: tirdag 8. februar, kl 7.00 Oppgåve ØVING 4 Vibrerande to-partikkel-ytem Som dikutert på ide 0 i boka til Hemmer, er det eit viktig poeng både i klaik mekanikk
DetaljerEKSAMEN I FAG SIF 4014 FYSIKK 3 Onsdag 2. desember 1998 kl
Side av 7 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under ekamen: Førteamanueni Knut Arne Strand Telefon: 73 59 34 6 EKSAMEN I FAG SIF 44 FYSIKK 3 Ondag. deember
DetaljerPD-regulator med faseforbedrende egenskaper. Denne ma dessuten klare
Norge teknik naturvitenkapelige univeritet Intitutt for teknik kybernetikk Oktober 99/PJN, September 9 /MPF Utlevert:..9 0 SERVOTENI Lningforlag ving 0 a) Oppgave Vi kriver h() pa formen ( +0:)( ; 0:)
DetaljerLøsningsforslag for øvningsoppgaver: Kapittel 1
Løningforlag for øvningoppgaver: Kapittel 1 Jon Walter Lundberg 07.01.2015 1.02 Symbol Navn Verdi v yokto 10 24 z zepto 10 21 a atto 10 18 f femto 10 15 p piko 10 12 n nano 10 9 µ mikro 10 6 m mili 10
DetaljerØVING 12. Vinkelfunksjonar, radialfunksjonar og orbitalar for hydrogenliknande. Y lm ; l =0, 1, ; m = l,,l.
FY1006/TFY4215 - Øving 12 1 Frit for innlevering: Tirdag 22. april kl.1700 Oppgåve 1 ytem ØVING 12 Vinkelfunkjonar, radialfunkjonar og orbitalar for hydrogenliknande For ein partikkel om bevegar eg i eit
DetaljerLøsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt.
Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 27. Veiledning: 29. september kl 12:15 15:. Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt. Oppgave 1 a) C. Elektrisk
DetaljerKONTINUASJONSEKSAMEN I EMNE TDT4230 VISUALISERING TIRSDAG 7. AUGUST 2007 KL LØSNINGSFORSLAG
Side av 7 NTNU Norges tenis-naturvitensapelige universitet Faultet for fysi, inforati og ateati Institutt for datateni og inforasjonsvitensap KONTINUASJONSEKSAMEN I EMNE TT23 VISUALISERING TIRSAG 7. AUGUST
DetaljerOppgave 1 Forenklet modell av hjulopphenget Hjulopphenget er dimensjonert slik at polene til modellen blir 4± fjæra er da lik:
LM6M- Mateatikk : Ekaen andag.ai, 9 Oppgave Forenklet odell av hjulopphenget Hjulopphenget er dienjonert lik at polene til odellen blir 4± j 3 fjæra er da lik:. Fjærtivheten til 3 75 48 7 N N N N Oppgave
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
LM6M- Matematikk -Ekamen 9.mai HØGSKOLEN I SØR-TRØNELG veling for teknologi Kaniatnr: Ekamenato: Varighet/ekamenti: Emnekoe: Manag 9.mai 9-4 LM6M Emnenavn: Matematikk Klae(r): EL Stuiepoeng: Faglærer(e):
DetaljerOblig 6 i Fys-Mek1110
Sindre Ranne Bilden, Idun Osnes & Ingrid Marie Bergh Bakke Oblig 6 i Fys-Mek1110 a) Akselerasjon Fart Siden det ikke er noen for for friksjon eller andre ikke-konservative krefter i bildet, vil forholdet
DetaljerFysikk 2 Eksamen våren Løsningsforslag
Fyikk - Løningforlag Ogae 1 a) B Partikkel X må ære oiti for at det elektrike feltet kal eke radielt bort fra denne artikkelen. Partikkel Y må ære negati for at det elektrike feltet kal eke radielt mot
DetaljerFAG: FYS105 Fysikk (utsatt eksamen) LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG
UNIVERSITETET I AGDER Gristad E K S A M E N S O P P G A V E : FAG: FYS105 Fysikk (utsatt eksaen) LÆRER: Per Henrik Hogstad Klasse(r): Dato: 6.11.11 Eksaenstid, fra-til: 09.00 14.00 Eksaensoppgaven består
DetaljerRepetisjonsoppgaver kapittel 4 løsningsforslag
epetisjonsoppgaver kapittel 4 løsningsforslag nergi Oppgave a) Arbeidet gjort av kraften har forelen: s cos Her er s strekningen kraften virker over, og vinkelen ello kraftverktoren og strekningen. b)
DetaljerR Differensialligninger
R - 6.0.05 - Differensialligninger Løsningssisser Oppgave Løs differensialligningene y x y b) y y x c) y 8y 7y 0 Separabel: y y x y dy xdx y x C y x 4 C y C x 4 Da ligningen er ulineær, bør vi også se
DetaljerFAG: FYS105 Fysikk LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG
UNIVERITETET I AGDER Grid E K A E N O P P G A V E : FAG: FY05 Fyikk ÆRER: Per enrik ogd Kler: Do: 6.05. Ekenid, fr-il: 09.00 4.00 Ekenoppgen beår følgende Anll ider: 5 inkl. foride Anll oppger: 3 Anll
DetaljerFASIT UTSETT EKSAMEN VÅREN 2006. Oppg. 1 (25 %)
FASIT UTSETT EKSAMEN VÅREN 006 SENSORTEORI Oppg. 1 (5 %) Ein elatik pendel har eit lodd ed ae 0,0 kg og ei fjør ed fjørkontant 0,0 N/. Pendelen vingar ed aplitude 10. a) Finn vingetida (perioden) til pendelen.
Detaljer(12) PATENT (19) NO (11) (13) B1. NORGE (51) Int Cl. Patentstyret
() PATENT (9) NO () 337 (3) B NORGE () Int Cl. G0V /36 (006.0) Patenttyret () Sønadnr 00373 (86) Int.inng.dag og ønadnr () Inng.dag 00.07.6 (8) Videreføringdag () Løpedag 00.07.6 () Prioritet 00.07.3,
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
ALM6M-A Matematikk : Kontinuajonekamen augut HØGSKOLEN I SØR-TRØNELAG Avdeling for teknologi Kandidatnr: Ekamendato: Varighet/ekamentid: Emnekode: Augut 9-4 ALM6M Emnenavn: Matematikk Klae(r): EL Studiepoeng:
Detaljerløsningsforslag - skrueforbindelser
lønngforlag - krueforbneler OGVE guren er e kruetnge o tltrekke e kftnøkkel. Tltrekkngoentet er N, og u kan regne at % a ette oentet tapt på grunn a frkon ello kruen og arbetykket. rkonkoeffenten gengen
DetaljerFysikk-OL Norsk finale 2004
Universitetet i Oslo Norsk Fysikklærerforening Fysikk-OL Norsk finale 004 3. uttakingsrunde Fredag. april kl 09.00 til.00 Hjelpeidler: abell/forelsaling og loeregner Oppgavesettet består av 6 oppgaver
DetaljerFysikk 2 Eksamen våren Løsningsforslag
Fysikk - Løsningsforslag Oppgae a) C Q Det elektriske feltet fra en punktladning Q er gitt ed E ke r, og feltstyrken il ata ed astand til ladningen. Retningen til feltet er definert slik at det peker i
DetaljerFYS2130. Tillegg til kapittel 13. Harmonisk oscillator. Løsning med komplekse tall
FYS130. Tillegg til kapittel 13 Haronisk oscillator. Løsning ed koplekse tall Differensialligningen for en udepet haronisk oscillator er && x+ ω x = 0 (1) so er en hoogen lineær differensialligning av.
DetaljerOppgaver i kapittel 1 - Løsningsskisser og kommentarer Lærebok:
Oppgaver i apittel - Løsningssisser og ommentarer Lærebo:.6 Vitig oppgave, viser hvordan ree-summer an tilnærmes med integraler. Atuelt hvis vi har formelen for n te ledd, men ie har noen summeformel.
DetaljerFYS 105 Fysikk Ordinær eksamen vår 2005
FYS 5 Fyikk Ordinær ekaen år 5. En bil kjører lang en re linje (-aken og paerer origo ed haigheen 7. k/h ( =. / i poii -rening ed iden =. Haigheen o unkjon a iden er gi ed: hor (.6. a ee bilen akelerajon
DetaljerMA1301/MA6301 Tallteori Høst 2016
Norges tenis naturvitensapelige universitet Institutt for ateatise fag MA/MA6 Tallteori Høst 6 a Vi starter ed å sjee at liheten steer for n. Vi har at i. Heldigvis er (, så vi ser at påstanden steer i
DetaljerSpinn og Impulsbalanse HIA Avd. teknologi Morten Ottestad
Ipuls og spinn balanse 4.0.005 Side av Spinn og Ipulsbalanse HIA Avd. teknologi Morten Ottestad. ynaikk rettlinjede bevegelser. Ipuls balansen Newtons I lov). Eleenter i ekaniske syste.. jær 3.. eper 4..3
DetaljerHydraulisk system. Tanken har rette vegger. Vannspeilarealet A[m 2 ] er da konstant og uavhengig nivået x[m]. Generell balanseligning:
Hyraulik yte. / / Tanken har rette eer. Vanneilarealet er a kontant o uaheni niået. Generell balanelinin: kkuulert olu r tienhet i tank Inntrønin Uttrønin t V V t t V t Syte 0: t t t 0 0 Niåenrin: Tranferfunkjon:
DetaljerFYSIKK-OLYMPIADEN
Nors Fysilærerforening Nors Fysis Selss fggrue for undervisning FYSIKK-OLYMPIADEN 3 Andre runde: 6/ Sriv øverst: Nvn, fødselsdto, e-ostdresse og solens nvn Vrighet: 3 loetimer Hjelemidler: Tbell med formelsmling,
DetaljerLøsningsforslag til eksamen i jernbaneteknikk HiOA
Løningforlag til ekamen i jernbaneteknikk HiOA 9.1.011 Oppgave 1 Gitt kurvekombinajonen rettlinje - overgangkurve - irkelkurve - overgangkurve - rettlinje, der irkelkurven har en radiu på 600 meter og
DetaljerLINSEKIKKERTER. Jeg har nå endelig fått laget noen slike skisser, og du finner dem på de neste sidene.
LINSEKIKKERTER Maiken purte meg for en tid tilbake om jeg kunne lage en tegning av trålegangen i en linekikkert, iden un adde fått pørmål om dette på gruppetimene ine og det er jo alltid litt tyr å få
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematik-naturvitenkapelige fakultet Ekamen i: Oppgaveettet er på: Vedlegg: Tilatte hjelpemidler Fy60 4 ider ingen Elektronik kalkulator, godkjent for videregående kole Rottman:
DetaljerTFY4106 Eksamen 9 aug Løsningsforslag
TFY416 Ekamen 9 aug 14. Løningforlag Oppgave 1 a) Når m 1 og m er i ro er trekkraften i tauet om holder m 1 lik tyngdekraften: F1 m1 F betemme ut fra at det totale dreiemomentet om aken av trinen er null
DetaljerVedlegg 6.1 KAPASITETSBEREGNING FOR INNSTØPTE STÅLPLATER MED FORANKRING TYPE KL
edlegg 6. KAPASITETSBEREGIG FOR ISTØPTE STÅLPLATER ED FORAKRIG TYPE KL Etter Betongelementboken bind B kapittel 9. Kapaitetkontrollen utøre i bruddgrenetiltanden. De ytre latene dele i latvirkninger på
DetaljerFysikkolympiaden Norsk finale 2016
Nosk fysikklæefoening Fysikkolypiaden Nosk finale 16 Fedag 8. apil kl. 9. til 11.3 Hjelpeidle: abell/foelsaling, loeegne og utdelt foelak Oppgaesettet bestå a 6 oppgae på side Lykke til! Oppgae 1 En patikkel
DetaljerFY1006/TFY Øving 4 1 ØVING 4
FY1006/TFY4215 - Øving 4 1 Oppgave 13 ØVING 4 Vibrerende to-partiel-system Som disutert side 110 i boa, er det et vitig poeng både i lassis meani og i vantemeani at et to-partiel-problem essensielt an
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Ekaendato: Varighet/ekaentid: Enekode: Enenavn: Klae(r): Studiepoeng: Faglærer(e): Tordag 1.6. 014 5 klokketier TALM100-A Mateatikk 1 EL FEN
DetaljerPlan. MAT1030 Diskret matematikk. Eksamen 12/6-06 Oppgave 2. Noen tips til eksamen
Plan MAT1030 Disret matemati Plenumsregning 12: Diverse oppgaver Roger Antonsen Matematis Institutt, Universitetet i Oslo 22. mai 2008 Dette er siste plenumsregning. Vi regner stort sett esamensoppgaver.
DetaljerNormalfordeling. Høgskolen i Gjøvik Avdeling for teknologi, økonomi og ledelse. Statistikk Ukeoppgaver uke 7
Ueoppgaver i BtG207 Statisti, ue 7 : Normalfordeling. 1 Høgsolen i Gjøvi Avdeling for tenologi, øonomi og ledelse. Statisti Ueoppgaver ue 7 Normalfordeling. Oppgave 1 Anta Z N(0, 1), dvs. Z er standard
DetaljerKap 02 Posisjon / Hastighet / Akselerasjon 2D - Bevegelse langs en rett linje
Kp Poijon / Highe / kelerjon D - Beegele lng en re linje Løning Lufpuebenk Highe: oocellene kn flye Siden ognen hr konn highe ed beegele på lufpuebenken, il beregningen highe ære uhengig foocellene poijon
DetaljerFAG: FYS122 Fysikk LÆRER: Fysikk : Per Henrik Hogstad
UNVEEE AGDE Gid E K A M E N O G A V E : FAG: FY Fi ÆE: Fi : e Heni Hod Kle: Do: 8.5.5 Eenid, f-il: 9. 4. Eenoppen beå følende Anll ide: 6 inl. foide Anll oppe: Anll edle: ille hjelpeidle e: Klulo Foellin:
DetaljerFAG: FYS115 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Turid Knutsen
UNIVRSITTT I AGDR Griad K S A M N S O P P G A V : FAG: FYS5 Fikk/Kjei LÆRR: Fikk : Per Henrik Hogad Kjei : Turid Knuen Klaer: Dao:..3 kaenid, fra-il: 9. 4. kaenoppgaen beår a følgende Anall ider: 6 inkl.
DetaljerFAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Grethe Lehrmann
UNIVERSITETET I AGDER Griad E K S A M E N S O P P G A V E : FAG: FYS6 Fyikk/Kjei LÆRER: Fyikk : Per Henrik Hogad Grehe Lehrann Klaer: Dao:.. Ekaenid, fra-il: 9. 4. Ekaenoppgaen beår a følgende Anall ider:
DetaljerLøsningsforslag til øving 10
FY11/TFY4145 Meanis fysi. Institutt for fysi, NTNU. Høsten 211. Løsningsforslag til øving 1 Vi utleder aller først ligningen som fastlegger vinelen φ r, dvs overgangen fra ren rulling til sluring. N2 for
DetaljerLøsningsforslag. Midtveiseksamen i Fys-Mek1110 våren 2008
Side av Løsningsforslag idtveiseksaen i Fys-ek våren 8 Oppgave a) En roer sitter i en båt på vannet og ror ed konstant fart. Tegn et frilegeediagra for roeren, og navngi alle kreftene. Suen av kreftene
Detaljer"firklover" plansje 1. oversiktsperspektiv SANDNES RÅDHUS. perspektiv, oyehoyde. fasade m. sor 1:500 (A3 1:1000) situasjonsplan 1:500 (A3 1:1000)
planje 1 N i overitperpet SNDNES RÅDHUS GENERELT Rådhut er plart ntralt i tadvyen Derfor är løningen bart på maimal øppenhet för tadinbyggerne Utiden av bygningen, de dobble glafaader, om vender ut mot
DetaljerLøsningsforslag til ukeoppgave 4
Oppgaver FYS1001 Vår 2018 1 Løsningsforslag til ukeoppgave 4 Oppgave 4.03 W = F s cos(α) gir W = 1, 2 kj b) Det er ingen bevegelse i retning nedover, derfor gjør ikke tyngdekraften noe arbeid. Oppgave
DetaljerDifferensiallikninger
Differeniallikninger I er enn 300 år har ateatik analye vært et vært viktig kapittel i faget. Teaet differeniallikninger blir av ange ateatikere betraktet o diaanten i ateatik analye eller kalkulu. Det
Detaljer3 Sannsynlighet, Quiz
3 Sannsynlighet, Quiz Innhold 3.1 Begreper i sannsynlighetsregning... 1 3.2 Addisjon av sannsynligheter... 3.3 Produtsetningen for sannsynlighet... 11 3. Binomis sannsynlighet... 17 3.1 Begreper i sannsynlighetsregning
DetaljerFagnr: FIOIA I - Dato: Antall oppgaver: 2 : Antall vedlegg: 3 - - -
;ag: Fysikk i-gruppe: Maskin! EkSarnensoppgav-en I består av ~- - Tillatte hjelpemidler: Fagnr: FIOIA A Faglig veileder: FO lo' Johan - Hansteen I - - - - Dato: Eksamenstidt 19. August 00 Fra - til: 09.00-1.00
DetaljerRepetisjonsoppgaver kapittel 8 løsningsforslag
epetisjosoppgaver apittel 8 løsigsforslag Eletrisitet Oppgave 1 a) Ett eletro har ladige 1,6 10 19 C. Dee ladige aller vi e (egativ) elemetærladig. b) Siletørleet får e egativ ladig på 3,0 10 8 C. c) Stave
DetaljerFAG: FYS117 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Turid Knutsen
UNIVERSITETET I AGDER Griad E K S A M E N S O P P G A V E : FAG: FYS7 Fikk/Kjei LÆRER: Fikk : Per Henrik Hogad Kjei : Turid Knuen Klaer: Dao:..3 Ekaenid, fra-il: 9.. Ekaenoppgaen beår a følgende Anall
Detaljer2 1 -- 1 = = = 2. 2 2 --mv2 1. Energi. k,t
1 Kortfattet løsningsforslag / fasit Eksaen i: FYS-MEK 1110 - Mekanikk / FYS-MEF 1110 - Mekanikk for MEF Konteeksaen: Fredag 18. august 2006 Det tas forbehold o at løsningsforslaget kan inneholde feil!
DetaljerLøsningsforslag LO346E Dynamiske Systemer H 06 eksamen 21. november 2006
øningforlag O346E Dynamike Syemer H 6 ekamen. november 6 Oppgave Gi e yem med ranferfnkjonen H 58 + a Tidkonanen for yeme er T 8 4. Den aike forerkningen er H 5 Saik forerkning for en varmvannank kan handle
DetaljerECON 2200 VÅREN 2014: Oppgaver til plenumsøvelse den 12.mars
Jo Vislie; mars 04 Ogave ECO 00 VÅRE 04: Ogaver til leumsøvelse de.mars E bedrift har rodutfusjoe = - b, der b er e ositiv ostat. Sisser grafe til dee og agi egesaee til rodutfusjoe (ved gjeomsittsrodutivitet,
DetaljerFysikk 2 Eksamen høsten Løsningsforslag
Fysikk - Løsningsforslag Ogae a) D Saenhengen ello kraft og arbeid er W = Fs der s er strekning. Da har i for enhetene at J = N. J N N b) C Feltet fra den negatie ladningen Q e har retning radielt inn
DetaljerA) 1 B) 2 C) 3 D) 4 E) 5
Side 2 av 5 Oppgave 1 Hvilket av de følgende fritt-legeme diagrammene representerer bilen som kjører nedover uten å akselerere? Oppgave 2 A) 1 B) 2 C) 3 D) 4 E) 5 En lampe med masse m er hengt opp fra
DetaljerEt godt tips er at du for din egen del lager figurer og gjør notater der du ikke er helt sikker på svaret.
Utsatt og ny eksamen i fys for elektro feb. Les dette først! De 7 første oppgavene besvares ved at du setter et kryss i valgt alternativ og leverer disse arkene (s. 3 7) inn som svar sammen med din løsning
DetaljerKAPASITETSBEREGNING FOR INNSTØPTE STÅLPLATER MED FORANKRING TYPE PBKL
KAPASITETSBEREGIG FOR ISTPTE STÅLPLATER MED FORAKRIG TYPE PBKL Etter Betongelementboken bind B kaittel 9. Kaaitetkontrollen utøre i bruddgrenetiltanden. De ytre latene dele i latvirkninger å tållaten.
DetaljerFasit GF-GG141 Eksamen 2003
Fait GF-GG141 Ekamen 3 Oppgave 1 a) Vannføringkurven gir o ammenhengen mellom vanntand og vannføring. I den daglig drift er det vanntand om måle og vannføring om etimere. For å etablere kurven må det gjøre
DetaljerVPIYK5FJ. Organisasjonene til internasjonalt konkurranseutsatt industri forhandler først og danner en norm for de øvrige lønnsoppgjørene utover våren.
VPIYK5FJ Edit Quiz SVE ND EXIT Enable Shaing SO-39057369 beidsaedet og Penge og Keditt lign quiz to standad #1 Hva enes ed fontfagssteet fo lønnsoppgjø? Oganisasjonene til intenasjonalt onuanseutsatt industi
DetaljerØving 9. Oppgave 1. E t0 = 2. Her er
FY00/TFY460 Bølgefysi. Institutt for fysi, NTNU. Høsten 03. Veiledning: Mandag. og 8 og fredag 6. otober. Innleveringsfrist: tirsdag 9. otober l :00. Øving 9 Tema: Dipol-Ståling, reflesjon og transmisjon
Detaljer14.1 Doble og itererte integraler over rektangler
Kapittel Mltiple Integals I dette apitlet sal i se på integale a fnsjone a to aiable f og a te aiable f z.. Doble og iteete integale oe etangle Vi ønse å integee en ontinelig fnsjon f oe et etangel. :
DetaljerMatematikk S2 kapittel 5 Sannsynlighet Utvalgte løsninger oppgavesamlingen
Matemati S2 apittel 5 Sannsynlighet Utvalgte løsninger oppgavesamlingen 508 a Utfall: 1 og 2, 1 og 3, 1 og 4, 2 og 3, 2 og 4, 3 og 4. De ses utfallene er lie sannsynlige, så de har hver sannsynlighet 1
DetaljerLøsningsforslag til eksamen i FYS1000, 13/6 2016
Løsningsforslag til eksamen i FYS1000, 13/6 2016 Oppgave 1 a) Sola skinner både på snøen og på treet. Men snøen er hvit og reflekterer det meste av sollyset. Derfor varmes den ikke så mye opp. Treet er
DetaljerFAG: FYS105 Fysikk LÆRER: Fysikk : Per Henrik Hogstad
UNVERSTETET AGDER Griad E K S A M E N S O P P G A V E : FAG: FYS5 Fyikk LÆRER: Fyikk : Per Henrik Hogad Klaer: Dao:.. Ekaenid, fra-il: 9. 4. Ekaenogaen beår a følgende Anall ider: 4 inkl. foride Anall
DetaljerFAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Turid Knutsen
UNIVERSITETET I AGDER Griad E K S A M E N S O P P G A V E : FAG: FYS6 Fikk/Kjei LÆRER: Fikk : Per Henrik Hogad Kjei : Turid Knuen Klaer: Dao:.. Ekaenid, fra-il: 9. 4. Ekaenoppgaen beår a følgende Anall
DetaljerHøst 98 Ordinær eksamen
ø 98 Ordiær ekae. Vi eker o a e parikkel beeger eg lag e re lije lag -ake. Parikkele arer i ro i origo ed ide =. ekuder. Parikkele haighe o ukjo a ide er gi ed: A B hor A. B. a Bereg parikkele akelerajo
DetaljerHøst 95 Test-eksamen. 1. Et legeme A med masse m = kg påvirkes av en kraft F gitt ved: F x = - t F y = k t 2 = 5.00N = 4.00 N/s k = 1.
Hø 95 Te-ekaen. E legee ed ae =.4 kg pårke a en kraf F g ed: F = - F = k = 5.N = 4. N/ k =.N/ llegg rker ngdekrafen nega -renng. a Bee reulankrafekoren. b Ved den = er legee ro orgo. Fnn pojon og haghe
DetaljerOppgaver. HIN IBDK RA 07.12.07 Side 1 av 6. Oppgave 1. Ved prøving av metalliske materialer kan man finne strekkfastheten,.
Side 1 av 6 Oppgaver Oppgave 1. Ved prøving av etalliske aterialer kan an finne strekkfastheten, ( eh og ) og p02. og flytegrensene e e er egentlig flytegrense, dvs. der den kan fastlegges utvetydig. p02
DetaljerArbeid og kinetisk energi
Arbei og kineik energi 9..8 YS-MEK 9..8 rikjon empirik lov for aik frikjon: f < f, ma µ N µ : aik frikjonkoeffiien empirik lov for ynamik frikjon: f µ N µ : ynamik frikjonkoeffiien µ < µ kraf virker moa
DetaljerEksamen i FYS-0100. Oppgavesettet, inklusiv ark med formler, er på 8 sider, inkludert forside. FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI
Eksamen i FYS-0100 Eksamen i : Fys-0100 Generell fysikk Eksamensdag : 23. februar, 2012 Tid for eksamen : kl. 9.00-13.00 Sted : Administrasjonsbygget, Rom B154 Hjelpemidler : K. Rottmann: Matematisk Formelsamling,
Detaljer