Plan. MAT1030 Diskret matematikk. Eksamen 12/6-06 Oppgave 2. Noen tips til eksamen

Størrelse: px
Begynne med side:

Download "Plan. MAT1030 Diskret matematikk. Eksamen 12/6-06 Oppgave 2. Noen tips til eksamen"

Transkript

1 Plan MAT1030 Disret matemati Plenumsregning 12: Diverse oppgaver Roger Antonsen Matematis Institutt, Universitetet i Oslo 22. mai 2008 Dette er siste plenumsregning. Vi regner stort sett esamensoppgaver. Neste ue blir det repetisjon på mandag og onsdag. Send epost til Dag eller meg med eventuelle ønser om hva dere vil ha gjennomgått. Bru oraeltjenestene! Sted: Rom B534 i Niels Henri Abels hus Tider: Tirsdag 27/ Onsdag 28/ Tirsdag 3/ Onsdag 4/ Jeg lager et løsningsforslag til estraoppgavene (Oppgavesett 4) og legger det ut i begynnelsen av neste ue. MAT1030 Disret matemati 22. mai Noen tips til esamen Vær effetive og ie bli sittende og tene altfor lenge på hver oppgave. Det vil si, ie få pani hvis noe er litt for vanselig ved første øyeast. Gå heller tilbae til oppgaven litt senere. Øv på å løse oppgaver og srive bevis. Ie la esamen være første gangen. Les oppgavetesten nøye og svar på det som det spørres etter. Ja, det er lurt å lese gjennom hele oppgavesettet først. Hvis du står fast, vis i hvert fall hva du har forstått. Den som retter en esamen er ute etter å finne ut hva andidaten har forstått. Esamen 12/6-06 Oppgave 2 La X være mengden som består av alle 8-bit strenger med 0-er og 1-ere. For Z, 0 8, definer X {s X antall 0-er i s er li }. (a) Begrunn at X ( ) 8 (b) Vi definerer en relasjon R på X ved at srt hvis og bare hvis antall 0-er i s er ongruent modulo 3 med antall 0-er i t. Du an ta det for gitt at dette er en evivalensrelasjon. La E betegne evivalenslassen til s Beregn E. (c) Sriv pseudooden for en algoritme som avgjør om to elementer i X er i relasjon med hverandre eller ie (med hensyn på relasjonen definert i b)). Input antas å være to 8-bit strenger s 1 s 8 og t 1 t 8, mens output sal være de to strengene er i relasjon med hverandre eller de to strengene er ie i relasjon med hverandre. MAT1030 Disret matemati 22. mai MAT1030 Disret matemati 22. mai

2 Vi danner oss først et bilde av hva oppgaven snaer om. Alle strengene i X består av 8 bit. Alt i alt er det derfor strenger i X, eller srevet på en annen måte, X 256. X 0 betegner mengden av strenger uten 0-ere. X 1 betegner mengden av strenger med nøyatig 1 st. 0-er: Vi ser at X 1 8. X 2 betegner mengden av strenger med nøyatig 2 st. 0-ere. Oppgave a) spør om X, det vil si antall elementer i X. Hva spør oppgave a) om? Den spør om en begrunnelse. Vi sal begrunne at Løsningen på a) blir derfor sli: X ( ) 8 En streng i X har nøyatig antall 0-ere. Siden det er 8 bit i en streng, er antall strenger med 0-ere li antallet måter man an velge elementer fra en mengde med 8 elementer på. Det er ( ) 8 måter å velge elementer fra en mengde med 8 elementer på. Det er derfor ( ) 8 antall 8-bit strenger som har 0-ere. Derfor er X ( 8 ). (Vi ser f.es. at dette stemmer for X 0, som er li ( 8 0) 1, og X1, som er li ( 8 1) 8.) MAT1030 Disret matemati 22. mai MAT1030 Disret matemati 22. mai Relasjonen R på X er definert ved at srt hvis og bare hvis antall 0-er i s er ongruent modulo 3 med antall 0-ere i t. Hva betyr det? ongruent modulo 3 betyr at differansen er delelig med 3. F.es. er 1 og 7 ongruente modulo 3, siden er delelig med 3. Hva ber oppgave b) om? Den ber oss om å beregne E, hvor E er evivalenslassen til s For å finne E, antallet elementer i E, er det lurt å først finne mengden E. E er mengden av strenger t sli at srt. (Det er definisjonen av en evivalenslasse.) For å finne ut hva E er, så må vi vite hvor mange 0-ere det er i s. Det er 2 st. 0-ere i s. Hvile t er R-relatert til s? Vi har srt når t har et antall 0-ere som er ongruente modulo 3 med 2. Da har vi at t E når t har 2, 5 eller 8 st. 0-ere. Sagt på en annen måte: t er i E hvis t er i X 2, X 5 eller X 8. På dette tidspuntet sal det ringe en bjelle: vi sal brue informasjonen fra oppgave a). Vi har at E X 2 X 5 X 8. Dermed får vi E X 2 X 5 X 8 X 2 + X 5 + X 8. Vi bruer inlusjons- og eslusjonsprinsippet her, men siden mengdene ie er overlappende, er det ie nødvendig å brue eslusjon. Vi får at E ( 8 2) + ( 8 5) + ( 8 8) Da har vi svart på oppgave b). Jeg har ritigno srevet en god del mer her enn det som trengs for en god besvarelse. MAT1030 Disret matemati 22. mai MAT1030 Disret matemati 22. mai

3 Esamen 12/6-06 Oppgave 4 Oppgave c) ber om en pseudoode for å avgjøre om to elementer i X er i relasjonen R med hverandre eller ie. 1. Input s, t [s s 1 s 8 og t t 1 t 8 ] 2. a antall 0-ere i s 3. b antall 0-ere i t 4. If (a b) er delelig med 3 then 4.1. Output de to strengene er i relasjon med hverandre else 4.2. Output de to strengene er ie i relasjon med hverandre Her an både punt 2, 3 og 4 gjøres mer detaljert. Det larer dere på egenhånd. La m og n være naturlige tall der 2 m n 3, og la V være en mengde med m + n elementer, la oss si V {A 1,..., A m, B 1,..., B n }. Vi an da danne en enel graf K m,n med V som nodemengde ved å si at det finnes nøyatig en ant mellom A i og B j for hver 1 i m og hver 1 j n, og ingen anter ellers. (a) Lag en sisse av K 2,2, K 2,3 og K 3,3. Angi matrisen til K 2,3 (med hensyn på listingen A 1, A 2, B 1, B 2, B 3 av nodene). (b) Nøyatig en av grafene fra a) er semi-eulers. Angi en Eulersti i denne grafen. En annen blant disse tre grafene er hveren Eulers eller semi-eulers. Angi et utspennende tre for denne. [Denne løser vi på tavla/overhead.] MAT1030 Disret matemati 22. mai MAT1030 Disret matemati 22. mai Esamen 12/6-06 Oppgave 5 For n N, la P(n) være følgende påstand: (a, b) Z Z m Z (a n b n m(a b)) Vis at P(n) er sann for alle n N ved indusjon. (Hint: a +1 b +1 a +1 ab + ab b +1 ) Løsning For indusjonstarten, viser vi at P(1) er sann. La a, b Z. Det er tilstreelig å vise at det fins en m sli at a n b n m(a b). Ved å sette inn for n får vi a 1 b 1. Ved å la m 1 får vi at dette er li m(a b). Esamen 12/6-06 Oppgave 5 For indusjonssrittet, så antar vi at P() er sann for N. Vi må vise at P( + 1) er sann. La a, b Z. Siden P() er sann, fins det en m 1 sli at a b m 1 (a b). Det er tilstreelig å vise at det fins en m sli at a +1 b +1 m(a b). a +1 b +1 a +1 ab + ab b +1 (dette er hintet) a(a b ) + b (a b) am 1 (a b) + b (a b) (siden P() er sann) (am 1 + b )(a b) Ved å la m am 1 + b har vi vist indusjonssrittet. Ved indusjon følger det at P(n) er sann for alle n N. MAT1030 Disret matemati 22. mai MAT1030 Disret matemati 22. mai

4 Esamen 31/ Oppgave 1 For hvert naturlig tall n la t(n) (a) Beregn t(n) for n 1, 2 og 3. (b) Vis at for alle n 1. (c) Gi et indusjonsbevis for at ( ) 2n (2n)! n n!n! t() t(n) a) Beregn t(n) for n 1, 2 og 3. t(1) ( ) 4 t(2) 2 ( ) 6 t(3) 3 ( ) t(n) 4 n for alle n 1. Hint: Bru at 4(). Forlar både starten på indusjonen og indusjonssrittet. MAT1030 Disret matemati 22. mai MAT1030 Disret matemati 22. mai b) Vis at t() Vi merer oss at t() (2())! ()!()! t(n) for alle n 1 per definisjon. t(n) (2n)! ()(2n)! 2(2)(2n)! n!n! ()n!n! ()n!n! 2(2)! ()!n! 2(2)!() ()!n!() (2n + 2)(2)! ()!()! (2n + 2)! (2())! ()!()! ()!()! c) Gi et indusjonsbevis for at t(n) 4 n for alle n 1. Hint: Bru at 4(). Forlar både starten på indusjonen og indusjonssrittet. For indusjonstarten, viser vi at påstanden er sann for n 1: t(1) 2, fra a), og For indusjonssrittet, antar vi at påstanden holder for. Det vil si at t() 4. Vi må vise at påstanden holder for + 1. Det vil si at t( + 1) Vi regner på følgende måte: t( + 1) t() 4() MAT1030 Disret matemati 22. mai MAT1030 Disret matemati 22. mai

5 Esamen 31/ Oppgave 2 Esamen 31/ Oppgave 3 En sammenhengende graf har 5 noder og 8 anter. De fire første nodene har grad 1, 2, 3 og 4. (a) Hva er graden til det femte hjørnet? Siden antallet anter er 8, må summen til gradene til nodene være 16. Summen til gradene til de fire nodene som er angitt er Da må den siste noden ha grad 6. (b) Er denne grafen et tre? Nei, for i ethvert tre er antall anter li antall noder minus 1. (c) Finnes det en Eulervei i denne grafen? Vi har bevist et teorem som sier at det fins en Eulersti hvis det er nøyatig to noder av odde grad i grafen. Siden un nodene med grad 1 og 3 har odde grad, så fins det en Eulersti i grafen. En enel vetet graf G med noder A, B, C, D, E og F har følgende vetmatrise. A B C D E F A B C D E F For esempel er det en ant AB mellom A og B, med vet 66, mens det ie er noen ant i G mellom A og C. MAT1030 Disret matemati 22. mai MAT1030 Disret matemati 22. mai Esamen 31/ Oppgave 3 Siste plenumsregning (a) Tegn et bilde av denne grafen, der hjørnene er meret A til F og hver ant AB, AD, etc., er meret med den tilhørende veten. Hint: Noen av antene må rysse hverandre i dette bildet. Tegn opp grafen en gang til for å besvare 3(b). (b) Bru Prims algoritme til å finne et minimalt utspennende tre T for G. Svaret sal være en liste av de antene i G som er med i T, der f.es. anten mellom A og B heter AB. Det var siste plenumsregning. Vi avslutter med disusjon og eventuelle spørsmål! Lye til på esamen! [Denne løser vi på tavla/overhead.] MAT1030 Disret matemati 22. mai MAT1030 Disret matemati 22. mai

Plenumsregning 12. Diverse oppgaver. Roger Antonsen mai Eksamen 12/6-06 Oppgave 2. Plan

Plenumsregning 12. Diverse oppgaver. Roger Antonsen mai Eksamen 12/6-06 Oppgave 2. Plan Plenumsregning 12 Diverse oppgaver Roger Antonsen - 22. mai 2008 Plan Dette er siste plenumsregning. Vi regner stort sett eksamensoppgaver. Neste uke blir det repetisjon på mandag og onsdag. Send epost

Detaljer

Rekursjon og induksjon. MAT1030 Diskret matematikk. Induksjonsbevis. Induksjonsbevis. Eksempel (Fortsatt) Eksempel

Rekursjon og induksjon. MAT1030 Diskret matematikk. Induksjonsbevis. Induksjonsbevis. Eksempel (Fortsatt) Eksempel Reursjon og indusjon MAT1030 Disret matemati Forelesning 15: Indusjon og reursjon, reurenslininger Dag Normann Matematis Institutt, Universitetet i Oslo 3 mars 008 Onsdag ga vi endel esempler på reursive

Detaljer

MAT1030 Forelesning 16

MAT1030 Forelesning 16 MAT1030 Forelesning 16 Reursjon og indusjon Roger Antonsen - 17 mars 009 (Sist oppdatert: 009-03-17 11:4 Forelesning 16 Reursjon og indusjon Forrige gang ga vi endel esempler på reursive definisjoner og

Detaljer

Forelesning 20. Kombinatorikk. Roger Antonsen - 7. april 2008

Forelesning 20. Kombinatorikk. Roger Antonsen - 7. april 2008 orelesning Kombinatori Roger Antonsen - 7. april 8 Kombinatori Kombinatori er studiet av opptellinger, ombinasjoner og permutasjoner. Vi finner svar på spørsmål Hvor mange måter...? uten å telle. Vitig

Detaljer

Kapittel 9: Mer kombinatorikk

Kapittel 9: Mer kombinatorikk MAT3 Disret Matemati orelesning : Mer ombinatori Dag Normann Matematis Institutt, Universitetet i Oslo Kapittel 9: Mer ombinatori 3. april (Sist oppdatert: -4-3 4:4) MAT3 Disret Matemati 3. april Oppsummering

Detaljer

MAT1030 Forelesning 21

MAT1030 Forelesning 21 MAT00 Forelesning Mer ombinatori Roger Antonsen - 5. april 009 (Sist oppdatert: 009-0-5 00:05) Kapittel 9: Mer ombinatori Plan for dagen Mer om permutasjoner og ordnet utvalg ) Mer om ombinasjoner n velg

Detaljer

MAT1030 Forelesning 21

MAT1030 Forelesning 21 MAT orelesning Mer ombinatori Dag Normann -. april (Sist oppdatert: -4-4:5) Kapittel 9: Mer ombinatori Oppsummering orrige ue startet vi på apitlet om ombinatori. Vi så på hvordan vi an finne antall måter

Detaljer

Forelesning 23. MAT1030 Diskret Matematikk. Repetisjon og mer motivasjon. Repetisjon og mer motivasjon. Forelesning 23: Grafteori.

Forelesning 23. MAT1030 Diskret Matematikk. Repetisjon og mer motivasjon. Repetisjon og mer motivasjon. Forelesning 23: Grafteori. MAT030 Diskret Matematikk Forelesning 23: Grafteori Roger Antonsen Institutt for informatikk, Universitetet i Oslo Forelesning 23 22. april 2009 (Sist oppdatert: 2009-04-22 2:37) MAT030 Diskret Matematikk

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Plenumsregning 10: Diverse ukeoppgaver Roger Antonsen Matematisk Institutt, Universitetet i Oslo 17. april 2008 Vi øver oss litt på løse rekurrenslikninger. Oppgave 7.23 Løs

Detaljer

MAT1030 Forelesning 23

MAT1030 Forelesning 23 MAT030 Forelesning 23 Grafteori Roger Antonsen - 22. april 2009 (Sist oppdatert: 2009-04-22 2:36) Forelesning 23 Repetisjon og mer motivasjon Først litt repetisjon En graf består av noder og kanter Kanter

Detaljer

Grafteori. MAT1030 Diskret Matematikk. Repetisjon og mer motivasjon. Repetisjon og mer motivasjon. Forelesning 23: Grafteori.

Grafteori. MAT1030 Diskret Matematikk. Repetisjon og mer motivasjon. Repetisjon og mer motivasjon. Forelesning 23: Grafteori. MAT030 Diskret Matematikk Forelesning 23: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo Grafteori 20. april 200 (Sist oppdatert: 200-04-20 4:8) MAT030 Diskret Matematikk 20. april 200

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 23: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo 20. april 2010 (Sist oppdatert: 2010-04-20 14:17) Grafteori MAT1030 Diskret Matematikk 20. april

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Institutt for datateni og informasjonsvitensap Esamensoppgave i TDT40 Algoritmer og datastruturer Faglig ontat under esamen Magnus Lie Hetland Telefon 98 5 949 Esamensdato 5 august, 08 Esamenstid (fra

Detaljer

Plenumsregning 10. Diverse ukeoppgaver. Roger Antonsen april Vi øver oss litt på løse rekurrenslikninger.

Plenumsregning 10. Diverse ukeoppgaver. Roger Antonsen april Vi øver oss litt på løse rekurrenslikninger. Plenumsregning 10 Diverse ukeoppgaver Roger Antonsen - 17. april 2008 Vi øver oss litt på løse rekurrenslikninger. Oppgave 7.23 Løs følgende rekurrenslikning (c) t(n) 6t(n 1) + 9t(n 2) = 0, t(1) = 3, t(2)

Detaljer

Repetisjon og mer motivasjon. MAT1030 Diskret matematikk. Repetisjon og mer motivasjon

Repetisjon og mer motivasjon. MAT1030 Diskret matematikk. Repetisjon og mer motivasjon Repetisjon og mer motivasjon MAT030 Diskret matematikk Forelesning 22: Grafteori Roger Antonsen Matematisk Institutt, Universitetet i Oslo 4. april 2008 Først litt repetisjon En graf består av noder og

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk Oppgave 1.1 MAT1030 Diskret matematikk Plenumsregning 2: Ukeoppgaver fra kapittel 1 & 2 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 24. januar 2008 Modifiser algoritmen fra 1.2.1 slik at

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Plenumsregning 2: Ukeoppgaver fra kapittel 1 & 2 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 24. januar 2008 Oppgave 1.1 Modifiser algoritmen fra 1.2.1 slik at

Detaljer

Grafteori. MAT1030 Diskret matematikk. Induksjonsbevis

Grafteori. MAT1030 Diskret matematikk. Induksjonsbevis Grafteori MAT1030 Diskret matematikk Plenumsregning 11: Ukeoppgaver fra kapittel 10 & Induksjonsbevis Roger Antonsen Matematisk Institutt, Universitetet i Oslo 24. april 2008 Vi regner oppgavene på tavlen

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Plenumsregning 11: Ukeoppgaver fra kapittel 10 & Induksjonsbevis Roger Antonsen Matematisk Institutt, Universitetet i Oslo 24. april 2008 Grafteori Vi regner oppgavene på tavlen

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Plenumsregning 9: Diverse ukeoppgaver Roger Antonsen Matematisk Institutt, Universitetet i Oslo 10. april 2008 Oppgaver fra forelesningene Oppgave (fra forelesningen 10/3) a)

Detaljer

Oppgaver fra forelesningene. MAT1030 Diskret matematikk. Oppgave (fra forelesningen 10/3) Definisjon. Plenumsregning 9: Diverse ukeoppgaver

Oppgaver fra forelesningene. MAT1030 Diskret matematikk. Oppgave (fra forelesningen 10/3) Definisjon. Plenumsregning 9: Diverse ukeoppgaver Oppgaver fra forelesningene MAT1030 Diskret matematikk Plenumsregning 9: Diverse ukeoppgaver Roger Antonsen Matematisk Institutt, Universitetet i Oslo 10. april 2008 Oppgave (fra forelesningen 10/3) a)

Detaljer

Introduksjon. MAT1030 Diskret Matematikk. Introduksjon. En graf. Forelesning 22: Grafteori. Roger Antonsen

Introduksjon. MAT1030 Diskret Matematikk. Introduksjon. En graf. Forelesning 22: Grafteori. Roger Antonsen MAT1030 Diskret Matematikk Forelesning 22: Grafteori Roger Antonsen Institutt for informatikk, Universitetet i Oslo Introduksjon 21. april 2009 (Sist oppdatert: 2009-04-21 15:13) MAT1030 Diskret Matematikk

Detaljer

Introduksjon. MAT1030 Diskret matematikk. Søkealgoritmer for grafer. En graf

Introduksjon. MAT1030 Diskret matematikk. Søkealgoritmer for grafer. En graf Introduksjon MAT13 Diskret matematikk Forelesning 21: Grafteori Roger Antonsen Matematisk Institutt, Universitetet i Oslo 9. april 28 Vi skal nå over til kapittel 1 & grafteori. Grafer fins overalt rundt

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Forelesning 21: Grafteori Roger Antonsen Matematisk Institutt, Universitetet i Oslo 9. april 2008 Introduksjon Vi skal nå over til kapittel 10 & grafteori. Grafer fins overalt

Detaljer

Kapittel 9: Mer kombinatorikk

Kapittel 9: Mer kombinatorikk MAT00 Disret Matemati Forelesig : Mer ombiatori Roger Atose Istitutt for iformati, Uiversitetet i Oslo Kapittel 9: Mer ombiatori 5. april 009 (Sist oppdatert: 009-04-5 00:06) MAT00 Disret Matemati 5. april

Detaljer

Forelesning 25. MAT1030 Diskret Matematikk. Litt repetisjon. Litt repetisjon. Forelesning 25: Trær. Roger Antonsen

Forelesning 25. MAT1030 Diskret Matematikk. Litt repetisjon. Litt repetisjon. Forelesning 25: Trær. Roger Antonsen MAT1030 Diskret Matematikk Forelesning 25: Trær Roger Antonsen Institutt for informatikk, Universitetet i Oslo Forelesning 25 29. april 2009 (Sist oppdatert: 2009-04-29 00:28) MAT1030 Diskret Matematikk

Detaljer

Kombinatorikk. MAT1030 Diskret Matematikk. Oppsummering av regneprinsipper

Kombinatorikk. MAT1030 Diskret Matematikk. Oppsummering av regneprinsipper MAT1030 Diskret Matematikk Forelesning 22: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo Kombinatorikk 14. april 2010 (Sist oppdatert: 2010-04-14 12:43) MAT1030 Diskret Matematikk 14.

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 22: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo 14. april 2010 (Sist oppdatert: 2010-04-14 12:42) Kombinatorikk MAT1030 Diskret Matematikk 14.

Detaljer

MAT1030 Forelesning 22

MAT1030 Forelesning 22 MAT1030 Forelesning 22 Grafteori Roger Antonsen - 21. april 2009 (Sist oppdatert: 2009-04-21 15:13) Introduksjon Introduksjon Vi skal nå over til kapittel 10 & grafteori. Grafer fins overalt rundt oss!

Detaljer

Ukeoppgaver fra kapittel 10 & Induksjonsbevis

Ukeoppgaver fra kapittel 10 & Induksjonsbevis Plenumsregning 11 Ukeoppgaver fra kapittel 10 & Induksjonsbevis Roger Antonsen - 24. april 2008 Grafteori Vi regner oppgavene på tavlen i dag. Oppgave 10.9 Oppgave 10.10 Oppgave 10.11 Oppgave 10.12 Oppgave

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Forelesning 23: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo 16. april 2008 Oppsummering En graf består av noder og kanter Kanter ligger inntil noder, og

Detaljer

MAT1030 Forelesning 24

MAT1030 Forelesning 24 MAT1030 Forelesning 24 Grafteori og trær Roger Antonsen - 28. april 2009 (Sist oppdatert: 2009-04-28 22:32) Forelesning 24 Oppsummering En graf består av noder og kanter Kanter ligger inntil noder, og

Detaljer

Oppsummering. MAT1030 Diskret matematikk. Oppsummering. Oppsummering. Forelesning 23: Grafteori

Oppsummering. MAT1030 Diskret matematikk. Oppsummering. Oppsummering. Forelesning 23: Grafteori Oppsummering MAT1030 Diskret matematikk Forelesning 23: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo 16. april 2008 En graf består av noder og kanter Kanter ligger inntil noder, og

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Plenumsregning 1: Kapittel 1 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 17. januar 2008 Velkommen til plenumsregning for MAT1030 Torsdager 10:15 12:00 Gjennomgang

Detaljer

Førsteordens lineære differensiallikninger

Førsteordens lineære differensiallikninger Førsteordens lineære differensiallininger Begrepet førsteordens lineære differensiallininger er ie sielig definert i Sinus R. Denne artielen omhandler det temaet. En førsteordens lineær differensiallining

Detaljer

Grafteori. MAT1030 Diskret Matematikk. Oppsummering. Oppsummering. Forelesning 24: Grafer og trær. Dag Normann

Grafteori. MAT1030 Diskret Matematikk. Oppsummering. Oppsummering. Forelesning 24: Grafer og trær. Dag Normann MAT1030 Diskret Matematikk Forelesning 24: Grafer og trær Dag Normann Matematisk Institutt, Universitetet i Oslo Grafteori 21. april 2010 (Sist oppdatert: 2010-04-21 12:55) MAT1030 Diskret Matematikk 21.

Detaljer

Eksamensoppgave i TMA4140 Diskret matematikk

Eksamensoppgave i TMA4140 Diskret matematikk Institutt for matematiske fag Eksamensoppgave i TMA44 Diskret matematikk Faglig kontakt under eksamen: Christian Skau Tlf: 7359755 Eksamensdato: 8 desember 25 Eksamenstid (fra til): 9:-3: Hjelpemiddelkode/Tillatte

Detaljer

Forelesning 23. Grafteori. Dag Normann april Oppsummering. Oppsummering. Oppsummering. Digresjon: Firefarveproblemet

Forelesning 23. Grafteori. Dag Normann april Oppsummering. Oppsummering. Oppsummering. Digresjon: Firefarveproblemet Forelesning 23 Grafteori Dag Normann - 16. april 2008 Oppsummering En graf består av noder og kanter Kanter ligger inntil noder, og noder kan være naboer. Vi bør kjenne til begrepene om sammenhengende

Detaljer

MA1301/MA6301 Tallteori Høst 2016

MA1301/MA6301 Tallteori Høst 2016 Norges tenis naturvitensapelige universitet Institutt for ateatise fag MA/MA6 Tallteori Høst 6 a Vi starter ed å sjee at liheten steer for n. Vi har at i. Heldigvis er (, så vi ser at påstanden steer i

Detaljer

STK1100 våren Betinget sannsynlighet og uavhengighet. Vi trenger en definisjon av betinget sannsynlighet! Eksempel 1

STK1100 våren Betinget sannsynlighet og uavhengighet. Vi trenger en definisjon av betinget sannsynlighet! Eksempel 1 STK00 våren 07 Betinget sannsynlighet og uavhengighet Esempel Vi vil først ved hjelp av et esempel se intuitivt på hva betinget sannsynlighet betyr. Vi legger fire røde ort og to svarte ort i en bune.

Detaljer

Plenumsregning 9. Diverse ukeoppgaver. Roger Antonsen april Oppgaver fra forelesningene. Oppgave (fra forelesningen 10/3).

Plenumsregning 9. Diverse ukeoppgaver. Roger Antonsen april Oppgaver fra forelesningene. Oppgave (fra forelesningen 10/3). Plenumsregning 9 Diverse ukeoppgaver Roger Antonsen - 10. april 2008 Oppgaver fra forelesningene Oppgave (fra forelesningen 10/3). a) Ved å bruke den rekursive definisjonen av PL, vis hvordan vi skritt

Detaljer

MAT1030 Forelesning 25

MAT1030 Forelesning 25 MAT1030 Forelesning 25 Trær Roger Antonsen - 29. april 2009 (Sist oppdatert: 2009-04-29 00:28) Forelesning 25 Litt repetisjon Vi har snakket om grafer og trær. Av begreper vi så på var følgende. Eulerstier

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Forelesning 33: Repetisjon Dag Normann Matematisk Institutt, Universitetet i Oslo 26. mai 2008 Innledning Onsdag 21/5 gjorde vi oss ferdige med det meste av den systematiske

Detaljer

Innledning. MAT1030 Diskret matematikk. Kapittel 11. Kapittel 11. Forelesning 33: Repetisjon

Innledning. MAT1030 Diskret matematikk. Kapittel 11. Kapittel 11. Forelesning 33: Repetisjon Innledning MAT1030 Diskret matematikk Forelesning 33: Repetisjon Dag Normann Matematisk Institutt, Universitetet i Oslo 26. mai 2008 Onsdag 21/5 gjorde vi oss ferdige med det meste av den systematiske

Detaljer

Velkommen til plenumsregning for MAT1030. MAT1030 Diskret matematikk. Repetisjon: Algoritmer og pseudokode. Eksempel fra boka. Eksempel

Velkommen til plenumsregning for MAT1030. MAT1030 Diskret matematikk. Repetisjon: Algoritmer og pseudokode. Eksempel fra boka. Eksempel Velkommen til plenumsregning for MAT1030 MAT1030 Diskret matematikk Plenumsregning 1: Kapittel 1 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 17. januar 2008 Torsdager 10:15 12:00 Gjennomgang

Detaljer

Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag

Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag Institutt for matematiske fag Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag Faglig kontakt under eksamen: Martin Strand Tlf: 970 7 848 Eksamensdato: 3. mai 014 Eksamenstid (fra

Detaljer

MAT1030 Forelesning 22

MAT1030 Forelesning 22 MAT1030 Forelesning 22 Grafteori Dag Normann - 14. april 2010 (Sist oppdatert: 2010-04-14 12:45) Kombinatorikk Oppsummering av regneprinsipper Ordnet utvalg med repetisjon: n r Ordnet utvalg uten repetisjon:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 28. november 2014 Tid for eksamen: 08.15 12.15 Oppgavesettet er på 6 sider. Vedlegg: Tillatte hjelpemidler: INF1080

Detaljer

Løsningsforslag til 3. oblogatoriske oppgave i Diskret Matematikk. Høsten 2018

Løsningsforslag til 3. oblogatoriske oppgave i Diskret Matematikk. Høsten 2018 Løsningsforslag til 3. oblogatoriske oppgave i Diskret Matematikk Oppgave 1. ( 9 3 ) = 9 8 7 3 2 1 = 3 4 7 = 84 Høsten 2018 {1, 5, 9}, {1, 6, 8}, {2, 4, 9}, { 2, 5, 8}, {2, 6, 7}, {3, 4, 8}, {3, 5, 7},

Detaljer

KONTINUASJONSEKSAMEN I TMA4140 LØSNINGSFORSLAG

KONTINUASJONSEKSAMEN I TMA4140 LØSNINGSFORSLAG Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 KONTINUASJONSEKSAMEN I TMA440 LØSNINGSFORSLAG Oppgave Sannhetsverditabell for det logiske utsagnet ( (p q) ) ( q r

Detaljer

Løsningsforslag Øving 9 TMA4140 Diskret matematikk Høsten 2008. i for i = 0, 1, 2, 3, 4, og så er W 4 svaret. 0 1 0 0

Løsningsforslag Øving 9 TMA4140 Diskret matematikk Høsten 2008. i for i = 0, 1, 2, 3, 4, og så er W 4 svaret. 0 1 0 0 Løsningsforslag Øving 9 TMA4140 Diskret matematikk Høsten 2008 8.4.27 Vi beregner matrisene W i for i = 0, 1, 2, 3, 4, og så er W 4 svaret. a) W 0 = W 1 = W 2 = 1 0 0 0 1 1 0 0 b) W 0 = c) W 0 = d) W 0

Detaljer

Plenumsregning 1. Kapittel 1. Roger Antonsen januar Velkommen til plenumsregning for MAT1030. Repetisjon: Algoritmer og pseudokode

Plenumsregning 1. Kapittel 1. Roger Antonsen januar Velkommen til plenumsregning for MAT1030. Repetisjon: Algoritmer og pseudokode Plenumsregning 1 Kapittel 1 Roger Antonsen - 17. januar 2008 Velkommen til plenumsregning for MAT1030 Torsdager 10:15 12:00 Gjennomgang av ukeoppgaver Gjennomgang av eksempler fra boka Litt repetisjon

Detaljer

Forelesning 19 torsdag den 23. oktober

Forelesning 19 torsdag den 23. oktober Forelesning 19 torsdag den 23. oktober 5.3 Eulers kriterium Merknad 5.3.1. Følgende proposisjon er kjernen til teorien for kvadratiske rester. Kanskje ser beviset ikke så vanskelig ut, men la merke til

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Plenumsregning 11: Ukeoppgaver Mathias Barra Matematisk institutt, Universitetet i Oslo 7. mars 009 (Sist oppdatert: 009-03-30 09:39) Oppgave 7. Finn en rekursiv og en ikke-rekursiv

Detaljer

LO118D Forelesning 9 (DM)

LO118D Forelesning 9 (DM) LO118D Forelesning 9 (DM) Grafteori 26.09.2007 1 Introduksjon 2 Veier og sykler 3 Hamiltonsykler og omreisende handelsmenn Graf, urettet Definisjon En graf (eller urettet graf) G består av en mengde V

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 26: Trær Roger Antonsen Institutt for informatikk, Universitetet i Oslo 5. mai 2009 (Sist oppdatert: 2009-05-06 22:27) Forelesning 26 MAT1030 Diskret Matematikk 5.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF Logiske metoder for informatikk Eksamensdag:. desember Tid for eksamen:.. Oppgavesettet er på sider. Vedlegg: Ingen Tillatte

Detaljer

Forelesning 33. Repetisjon. Dag Normann mai Innledning. Kapittel 11

Forelesning 33. Repetisjon. Dag Normann mai Innledning. Kapittel 11 Forelesning 33 Repetisjon Dag Normann - 26. mai 2008 Innledning Onsdag 21/5 gjorde vi oss ferdige med det meste av den systematiske repetisjonen av MAT1030. Det som gjensto var kapitlene 11 om trær og

Detaljer

Øvingsforelesning 1 Python (TDT4110)

Øvingsforelesning 1 Python (TDT4110) Øvingsforelesning 1 Python (TDT4110) Introduksjon, Kalkulasjoner Ole-Magnus Pedersen Oversikt Praktisk Info Repetisjon fra sist Oppgaver for øving 2 2 Praktisk Info Last opp øvinger på Blackboard før godkjenning

Detaljer

Kombinatorikk. MAT1030 Diskret matematikk Forelesning 20: Kombinatorikk. Repetisjon. Repetisjon

Kombinatorikk. MAT1030 Diskret matematikk Forelesning 20: Kombinatorikk. Repetisjon. Repetisjon Kombiatori MAT Disret matemati orelesig : Kombiatori Roger Atose Matematis Istitutt, Uiversitetet i Oslo 7. april 8 Kombiatori er studiet av opptelliger, ombiasjoer og permutasjoer. Vi fier svar på spørsmål

Detaljer

Vektede grafer. MAT1030 Diskret matematikk. En kommunegraf. En kommunegraf. Oppgave

Vektede grafer. MAT1030 Diskret matematikk. En kommunegraf. En kommunegraf. Oppgave MAT1030 Diskret matematikk Forelesning 24: Grafer og trær Dag Normann Matematisk Institutt, Universitetet i Oslo 21. april 2008 Vi har snakket om grafer og trær. Av begreper vi så på var Eulerkretser og

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 25: Trær Dag Normann Matematisk Institutt, Universitetet i Oslo 27. april 2010 (Sist oppdatert: 2010-04-27 14:15) Forelesning 25 MAT1030 Diskret Matematikk 27. april

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT30 Diskret matematikk Plenumsregning 6: Ukeoppgaver fra kapittel Roger Antonsen Matematisk Institutt, Universitetet i Oslo. februar 008 Oppgave. Skriv følgende mengder på listeform. (a) Mengden av alle

Detaljer

Generell induksjon og rekursjon. MAT1030 Diskret matematikk. Generell induksjon og rekursjon. Generell induksjon og rekursjon.

Generell induksjon og rekursjon. MAT1030 Diskret matematikk. Generell induksjon og rekursjon. Generell induksjon og rekursjon. MAT1030 Diskret matematikk Forelesning 18: Generell rekursjon og induksjon Dag Normann Matematisk Institutt, Universitetet i Oslo 12. mars 2008 Mandag så vi på induktivt definerte mengder og noen eksempler

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Plenumsregning 6: Ukeoppgaver fra kapittel 5 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 21. februar 2008 Oppgave 5.1 Skriv følgende mengder på listeform. (a) Mengden

Detaljer

EKSAMEN. Ta med utregninger i besvarelsen for å vise hvordan du har kommet fram til svaret.

EKSAMEN. Ta med utregninger i besvarelsen for å vise hvordan du har kommet fram til svaret. EKSAMEN Emneode: ID30005 Emne: Industriell I Dato: 5.2.204 Esamenstid: l. 0900 til l. 300 Hjelpemidler: re A4-ar (ses sider) med egne notater. "ie-ommuniserende" alulator. Faglærer: Robert Roppestad Esamensoppgaven:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 28. november 2014 Tid for eksamen: 08.15 12.15 Oppgave 1 Mengdelære (10 poeng)

Detaljer

Før vi begynner. Kapittel 5: Relasjoner og funksjoner. MAT1030 Diskret Matematikk. Litt om obligen og studentengasjementet

Før vi begynner. Kapittel 5: Relasjoner og funksjoner. MAT1030 Diskret Matematikk. Litt om obligen og studentengasjementet MAT1030 Diskret Matematikk Forelesning 12: Relasjoner og litt funksjoner Roger Antonsen Institutt for informatikk, Universitetet i Oslo Før vi begynner 3. mars 2009 (Sist oppdatert: 2009-03-04 01:00) MAT1030

Detaljer

Høgskolen i Agder. Institutt for matematiske fag EKSAMEN

Høgskolen i Agder. Institutt for matematiske fag EKSAMEN Høgskolen i Agder Institutt for matematiske fag EKSAMEN i MA1040 Matematikk for IT-studenter Mandag 5. mai 2003, kl. 09 00 13 00 Alle trykte og skrevne hjelpemidler er tillatt. Oppgavesettet er på 7 sider.

Detaljer

True False. Q(0, 1, 2) yq(0, y, y) x yq(x, y, 10) x yq(x, y, x + x) y xq(x, y, x + x) x y Q(x, y, x + x) y x Q(x, y, x + x) x y zq(x, y, z)

True False. Q(0, 1, 2) yq(0, y, y) x yq(x, y, 10) x yq(x, y, x + x) y xq(x, y, x + x) x y Q(x, y, x + x) y x Q(x, y, x + x) x y zq(x, y, z) BOKMÅL-MNF130 Kand.nr:... Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I BERGEN Eksamen i emnet MNF130 - Diskrete Strukturer Onsdag 8. juni 2005, kl. 09-14, dvs 5 timer. Skriv ditt kanidatnr

Detaljer

Oppgaver i kapittel 1 - Løsningsskisser og kommentarer Lærebok:

Oppgaver i kapittel 1 - Løsningsskisser og kommentarer Lærebok: Oppgaver i apittel - Løsningssisser og ommentarer Lærebo:.6 Vitig oppgave, viser hvordan ree-summer an tilnærmes med integraler. Atuelt hvis vi har formelen for n te ledd, men ie har noen summeformel.

Detaljer

Kommentarer til Eksamen IM005 - V02

Kommentarer til Eksamen IM005 - V02 Kommentarer til Eksamen IM005 - V02 Følgende oppgaver er aktuelle innenfor dagens pensum: Oppgave 1a,d,e,f,h,i Oppgave 2a,b,c Oppgave 3 Oppgave 4a,c,d I Oppgavene 1f,h,i skal det stå enkel graf (simple

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side Det matematisk-naturvitenskapelige fakultet Prøveekasmen 2007, med svarforslag Eksamen i: INF 330/430: Algoritmer: Design og effektivitet Eksamensdag: Fredag. desember 200 Tid

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Plenumsregning 1: Kapittel 1 Mathias Barra Matematisk institutt, Universitetet i Oslo 16. januar 2009 (Sist oppdatert: 2009-02-02 14:21) Plenumsregning 1 MAT1030 Diskret Matematikk

Detaljer

Løsningsforslag oblig. innlevering 1

Løsningsforslag oblig. innlevering 1 Løsningsforslag oblig. innlevering 1 IN1150 Logiske metoder Høsten 2017 Oppgave 1 - Mengdelære (10 poeng) a) Ut fra opplysningene under, angi hvilke mengder A og B er. A B = {1, 2, 3, 4, 5, 6} A B = {2,

Detaljer

Forelesning 14 torsdag den 2. oktober

Forelesning 14 torsdag den 2. oktober Forelesning 14 torsdag den 2. oktober 4.1 Primtall Definisjon 4.1.1. La n være et naturlig tall. Da er n et primtall om: (1) n 2; (2) de eneste naturlige tallene som er divisorer til n er 1 og n. Eksempel

Detaljer

Euklids algoritmen. p t 2. 2 p t n og b = p s 1. p min(t 2,s 2 )

Euklids algoritmen. p t 2. 2 p t n og b = p s 1. p min(t 2,s 2 ) For å finne største felles divisor (gcd) kan vi begrense oss til N, sidenfor alle a, b Z, harvi gcd(a, b) =gcd( a, b ). I prinsippet, dersom vi vet at a = p t 1 kan vi se at 1 p t 2 2 p t n og b = p s

Detaljer

Repetisjon. MAT1030 Diskret Matematikk. Oppsummering. Oppsummering. Forelesning 15: Rekursjon og induksjon. Roger Antonsen

Repetisjon. MAT1030 Diskret Matematikk. Oppsummering. Oppsummering. Forelesning 15: Rekursjon og induksjon. Roger Antonsen MAT1030 Diskret Matematikk Forelesning 15: og induksjon Roger Antonsen Institutt for informatikk, Universitetet i Oslo Repetisjon 11. mars 2009 (Sist oppdatert: 2009-03-10 20:38) MAT1030 Diskret Matematikk

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Plenumsregning 7: Ukeoppgaver fra kapittel 5 & 6, mm. Roger Antonsen Matematisk Institutt, Universitetet i Oslo 28. februar 2008 Oppgave 5.16 La R være relasjonen på {a, b, c,

Detaljer

Eksamen i Elementær Diskret Matematikk - (MA0301)

Eksamen i Elementær Diskret Matematikk - (MA0301) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Steffen Junge (73 59 17 73 / 94 16 27 27) Eksamen i Elementær Diskret Matematikk -

Detaljer

TMA4140 Diskret Matematikk Høst 2016

TMA4140 Diskret Matematikk Høst 2016 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4140 Diskret Matematikk Høst 016 Seksjon 5 4 a) Ved å observere at 18 4 + 7, 19 3 4 + 7, 0 4 5 og 1 3 7 så ser vi at P(18),

Detaljer

Forelesning 25. MAT1030 Diskret Matematikk. Litt repetisjon. Litt repetisjon. Forelesning 25: Trær. Dag Normann

Forelesning 25. MAT1030 Diskret Matematikk. Litt repetisjon. Litt repetisjon. Forelesning 25: Trær. Dag Normann MAT1030 Diskret Matematikk Forelesning 25: Trær Dag Normann Matematisk Institutt, Universitetet i Oslo Forelesning 25 27. april 2010 (Sist oppdatert: 2010-04-27 14:16) MAT1030 Diskret Matematikk 27. april

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 16: Rekursjon og induksjon Roger Antonsen Institutt for informatikk, Universitetet i Oslo 17. mars 009 (Sist oppdatert: 009-03-17 11:4) Forelesning 16 MAT1030 Diskret

Detaljer

Forelesning 1 mandag den 18. august

Forelesning 1 mandag den 18. august Forelesning 1 mandag den 18 august 11 Naturlige tall og heltall Definisjon 111 Et naturlig tall er et av tallene: 1,, Merknad 11 Legg spesielt merke til at i dette kurset teller vi ikke 0 iblant de naturlige

Detaljer

Forelesning 7 mandag den 8. september

Forelesning 7 mandag den 8. september Forelesning 7 mandag den 8. september 1.1 Absoluttverdien Definisjon 1.1.1. La n være et heltall. Da er absoluttverdien til n: (1) n dersom n 0; (2) n dersom n < 0. Merknad 1.1.2. Med andre ord får vi

Detaljer

Forelesningsnotat i Diskret matematikk tirsdag 1. november Pascals trekant. Legg merke til møsteret! Det gir oss Pascals identitet:

Forelesningsnotat i Diskret matematikk tirsdag 1. november Pascals trekant. Legg merke til møsteret! Det gir oss Pascals identitet: Pascals trekant Legg merke til møsteret! Det gir oss Pascals identitet: ( n + 1 k ) = ( n k 1 ) + (n k ) 1 Sjekk med tabellen! La n = 5, og k = 4: ( 5 + 1 2 ) = (6 2 ) = (5 1 ) + (5 2 ) Det stemmer! 15

Detaljer

Obligatorisk oppgavesett 1 MAT1120 H16

Obligatorisk oppgavesett 1 MAT1120 H16 Obligatorisk oppgavesett MAT0 H6 Innleveringsfrist: torsdag /09 06, innen kl 4.30. Besvarelsen leveres på Matematisk institutt, 7. etasje i N.H. Abels hus. Husk å bruke forsiden som du finner via hjemmesiden.

Detaljer

Dette brukte vi f.eks. til å bevise binomialteoremet. n i. (a + b) n = a i b n i. i=0

Dette brukte vi f.eks. til å bevise binomialteoremet. n i. (a + b) n = a i b n i. i=0 Prinsippet om matematisk induksjon: anta du har en påstand som er avhengig av et positivt heltall n. Om du kan vise to ting, nemlig at påstanden er sann for n = 1 og at om påstanden er sann for n = k,

Detaljer

Binomialkoeffisienter

Binomialkoeffisienter Binomialkoeffisienter Litt repetisjon: ( n r ) = n! (n r)! r! r 0, n 0 Dette gir oss fordi ( n r ) = ( n n r ) ( n n 1 ) = n ( n n 1 ) = ( n n (n 1) ) = (n 1 ) = n Andre viktige observasjoner: 0! = 1 (

Detaljer

Forelesning 24. Grafer og trær. Dag Normann april Vektede grafer. En kommunegraf

Forelesning 24. Grafer og trær. Dag Normann april Vektede grafer. En kommunegraf Forelesning 24 Grafer og trær Dag Normann - 21. april 2008 Vi har snakket om grafer og trær. Av begreper vi så på var Eulerkretser og Eulerstier Hamiltonkretser Minimale utspennende trær. Vi skal nå se

Detaljer

MAT1030 Forelesning 25

MAT1030 Forelesning 25 MAT1030 Forelesning 25 Trær Dag Normann - 27. april 2010 (Sist oppdatert: 2010-04-27 14:16) Forelesning 25 Litt repetisjon Vi har snakket om grafer og trær. Av begreper vi så på var følgende: Eulerstier

Detaljer

Løsningsforslag. Emnekode: Emne: Matematikk for IT ITF Eksamenstid: Dato: kl til kl desember Hjelpemidler: Faglærer:

Løsningsforslag. Emnekode: Emne: Matematikk for IT ITF Eksamenstid: Dato: kl til kl desember Hjelpemidler: Faglærer: Løsningsforslag Emnekode: ITF75 Dato: 7. desember Emne: Matematikk for IT Eksamenstid: kl 9. til kl. Hjelpemidler: To -ark med valgfritt innhold på begge sider. Kalkulator er ikke tillatt. Faglærer: Christian

Detaljer

Forelesning 28. Grafer og trær, eksempler. Dag Normann - 5. mai Grafer og trær. Grafer og trær. Grafer og trær

Forelesning 28. Grafer og trær, eksempler. Dag Normann - 5. mai Grafer og trær. Grafer og trær. Grafer og trær Forelesning 28, eksempler Dag Normann - 5. mai 2008 I dag skal vi se på en rekke eksempeloppgaver, og gjennomgå løsningene på tavla. Alle eksemplene er oppgaver som ville kunne bli gitt til eksamen, enten

Detaljer

R2 - Kapittel 2 - Algebra. I a) Hvilken av disse tallfølgene er aritmetiske, geometriske eller ingen av delene?

R2 - Kapittel 2 - Algebra. I a) Hvilken av disse tallfølgene er aritmetiske, geometriske eller ingen av delene? R2 - Kapittel 2 - Algebra I Hvilen av disse tallfølgene er aritmetise, geometrise eller ingen av delene?.,,,,... 2 4 2. 2,6,8,54,.... 2,6,0,4,... 4.,, 2, 4,... 2 9 5., 5, 7, 9,... 4 9 6 Sriv opp uttryet

Detaljer

LØSNINGSFORSLAG KONT 07, TMA4140

LØSNINGSFORSLAG KONT 07, TMA4140 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 LØSNINGSFORSLAG KONT 07, TMA4140 Oppgave 1 (10%) Utsagnet ( ( (p q)) r ) ( q p ) får sannhetstabellen: p q r (p

Detaljer

TMA4140 Diskret Matematikk Høst 2016

TMA4140 Diskret Matematikk Høst 2016 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA44 Diskret Matematikk Høst 26 Seksjon 3. Husk at w = λ, den tomme strengen, for enhver streng w. 4 a) Følgende utledning/derivasjon

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 29: Kompleksitetsteori Roger Antonsen Institutt for informatikk, Universitetet i Oslo 13. mai 2009 (Sist oppdatert: 2009-05-17 22:38) Forelesning 29: Kompleksitetsteori

Detaljer

Forelesning 29: Kompleksitetsteori

Forelesning 29: Kompleksitetsteori MAT1030 Diskret Matematikk Forelesning 29: Kompleksitetsteori Roger Antonsen Institutt for informatikk, Universitetet i Oslo Forelesning 29: Kompleksitetsteori 13. mai 2009 (Sist oppdatert: 2009-05-17

Detaljer

3 Sannsynlighet, Quiz

3 Sannsynlighet, Quiz 3 Sannsynlighet, Quiz Innhold 3.1 Begreper i sannsynlighetsregning... 1 3.2 Addisjon av sannsynligheter... 3.3 Produtsetningen for sannsynlighet... 11 3. Binomis sannsynlighet... 17 3.1 Begreper i sannsynlighetsregning

Detaljer