Oppgaver i kapittel 1 - Løsningsskisser og kommentarer Lærebok:

Størrelse: px
Begynne med side:

Download "Oppgaver i kapittel 1 - Løsningsskisser og kommentarer Lærebok:"

Transkript

1 Oppgaver i apittel - Løsningssisser og ommentarer Lærebo:.6 Vitig oppgave, viser hvordan ree-summer an tilnærmes med integraler. Atuelt hvis vi har formelen for n te ledd, men ie har noen summeformel. (Ie geometris eller aritmetis.) Litt ulart formulert; "om 0 år", jeg velger å tole dette som "i det tiende året". (Fasiten har brut te året på a) og 0 på b) og c), altså noså inonsevent.) Geometris følge med a 00 og. 07 Alle svar oppgitt i millioner. a) Omsetning 0de år: a 0 a [mil] 368 b) Samlet omsetning i 0 år: S 0 a c) a n a n blir som funsjonsuttry : f x a x Summen S n blir summen av stolper i et stolpediagram. Ved å utvide stolpene til retangler med bredde (ledd for hvert heltall), får vi retangler med samme areal som lengden av stolpene. Summen av slie retangler an tilnærmes med integral. Hvis vi legger retanglene mot høyre fra stolpene og tegner en figur, ser vi at vi må integrere fra tiln for å få med alle stolpene. (Alternativt fra 0.5 til n 0.5, hvis vi legger stolpene i midten av retanglene.) Generelt: S n n a n n f x dx,derf x a n an og x n. Tilnærmingen er best hvis: Antall ledd er relativt stort Endringen fra ledd til ledd er liten i forhold til størrelsen på leddene Altså: S x dx x dx x.07 ln ln.07 ln a) a, S a Formelen S a Her har vi: S n.07 fremommer som jent når n i S n a n n. 07x dx n n Som vi ser går dette mot, når antall ledd blir stort. b) Delene av vadratet har areal som leddene i reen. Vi ser at de totalt fyller ut vadratet, som har areal...9 a) S a 3 av 8 oppgaver_.tex

2 b) De brune flatene er leddene i reen. For hver brun flate er det to gule med samme størrelse, altså Gul Brun. Hvis vi lager en ny ree, hvor hvert ledd er en brun gule, vil vi fylle ut hele vadratet, som har arealet : Brun Gul Brun Brun 3Brun Brun 3.95 a) S a 3 b)slårvisammentoogtoleddfårvireen Her er hvert ledd dobbelt så stort som i oppgave.9, så summen må bli Oppgavesamling.0 a) Treanttall:,3,6,0,5,...alles dette fordi vi an lage treanter omtrent sli: 3. Somviserera n 3... n n n (Uttryet er av andre grad i n!) Treanttallene er altså summen av heltallene fra til n. Heltallene utgjør en aritmetis følge (første grad/lineær) og summene av denne blir altså treanttallene som er av andre grad! Det hadde vært fristende å summere enda en gang og se om vi da får tredje grad! n n Treanttall Summer av treanttall n n n n n 6 6 n3 n 3 n Følgen,,0,0,35,... alles tetraedertall, da vi an tegne dem som pyramider hvor alle sideflater er tetraedere. Tetra n n i Treant i (Summer) eller omvendt: Treant n Tetra n Tetra n Tetra n (Differanser) (Aurat som med derivasjon og integrasjon, minser eller øer graden med en, når vi ser på polynomfunsjoner!) Men, hvordan an man finne: n n n 6 6 n3 n 3 n? av 8 oppgaver_.tex

3 Vi sriver f n an 3 bn cn d og ved å sette inn de fire første verdiene i tabellen får vi fire ligninger med fire ujente: f som gir a b c d f som gir 8a b c d f 3 0 som gir 7a 9b 3c d 0 f 0 som gir 6a 6b c d 0 Dette sal gi a,b,c og d 0 som løsning. 6 3 Lommeregneren har også en funsjon som finner funsjoner hvor vi jenner noen av verdiene til funsjonen, såalt regresjon. Med STAT, EDIT legger vi inn de fire første n og f(n) verdiene: L L STAT, CALC, 6:CubicReg brues til å lage uttryet: CubicReg L,L som regner ut: a b 0. 5 c d 3. 7E altså,,,0 6 3 Pascals treant gir oss også følgene med naturlige tall, treanttallene, tetraedertallene o.s.v.: r n Kolonnen r gir de naturlige tallene (som er summen av de foregående olonnene i olonnen r 0) Kolonnen r gir treanttallene (som er summen av de naturlige tallene i r ) Kolonnen r 3 gir tetraedertallene (som er summen av treanttallene i r ) n I fjor i MX lærte dere at tallene i Pascals treant (binomialoeffisientene) unne srives r. Esempelvis er: eller (Sammenlign med tabellen 3 av 8 oppgaver_.tex

4 over!) Denne oppdagelsen gir oss: n De naturlige tallene i olonnen r : n n (selvsagt) n Treanttallene i olonnen r :, bortsett fra at de starter en rad lavere, sli at vi må justere til n n n (som er den samme formelen vi får ved å summere de naturlige tallene som aritmetis ree.) n Tetraedertallene i olonnen r 3:, bortsett fra at de starter to rader lavere, sli at vi må 3 n justere til n n n n n n n3 n n (som vi fi 3 lenger opp.) b) Pyramidetallene,5,,30,55,... har fått dette navnet fordi de an tenes som pyramider med vadrater som grunnflater. En figur vil da vise at lagene oppover i pyramiden vil bli sli: n a n Pyramidetallene er altså summer av vadrattall! Pyramidetallene bør derfor også bli en tredjegradsfunsjon i n. Prøvåviseat: Pyr n n n n 6 3 n3 n n 6 (Se det jeg gjorde på tetraedertallene!).5 a i i i a) Ved innsetting får vi tabellen: i: a i b) Hvis vi ser nøye på tabellen ser vi at summen av f.es. 6 ledd blir: Her opphever påfølgende ledd hverandre; Sli at vi får: S Dette betyr at vi har: S n n n c) Summen av uendelig mange ledd blir derfor grenseverdien (limes på godt latin) av 8 oppgaver_.tex

5 S lim n S n da.35 n går mot 0 når n blir svært stor. Litt ulart med nummerering i denne oppgavetesten.. Jeg antar at oljeforbruet i fjor var 3. mrd og at i år er n, da får a a) "Om" 30 år, toler jeg som i det 30te året: a 30 a [mrd] b) Samlet: S 30 a [mrd] c) Krav: S 30 a Dette er en 30te grads ligning(!), så vi må brue lommeregneren: Y 3.8*(X ^30-)/(X-) Y 80 Finner sjæring med CALC, 5:intersect, og får Alternativet er å prøve seg frem med: sum(seq(3.8*k ^(X-),X,,30) til man får 80. (Putt forsjellige tall i K med f.es..03 STO K ).5 m x m x a) m [g] b) Ved slutten av det 0de året har vi nettopp fått produsert g, det som ble produsert i fjor er det igjen g av, det som ble produsert året før er det igjen 0. 95, o.s.v. sli at vi får total mengde: c) Dette er en geometris ree med sum: S 0 m [g] 0.95 d) Den uendelige reen onvergerer, S lim n a n S [g].5 Mengde i en tablett: x a Setter man opp en tabell ser vi det som er i roppen på dag n er: x tabletten man nettopp to x 0. 6 fra tabletten dagen før x 0. 6 fra tabletten for to dager siden... x 0. 6 n fraførstedag Tilsammen en geometris ree med a x og Krav: S 8[mg] a 8 x 8 x 3. [mg] , da 5 av 8 oppgaver_.tex

6 a) Pytagoras gir: a a a 3 o.s.v. b) Geometris ree med a og c) Samlet lengde: S a.5 a) Lie tall: a n n, aritmetis ree med a,d S n n a a n n n n n n n b) Går vi diagonalt oppover fra nedre venstre hjørne, ser vi at L-ene (som er lenet sammen), er,,6,... Høyden tilsvarer n og bredden er en større, altså n. Antall uler blir altså n n..55 a) a n n gir S n n a a n n n Summene er S,S 3,S 3 6, S 0 (treant-tallene) b) Vi ser at i retangel n er sravert resten li hele retangelet. Bredden er n og høyden er n. Sravert Resten S n Altså: S n S n n n S n n n S n n n.56 a) Ulie tall: a n n,d S n n a a n S n n n S n n n n Summene er altså vadrat-tallene:,,9,6,... b) Se.5 (allerede gjort) c) Ulie tall: L-ene i vadratet til venstre har ulie tall som antall uler. Vi ser at siden er n, og da dette er et vadrat er totalt antall uler n..57 Interessant oppgave, verdt å mere seg! Viser en generell fremgangsmåte som an gjøre om et hvilet som helst periodis desimaltall til en brø. Alle periodise desimaltall er altså rasjonale tall Altså geometris ree: a 3, S a Et esempel til: a S a a a 0 7 a Vi ser på L nummer n: Den an deles i deler som er retangulære med høyde n og 6 av 8 oppgaver_.tex

7 bredde... n n n n n og et vadrat med sider m: Til sammen n n n n n n 3 n n 3 Alle L ene er til sammen: n n 3 og er lit hele vadratet med sider n n og areal n n Vi har derfor: n n 3 n n n n.60 Første figuren er som i.56 og viser at vadrattallene er summen av de ulie tallene. Andre figur viser hvorfor summer av naturlige tall (,,3,...) alles treanttall. Fjerde figur viser utledningen av formelen for treanttall sli som i oppgave.55. Tredje figur viser alternativ utledning: Venstre og minste treant: S n Høyre og større treant: S n n. (Som minste pluss en rad med n estra uler.) Vi får arealet: S n S n n n S n n n n n n n n n n S n n n.300 a) Geometris ree: a, x S n a n xn x Altså: f x xn x b) f x 0 x 3x... n x n (deriverer ledd for ledd) Dette er oppgitt følge. Deriverer vi uttryet vi fi får vi: f x nxn x x n x Dette er altså et uttry for summen i b).30 nxn nx n x n x n xn nx n x Vitig oppgave, viser en teni som ofte an brues når vi ie har formler for summen av en ree. a) Sriver vi ut leddene får vi: a 6 a 3 a a Vi ser at dette ie er geometris eller aritmetis. Summerer vi de første 6 leddene, får vi: Vi ser at siste ledd i hver parentes anselleres av første ledd i neste parentes! Vi sitter igjen med S b) Generelt: S n n ("en halv minus brø med en større og teller enda en større") n c) n n n n n n n d) Med c) får vi: S n n n n n Når n,fårvis (daførstebrøgårmot0.) 7 av 8 oppgaver_.tex

8 .30 Geometris: a, x og derfor S a (når x ) x Ligning: x x, når: x x x x x 0 x ( an ie brues da den strider med forutsetningene for at ligningen sal ha noen mening, det vil si at summen til venstre onvergerer og er et tall.).3 Pytagoras eller trigonometri viser at arealet av treanten er A 3 a. a) Treantene som er fjernet i midten er av den opprinnelige, A. b) Tilsvarende; 3 styer med areal av foregående, A 3 3A 6. a a A 3A 7A 6 6 c) Systemet er greit, vi får 3 ganger så mange nye treanter som i foregående ledd, og hver av dem har et areal som er en av arealet til treantene i foregående ledd. Vi har altså: S A n... Altså: S a A A 3 a 3 d) Nei, men det som blir igjen blir mindre og mindre og arealet av resten går mot null..3 Parabelsegmentet ABC (ACD ABE)... a a a... a a a... 6 Geometris følge: S a a a 3 Esempel: Parabelsegment som utgjør: 0 f x dx,derf x x x. Ved å grafe funsjonen ser vi at den sjærer x-asen i x 0(A) og x (B) og har topp-punt i f (C). Treant ABC har derfor i dette esemplet areal: a gh Etter arimedes sulle integralet da bli a 3 3. Vi prøver: 0 x x dx x x av 8 oppgaver_.tex

R2 - Kapittel 2 - Algebra. I a) Hvilken av disse tallfølgene er aritmetiske, geometriske eller ingen av delene?

R2 - Kapittel 2 - Algebra. I a) Hvilken av disse tallfølgene er aritmetiske, geometriske eller ingen av delene? R2 - Kapittel 2 - Algebra I Hvilen av disse tallfølgene er aritmetise, geometrise eller ingen av delene?.,,,,... 2 4 2. 2,6,8,54,.... 2,6,0,4,... 4.,, 2, 4,... 2 9 5., 5, 7, 9,... 4 9 6 Sriv opp uttryet

Detaljer

Forelesning 20. Kombinatorikk. Roger Antonsen - 7. april 2008

Forelesning 20. Kombinatorikk. Roger Antonsen - 7. april 2008 orelesning Kombinatori Roger Antonsen - 7. april 8 Kombinatori Kombinatori er studiet av opptellinger, ombinasjoner og permutasjoner. Vi finner svar på spørsmål Hvor mange måter...? uten å telle. Vitig

Detaljer

MAT1030 Forelesning 21

MAT1030 Forelesning 21 MAT00 Forelesning Mer ombinatori Roger Antonsen - 5. april 009 (Sist oppdatert: 009-0-5 00:05) Kapittel 9: Mer ombinatori Plan for dagen Mer om permutasjoner og ordnet utvalg ) Mer om ombinasjoner n velg

Detaljer

MAT1030 Forelesning 16

MAT1030 Forelesning 16 MAT1030 Forelesning 16 Reursjon og indusjon Roger Antonsen - 17 mars 009 (Sist oppdatert: 009-03-17 11:4 Forelesning 16 Reursjon og indusjon Forrige gang ga vi endel esempler på reursive definisjoner og

Detaljer

Rekursjon og induksjon. MAT1030 Diskret matematikk. Induksjonsbevis. Induksjonsbevis. Eksempel (Fortsatt) Eksempel

Rekursjon og induksjon. MAT1030 Diskret matematikk. Induksjonsbevis. Induksjonsbevis. Eksempel (Fortsatt) Eksempel Reursjon og indusjon MAT1030 Disret matemati Forelesning 15: Indusjon og reursjon, reurenslininger Dag Normann Matematis Institutt, Universitetet i Oslo 3 mars 008 Onsdag ga vi endel esempler på reursive

Detaljer

Førsteordens lineære differensiallikninger

Førsteordens lineære differensiallikninger Førsteordens lineære differensiallininger Begrepet førsteordens lineære differensiallininger er ie sielig definert i Sinus R. Denne artielen omhandler det temaet. En førsteordens lineær differensiallining

Detaljer

MAT1030 Forelesning 21

MAT1030 Forelesning 21 MAT orelesning Mer ombinatori Dag Normann -. april (Sist oppdatert: -4-4:5) Kapittel 9: Mer ombinatori Oppsummering orrige ue startet vi på apitlet om ombinatori. Vi så på hvordan vi an finne antall måter

Detaljer

Kapittel 9: Mer kombinatorikk

Kapittel 9: Mer kombinatorikk MAT3 Disret Matemati orelesning : Mer ombinatori Dag Normann Matematis Institutt, Universitetet i Oslo Kapittel 9: Mer ombinatori 3. april (Sist oppdatert: -4-3 4:4) MAT3 Disret Matemati 3. april Oppsummering

Detaljer

Forkunnskaper i matematikk for fysikkstudenter. Integrasjon.

Forkunnskaper i matematikk for fysikkstudenter. Integrasjon. De grunnleggende definisjonene L oss strte med følgende prolem: Gitt en ontinuerlig funsjon y = f der f for [, ] Beregn relet A som er vgrenset v grfen til f, -sen, og de to vertile linjene = og = Vi n

Detaljer

R Differensialligninger

R Differensialligninger R - 6.0.05 - Differensialligninger Løsningssisser Oppgave Løs differensialligningene y x y b) y y x c) y 8y 7y 0 Separabel: y y x y dy xdx y x C y x 4 C y C x 4 Da ligningen er ulineær, bør vi også se

Detaljer

Kommentarer til oppgavene

Kommentarer til oppgavene Kommentarer til oppgavene 7.4, 7.7, 7.0, 7.4, 7., 7.98, 7.9 Teknikker: Se/gjette/prøve, gjerne i kombinasjon med tabeller, differanser og: Figurtall. (Eksempel 5, eksempel og figuren nederst side 59, 7.5,

Detaljer

MA1301/MA6301 Tallteori Høst 2016

MA1301/MA6301 Tallteori Høst 2016 Norges tenis naturvitensapelige universitet Institutt for ateatise fag MA/MA6 Tallteori Høst 6 a Vi starter ed å sjee at liheten steer for n. Vi har at i. Heldigvis er (, så vi ser at påstanden steer i

Detaljer

Test, 3 Sannsynlighet

Test, 3 Sannsynlighet Test, Sannsynlighet Innhold. Pascals talltreant... 2.2 Kombinatori g sannsynlighetsberegning... 7. Sannsynlighetsberegninger.... Hypergeometris sannsynlighetsmodell....5 Binomis sannsynlighetsmodell...

Detaljer

Oppgave 1. Oppgave 2. 3MX eksamen Privatister Løsningsskisse Ikke kontrollert og dobbeltsjekket! Kan være feil her...

Oppgave 1. Oppgave 2. 3MX eksamen Privatister Løsningsskisse Ikke kontrollert og dobbeltsjekket! Kan være feil her... MX esamen.5.5 - Privatister Løsningssisse Ie ontrollert og dobbeltsjeet! Kan være feil her... Oppgave a) sin cos,, sin cos sin,tan sin.588.588.588 L.588 b) f lncos f fu lnu,u cos, i vadrant f f u u u sin

Detaljer

d) Poenget er å regne ut terskeltrykket til kappebergarten og omgjøre dette til en tilsvarende høyde av en oljekolonne i vann.

d) Poenget er å regne ut terskeltrykket til kappebergarten og omgjøre dette til en tilsvarende høyde av en oljekolonne i vann. Sisse til løsning Esamen i Reservoarteni 3. juni, 999 Oppgave a) Kapillartry er differansen i try mellom to faser på hver side av den infinitesimale overflaten som siller fasene. Det følger av en minimalisering

Detaljer

Kapittel 9: Mer kombinatorikk

Kapittel 9: Mer kombinatorikk MAT00 Disret Matemati Forelesig : Mer ombiatori Roger Atose Istitutt for iformati, Uiversitetet i Oslo Kapittel 9: Mer ombiatori 5. april 009 (Sist oppdatert: 009-04-5 00:06) MAT00 Disret Matemati 5. april

Detaljer

R2-01.09.14 - Løsningsskisser

R2-01.09.14 - Løsningsskisser R - 0.09.4 - Løsningsskisser Algebra Oppgave Finn den eksplisitte formelen for n te ledd i tallfølgene: a), 4, 6, 8, 0,... b),, 5, 7, 9,... c), 4, 9, 6, 5,... d),, 4, 5 4, 6 5,... a) Vi ser at følgen med

Detaljer

Løsningsforslag Matematikk 2MX - AA mai 2006

Løsningsforslag Matematikk 2MX - AA mai 2006 Løsningsforslag Matematikk 2MX - AA6516-3. mai 2006 eksamensoppgaver.org September 21, 2008 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 2MX er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

Plan. MAT1030 Diskret matematikk. Eksamen 12/6-06 Oppgave 2. Noen tips til eksamen

Plan. MAT1030 Diskret matematikk. Eksamen 12/6-06 Oppgave 2. Noen tips til eksamen Plan MAT1030 Disret matemati Plenumsregning 12: Diverse oppgaver Roger Antonsen Matematis Institutt, Universitetet i Oslo 22. mai 2008 Dette er siste plenumsregning. Vi regner stort sett esamensoppgaver.

Detaljer

ST1201 Statistiske metoder

ST1201 Statistiske metoder ST0 Statistise etoder Norges tenis-naturvitensapelige universitet Institutt for ateatise fag Løsningsforslag - Esaen deseber 008 Oppgave a l(θ = lnl(θ = L(θ = n n f(x i [ θ e ] x i θ [ ln lnθ x ] i = nln

Detaljer

Alle svar skal grunngis. Alle deloppgaver har lik vekt.

Alle svar skal grunngis. Alle deloppgaver har lik vekt. Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Vi denerer matrisene A, B, og C som A = [ ] 3, B = 5 9, C = 3 3. a) Regn ut følgende matrisesummer og matriseprodukter, om mulig. Dersom

Detaljer

Løsningsskisser og kommentarer til oppgaver i kapittel 1 - Rekker

Løsningsskisser og kommentarer til oppgaver i kapittel 1 - Rekker .3 Løsningsskisser og kommentarer til oppgaver i kapittel - Rekker Se også fagdag!.3,.7,.0,.30,.3,.47,.5,.7,.83,.93,.94 Trekanttallene:, 3, 6, 0, 5,... a)viseratdifferanseneer,3,4,5,...osv. Fortsetter

Detaljer

Eksamen R2, Våren 2009

Eksamen R2, Våren 2009 Eksamen R, Våren 009 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave a) Deriver funksjonen f xlnx 3 uln x u x 3 u 6u g u g u f x g

Detaljer

1 MAT100 Obligatorisk innlevering 1. 1 Regn ut i) iii) ii) Regn ut i) ii)

1 MAT100 Obligatorisk innlevering 1. 1 Regn ut i) iii) ii) Regn ut i) ii) 1 MAT1 Obligatorisk innlevering 1 1 Regn ut 3 7 + 1 2. i) 13 14 ii) 11 14 iii) 9 14 2 Regn ut 8 9 + 3 4. i) 57 36 ii) 59 36 iii) 61 36 3 Regn ut 1 4 + 1 8. i) 3 16 ii) 3 8 iii) 5 8 4 Regn ut 1 8 + 1 16.

Detaljer

Vi kan finne formler som gir oss neste tall i tallfølgen dersom vi kjenner ett tall. Det er den rekursive formelen. gir oss gir oss alle tallene a

Vi kan finne formler som gir oss neste tall i tallfølgen dersom vi kjenner ett tall. Det er den rekursive formelen. gir oss gir oss alle tallene a Tallfølger, figurtall, algebra (utgave beregnet for GLU1-7). Av Geir Martinussen, Høgskolen i Oslo og Akershus (Se også: http://www.matematikk.org/uopplegg.html?tid=114140 ) Tallfølger er en nyttig ressurs

Detaljer

Plan for fagdag 1. Plan: Viktig å få gjort arbeidsoppgavene! Differanse- og summefølger. Bruk av kurvetilpasning. Fagdag R

Plan for fagdag 1. Plan: Viktig å få gjort arbeidsoppgavene! Differanse- og summefølger. Bruk av kurvetilpasning. Fagdag R Plan for fagdag 1 R2-04.09.2014 Plan: Teori: Litt om de vanlige teknikkene for å finne ut av følger og rekker: - Differanse- og summefølger. - Bruk av kurvetilpasning. (Regresjon.) - Figur-tall. - Sammenhengen:

Detaljer

Øving 9. Oppgave 1. E t0 = 2. Her er

Øving 9. Oppgave 1. E t0 = 2. Her er FY00/TFY460 Bølgefysi. Institutt for fysi, NTNU. Høsten 03. Veiledning: Mandag. og 8 og fredag 6. otober. Innleveringsfrist: tirsdag 9. otober l :00. Øving 9 Tema: Dipol-Ståling, reflesjon og transmisjon

Detaljer

Matriser. Kapittel 4. Definisjoner og notasjon

Matriser. Kapittel 4. Definisjoner og notasjon Kapittel Matriser Vi har lært å løse et lineært ligningssystem ved å sette opp totalmatrisen til systemet gausseliminere den ved hjelp av radoperasjoner på matrisen Vi skal nå se nærmere på egenskaper

Detaljer

Velkommen til eksamenskurs i matematikk 1

Velkommen til eksamenskurs i matematikk 1 Velkommen til eksamenskurs i matematikk 1 Haakon C. Bakka Institutt for matematiske fag 4.-5. desember 2010 Program I dag og i morgen skal vi holde på fra 10-16 med en pause fra 13-14. Vi skal gjennom:

Detaljer

Matematikk 1 Første deleksamen. Løsningsforslag

Matematikk 1 Første deleksamen. Løsningsforslag HØGSKOLEN I ØSTFOLD, AVDELING FOR INFORMASJONSTEKNOLOGI Matematikk Første deleksamen 4. juni 208 Løsningsforslag Christian F. Heide June 8, 208 OPPGAVE a Forklar kortfattet hva den deriverte av en funksjon

Detaljer

Den kritiske lasten for at den skal begynne å bøye ut kalles knekklasten. Den avhenger av stavens elastiske egenskap og er gitt ved: 2 = (0.

Den kritiske lasten for at den skal begynne å bøye ut kalles knekklasten. Den avhenger av stavens elastiske egenskap og er gitt ved: 2 = (0. HIN Industriteni RA 5.11.03 Side 1 av 7 Kneing Staver Kneing er en elastis eller plastis ustabilitet som forårsaes av trspenninger. For å forstå fenomenet er det vanlig å starte med det enleste tilfelle,

Detaljer

R2 eksamen våren 2018 løsningsforslag

R2 eksamen våren 2018 løsningsforslag R eksamen våren 08 løsningsforslag DEL Uten hjelpemidler Oppgave ( poeng) Deriver funksjonene a) f ( x) = cos ( x ) f ( x) = sin( x ) = sin( x ) b) g ( x) = x sin x g ( x) = sin x + x cos x = sin x + x

Detaljer

Løsningsforslag AA6516 Matematikk 2MX - 07. desember 2005. eksamensoppgaver.org

Løsningsforslag AA6516 Matematikk 2MX - 07. desember 2005. eksamensoppgaver.org Løsningsforslag AA6516 Matematikk 2MX - 07. desember 2005 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 2MX er gratis, og det er lastet ned

Detaljer

Heldagsprøve i matematikk. Svar og løsningsforslag

Heldagsprøve i matematikk. Svar og løsningsforslag Heldagsprøve i matematikk Svar og løsningsforslag Mandag 19. desember 005 Forkurset, Høgskolen i Oslo Tillatte hjelpemidler: Lommeregner. Formelsamling i matematikk. Tid: 5 klokketimer Alle svar må være

Detaljer

Eksamen S2 høsten 2010 Løsning

Eksamen S2 høsten 2010 Løsning Eksamen S høsten 010 Løsning Del 1 Oppgave 1 (4 poeng) a) Deriver funksjonene f x x 3x 4 1) 3 3 3 4 3 3 3 1 1 f x x x f x x f x x x g x 6x e ) x x 6x e x x 6 6 x 6 1 g x g x e x e g x e x P x x 6x 8x 4

Detaljer

Løsningsforslag Eksamen M001 Våren 2002

Løsningsforslag Eksamen M001 Våren 2002 Løsningsforslag Eksamen M Våren Oppgave f(x) = (x )e x Bruker produktregelen i derivasjonen f (x) = e x + (x ) (e x ) For å derivere e x velges kjernen u = x, og vi får (e x ) = e u. f (x) = e x + (x )

Detaljer

1 t f Bestem de partielle deriverte. når 2 2. og f y. Oppgave 2

1 t f Bestem de partielle deriverte. når 2 2. og f y. Oppgave 2 FOA50 eamen høt 004 ide av 5 Oppgave a) Regn ut f ( ) når (i) f( ) = e in (ii) f( ) = ln(+ ) (iii) = + t b) f Betem de partielle deriverte og f y når f(, y) = + y + y. c) Regn ut: f( ) t dt (i) 4 ln d

Detaljer

Løsningsforslag for eksamen i brukerkurs i matematikk A (MA0001)

Løsningsforslag for eksamen i brukerkurs i matematikk A (MA0001) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 8 Løsningsforslag for eksamen i brukerkurs i matematikk A (MA1) Bokmål Tirsdag 1. desember 11 Tid: 9: 1: (4 timer)

Detaljer

Litt om numerisk integrasjon og derivasjon og løsningsforslag til noen ekstraoppgaver MAT-INF 1100 uke 48 (22/11-26/11)

Litt om numerisk integrasjon og derivasjon og løsningsforslag til noen ekstraoppgaver MAT-INF 1100 uke 48 (22/11-26/11) Litt om numerisk integrasjon og derivasjon og løsningsforslag til noen ekstraoppgaver MAT-INF 1100 uke 48 (22/11-26/11) Knut Mørken 22. november 2004 Vi har tidligere i kurset sett litt på numerisk derivasjon

Detaljer

IR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer

IR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer Eksamen 8. desember 16 Eksamenstid 4 timer IR151 Matematikk 1 Bokmål Hvis du blir ferdig med oppgavene under del 1 før kl. 11., så kan og bør du starte på del uten bruk av hjelpemidler. Du kan bare bruke

Detaljer

Seksjonene 9.6-7: Potensrekker og Taylor/Maclaurinrekker

Seksjonene 9.6-7: Potensrekker og Taylor/Maclaurinrekker Seksjonene 9.6-7: Potensrekker og Taylor/Maclaurinrekker Andreas Leopold Knutsen 14. februar 2012 Funksjonsrekker En rekke på formen fn(x) der fn er en funksjon, kalles en n=1 funksjonsrekke. For alle

Detaljer

Kombinatorikk. MAT1030 Diskret matematikk Forelesning 20: Kombinatorikk. Repetisjon. Repetisjon

Kombinatorikk. MAT1030 Diskret matematikk Forelesning 20: Kombinatorikk. Repetisjon. Repetisjon Kombiatori MAT Disret matemati orelesig : Kombiatori Roger Atose Matematis Istitutt, Uiversitetet i Oslo 7. april 8 Kombiatori er studiet av opptelliger, ombiasjoer og permutasjoer. Vi fier svar på spørsmål

Detaljer

eksamensoppgaver.org 4 oppgave1 a.i) Viharulikheten 2x 4 x + 5 > 0 2(x 2) x + 5 > 0 Sådaserviatløsningenpådenneulikhetenblir

eksamensoppgaver.org 4 oppgave1 a.i) Viharulikheten 2x 4 x + 5 > 0 2(x 2) x + 5 > 0 Sådaserviatløsningenpådenneulikhetenblir eksamensoppgaver.org 4 oppgave1 a.i) Viharulikheten 2x 4 x + 5 > 0 2(x 2) x + 5 > 0 Sådaserviatløsningenpådenneulikhetenblir x, 5 2, eksamensoppgaver.org 5 a.ii) Vi har ulikheten og ordner den. 10 x 2

Detaljer

Løsningsforslag. Alle svar skal grunngis. Alle deloppgaver teller like mye.

Løsningsforslag. Alle svar skal grunngis. Alle deloppgaver teller like mye. Eksamen i FO929A - Matematikk Dato: 2013 Målform: Bokmål Antall oppgaver: 5 (20 deloppgaver) Antall sider: 3 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver teller

Detaljer

Løsningsforslag Eksamen S2, våren 2016 Laget av Tommy Odland Dato: 29. januar 2017

Løsningsforslag Eksamen S2, våren 2016 Laget av Tommy Odland Dato: 29. januar 2017 Løsningsforslag Eksamen S, våren 016 Laget av Tommy Odland Dato: 9. januar 017 Del 1 - uten hjelpemidler Oppgave 1 a) Vi skal derivere f(x) = e x. Den generelle regelen er at (e ax ) = ae ax, i vårt tilfelle

Detaljer

Potensrekker. Binomialrekker

Potensrekker. Binomialrekker Potensrekker Potensrekker er rekker på formen: Potensrekker kan brukes på en rekke områder for å finne tilnærmede eller eksakte løsninger på problemer som ellers kanskje må løses numerisk eller krever

Detaljer

Løsningsforslag Eksamen S2, høsten 2017 Laget av Tommy O. Sist oppdatert: 26. november 2017

Løsningsforslag Eksamen S2, høsten 2017 Laget av Tommy O. Sist oppdatert: 26. november 2017 Løsningsforslag Eksamen S, høsten 017 Laget av Tommy O. Sist oppdatert: 6. november 017 Del 1 - uten hjelpemidler Oppgave 1 a) Vi skal derivere f(x) = x 4x 3. Vi bruker regelen samt regelen (x n ) = nx

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4 Matematikk Høst 4 Løsningsforslag Øving 5.7.4 Vi observerer at både y = cos πx 4 og y = x er like funksjoner. Det vil si

Detaljer

SENSORVEILEDNING. Emnenavn: Matematikk 2. Dato:

SENSORVEILEDNING. Emnenavn: Matematikk 2. Dato: SENSORVEILEDNING Emnekode: IRF2004 Emnenavn: Matematikk 2 Eksamensform: Skriftlig Dato: 26..8 Faglærer(e): Tore August Kro Eventuelt: Dette er revidert versjon av sensorveiledningen. Denne sensorveiledningen

Detaljer

Deleksamen i MAT111 - Grunnkurs i Matematikk I

Deleksamen i MAT111 - Grunnkurs i Matematikk I Bergen, oktober. 2004. Løsningsforslag til Deleksamen i MAT - Grunnkurs i Matematikk I Mandag. oktober 2004, kl. 09-2. Oppgave Beregn grensen f.eks. ved hjelp av l Hôpitals regel. lim x ln x x Vi ser at

Detaljer

Løsningsforslag til eksamen i MAT 1100 H07

Løsningsforslag til eksamen i MAT 1100 H07 Løsningsforslag til eksamen i MAT H7 DEL. (3 poeng Hva er den partiellderiverte f y når f(x, y, z = xeyz? xze yz e yz xe yz e yz + xze yz e yz + xze yz + xye yz Riktig svar: a xze yz Begrunnelse: Deriver

Detaljer

Løsningsforslag til Eksamen i MAT111

Løsningsforslag til Eksamen i MAT111 Universitetet i Bergen Matematisk institutt Bergen, 9. desember 25. Bokmål Løsningsforslag til Eksamen i MAT Mandag 9. desember 25, kl. 9-. Dette er kun et løsningsforslag. Oppgave a) Betrakt de to komplekse

Detaljer

Løsningsforslag Eksamen S2, høsten 2015 Laget av Tommy O. Sist oppdatert: 25. mai 2017

Løsningsforslag Eksamen S2, høsten 2015 Laget av Tommy O. Sist oppdatert: 25. mai 2017 Løsningsforslag Eksamen S2, høsten 215 Laget av Tommy O. Sist oppdatert: 25. mai 217 Del 1 - uten hjelpemidler Oppgave 1 a) Vi skal derivere funksjonen f(x) = x 3 + 2x. Formelen vi må bruke er (x n ) =

Detaljer

Eksamen R2 Høsten 2013 Løsning

Eksamen R2 Høsten 2013 Løsning Eksamen R Høsten 03 Løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (3 poeng) Deriver funksjonene a) f 5cos Vi bruker produktregelen

Detaljer

ECON 2200 VÅREN 2014: Oppgaver til plenumsøvelse den 12.mars

ECON 2200 VÅREN 2014: Oppgaver til plenumsøvelse den 12.mars Jo Vislie; mars 04 Ogave ECO 00 VÅRE 04: Ogaver til leumsøvelse de.mars E bedrift har rodutfusjoe = - b, der b er e ositiv ostat. Sisser grafe til dee og agi egesaee til rodutfusjoe (ved gjeomsittsrodutivitet,

Detaljer

Eksemplet bygger på en ide fra Thor Bernt Melø ved Institutt for fysikk ved NTNU og Tom Lindstrøms bok Kalkulus.

Eksemplet bygger på en ide fra Thor Bernt Melø ved Institutt for fysikk ved NTNU og Tom Lindstrøms bok Kalkulus. LÆRERARK...om å tømme en beolder for vann Esemplet bygger på en ide fra Tor Bernt Melø ved Institutt for fysi ved NTNU og Tom Lindstrøms bo Kalulus. Problemstilling: Vi ar et sylindris beger med et sirulært

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger Eksamensdag: 12. desember 2003 Tid for eksamen: 9:00 12:00 Oppgavesettet er på 7 sider.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 00 Modellering og beregninger. Eksamensdag: Torsdag 6. desember 202. Tid for eksamen: 9:00 3:00. Oppgavesettet er på 8

Detaljer

Sensorveiledning eksamen ECON 3610/4610 Høst 2004

Sensorveiledning eksamen ECON 3610/4610 Høst 2004 1 Jon Vislie; november 2004 Sensorveiledning esamen ECO 3610/4610 Høst 2004 Modellen har fem lininger og sju variable (,n,m,,k,x og c); med to frihetsgrader i utgangspuntet og som an brues til å masimere

Detaljer

Alle svar skal grunngis. Alle deloppgaver har lik vekt.

Alle svar skal grunngis. Alle deloppgaver har lik vekt. Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Vi denerer matrisene A, B, og C som A = [ ] 3, B = 5 9, C = 3 3. a) Regn ut følgende matrisesummer og matriseprodukter, om mulig. Dersom

Detaljer

Løsningsforslag Matematikk 2MX - AA6516-9. mai 2007

Løsningsforslag Matematikk 2MX - AA6516-9. mai 2007 Løsningsforslag Matematikk 2MX - AA6516-9. mai 2007 eksamensoppgaver.org September 17, 2008 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 2MX er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

Fasit MAT102 juni 2016

Fasit MAT102 juni 2016 Fasit MAT02 juni 206. (a) Finn egenverdiene og egenvektorene til matrisen ( ) 6 A = 2 7 Svar: λ = 8 og ( ) x = y y ( ) /2, λ = 5 og ( ) x = y y ( ) for alle y 0. (b) Finn den generelle løsningen på systemet

Detaljer

SAMMENDRAG OG FORMLER. Nye Mega 9A og 9B

SAMMENDRAG OG FORMLER. Nye Mega 9A og 9B SAMMENDRAG OG FORMLER Nye Mega 9A og 9B 1 Sammendrag og formler Nye Mega 9A Kapittel A GEOMETRI Regulære mangekanter Når alle sidene er like lange og alle vinklene er like store i en mangekant, sier vi

Detaljer

Kortfattet løsningsforslag til ekstra prøveeksamen i MAT1100, høsten 2014

Kortfattet løsningsforslag til ekstra prøveeksamen i MAT1100, høsten 2014 Kortfattet løsningsforslag til ekstra prøveeksamen i MAT, høsten 4 DEL Oppgave. 3 poeng Hvis f, y = ye y, er f y lik: A y 3 e y B y e y C e y ye y D e y y e y E e y ye y Riktig svar: D e y y e y Oppgave.

Detaljer

1 Mandag 1. februar 2010

1 Mandag 1. februar 2010 Mandag. februar 200 I dag skal vi fortsette med rekkeutviklinger som vi begynte med forrige uke. Vi skal se på litt mer generell rekker og vurdere når de konvergerer, bl.a. gi et enkelt kriterium. Dette

Detaljer

Øving 11. Oppgave 1. E t0 = 2. Her er

Øving 11. Oppgave 1. E t0 = 2. Her er FY00/TFY460 Bølgefysi. Institutt for fysi, NTNU. Høsten 0. Veiledning: Mandag 5. og tirsdag 6. november. Innleveringsfrist: Mandag. november l :00. Øving Tema: Dipol-Ståling, reflesjon og transmisjon av

Detaljer

Normalfordeling. Høgskolen i Gjøvik Avdeling for teknologi, økonomi og ledelse. Statistikk Ukeoppgaver uke 7

Normalfordeling. Høgskolen i Gjøvik Avdeling for teknologi, økonomi og ledelse. Statistikk Ukeoppgaver uke 7 Ueoppgaver i BtG207 Statisti, ue 7 : Normalfordeling. 1 Høgsolen i Gjøvi Avdeling for tenologi, øonomi og ledelse. Statisti Ueoppgaver ue 7 Normalfordeling. Oppgave 1 Anta Z N(0, 1), dvs. Z er standard

Detaljer

Heldagsprøve R

Heldagsprøve R Heldagsprøve R - 7.04. Løsningsskisser Versjon 03.05. Del - Uten hjelpemidler Oppgave a) Deriver funksjonene: ) fx x ln x ) gx 3 cos4x 3) hx ax ln x ) Produktregel: f x x ln x x x x ln x x x ln x ) Kjerneregel:

Detaljer

oppgave1 a.i) a.ii) 2x 3 = x 3 kvadrerer 2x 3=(x 3) 2 2x 3 = x 2 6x + 9 x 2 8x +12=0 abcformelen x = ( 8) ± ( 8)

oppgave1 a.i) a.ii) 2x 3 = x 3 kvadrerer 2x 3=(x 3) 2 2x 3 = x 2 6x + 9 x 2 8x +12=0 abcformelen x = ( 8) ± ( 8) 4 oppgave1 a.i) x = x kvadrerer abcformelen x =(x ) x = x 6x + 9 x 8x +1=0 x = ( 8) ± ( 8) 4 1 1 1 x = 8 ± 4 x 1 = x = 6 Kontrollerersvarenevedåsetteprøve.Førstfor x 1 () = 1=1 og x 6 =6 9= Beggeløsningeneer`ekte`.

Detaljer

STK1100 våren Betinget sannsynlighet og uavhengighet. Vi trenger en definisjon av betinget sannsynlighet! Eksempel 1

STK1100 våren Betinget sannsynlighet og uavhengighet. Vi trenger en definisjon av betinget sannsynlighet! Eksempel 1 STK00 våren 07 Betinget sannsynlighet og uavhengighet Esempel Vi vil først ved hjelp av et esempel se intuitivt på hva betinget sannsynlighet betyr. Vi legger fire røde ort og to svarte ort i en bune.

Detaljer

EKSAMEN BOKMÅL STEMMER. DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember :00-13: FAGKODE: IR Matematikk 1

EKSAMEN BOKMÅL STEMMER. DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember :00-13: FAGKODE: IR Matematikk 1 EKSAMEN BOKMÅL DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember 15 9:-13: FAGKODE: FAGNAVN: IR151 Matematikk 1 HJELPEMIDLER: Del 1: kl 9.-11. Ingen Del : kl 11.-13. Lommeregner Lærebok etter fritt valg Matematisk

Detaljer

Eksamen R2 høsten 2014 løsning

Eksamen R2 høsten 2014 løsning Eksamen R høsten 04 løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (3 poeng) Deriver funksjonene a) f x cos3x Vi bruker kjerneregelen

Detaljer

, men det blir svært tungvindt her.) 3 xe3x 1 9 e3x C 1 9 e3x 3x 1 C

, men det blir svært tungvindt her.) 3 xe3x 1 9 e3x C 1 9 e3x 3x 1 C Oppgave a) Deriver funksjonene: ) fx x sinx uv u v uv gir: f x x sinx x cosx x sinx x cosx ) gx sinx sinxcosx sinx, x k cosx cosx g x cosx (x k) (Kan også bruke u v u vuv, men det blir svært tungvindt

Detaljer

Eksamen R2, Høst 2012, løsning

Eksamen R2, Høst 2012, løsning Eksamen R, Høst 0, løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave ( poeng) Deriver funksjonene a) cos f e Vi bruker produktregelen

Detaljer

R2 kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka

R2 kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka R kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka E Bruker formelen cos 36 cos( 8 ) E sin 8 v og sin8 5 cos v sin sin8 5 5 6 5 5 8 5 5 8 6 5 8 6 5 8 8 3 5 5 5 a f ( ) sin 5 cos f ( ) 5cos

Detaljer

Løsningsforslag til eksamen i MAT1110, 13/6-07

Løsningsforslag til eksamen i MAT1110, 13/6-07 Løsningsforslag til eksamen i MAT, 3/6-7 Oppgaveteksten er gjengitt i kursiv Oppgave : a) Finn de stasjonære (kritiske) punktene til f(x, ) = x + 4x Løsning: Finner først de partiellderiverte: (x, ) x

Detaljer

Fasit til utvalgte oppgaver MAT1100, uka 15/11-19/11

Fasit til utvalgte oppgaver MAT1100, uka 15/11-19/11 Fasit til utvalgte oppgaver MAT uka 5/-9/ Øyvind Ryan oyvindry@ifi.uio.no) November Oppgave 9.. Vi skriver 5x 5 x )x ) A x B x og ser at vi må løse likningene Ax ) Bx ) x )x ) A B 5 A B 5. A B)x A B x

Detaljer

Løsningsforslag for eksamen i AA6526 Matematikk 3MX - 5. desember 2008. eksamensoppgaver.org

Løsningsforslag for eksamen i AA6526 Matematikk 3MX - 5. desember 2008. eksamensoppgaver.org Løsningsforslag for eksamen i AA6526 Matematikk 3MX - 5. desember 2008 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikkeksamen i 3MX er gratis, og det er

Detaljer

Fagdag 3. Kommentarer og oppsummering

Fagdag 3. Kommentarer og oppsummering Fagdag 3 Kommentarer og oppsummering Oppgave I - Pascals trekant Se løsningsforslag oppgave 05 i uke 44. (www.ulven.biz/r/algebra/oppgaver.pdf) Oppgave II - Figurtall " Trekanttallene": a) Kan tenke oss

Detaljer

R2 Eksamen V

R2 Eksamen V R V011 R Eksamen V011-1.05.011 Del 1 - Uten hjelpemidler Oppgave 1 a) 1) Kjerneregel: fx sin u, u x f x cosu 4 cosx ) Produktregel (og kjerneregel på cosx): g x x cosx x sin x xcosx x sin x ) Kjerneregel:

Detaljer

Løsningsforslag til øving 10

Løsningsforslag til øving 10 FY11/TFY4145 Meanis fysi. Institutt for fysi, NTNU. Høsten 211. Løsningsforslag til øving 1 Vi utleder aller først ligningen som fastlegger vinelen φ r, dvs overgangen fra ren rulling til sluring. N2 for

Detaljer

Løsningsforslag Eksamen S2, våren 2014 Laget av Tommy O. Sist oppdatert: 1. september 2018 Antall sider: 11

Løsningsforslag Eksamen S2, våren 2014 Laget av Tommy O. Sist oppdatert: 1. september 2018 Antall sider: 11 Løsningsforslag Eksamen S, våren 014 Laget av Tommy O. Sist oppdatert: 1. september 018 Antall sider: 11 Finner du matematiske feil, skrivefeil, eller andre typer feil? Dette dokumentet er open-source,

Detaljer

Seksjonene 9.6-7: Potensrekker og Taylor/Maclaurinrekker

Seksjonene 9.6-7: Potensrekker og Taylor/Maclaurinrekker Seksjonene 9.6-7: Potensrekker og Taylor/Maclaurinrekker Andreas Leopold Knutsen 15. februar 2010 Funksjonsrekker En rekke på formen f n (x) der f n er en funksjon, kalles en funksjonsrekke. For alle x

Detaljer

DEL 1. Uten hjelpemidler. Oppgave 1 (3 poeng) Oppgave 2 (3 poeng) Oppgave 3 (4 poeng) Oppgave 4 (4 poeng) Deriver funksjonene. b) g( x) 5e sin(2 x)

DEL 1. Uten hjelpemidler. Oppgave 1 (3 poeng) Oppgave 2 (3 poeng) Oppgave 3 (4 poeng) Oppgave 4 (4 poeng) Deriver funksjonene. b) g( x) 5e sin(2 x) DEL 1 Uten hjelpemidler Oppgave 1 (3 poeng) Deriver funksjonene a) f( x) cos(3 x) x b) g( x) 5e sin( x) Oppgave (3 poeng) Bestem integralene a) b) 3 ( )d e 1 x x x x ln x dx Oppgave 3 (4 poeng) a) Løs

Detaljer

ECON 2200 våren 2012: Oppgave på plenumsøvelse den 21. mars

ECON 2200 våren 2012: Oppgave på plenumsøvelse den 21. mars EON våre Jo Vislie ECON våre : Oppgve på pleumsøvelse de. mrs Oppgve E edrift produserer e vre i megde x med produtfusjoe x A, der er ru v reidsrft og er relpitl. Bedrifte opptrer som prisfst vtumstilpsser

Detaljer

IR Matematikk 1. Utsatt Eksamen 8. juni 2012 Eksamenstid 4 timer

IR Matematikk 1. Utsatt Eksamen 8. juni 2012 Eksamenstid 4 timer Utsatt Eksamen 8. juni 212 Eksamenstid 4 timer IR1185 Matematikk 1 Bokmål Hvis du blir ferdig med oppgavene under del 1 før kl. 11., så kan og bør du starte på del 2 uten bruk av hjelpemidler. Du kan bare

Detaljer

Heldagsprøve R2 - Våren

Heldagsprøve R2 - Våren Heldagsprøve R - Våren 07-0.05.7 Løsningsskisser (versjon.05.7) Del - Uten hjelpemidler - timer Oppgave Deriver funksjonene: a) fx x ln x b) gx sinln x c) hx x cos x a) Produktregel: f x ln x x x ln x

Detaljer

OVERFLATE FRA A TIL Å

OVERFLATE FRA A TIL Å OVERFLATE FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til overflate... 2 2 Grunnleggende om overflate.. 2 3 Overflate til:.. 3 3 3a Kube. 3 3b Rett Prisme... 5 3c

Detaljer

Oppfriskningskurs i matematikk 2008

Oppfriskningskurs i matematikk 2008 Oppfriskningskurs i matematikk 2008 Marte Pernille Hatlo Institutt for matematiske fag, NTNU 4.-9. august 2008 Velkommen! 2 Temaer Algebra Trigonometri Funksjoner og derivasjon Integrasjon Eksponensial-

Detaljer

Eksamen R2, Våren 2011 Løsning

Eksamen R2, Våren 2011 Løsning R Eksamen, Våren 0 Løsning Eksamen R, Våren 0 Løsning Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (8 poeng) a) Deriver funksjonene

Detaljer

Eksamen R2, Høsten 2015, løsning

Eksamen R2, Høsten 2015, løsning Eksamen R, Høsten 05, løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (4 poeng) Deriver funksjonene a) f( ) 5cos( ) f 5 sin 0sin

Detaljer

Tar først 2 metoder for å løse differensialligninger. Se forøvrig pdf-dokumentet del 9, diskretisering, sampling i Industriell IT.

Tar først 2 metoder for å løse differensialligninger. Se forøvrig pdf-dokumentet del 9, diskretisering, sampling i Industriell IT. 1 Tar først 2 metoder for å løse differensialligninger. Se forøvrig pdf-doumentet del 9, disretisering, sampling i Industriell IT. 1. Eulers 1-sritt metode. % Eulers metode. (forover) % Fil : simuler_diff_euler_indit_1.m

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger Eksamensdag: 15. oktober 004 Tid for eksamen: 11:00 13:00 Oppgavesettet er på 8 sider.

Detaljer

MA1102 Grunnkurs i analyse II Vår 2019

MA1102 Grunnkurs i analyse II Vår 2019 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA112 Grunnkurs i analyse II Vår 219 8.4.1 Vi skal finne lengden til kurven x = 3t 2, y = 2t 3 der t 1. Som boka beskriver på

Detaljer

a) Blir produktet av to vilkårlige oddetall et partall eller et oddetall? Bevis det.

a) Blir produktet av to vilkårlige oddetall et partall eller et oddetall? Bevis det. Prøve i R1 04.1.15 Del 1 Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Husk å begrunne alle svar. Det skal gå klart frem av besvarelsen hvordan du har tenkt. Oppgave

Detaljer

UNIVERSITETET I BERGEN

UNIVERSITETET I BERGEN BOKMÅL MAT - Høst 03 UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i emnet MAT Grunnkurs i Matematikk I Mandag 6. desember 03, kl. 09- Tillatte hjelpemidler: Lærebok ( Calculus

Detaljer

Sannsynligheten for det usannsynlige kan vi bestemme sannsynligheten for usannsynlige hendelser?

Sannsynligheten for det usannsynlige kan vi bestemme sannsynligheten for usannsynlige hendelser? Sannsynligheten for det usannsynlige an vi bestemme sannsynligheten for usannsynlige hendelser? Ørnulf Borgan Landsurs i matemati Gardermoen 6. mars 2017 H. Aschehoug & Co Sehesteds gate 3, 0102 Oslo Tlf:

Detaljer

x 2 = x 1 f(x 1) (x 0 ) 3 = 2 n x 1 n x 2 n 0 0, , , , , , , , , , , 7124

x 2 = x 1 f(x 1) (x 0 ) 3 = 2 n x 1 n x 2 n 0 0, , , , , , , , , , , 7124 NTNU Institutt for matematiske fag TMA4100 Matematikk 1 høsten 2012 Løsningsforslag - Øving 4 Avsnitt 47 3 La f(x) = x 4 +x 3 med f (x) = 4x 3 +1 Med x 0 = 1 får ein med Newtons metode at Med x 0 = 1 får

Detaljer

Eksamen REA3022 R1, Våren 2009

Eksamen REA3022 R1, Våren 2009 Eksamen REA0 R, Våren 009 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave a) Deriver funksjonene ) f x x 4 4 8 f x x x x x ) g x x

Detaljer