MAT1030 Forelesning 16

Størrelse: px
Begynne med side:

Download "MAT1030 Forelesning 16"

Transkript

1 MAT1030 Forelesning 16 Reursjon og indusjon Roger Antonsen - 17 mars 009 (Sist oppdatert: :4 Forelesning 16 Reursjon og indusjon Forrige gang ga vi endel esempler på reursive definisjoner og vi forlarte hva vi mener med indusjonsbevis Vi ommer til å fortsette i dag med å gi esempler på begge deler Indusjonsbevis er et effetivt matematis viremiddel Våre esempler vil ofte gå ut på å vise at en formel for det generelle leddet i en følge som vi har definert ved reursjon er ritig I flere esempler vil den naturlige gangen være problem reursjon formel indusjonsbevis Esempel Definér f(1 = 1 f(n + 1 = 3f(n + 1 for alle n N Da har vi f(1 = 1 f( = = 4 f(3 = = 13 f(4 = = 40 Vi an fortsette å regne ut f(5, f(6, f(7, osv ettersom f er definert ved reursjon Definer g(1 = 1 g(n + 1 = g(n + 3 n Da har vi g(1 = 1 g( = = 4 1

2 g( = = 13 g(4 = = 40 Vi an fortsette å regne ut g(5, g(6, g(7, osv, og vil finne ut at så langt vi an se vil f(n = g(n Det er da naturlig å gjette på at f(n = g(n for alle n For å vise det, an vi prøve å vise at de to reursive definisjonene er de samme, men vi ser jo at reursjonssrittet i de to definisjonene ie liner på hverandre Vi ser at g(n er summen i en endelig geometris ree En sli ree har en jent sum g(n = n 1 g(n = 3n = 3n 1 Siden vi siert ie huser hvordan vi om frem til denne formelen, og siden vi innfører indusjonsbevis i disse forelesningene, viser vi formelen ved indusjon Setter vi n = 1 inn i formelen, får vi så formelen stemmer for n = 1 3 n 1 = 3 1 Anta at formelen stemmer for et tall n, det vil si at g(n = 3n 1 = 1 = g(1 Da er g(n + 1 = g(n + 3 n = 3n n = 3n n = 3 3n 1 = 3n+1 1

3 som viser at formelen også holder for g(n + 1 Hvis P(n er utsagnet har vi vist P(1 for seg g(n = 3n 1 1 P(1 P( P( P(3 3 P(3 P(4 under ett som spesialtilfeller av P(n P(n + 1 Da er esempelvis P(17 en tautologis onsevens av alt det vi har bevist Prinsippet ba indusjonsbevis er at vi da vet med sierhet at P(n holder for alle n La nå Q(n være påstanden f(n = 3n 1 Vi sal se at vi også an vise nq(n ved indusjon Det vil følge at f og g er de samme funsjonene, eller de samme følgene, hvis man ønser å se på det på den måten Indusjonstarten er grei, siden f(1 = 1 = g(1 og vi vet at formelen holder for g 3

4 Anta så at Da er f(n = 3n 1 f(n + 1 = 3 f(n + 1 = 3 3n = 3n+1 3 Dette viser indusjonsrittet, hvis Q(n holder, så vil Q(n + 1 holde Konlusjonen er at f(n = g(n = 3n 1 for alle n + = 3n+1 1 I læreboa presenteres et lassis esempel på bru av indusjon: n i = i=1 n(n + 1 Dette en formel man finner igjen i direte eller besletet form i mange vitige sammenhenger Esempelvis er det antallet oppgjør i en enel serie med n lag Vi sal se på noen andre, delvis besletede esempler Esempel La f(n være summen av de første n oddetallene, det vil si at Da er f(n = n Vi sal gi et indusjonsbevis n f(n = (i 1 i=1 For å vise starten på indusjonen regner vi ut f(1 = 1 (i 1 = 1 = 1 i=1 Deretter må vi gjennomføre indusjonsrittet: Anta at f(n = n for en n Da er f(n + 1 = f(n + n + 1 = n + n + 1 = (n + 1 Ettersom vi nå har vist både indusjonstarten og indusjonsrittet, følger påstanden ved indusjon 4

5 Esempel Hvis vi treer en rett linje gjennom planet, deler vi planet i to Hvis vi treer en ny linje gjennom planet, deler disse to linjene planet i fire deler Hvis vi prøver oss med tre linjer, greier vi ie å dele planet i mer enn syv deler, og bruer vi fire linjer greier vi masimalt å dele planet i 11 deler Kan vi finne en formel for hvor mange felter vi masimalt an dele planet i ved hjelp av n linjer? La F(n være antall felter vi an dele planet opp i ved å brue n rette linjer Da er F(1 = Selv om vi ie jenner F(n an vi uttrye F(n + 1 ved hjelp av F(n: La l 1,, l n, l n+1 være n+1 rette linjer sli at l 1,, l n deler planet opp i F(n forsjellige felter Den siste linjen l n+1 sjærer hver av de andre linjene høyst en gang, så vi får masimalt n nye sjæringspunter Sjæringspuntene deler l n+1 opp i høyst n+1 linjestyer, og hvert av disse linjestyene deler et av de gamle feltene i to Det betyr at vi får masimalt n + 1 nye felter Da er F(n + 1 = F(n + n + 1 Den neste jobben blir å finne en formel for F(n og så vise den ved indusjon Denne typen formler finner man ofte gjennom prøving og feiling basert på erfaring Vi påstår at F(n = 1 + n(n+1 og vil vise det ved indusjon: Indusjonen starter med n = 1: 1 + 1(1+1 = = = F(1 La oss så gjennomføre indusjonsrittet: Anta at F(n = 1 + n(n + 1 5

6 Da er F(n + 1 = F(n + n + 1 = 1 + n(n (n + 1 = 1 + = 1 + Sal vi være pedantise an vi srive dette om til 1 + n(n + 1 (n + 1((n Indusjonsrittet er gjennomført, så påstanden er bevist + (n + 1 (n + (n + 1 Oppgave Vi vet at vi an dele planet opp i to felter ved hjelp av en sirel Vi vet at to sirler an sjære hverandre i to punter Vi vet at n punter vil dele en sirel opp i n buestyer Bru dette til å definere funsjonen G(n ved reursjon, hvor G(n er antall områder vi an dele planet opp i ved hjelp av n sirler Foreslå en formel for G(n og se om du an vise den ved indusjon Hvorfor forteller svaret på denne oppgaven oss at Venndiagrammer er uegnet til å studere Boolse ombinasjoner av mange mengder? Esempel Enelte regneoperasjoner tar lengere tid jo større input er Det an være av interesse å finne ut hvor mange regnesritt en oppgave rever, avhengig av hvor stort input er Esempelvis an vi prøve å finne ut av hvor mange operasjoner som reves for å utføre sorteringsalgoritmer i Verste tilfelle I gjennomsnitt 6

7 Vanligvis greier man seg med omtrentlige verdier, men ved behov an man brue reursjon og indusjon til å finne nøyatige svar Vi an sortere elementene i en liste ved systematis å bytte om på naboer som ligger i feil reefølge La S(n være det masimale antall slie bytter vi må foreta oss for å sortere en liste Vi ser at S(1 = 0 Hvis listen ommer i fullstendig gal reefølge, må alle objetene i listen bytte plass med alle andre Antall bytter som da trenges for å sortere n + 1 objeter er S(n + 1 = n + S(n, ettersom vi an risiere at vi må flytte siste objet i listen til førsteplass (n bytter og deretter sortere resten av listen (S(n bytter Vi ser ved indusjon at S(n = (n 1n Beviset følger ved samme type utregning i indusjonssrittet som for forrige esempel, og vi tar det på tavlen (eller som øvelse for de som leser/repeterer denne testen Mer Det forrige esemplet er ie helt realistis, enhver sorteringsalgoritme vil innebære at man foretar en ree sammenlininger og sifte av plasser Hvis vi sal analysere hvor tidrevende en algoritme an være, må vi vite hvor mange regnesritt som reves, og hvor lang tid hvert enelt sritt tar Indusjonsbevis an inngå som en del av beviset for at en regneprosess an utføres rast, eventuelt for at den tar for lang tid Esempel Vi minner om definisjonen av binomialoeffisienten ( n = n!!(n! Formelen ( n + 1 an bereftes ved enel regning = ( n 1 ( n + 7

8 På solen lærer man at ( n uttryer på hvor mange måter man an velge ut objeter fra en mengde med n objeter på, når n Det er ie alltid så lett å få med seg begrunnelsen for dette Et alternativ an være å brue indusjon Vi starter med tilfellet n = 1 Da er = 1, og det fins bare en måte å velge ut ett element fra en mengde på ett element Binomialoeffisienten er i dette tilfellet 1, så påstanden holder Indusjonstarten er i bos Anta så at formelen holder for n og at vi sal finne ut av på hvor mange måter vi an plue elementer ut av en mengde {a 1,, a n+1 } på Hvis = n + 1, fins det nøyatig en måte, og 1 = ( n + 1 n + 1 Hvis < n + 1, ser vi på to tilfeller: 1 a n+1 er med i den mengden vi pluer ut a n+1 er ie med i den mengden vi pluer ut I det første tilfellet må vi plue ut 1 elementer fra {a 1,, a n }, og det an vi gjøre på måter ( n 1 8

9 I det andre tilfellet må vi plue ut elementer fra og det an vi gjøre på måter {a 1,, a n }, ( n Summen er da ( n + 1 som angir det totale antall måter vi an plue ut elementer fra en mengde med n elementer på ( n Indusjonsrittet sier at hvis binomialoeffisientene forteller oss, for alle n, hvor mange forsjellige delmengder ( med elementer det fins av en mengde med n elementer, så vil oeffisientene fortelle oss det samme for mengder med n + 1 n + 1 elementer Vi an mere oss at for å vise indusjonsrittet for en trenger vi indusjonsantagelsen både for og for 1 Både reursjon og indusjon er mer generelle fenomener enn det vi har gitt inntry av her Dette sal vi omme tilbae til, både ved å se på reurrenslininger og på reursjon og indusjon over andre matematise struturer enn N eller N 0 Først sal vi imidlertid se på en logiers forlaring på sammenhengen mellom indusjon og reursjon: Anta at vi i utgangspuntet ie har lært om indusjonsbevis Anta videre at P( er et prediat og at vi har bevis for 1 Indusjonstarten P(1 Indusjonsrittet P( P( + 1 hvor er en variabel Ved reursjon an vi da onstruere et bevis B(n for P(n for enhver n ved 1 La B(1 være beviset vi har for P(1 La B(n + 1 være bygget opp av B(n, beviset vi får for P(n P(n + 1 ved å sette inn n for i beviset for indusjonsrittet, og bru av den utsagnslogise regelen om at fra A og A B an vi slutte B 9

10 Når vi vet at vi an onstruere eneltbevis for hver P(n, an vi rasjonalisere virsomheten vår og alle dette et bevis for np(n Reurrens Det i enhver sammenheng mest brute esemplet på reurrens er definisjonen av Fibonaccitallene: F(1 = 1 F( = 1 F(n + = F(n F(n for alle n N Vi ser at denne tallfølgen også er fullstendig bestemt, selv om definisjonen ie helt følger formatet til definisjoner ved reursjon 1 F(1 = 1 F( = 1 3 F(3 = F( + F(1 = = 4 F(4 = F(3 + F( = + 1 = 3 5 F(5 = F(4 + F(3 = 3 + = 5 Det er ingen grenser for hvor langt vi an fortsette: F(6 = 8, F(7 = 13, F(8 = 1, F(9 = 34, Spørsmålet er om vi an finne en esplisitt formel for F(n, og helst om vi an basere dette på en generell forståelse Dette sal vi omme tilbae til Vi sal se på et par andre esempler først Esempel Liningen F(n + = F(n F(n bestemmer ie tallfølgen F(1, F(, F(3, fullstendig, men hver gang vi bestemmer oss for hva F(1 og F( sal være, blir følgen bestemt ved reurrens En sli lining aller vi en reurrenslining Ved direte regning an vi se at F 1 (n = n og F (n = ( 1 n begge tilfredstiller liningen: n+1 + n = n+1 + n+1 = n+ ( 1 n+1 + ( 1 n = ( 1 n ( 1 + = ( 1 n ( 1 = ( 1 n+ Hvis nå A og B er to reelle tall, ser vi at vi også har at F 3 (n = A n + B ( 1 n 10

11 er en løsning Er det nå noen grunn til å lete etter flere løsninger? Svaret er NEI, for vi vet at hvis vi bestemmer F(1 = a og F( = b, har vi bestemt følgen fullstendig Liningene a = A 1 + B ( 1 1 og b = A + B ( 1 vil bestemme A og B, sli at løsningen i et onret tilfelle er en av de vi har sett på Løsningene er A = a + b 6 B = b a 3 Det neste spørsmålet er da selvfølgelig hvordan vi fant på å prøve potenser av og 1 11

Rekursjon og induksjon. MAT1030 Diskret matematikk. Induksjonsbevis. Induksjonsbevis. Eksempel (Fortsatt) Eksempel

Rekursjon og induksjon. MAT1030 Diskret matematikk. Induksjonsbevis. Induksjonsbevis. Eksempel (Fortsatt) Eksempel Reursjon og indusjon MAT1030 Disret matemati Forelesning 15: Indusjon og reursjon, reurenslininger Dag Normann Matematis Institutt, Universitetet i Oslo 3 mars 008 Onsdag ga vi endel esempler på reursive

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 16: Rekursjon og induksjon Roger Antonsen Institutt for informatikk, Universitetet i Oslo 17. mars 009 (Sist oppdatert: 009-03-17 11:4) Forelesning 16 MAT1030 Diskret

Detaljer

MAT1030 Forelesning 21

MAT1030 Forelesning 21 MAT00 Forelesning Mer ombinatori Roger Antonsen - 5. april 009 (Sist oppdatert: 009-0-5 00:05) Kapittel 9: Mer ombinatori Plan for dagen Mer om permutasjoner og ordnet utvalg ) Mer om ombinasjoner n velg

Detaljer

Forelesning 20. Kombinatorikk. Roger Antonsen - 7. april 2008

Forelesning 20. Kombinatorikk. Roger Antonsen - 7. april 2008 orelesning Kombinatori Roger Antonsen - 7. april 8 Kombinatori Kombinatori er studiet av opptellinger, ombinasjoner og permutasjoner. Vi finner svar på spørsmål Hvor mange måter...? uten å telle. Vitig

Detaljer

Kapittel 9: Mer kombinatorikk

Kapittel 9: Mer kombinatorikk MAT3 Disret Matemati orelesning : Mer ombinatori Dag Normann Matematis Institutt, Universitetet i Oslo Kapittel 9: Mer ombinatori 3. april (Sist oppdatert: -4-3 4:4) MAT3 Disret Matemati 3. april Oppsummering

Detaljer

MAT1030 Forelesning 21

MAT1030 Forelesning 21 MAT orelesning Mer ombinatori Dag Normann -. april (Sist oppdatert: -4-4:5) Kapittel 9: Mer ombinatori Oppsummering orrige ue startet vi på apitlet om ombinatori. Vi så på hvordan vi an finne antall måter

Detaljer

Plan. MAT1030 Diskret matematikk. Eksamen 12/6-06 Oppgave 2. Noen tips til eksamen

Plan. MAT1030 Diskret matematikk. Eksamen 12/6-06 Oppgave 2. Noen tips til eksamen Plan MAT1030 Disret matemati Plenumsregning 12: Diverse oppgaver Roger Antonsen Matematis Institutt, Universitetet i Oslo 22. mai 2008 Dette er siste plenumsregning. Vi regner stort sett esamensoppgaver.

Detaljer

MA1301/MA6301 Tallteori Høst 2016

MA1301/MA6301 Tallteori Høst 2016 Norges tenis naturvitensapelige universitet Institutt for ateatise fag MA/MA6 Tallteori Høst 6 a Vi starter ed å sjee at liheten steer for n. Vi har at i. Heldigvis er (, så vi ser at påstanden steer i

Detaljer

R2 - Kapittel 2 - Algebra. I a) Hvilken av disse tallfølgene er aritmetiske, geometriske eller ingen av delene?

R2 - Kapittel 2 - Algebra. I a) Hvilken av disse tallfølgene er aritmetiske, geometriske eller ingen av delene? R2 - Kapittel 2 - Algebra I Hvilen av disse tallfølgene er aritmetise, geometrise eller ingen av delene?.,,,,... 2 4 2. 2,6,8,54,.... 2,6,0,4,... 4.,, 2, 4,... 2 9 5., 5, 7, 9,... 4 9 6 Sriv opp uttryet

Detaljer

Repetisjon. MAT1030 Diskret Matematikk. Oppsummering. Oppsummering. Forelesning 15: Rekursjon og induksjon. Roger Antonsen

Repetisjon. MAT1030 Diskret Matematikk. Oppsummering. Oppsummering. Forelesning 15: Rekursjon og induksjon. Roger Antonsen MAT1030 Diskret Matematikk Forelesning 15: og induksjon Roger Antonsen Institutt for informatikk, Universitetet i Oslo Repetisjon 11. mars 2009 (Sist oppdatert: 2009-03-10 20:38) MAT1030 Diskret Matematikk

Detaljer

Oppgaver i kapittel 1 - Løsningsskisser og kommentarer Lærebok:

Oppgaver i kapittel 1 - Løsningsskisser og kommentarer Lærebok: Oppgaver i apittel - Løsningssisser og ommentarer Lærebo:.6 Vitig oppgave, viser hvordan ree-summer an tilnærmes med integraler. Atuelt hvis vi har formelen for n te ledd, men ie har noen summeformel.

Detaljer

STK1100 våren Betinget sannsynlighet og uavhengighet. Vi trenger en definisjon av betinget sannsynlighet! Eksempel 1

STK1100 våren Betinget sannsynlighet og uavhengighet. Vi trenger en definisjon av betinget sannsynlighet! Eksempel 1 STK00 våren 07 Betinget sannsynlighet og uavhengighet Esempel Vi vil først ved hjelp av et esempel se intuitivt på hva betinget sannsynlighet betyr. Vi legger fire røde ort og to svarte ort i en bune.

Detaljer

Logiske innenheter (i GKS og PHIGS) kreves ikke i besvarelsen: String Locator Pick Choice Valuator Stroke

Logiske innenheter (i GKS og PHIGS) kreves ikke i besvarelsen: String Locator Pick Choice Valuator Stroke Oppgave a) Geometrise (eller grafise) primitiver er de grunnleggende bestandelene av en tegning som an tegnes direte ved enel (uten bru av ombinasjoner) bru av de tegnefunsjonene som en API tilbyr. (Forsjellige

Detaljer

MAT1030 Forelesning 17

MAT1030 Forelesning 17 MAT1030 Forelesning 17 Rekurrenslikninger Roger Antonsen - 18. mars 009 (Sist oppdatert: 009-03-18 19:3) Forelesning 17 Forrige gang ga vi en rekke eksempler på bruk av induksjonsbevis og rekursivt definerte

Detaljer

Mengder, relasjoner og funksjoner

Mengder, relasjoner og funksjoner MAT1030 Diskret Matematikk Forelesning 15: og induksjon Dag Normann Matematisk Institutt, Universitetet i Oslo Mengder, relasjoner og funksjoner 9. mars 2010 (Sist oppdatert: 2010-03-09 14:18) MAT1030

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Institutt for datateni og informasjonsvitensap Esamensoppgave i TDT40 Algoritmer og datastruturer Faglig ontat under esamen Magnus Lie Hetland Telefon 98 5 949 Esamensdato 5 august, 08 Esamenstid (fra

Detaljer

Kapittel 9: Mer kombinatorikk

Kapittel 9: Mer kombinatorikk MAT00 Disret Matemati Forelesig : Mer ombiatori Roger Atose Istitutt for iformati, Uiversitetet i Oslo Kapittel 9: Mer ombiatori 5. april 009 (Sist oppdatert: 009-04-5 00:06) MAT00 Disret Matemati 5. april

Detaljer

Repetisjonshefte MAT1030 Versjon 1.1 Discrete mathemathics with applications 16-Dec-03

Repetisjonshefte MAT1030 Versjon 1.1 Discrete mathemathics with applications 16-Dec-03 Repetisjonshefte MAT1030 Versjon 1.1 Discrete mathemathics with applications 16-Dec-03 1 LOGIKK (S.1-74)... 3 1.0 UTSAGNSVARIABLER & UTSAGNSFORM (FORELESNING 2)... 3 1.1 LOGISK FORM & LOGISK EKVIVALENS...

Detaljer

Førsteordens lineære differensiallikninger

Førsteordens lineære differensiallikninger Førsteordens lineære differensiallininger Begrepet førsteordens lineære differensiallininger er ie sielig definert i Sinus R. Denne artielen omhandler det temaet. En førsteordens lineær differensiallining

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Forelesning 14: Rekursjon og induksjon Dag Normann Matematisk Institutt, Universitetet i Oslo 27. februar 2008 Oppsummering Mandag repeterte vi en del om relasjoner, da spesielt

Detaljer

Test, 3 Sannsynlighet

Test, 3 Sannsynlighet Test, Sannsynlighet Innhold. Pascals talltreant... 2.2 Kombinatori g sannsynlighetsberegning... 7. Sannsynlighetsberegninger.... Hypergeometris sannsynlighetsmodell....5 Binomis sannsynlighetsmodell...

Detaljer

Normalfordeling. Høgskolen i Gjøvik Avdeling for teknologi, økonomi og ledelse. Statistikk Ukeoppgaver uke 7

Normalfordeling. Høgskolen i Gjøvik Avdeling for teknologi, økonomi og ledelse. Statistikk Ukeoppgaver uke 7 Ueoppgaver i BtG207 Statisti, ue 7 : Normalfordeling. 1 Høgsolen i Gjøvi Avdeling for tenologi, øonomi og ledelse. Statisti Ueoppgaver ue 7 Normalfordeling. Oppgave 1 Anta Z N(0, 1), dvs. Z er standard

Detaljer

Forelesning 14. Rekursjon og induksjon. Dag Normann februar Oppsummering. Oppsummering. Beregnbare funksjoner

Forelesning 14. Rekursjon og induksjon. Dag Normann februar Oppsummering. Oppsummering. Beregnbare funksjoner Forelesning 14 og induksjon Dag Normann - 27. februar 2008 Oppsummering Mandag repeterte vi en del om relasjoner, da spesielt om ekvivalensrelasjoner og partielle ordninger. Vi snakket videre om funksjoner.

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 29: Kompleksitetsteori Roger Antonsen Institutt for informatikk, Universitetet i Oslo 13. mai 2009 (Sist oppdatert: 2009-05-17 22:38) Forelesning 29: Kompleksitetsteori

Detaljer

Forelesning 29: Kompleksitetsteori

Forelesning 29: Kompleksitetsteori MAT1030 Diskret Matematikk Forelesning 29: Kompleksitetsteori Roger Antonsen Institutt for informatikk, Universitetet i Oslo Forelesning 29: Kompleksitetsteori 13. mai 2009 (Sist oppdatert: 2009-05-17

Detaljer

KONTINUASJONSEKSAMEN I EMNE TDT4230 VISUALISERING TIRSDAG 7. AUGUST 2007 KL LØSNINGSFORSLAG

KONTINUASJONSEKSAMEN I EMNE TDT4230 VISUALISERING TIRSDAG 7. AUGUST 2007 KL LØSNINGSFORSLAG Side av 7 NTNU Norges tenis-naturvitensapelige universitet Faultet for fysi, inforati og ateati Institutt for datateni og inforasjonsvitensap KONTINUASJONSEKSAMEN I EMNE TT23 VISUALISERING TIRSAG 7. AUGUST

Detaljer

Forkunnskaper i matematikk for fysikkstudenter. Integrasjon.

Forkunnskaper i matematikk for fysikkstudenter. Integrasjon. De grunnleggende definisjonene L oss strte med følgende prolem: Gitt en ontinuerlig funsjon y = f der f for [, ] Beregn relet A som er vgrenset v grfen til f, -sen, og de to vertile linjene = og = Vi n

Detaljer

Kombinatorikk. MAT1030 Diskret matematikk Forelesning 20: Kombinatorikk. Repetisjon. Repetisjon

Kombinatorikk. MAT1030 Diskret matematikk Forelesning 20: Kombinatorikk. Repetisjon. Repetisjon Kombiatori MAT Disret matemati orelesig : Kombiatori Roger Atose Matematis Istitutt, Uiversitetet i Oslo 7. april 8 Kombiatori er studiet av opptelliger, ombiasjoer og permutasjoer. Vi fier svar på spørsmål

Detaljer

MAT1030 Forelesning 28

MAT1030 Forelesning 28 MAT1030 Forelesning 28 Kompleksitetsteori Roger Antonsen - 12. mai 2009 (Sist oppdatert: 2009-05-13 08:12) Forelesning 28: Kompleksitetsteori Introduksjon Da er vi klare (?) for siste kapittel, om kompleksitetsteori!

Detaljer

Rekurrens. MAT1030 Diskret matematikk. Rekurrens. Rekurrens. Eksempel. Forelesning 16: Rekurrenslikninger. Dag Normann

Rekurrens. MAT1030 Diskret matematikk. Rekurrens. Rekurrens. Eksempel. Forelesning 16: Rekurrenslikninger. Dag Normann MAT1030 Diskret matematikk Forelesning 16: likninger Dag Normann Matematisk Institutt, Universitetet i Oslo INGEN PLENUMSREGNING 6/3 og 7/3 5. mars 008 MAT1030 Diskret matematikk 5. mars 008 Mandag ga

Detaljer

Sensorveiledning eksamen ECON 3610/4610 Høst 2004

Sensorveiledning eksamen ECON 3610/4610 Høst 2004 1 Jon Vislie; november 2004 Sensorveiledning esamen ECO 3610/4610 Høst 2004 Modellen har fem lininger og sju variable (,n,m,,k,x og c); med to frihetsgrader i utgangspuntet og som an brues til å masimere

Detaljer

Matriser. Kapittel 4. Definisjoner og notasjon

Matriser. Kapittel 4. Definisjoner og notasjon Kapittel Matriser Vi har lært å løse et lineært ligningssystem ved å sette opp totalmatrisen til systemet gausseliminere den ved hjelp av radoperasjoner på matrisen Vi skal nå se nærmere på egenskaper

Detaljer

Kompleksitetsanalyse Helge Hafting 25.1.2005 Opphavsrett: Forfatter og Stiftelsen TISIP Lærestoffet er utviklet for faget LO117D Algoritmiske metoder

Kompleksitetsanalyse Helge Hafting 25.1.2005 Opphavsrett: Forfatter og Stiftelsen TISIP Lærestoffet er utviklet for faget LO117D Algoritmiske metoder Helge Hafting 25.1.2005 Opphavsrett: Forfatter og Stiftelsen TISIP Lærestoffet er utviklet for faget LO117D Algoritmiske metoder Innhold 1 1 1.1 Hva er en algoritme?............................... 1 1.2

Detaljer

EKSAMEN I EMNE TDT4195 BILDETEKNIKK LØRDAG 26. MAI 2007 KL LØSNINGSFORSLAG - GRAFIKK

EKSAMEN I EMNE TDT4195 BILDETEKNIKK LØRDAG 26. MAI 2007 KL LØSNINGSFORSLAG - GRAFIKK Side av 7 NTNU Norges tenis-naturvitensapelige universitet Faultet for informasjonstenologi, matemati og eletroteni Institutt for datateni og informasjonsvitensap EKSAMEN I EMNE TDT495 BILDETEKNIKK LØRDAG

Detaljer

Ukeoppgaver fra kapittel 10 & Induksjonsbevis

Ukeoppgaver fra kapittel 10 & Induksjonsbevis Plenumsregning 11 Ukeoppgaver fra kapittel 10 & Induksjonsbevis Roger Antonsen - 24. april 2008 Grafteori Vi regner oppgavene på tavlen i dag. Oppgave 10.9 Oppgave 10.10 Oppgave 10.11 Oppgave 10.12 Oppgave

Detaljer

Forelesning 30. Kompleksitetsteori. Dag Normann mai Informasjon. Oppsummering

Forelesning 30. Kompleksitetsteori. Dag Normann mai Informasjon. Oppsummering Forelesning 30 Kompleksitetsteori Dag Normann - 14. mai 2008 Informasjon Det er lagt ut program for orakeltjenestene i MAT1030 denne våren på semestersiden. Det blir ikke ordinære gruppetimer fra og med

Detaljer

Eksemplet bygger på en ide fra Thor Bernt Melø ved Institutt for fysikk ved NTNU og Tom Lindstrøms bok Kalkulus.

Eksemplet bygger på en ide fra Thor Bernt Melø ved Institutt for fysikk ved NTNU og Tom Lindstrøms bok Kalkulus. LÆRERARK...om å tømme en beolder for vann Esemplet bygger på en ide fra Tor Bernt Melø ved Institutt for fysi ved NTNU og Tom Lindstrøms bo Kalulus. Problemstilling: Vi ar et sylindris beger med et sirulært

Detaljer

Plenumsregning 10. Diverse ukeoppgaver. Roger Antonsen april Vi øver oss litt på løse rekurrenslikninger.

Plenumsregning 10. Diverse ukeoppgaver. Roger Antonsen april Vi øver oss litt på løse rekurrenslikninger. Plenumsregning 10 Diverse ukeoppgaver Roger Antonsen - 17. april 2008 Vi øver oss litt på løse rekurrenslikninger. Oppgave 7.23 Løs følgende rekurrenslikning (c) t(n) 6t(n 1) + 9t(n 2) = 0, t(1) = 3, t(2)

Detaljer

MAT1030 Forelesning 19

MAT1030 Forelesning 19 MAT1030 Forelesning 19 Generell rekursjon og induksjon Roger Antonsen - 25. mars 2009 (Sist oppdatert: 2009-03-25 11:06) Forelesning 19 Forrige gang så vi på induktivt definerte mengder og noen eksempler

Detaljer

Algoritmer og datastrukturer Avsnitt Algoritmeanalyse

Algoritmer og datastrukturer Avsnitt Algoritmeanalyse Kapittel 5. Biære søetrær Algoritmer og datastruturer Avsitt 5..5 Algoritmeaalyse Avsitt 5..5.5 - Gjeomsittlig avstad mellom to «aboer» i iorde i et biært søetre med forsjellige verdier ver permutasjo

Detaljer

Et detaljert induksjonsbevis

Et detaljert induksjonsbevis Et detaljert induksjonsbevis Knut Mørken 0. august 014 1 Innledning På forelesningen 0/8 gjennomgikk vi i detalj et induksjonsbevis for at formelen n i = 1 n(n + 1) (1) er riktig for alle naturlige tall

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Forelesning 30: Kompleksitetsteori Dag Normann Matematisk Institutt, Universitetet i Oslo 14. mai 2008 Informasjon Det er lagt ut program for orakeltjenestene i MAT1030 denne

Detaljer

MAT1030 Forelesning 10

MAT1030 Forelesning 10 MAT1030 Forelesning 10 Mengdelære Roger Antonsen - 24. februar 2009 (Sist oppdatert: 2009-02-25 08:27) Kapittel 5: Mengdelære Oversikt Vi har nå innført de Boolske operasjonene, union snitt komplement

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Plenumsregning 10: Diverse ukeoppgaver Roger Antonsen Matematisk Institutt, Universitetet i Oslo 17. april 2008 Vi øver oss litt på løse rekurrenslikninger. Oppgave 7.23 Løs

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 10: Mengdelære Roger Antonsen Institutt for informatikk, Universitetet i Oslo 24. februar 2009 (Sist oppdatert: 2009-02-25 08:27) Kapittel 5: Mengdelære MAT1030 Diskret

Detaljer

Forelesning 30: Kompleksitetsteori

Forelesning 30: Kompleksitetsteori MAT1030 Diskret Matematikk Forelesning 30: Kompleksitetsteori Roger Antonsen Institutt for informatikk, Universitetet i Oslo Forelesning 30: Kompleksitetsteori 19. mai 2009 (Sist oppdatert: 2009-05-19

Detaljer

Kapittel 5: Mengdelære

Kapittel 5: Mengdelære MAT1030 Diskret Matematikk Forelesning 10: Mengdelære Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kapittel 5: Mengdelære 24. februar 2009 (Sist oppdatert: 2009-02-25 08:27) MAT1030 Diskret

Detaljer

3 Sannsynlighet, Quiz

3 Sannsynlighet, Quiz 3 Sannsynlighet, Quiz Innhold 3.1 Begreper i sannsynlighetsregning... 1 3.2 Addisjon av sannsynligheter... 3.3 Produtsetningen for sannsynlighet... 11 3. Binomis sannsynlighet... 17 3.1 Begreper i sannsynlighetsregning

Detaljer

Den kritiske lasten for at den skal begynne å bøye ut kalles knekklasten. Den avhenger av stavens elastiske egenskap og er gitt ved: 2 = (0.

Den kritiske lasten for at den skal begynne å bøye ut kalles knekklasten. Den avhenger av stavens elastiske egenskap og er gitt ved: 2 = (0. HIN Industriteni RA 5.11.03 Side 1 av 7 Kneing Staver Kneing er en elastis eller plastis ustabilitet som forårsaes av trspenninger. For å forstå fenomenet er det vanlig å starte med det enleste tilfelle,

Detaljer

Vi sier også at for eksempel 16 er kvadratet av 4. Kvadrattallene kan vi framstille som figurtall av kuler på denne måten:

Vi sier også at for eksempel 16 er kvadratet av 4. Kvadrattallene kan vi framstille som figurtall av kuler på denne måten: 10 Tall og figurer Tallene 1,, 3, 4,, kaller vi de naturlige tallene De naturlige tallene deler vi ofte i partall og oddetall Partallene er de tallene vi kan dele med Det er tallene, 4, 6, 8, 10, Oddetallene

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 2: Kontrollstrukturer, tallsystemer, basis Roger Antonsen Institutt for informatikk, Universitetet i Oslo 14. januar 2009 (Sist oppdatert: 2009-01-14 16:45) Kapittel

Detaljer

1. Åpen sløyfefunksjon når den langsomme digitale regulatoren er en P-regulator.

1. Åpen sløyfefunksjon når den langsomme digitale regulatoren er en P-regulator. D:\Per\Fag\Styresys\SANNOV\11LØSØV5.wd Fag SO507E Styresystemer Løsning heimeøving 5 Sanntid HIST-AFT Mars2011 PHv Utleveres: Ogave 1 A) Analogisering og frevensanalyse. 1. Åen sløyfefunsjon når den langsomme

Detaljer

Relativt primiske tall

Relativt primiske tall Relativt primiske tall To heltall a og b (der ikke begge er 0) kalles relativt primiske hvis gcd(a, b) = 1, dvs. de har ingen felles faktorer utenom 1. NB! a og b trenger ikke være primtall for at de skal

Detaljer

Grafteori. MAT1030 Diskret matematikk. Induksjonsbevis

Grafteori. MAT1030 Diskret matematikk. Induksjonsbevis Grafteori MAT1030 Diskret matematikk Plenumsregning 11: Ukeoppgaver fra kapittel 10 & Induksjonsbevis Roger Antonsen Matematisk Institutt, Universitetet i Oslo 24. april 2008 Vi regner oppgavene på tavlen

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Plenumsregning 11: Ukeoppgaver fra kapittel 10 & Induksjonsbevis Roger Antonsen Matematisk Institutt, Universitetet i Oslo 24. april 2008 Grafteori Vi regner oppgavene på tavlen

Detaljer

STK1100 våren 2015 P A B P B A. Betinget sannsynlighet. Vi trenger en definisjon av betinget sannsynlighet! Eksemplet motiverer definisjonen:

STK1100 våren 2015 P A B P B A. Betinget sannsynlighet. Vi trenger en definisjon av betinget sannsynlighet! Eksemplet motiverer definisjonen: STK00 våren 05 etnget sannsynlghet Svarer tl avsntt.4 læreboa Esempel V vl først ved help av et esempel se ntutvt på hva betnget sannsynlghet betyr V legger fre røde ort og to svarte ort en bune Ørnulf

Detaljer

IN105-javaNelson-2. array, evt. flere dimensjoner. Institutt for informatikk Jens Kaasbøll sept. 1999. En funksjon om gangen En klasse om gangen

IN105-javaNelson-2. array, evt. flere dimensjoner. Institutt for informatikk Jens Kaasbøll sept. 1999. En funksjon om gangen En klasse om gangen "Nelsons affebuti" et esempel på systemutviling med objeter Originale lysar av Jens Kaasbøll - mindre endringer av G. Sagestein og Knut Hegna IN5-javaNelson- Analyse Lageradministrasjon (inventory) Mange

Detaljer

Forelesning 2 torsdag den 21. august

Forelesning 2 torsdag den 21. august Forelesning 2 torsdag den 21 august 15 Flere eksempler på bevis ved induksjon Proposisjon 151 La n være et naturlig tall Da er 1 + 2 + 4 + + 2 n 1 = 2 n 1 Bevis Først sjekker vi om proposisjonen er sann

Detaljer

Lineære likningssystemer og matriser

Lineære likningssystemer og matriser Kapittel 3 Lineære likningssystemer og matriser I dette kapittelet skal vi sette sammen Kapittel 1 og 2. 3.1 Den utvidede matrisen til et likningssystem Vi starter med et lineært likningssystem med m likninger

Detaljer

Obligatorisk oppgave 4 i INF4400 for Jan Erik Ramstad

Obligatorisk oppgave 4 i INF4400 for Jan Erik Ramstad Obligatoris oppgave i INF for Jan Eri Ramstad Jan Eri Ramstad Institutt for Informati Universitetet i Oslo janera@fys.uio.no. Mars6 6. april Bagrunn Worst case transient simulering NAND port Oppgave I

Detaljer

Tallfølger er noe av det første vi treffer i matematikken, for eksempel når vi lærer å telle.

Tallfølger er noe av det første vi treffer i matematikken, for eksempel når vi lærer å telle. Kapittel 1 Tallfølger 1, 2, 3, 4, 5, 6, 7, 8,... Det andre temaet i kurset MAT1001 er differenslikninger. I en differenslikning er den ukjente en tallfølge. I dette kapittelet skal vi legge grunnlaget

Detaljer

8 + AVSLUTTE SPILLET Handelsenheten forteller deg når spillet er over, etter 1 time. BATTERY INFORMATION

8 + AVSLUTTE SPILLET Handelsenheten forteller deg når spillet er over, etter 1 time. BATTERY INFORMATION AVSLUTTE SPILLET andelsenheten forteller deg når spillet er over, etter 1 time. BRAND Regn ut hva du er god for ved å følge disse trinnene: hvis hun eller han landet på dette feltet. (Se side 13.) 1. Tell

Detaljer

R Differensialligninger

R Differensialligninger R - 6.0.05 - Differensialligninger Løsningssisser Oppgave Løs differensialligningene y x y b) y y x c) y 8y 7y 0 Separabel: y y x y dy xdx y x C y x 4 C y C x 4 Da ligningen er ulineær, bør vi også se

Detaljer

Forelesning 4 torsdag den 28. august

Forelesning 4 torsdag den 28. august Forelesning 4 torsdag den 28. august 1.10 Rekursjon Merknad 1.10.1. Hvert tall i sekvensen 1, 2, 4, 8, 16,... er to ganger det foregående. Hvordan kan vi beskrive sekvensen formelt? Vi kan ikke skrive

Detaljer

Modell for befolkningsprojeksjoner for norske regioner. av Eivind Giij e x )

Modell for befolkningsprojeksjoner for norske regioner. av Eivind Giij e x ) IO 68/15 Oslo, 23. juli 1968 Modell for befolningsprojesjoner for norse regioner av Eivind Giij e ) Arbeidsdoument til Nordis demografis symposium i Mattby, Finland, 14. - 16. august 1968. INNHOLD I. Innledning

Detaljer

Matematisk induksjon

Matematisk induksjon Matematisk induksjon 1 Innledning Dette er et nytt forsøk på å forklare induksjon. Strategien min i forelesning var å prøve å unngå å få det til å se ut som magi, ved å forklare prinsippet fort ved hjelp

Detaljer

Generell induksjon og rekursjon. MAT1030 Diskret matematikk. Generell induksjon og rekursjon. Generell induksjon og rekursjon.

Generell induksjon og rekursjon. MAT1030 Diskret matematikk. Generell induksjon og rekursjon. Generell induksjon og rekursjon. MAT1030 Diskret matematikk Forelesning 18: Generell rekursjon og induksjon Dag Normann Matematisk Institutt, Universitetet i Oslo 12. mars 2008 Mandag så vi på induktivt definerte mengder og noen eksempler

Detaljer

MAT1030 Forelesning 2

MAT1030 Forelesning 2 MAT1030 Forelesning 2 Kontrollstrukturer, tallsystemer, basis Dag Normann - 20. januar 2010 (Sist oppdatert: 2010-01-20 12:31) Kapittel 1: Algoritmer (fortsettelse) Kontrollstrukturer I går innførte vi

Detaljer

4 Matriser TMA4110 høsten 2018

4 Matriser TMA4110 høsten 2018 Matriser TMA høsten 8 Nå har vi fått erfaring med å bruke matriser i et par forskjellige sammenhenger Vi har lært å løse et lineært likningssystem ved å sette opp totalmatrisen til systemet og gausseliminere

Detaljer

7 Ordnede ringer, hele tall, induksjon

7 Ordnede ringer, hele tall, induksjon Notat 07 for MAT1140 7 Ordnede ringer, hele tall, induksjon Definition 7.1. La R være utstyrt med addisjon og multiplikasjon slik at vi har å gjøre med en kommutativ ring. Anta videre at R er utstyrt med

Detaljer

d) Poenget er å regne ut terskeltrykket til kappebergarten og omgjøre dette til en tilsvarende høyde av en oljekolonne i vann.

d) Poenget er å regne ut terskeltrykket til kappebergarten og omgjøre dette til en tilsvarende høyde av en oljekolonne i vann. Sisse til løsning Esamen i Reservoarteni 3. juni, 999 Oppgave a) Kapillartry er differansen i try mellom to faser på hver side av den infinitesimale overflaten som siller fasene. Det følger av en minimalisering

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Plenumsregning 11: Ukeoppgaver Mathias Barra Matematisk institutt, Universitetet i Oslo 7. mars 009 (Sist oppdatert: 009-03-30 09:39) Oppgave 7. Finn en rekursiv og en ikke-rekursiv

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 10: Mengdelære Dag Normann Matematisk Institutt, Universitetet i Oslo 17. februar 2010 (Sist oppdatert: 2010-02-17 12:40) Kapittel 5: Mengdelære MAT1030 Diskret Matematikk

Detaljer

Kapittel 5: Mengdelære

Kapittel 5: Mengdelære MAT1030 Diskret Matematikk Forelesning 10: Mengdelære Dag Normann Matematisk Institutt, Universitetet i Oslo Kapittel 5: Mengdelære 17. februar 2010 (Sist oppdatert: 2010-02-17 12:41) MAT1030 Diskret Matematikk

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Plenumsregning 9: Diverse ukeoppgaver Roger Antonsen Matematisk Institutt, Universitetet i Oslo 10. april 2008 Oppgaver fra forelesningene Oppgave (fra forelesningen 10/3) a)

Detaljer

Oppgaver fra forelesningene. MAT1030 Diskret matematikk. Oppgave (fra forelesningen 10/3) Definisjon. Plenumsregning 9: Diverse ukeoppgaver

Oppgaver fra forelesningene. MAT1030 Diskret matematikk. Oppgave (fra forelesningen 10/3) Definisjon. Plenumsregning 9: Diverse ukeoppgaver Oppgaver fra forelesningene MAT1030 Diskret matematikk Plenumsregning 9: Diverse ukeoppgaver Roger Antonsen Matematisk Institutt, Universitetet i Oslo 10. april 2008 Oppgave (fra forelesningen 10/3) a)

Detaljer

Repetisjon og mer motivasjon. MAT1030 Diskret matematikk. Repetisjon og mer motivasjon

Repetisjon og mer motivasjon. MAT1030 Diskret matematikk. Repetisjon og mer motivasjon Repetisjon og mer motivasjon MAT030 Diskret matematikk Forelesning 22: Grafteori Roger Antonsen Matematisk Institutt, Universitetet i Oslo 4. april 2008 Først litt repetisjon En graf består av noder og

Detaljer

EKSAMEN. Ta med utregninger i besvarelsen for å vise hvordan du har kommet fram til svaret.

EKSAMEN. Ta med utregninger i besvarelsen for å vise hvordan du har kommet fram til svaret. EKSAMEN Emneode: ID30005 Emne: Industriell I Dato: 5.2.204 Esamenstid: l. 0900 til l. 300 Hjelpemidler: re A4-ar (ses sider) med egne notater. "ie-ommuniserende" alulator. Faglærer: Robert Roppestad Esamensoppgaven:

Detaljer

Kapittel Praktiske eksempler på førsteordens differensialligninger

Kapittel Praktiske eksempler på førsteordens differensialligninger Kapittel 6.5 - Pratise esempler på førsteordens differensialligninger Versjon: 2.04.203 (En del tryfeil og direte feil er rettet.) De vanligste pratise esemplene på anvendelser av førsteordens differensialligninger

Detaljer

EKSAMEN I EMNE TDT4195 BILDETEKNIKK ONSDAG 25. MAI 2005 KL Løsningsforslag - grafikk

EKSAMEN I EMNE TDT4195 BILDETEKNIKK ONSDAG 25. MAI 2005 KL Løsningsforslag - grafikk NTNU Norges tenis-naturvitensapelige universitet Faultet for informasjonstenologi, matemati og eletroteni Institutt for datateni og informasjonsvitensap EKSAMEN I EMNE TDT4195 BILDETEKNIKK ONSDAG 25. MAI

Detaljer

KONTROLLSTRUKTURER. MAT1030 Diskret matematikk. Kontrollstrukturer. Kontrollstrukturer. Eksempel (Ubegrenset while-løkke)

KONTROLLSTRUKTURER. MAT1030 Diskret matematikk. Kontrollstrukturer. Kontrollstrukturer. Eksempel (Ubegrenset while-løkke) KONTROLLSTRUKTURER MAT1030 Diskret matematikk Forelesning 2: Flere pseudokoder. Representasjoner av tall. Dag Normann Matematisk Institutt, Universitetet i Oslo 16. januar 2008 Mandag innførte vi pseudokoder

Detaljer

Eksempler på praktisk bruk av modulo-regning.

Eksempler på praktisk bruk av modulo-regning. Eksempler på praktisk bruk av modulo-regning. Se http://www.cs.hioa.no/~evav/dm/emner/modulo1.pdf Tverrsum Tverrsummen til et heltall er summen av tallets sifre. Eksempel. a = 7358. Tverrsummen til a er

Detaljer

Test, 2 Algebra. Innhold. 2.1 Tallfølger. R2, Algebra Quiz

Test, 2 Algebra. Innhold. 2.1 Tallfølger. R2, Algebra Quiz Test, Algebra Innhold. Tallfølger.... Tallrekker.... Uendelige geometriske rekker... 7. Induksjonsbevis... 0 Grete Larsen. Tallfølger ) En rekursiv formel uttrykker et ledd i en tallfølge ved hjelp av

Detaljer

Forelesning 2. Flere pseudokoder. Representasjoner av tall. Dag Normann januar 2008 KONTROLLSTRUKTURER. Kontrollstrukturer. Kontrollstrukturer

Forelesning 2. Flere pseudokoder. Representasjoner av tall. Dag Normann januar 2008 KONTROLLSTRUKTURER. Kontrollstrukturer. Kontrollstrukturer Forelesning 2 Flere pseudokoder. Representasjoner av tall. Dag Normann - 16. januar 2008 KONTROLLSTRUKTURER Mandag innførte vi pseudokoder og kontrollstrukturer. Vi hadde tre typer grunn-instruksjoner:

Detaljer

Mer om representasjon av tall

Mer om representasjon av tall Forelesning 3 Mer om representasjon av tall Dag Normann - 21. januar 2008 Oppsummering av Uke 3 Mandag 14.01 og delvis onsdag 16.01 diskuterte vi hva som menes med en algoritme, og vi så på pseudokoder

Detaljer

Kapittel 5: Mengdelære

Kapittel 5: Mengdelære MAT1030 Diskret Matematikk Forelesning 9: Mengdelære Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kapittel 5: Mengdelære 17. februar 2009 (Sist oppdatert: 2009-02-17 15:56) MAT1030 Diskret

Detaljer

Velkommen til Kjøkkengaarden

Velkommen til Kjøkkengaarden ti u b en jø es d le er En ann Velommen til Kjøengaarden EN ANNERLEDES KJØKKENBUTIKK Kjøengaarden holder til i et vaert bygg fra 1812, med moderne design og gamle tømmervegger om hverandre. Her har vi

Detaljer

Forelesning 27. MAT1030 Diskret Matematikk. Bevistrær. Bevistrær. Forelesning 27: Trær. Roger Antonsen. 6. mai 2009 (Sist oppdatert: :28)

Forelesning 27. MAT1030 Diskret Matematikk. Bevistrær. Bevistrær. Forelesning 27: Trær. Roger Antonsen. 6. mai 2009 (Sist oppdatert: :28) MAT1030 Diskret Matematikk Forelesning 27: Trær Roger Antonsen Institutt for informatikk, Universitetet i Oslo Forelesning 27 6. mai 2009 (Sist oppdatert: 2009-05-06 22:28) MAT1030 Diskret Matematikk 6.

Detaljer

Kapittel 15 ANDREGRADSLIGNINGER. Arealet av det ytre kvadratet skal være dobbelt så stort som arealet av bassenget. x =?

Kapittel 15 ANDREGRADSLIGNINGER. Arealet av det ytre kvadratet skal være dobbelt så stort som arealet av bassenget. x =? Arelet v det ytre vdrtet sl være doelt så stort som relet v ssenget.? ( 4) ( 4) > 0 Hvis > 4, så ( 4) 4 4 4,44,44 4 9,66 Løsningen n rues dersom > 0. 9,66 n rues. 9,66 93,3 m 86,60 m ( 4) ( ) 8 6 8 6 8

Detaljer

Forelesning 6 torsdag den 4. september

Forelesning 6 torsdag den 4. september Forelesning 6 torsdag den 4. september 1.13 Varianter av induksjon Merknad 1.13.1. Det finnes mange varianter av induksjon. Noen av disse kalles noen ganger sterk induksjon, men vi skal ikke benytte denne

Detaljer

Forelesning 7 mandag den 8. september

Forelesning 7 mandag den 8. september Forelesning 7 mandag den 8. september 1.1 Absoluttverdien Definisjon 1.1.1. La n være et heltall. Da er absoluttverdien til n: (1) n dersom n 0; (2) n dersom n < 0. Merknad 1.1.2. Med andre ord får vi

Detaljer

Vi kan finne formler som gir oss neste tall i tallfølgen dersom vi kjenner ett tall. Det er den rekursive formelen. gir oss gir oss alle tallene a

Vi kan finne formler som gir oss neste tall i tallfølgen dersom vi kjenner ett tall. Det er den rekursive formelen. gir oss gir oss alle tallene a Tallfølger, figurtall, algebra (utgave beregnet for GLU1-7). Av Geir Martinussen, Høgskolen i Oslo og Akershus (Se også: http://www.matematikk.org/uopplegg.html?tid=114140 ) Tallfølger er en nyttig ressurs

Detaljer

Hint til oppgavene. Uke 34. Uke 35. Fullstendige løsningsforslag finnes på emnesidene for 2017.

Hint til oppgavene. Uke 34. Uke 35. Fullstendige løsningsforslag finnes på emnesidene for 2017. Hint til oppgavene Fullstendige løsningsforslag finnes på emnesidene for 2017. Uke 34 Oppgave 1, 2, 3 og 4 kan alle løses ved å tegne sannhetstabeller, men i flere tilfeller kan man like gjerne manipulere

Detaljer

Plenumsregning 12. Diverse oppgaver. Roger Antonsen mai Eksamen 12/6-06 Oppgave 2. Plan

Plenumsregning 12. Diverse oppgaver. Roger Antonsen mai Eksamen 12/6-06 Oppgave 2. Plan Plenumsregning 12 Diverse oppgaver Roger Antonsen - 22. mai 2008 Plan Dette er siste plenumsregning. Vi regner stort sett eksamensoppgaver. Neste uke blir det repetisjon på mandag og onsdag. Send epost

Detaljer

Forelesning 33. Repetisjon. Dag Normann mai Innledning. Kapittel 11

Forelesning 33. Repetisjon. Dag Normann mai Innledning. Kapittel 11 Forelesning 33 Repetisjon Dag Normann - 26. mai 2008 Innledning Onsdag 21/5 gjorde vi oss ferdige med det meste av den systematiske repetisjonen av MAT1030. Det som gjensto var kapitlene 11 om trær og

Detaljer

MAT1030 Forelesning 14

MAT1030 Forelesning 14 MAT1030 Forelesning 14 Mer om funksjoner Roger Antonsen - 10. mars 2009 (Sist oppdatert: 2009-03-10 11:34) Kapittel 6: Funksjoner Surjektive funksjoner Den neste gruppen av funksjoner vi skal se på er

Detaljer

Oppsummering av Uke 3. MAT1030 Diskret matematikk. Binære tall. Oppsummering av Uke 3

Oppsummering av Uke 3. MAT1030 Diskret matematikk. Binære tall. Oppsummering av Uke 3 Oppsummering av Uke 3 MAT1030 Diskret matematikk Forelesning 3: Mer om representasjon av tall Dag Normann Matematisk Institutt, Universitetet i Oslo 21. januar 2008 Mandag 14.01 og delvis onsdag 16.01

Detaljer

Kapittel Praktiske eksempler på førsteordens differensialligninger

Kapittel Praktiske eksempler på førsteordens differensialligninger Kapittel 6.5 - Pratise esempler på førsteordens differensialligninger De vanligste pratise esemplene på anvendelser av førsteordens differensialligninger Versjon: 7.02.7 Har lagt inn henvisninger til 206-utgaven

Detaljer