Heldagsprøve R

Størrelse: px
Begynne med side:

Download "Heldagsprøve R"

Transkript

1 Heldagsprøve R Løsningsskisser Versjon Del - Uten hjelpemidler Oppgave a) Deriver funksjonene: ) fx x ln x ) gx 3 cos4x 3) hx ax ln x ) Produktregel: f x x ln x x x x ln x x x ln x ) Kjerneregel: gx 3 cosu, u 4x g x 3 sin u4 sin 4x 3) Brøkregel: h x ax ln a ln xa x x ln x (Husk at: a x a x ln a ) b) Bestem integralene: ) xe x dx ax ln a ln x x ln x ax ln axln x xln x ) x x 9 dx 3) x 9 dx 4) tan3 x cos x dx ) Delvis integrasjon: xe x dx x ex ex dx x ex ex dx x ex e x C x ex 4 ex C C 4 ex x ) Variabelskifte: u x 9 du x du x dx x x 9 u ln x 9 C x dx du dx x u du ln u C 3) Brøkdekomponering: x 9 A x3 B x3 Ax3ABx3B x3x3 ABx3A3B x3x3 Ulven av r_hd_704_ls.tex

2 A B 0 3A 3B A 6 B 6 dx dx dx ln x 3 x 9 6 x3 6 x3 6 6 ln x 3 ln x 3 C x3 ln C 6 6 x3 ln x 3 C 4) Variabelskifte: u tan x du dx cos xdu dx cos x tan3 x dx u 3 cos x cos x cos x du u 3 du 4 u4 C 4 tan4 x C c) Vi har gitt rekken: Skriv opp delsummene S, S, S 3, S 4 og bestem S 00. c) Aritmetisk rekke med a 5 og d 5: a n a dn 5 5n 5n S n a a n n 5 5n n 5 nn Vi får da: S 5, S 5, S 3 30, S 4 50 og S d) Vi har gitt rekken: Skriv opp delsummene S, S, S 3, S 4 og bestem n te ledd i rekken. (Ikke n te sum, da måtte vi eventuelt ha brukt regresjon på lommeregner.) d) Ikke aritmetisk eller geometrisk... Vi regner ut delsummene: S n :, 7, 3, 54, 05,... Alltid lurt å sjekke differansene a n :, 6, 6, 3, 6,... d n : 5, 0, 5, 0,... n d n 5n og i d i 5 nn Se c) n te ledd kan lages ved å starte med første ledd og legge til n differanser, altså regne ut: a n a n i d i 5 n n 5 n n 5 n 5 n a e) Bestem parameterene a, b, c og d i funksjonen fx a sinbx c d, x 0, 4 hvis vi vet at fx har største verdi 5, minste verdi, periode 4 og går gjennom punktet 0, 4. e) Amplitude: a max-min 5 Likevektslinje/gjennomsnitt: d maxmin 5 3 b T 4 Ulven av r_hd_704_ls.tex

3 c finner vi vha. punktet 0, 4: sin 0 c 3 4 sin c c k c k 6 6 Velger for enkelthets skyld c i første omløp og får to muligheter: fx sin x 3 eller fx sin x f) Løs differensialligningene: ) y y 0 når y0 ) y y x når y0 3) y y 0y 0 når y0 ) Separabel: y y (Hvis ikke triviell løsning y 0) y y dx dx y dy dx ln y x C e ln y e xc y e x e C y C e x y Ce x Generell løsning: y Ce x (Triviell løsning y 0 inkludert.) y0 : Ce 0 C Spesiell løsning: y e x ) Ikke separabel, må bruke integrerende faktor: IF e dx e x og får da: y e x ye x xe x ye x xe x ye x xe x dx ye x C 4 ex x (Se oppgave b) )!) y Ce x x 4 Cex x (Generell løsning) 4 y0 : Ce C 5 4 Spesiell løsning: y 5 4 ex x 4 Ulven av r_hd_704_ls.tex

4 3) Karakteristisk ligning: r r0 0 abc-formel: r 40 i6 3i Generell løsning: y e x C sin 3x Dcos3x y0 : e 0 C 0 D D y e x C sin 3x cos3x ( Feil i oppgaven: Burde hatt enda en initialbetingelse i oppgaven for å kunne bestemme C, eksempelvis: y 0 Da kunne vi gjort: y e x Csin 3x cos 3xe x C3 cos 3x 3 sin 3x e x C sin 3x cos3x 3C cos3x 3 sin 3x e x C 3 sin 3x 3C cos3x e 0 C30 3C 3C C 3 Og ville da fått spesiell løsning: y e x sin 3x cos3x ) 3 g) Gitt punktene A, 0,, B3,, 4 og C5, 6, 8. ) Bestem AB AC ) Bestem arealet av trekanten ABC. 3) Bestem volumet av pyramiden ABCT, der pyramiden har ABC som grunnflate og T 0, 7, 3 som toppunkt. ) AB,,, AC 4, 6, 6 AB AC e x e y e z , 6 4, 6 4 0,4, 4 ) Areal ABC AB AC ) AT, 7, Volum ABCT 6 AB AC AT 0,4, 4, 7, Del - Med hjelpemidler Oppgave Funksjonen fx er gitt ved: fx 3 sin x, 5 3 x 0, 30 a) Tegn grafen til fx. b) Bestem ved regning eventuelle null-, ekstremal- og vendepunkter til fx. Ulven av r_hd_704_ls.tex

5 c) Skriv om funksjonen til formen: fx a cosbx c d a) Skriver om litt: fx 3 sin x 5 5 Altså amplitude 3, likevektslinje, periode 30 ( ) T 5 og faseforskjøvet 5 til høyre: b) Nullpunkter: 3 sin 5 x 3 0 sin 5 x x k 5 x k x. 5 k30 x 3. 5 k30 ): NP. 5, 0, NP 3. 5, 0 Ekstremalpunkter: Topp-punkter: Maksverdi 3 5 når sin er : x k x. 5 30k 5 3 TP. 5, f. 5. 5, 5 (Ikke TP 30, f30 30, da definisjonsmengden er det åpne intervallet 0, 30. ) Bunn-punkter: Minverdi 3 når sin er : 5 x 3 3 k x k BP 7. 5, f , (Ikke BP 0, f0 0, da definisjonsmengden er det åpne intervallet 0, 30. ) Vendepunkter: Kryssing av likevektslinjen, når sin 0: 5 x 3 0 k x 5 k5 VP 5, f5 5, Ulven av r_hd_704_ls.tex

6 VP 0, f0 0, c) Bruker formlene: sin v cos v og cosv cosv: fx 3 cos x 3 cos x cos x 5 3 cos x cos x Eventuelt: cosinus-funksjon med samme amplitude, periode og likevektslinje, men faseforskjøvet.5 mot høyre: 3 cos x. 5 3 cos.5 x cos x Eller: Rett og slett regne ut c-verdien med for eksempel punktet. 5, 5: 3 cos. 5 c 5 cos 5 c c 0 k c 5 k 6 6 ): 3 cos x Oppgave 3 Vi har gitt funksjonen fx sin x sin x, x 0, Bestem ved regning funksjonens nullpunkter og ekstremalpunkter. Nullpunkter: u u 0, u sin x abc: u u sin x sin x x 3 k x k x 6 6 k ):, 0, 5, 0, 3, Ekstremalpunkter: f x sin x cosx cosx 4 cosxsin x 4 f x 0 cosx 0 sin x 4 x k x k x k x k x k x k Innenfor 0, :, 3. 39, 3, Topp-punkter: TP, f, TP 3, f 3 3, 0 (Lik nullpunkt.) (Ikke TP 3, f, da ikke i definisjonsmengde) Bunnpunkter: BP 0, f0 0, (Endepunkt, i definisjonsmengde) BP 3. 39, f ,. BP , f ,. Ulven av r_hd_704_ls.tex

7 Oppgave 4 En fabrikk lager et skaft til et skrujern. Skaftene ser ut som omdreiningslegemet vi får når vi dreier grafen til fx 3 x e x 4, 0 x om x-aksen. Vi bruker cm som enhet på begge akser. a) Tegn en skisse av skaftet. b) Bestem ved regning diameteren til skaftet der skaftet er bredest. c) Bestem ved regning volumet av skaftet. a) Må tegne en figur av hele skaftet, ikke bare funksjonen, slik jeg har gjort her. b) fx 3x e x 4 Produktregel: f x 3 x e x 4 3x 4 e 4 3 x 3 x 4 e x 4 f x x 4 x 3 x 0 63 x x x 4 4 x 0 x 0 Største diameter: f 3 e [cm] c) V 0 6 f xdx xe x dx Delvis integrasjon: xe x dx x x e e x dx xe x e x dx Ulven av r_hd_704_ls.tex

8 xe x e x C C xe x 4e x V xe x dx 9 xe x 4e x 9 6 e 6 4 e 6 0 e 0 4 e [cm 3 ] (Overslag/kontroll: Litt større enn sylinder med radius og høyde 6: 6 75) Oppgave 5 Ligningen til en kuleflate er gitt ved x 4x y 6y z 8z4 0 a) Finn sentrum og radius i kulen. b) En rett linje l gjennom sentrum er gitt ved: l : x t y 3 t z 4 t Finn skjæringspunktene mellom l og kuleflaten. c) Planene ogtangerer kulen i hvert av skjæringspunktene fra b). Bestem ligningene til planene og. d) Et plan er parallelt med planene ogog deler kuleflaten i to deler slik at den minste delens overflate er en fjerdedel av den totale kuleflaten. Bestem ligningen for planet, gitt at er den muligheten som ligger lengst fra Origo. a) Lager fulle kvadrater: x 4x y 6y 3 z 8z x y 3 z4 5 ): Sentrum S, 3, 4, Radius: R 5 6 b) t 3 t 3 4 t 4 5 t 4t 4t 5 9t 5 t 5 3 Skjæringspunkter: A 5, 3 5, 4 5,, B 5, 3 5, 4 5, 9, c) Planene går gjennom A og B og har retningsvektoren til l, n,, som normalvektor: : x, y, z,, 0 x y z : x 3, y 9 3, z 3 d) Kuleoverflaten er 4R 00 Kulekalotten vi skal skjære ut skal være: Rh 4R 4 h R 5 0,, 0 x y z3 0 Ulven av r_hd_704_ls.tex

9 Avstanden fra sentrum til planet vi skal finne blir da: a R h R R R 5 Planet vårt har formen x y zd 0 Avstanden til Sentrum gitt av: a x Sy S z S d 5 34d 5 6d 5 3 d 5 6d d 5 ): : x y z Kan eventuelt finne et punkt i planet, sentrum i skjæringssirkel: OP OS 5 n, 3, 4 5 7,,, 4, 7 n Og lage planet på vanlig måte: x 7 4 7, y, z,, x y z 47 0 Oppgave 6 En mindre by blir rammet av en influensaepidemi som kan beskrives av differensialligningen: y y000 xy [antall syke], x 0, [måneder] Vi legger merke til at x forekommer på høyre siden av ligningen, slik at dette ikke er en logistisk ligning, så den lar seg ikke løse med de metodene vi har lært. 000 a) Vis at funksjonen y har den deriverte: x 9. Ce9.x y Ce9.x x 9. Ce9.x b) Vis at funksjonen y 000 x 9. Ce9.x tilfredsstiller differensialligningen y y000 xy Ulven av r_hd_704_ls.tex

10 for alle reelle tall C. c) Forklar hvorfor y 0 når x. d) I utgangspunktet har vi en syk, som smitter alle de andre, slik at vi har initialbetingelsen y0. Finn den spesielle løsningen av differensialligningen. e) Hvor mange er syke på det meste, og når skjer det? a) Deriverer som brøk: y 0x 9. Ce9.x 000C9.e 9.x Ce9.x x 9. Ce9.x x Ce9.x x 9. Ce9.x b) VS y Ce9.x x 9. Ce9.x 000 HS x 000 x 9. Ce9.x x Ce9.x x 000 x 9. Ce9.x x Ce9.x x 9. Ce9.x x x 9. Ce9.x x 9. Ce9.x 9. x 9. Ce9.x Ce9.x x 9. Ce9.x 9. Ce9.x Ce9.x x 9. Ce9.x VS HS, y 000 x 9. Ce9.x er løsning av y y000 xy c) x e 9.x x Ce9.x x d) y0 gir: 0 9. Ce0 000 C C Spesiell løsning: y 000 x e9.x 9. e) y Ce9.x x 9. Ce9.x 0 (Se 6a.) e 9.x 0 e 9.x ln e 9.x ln 900 y e x ln ): Det var på det meste 998 syke etter måned. 900 Til slutt, som en liten utfordring, skal vi løse differensialligningen direkte, og skriver den på formen: Ulven av r_hd_704_ls.tex

11 y 9. y xy Dividerer vi med y, får vi: (Hvis y 0 har vi en triviell løsning y 0.) y y 9. y x Så innfører vi en ny variabel u y. f) Forklar hvorfor u y y Da kan vi skrive om ligningen til: u 9. u x g) Løs denne differensialligningen. h) Bytt ut u med y og vis at y 000 x 9. Ce9.x. f) u y y Kjerneregel, med y som kjerne, gir: u y y y y g) Integrerende faktor IF e 9.dx e 9.x u e 9.x 9. ue 9.x xe 9.x ue 9.x xe 9.x ue 9.x xe 9.x dx Delvis integrasjon: xe 9.x x e9.x e9.x xe9.x 9. e9.x dx x e9.x dx e 9.x C xe9.x e 9.x C 9. Så vi får: ue 9.x xe9.x 9. e9.x C u x x Ce 9.x x 9. Ce9.x Generell løsning: u x Ce9.x 9. C 9. e9.x h) u y gir y u 000 x 9. Ce9.x 000 x 9. Ce9.x Verdt å notere seg det generelle tilfellet: y B kyb xy har løsningen Differensialligningen kan skrives: y kby kxy Divisjon med y gir: y kb y y kx Variabelskiftet u y, og u y y gir da:. x kb CekBx u kbu kx, som kan løses med integrerende faktor: Ulven av r_hd_704_ls.tex

12 ue kbx kxe kbx ue kbx kxe kbx dx ue kbx x B ekbx e kbx C kb u x C B kb e kbx Og til slutt: y u x B B kb C e kbx x kb CekBx Ulven av r_hd_704_ls.tex

Heldagsprøve R2 - Våren

Heldagsprøve R2 - Våren Heldagsprøve R - Våren 07-0.05.7 Løsningsskisser (versjon.05.7) Del - Uten hjelpemidler - timer Oppgave Deriver funksjonene: a) fx x ln x b) gx sinln x c) hx x cos x a) Produktregel: f x ln x x x ln x

Detaljer

Heldagsprøve R2. Våren Onsdag 6. Mai Løsningsskisser - Versjon Del 1 - Uten hjelpemidler - 3 timer. Oppgave 1.

Heldagsprøve R2. Våren Onsdag 6. Mai Løsningsskisser - Versjon Del 1 - Uten hjelpemidler - 3 timer. Oppgave 1. Heldagsprøve R Våren 015 Onsdag 6. Mai 09.00-14.00 Løsningsskisser - Versjon 1.05.15 Del 1 - Uten hjelpemidler - timer Oppgave 1 Deriver funksjonene: a) fx tanx Kjerneregel: fx tanu, u x f 1 x cos u x

Detaljer

R2 Eksamen høsten 2014 ( )

R2 Eksamen høsten 2014 ( ) R Eksamen høsten 0 (8..) Løsningsskisser Versjon:.05.6 (Rettet feil i del i oppgave ) Del I - Uten hjelpemidler Oppgave a) Kjerneregel: f x cosu, u x f x 6 sin x b) Produktregel: g x 5e x sin x 5e x cos

Detaljer

R2 Eksamen V

R2 Eksamen V R V011 R Eksamen V011-1.05.011 Del 1 - Uten hjelpemidler Oppgave 1 a) 1) Kjerneregel: fx sin u, u x f x cosu 4 cosx ) Produktregel (og kjerneregel på cosx): g x x cosx x sin x xcosx x sin x ) Kjerneregel:

Detaljer

Løsningsskisser eksamen R

Løsningsskisser eksamen R R 9.. Løsningsskisser eksamen R 9.. Del - Uten hjelpemidler Oppgave a) ) Produktregel: f x e x xe x e x x ) Kjerneregel: g x sin u, u x g x cosu cosx ) Kjerneregel: h x u, u sin x h x u cosx sin x cosx

Detaljer

R2 eksamen våren ( )

R2 eksamen våren ( ) R Eksamen V01 R eksamen våren 01. (1.05.01) Løsningsskisser (Versjon 1.05.1) Del 1 - Uten hjelpemidler Oppgave 1 a) f x sin x sin x b) Kjerneregel (u x): g x 6 cosx 6 cosx c) Produktregel: h x e x sinx

Detaljer

R2 eksamen høsten 2017 løsningsforslag

R2 eksamen høsten 2017 løsningsforslag R eksamen høsten 017 løsningsforslag DEL 1 Uten hjelpemidler Oppgave 1 (5 poeng) Deriver funksjonene a) f x sin3x f x cos3x 3 6cos3x sin x x sin x x sin x x x cos x sin x g x x x b) gx h x x cos x c) h

Detaljer

R2 - Eksamen Løsningsskisser

R2 - Eksamen Løsningsskisser R - V0 R - Eksamen 04.06.0 - Løsningsskisser Del - Uten hjelpemidler Oppgave a) ) Kjerneregel: fx 3 sin u, u x f x 3 cosu 6 cosu 6 cosx ) 3) Produktregel: g x x sin x x cosx x sin x x cosx Kjerneregel:

Detaljer

Eksamen R2, Våren 2011 Løsning

Eksamen R2, Våren 2011 Løsning R Eksamen, Våren 0 Løsning Eksamen R, Våren 0 Løsning Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (8 poeng) a) Deriver funksjonene

Detaljer

R2 - kapittel 5 EF og 6 ABCD

R2 - kapittel 5 EF og 6 ABCD R2 - kapittel 5 EF og 6 ABCD Løsningsskisser Oppgave Løs differensialligningene: a) y x cosx b) y yx x c) y y x a) Eksakt DL, løses direkte: y cosx x y cosx x dx sin x 2 x2 C b) Lineær: y xy x (Kan løse

Detaljer

Eksamen R2 høsten 2014 løsning

Eksamen R2 høsten 2014 løsning Eksamen R høsten 04 løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (3 poeng) Deriver funksjonene a) f x cos3x Vi bruker kjerneregelen

Detaljer

Eksamen R2, Våren 2009

Eksamen R2, Våren 2009 Eksamen R, Våren 009 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave a) Deriver funksjonen f xlnx 3 uln x u x 3 u 6u g u g u f x g

Detaljer

Eksamen R2, Høsten 2015, løsning

Eksamen R2, Høsten 2015, løsning Eksamen R, Høsten 05, løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (4 poeng) Deriver funksjonene a) f( ) 5cos( ) f 5 sin 0sin

Detaljer

Sammendrag R2. www.kalkulus.no. 31. mai 2009

Sammendrag R2. www.kalkulus.no. 31. mai 2009 Sammendrag R2 www.kalkulus.no 31. mai 2009 1 1 Trigonometri Definisjon av sinus og cosinus Sirkelen med sentrum i origo og radius 1 kalles enhetssirkelen. La v være en vinkel i grunnstilling, og la P være

Detaljer

R2 - Funksjoner, integrasjon og trigonometri

R2 - Funksjoner, integrasjon og trigonometri R - Funksjoner, integrasjon og trigonometri Løsningsskisser Del I - Uten hjelpemidler Oppgave 1 Regn ut integralene: a) x cosx dx b) x x 3x dx c) ex cose x dx a) Delvis integrasjon: x cosx dx x sin x sin

Detaljer

Eksamen R2, Høst 2012, løsning

Eksamen R2, Høst 2012, løsning Eksamen R, Høst 0, løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave ( poeng) Deriver funksjonene a) cos f e Vi bruker produktregelen

Detaljer

R2 kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka

R2 kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka R kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka E Bruker formelen cos 36 cos( 8 ) E sin 8 v og sin8 5 cos v sin sin8 5 5 6 5 5 8 5 5 8 6 5 8 6 5 8 8 3 5 5 5 a f ( ) sin 5 cos f ( ) 5cos

Detaljer

Løsningsforslag eksamen R2

Løsningsforslag eksamen R2 Løsningsforslag eksamen R Vår 010 Oppgave 1 a) f (x) = x cos(3x) f (x) = x cos(3x) + x ( sin(3x) 3) = x cos(3x) 3x sin(3x) b) 1. Bruker delvis integrasjon med u = 5x og v = 1 ex slik at u = 5 og v = e

Detaljer

Eksamen R2 høst 2011, løsning

Eksamen R2 høst 2011, løsning Eksamen R høst 0, løsning Oppgave (4 poeng) a) Deriver funksjonene f e ) Bruker produktregelen for derivasjon, uv uv uv f e e e e ) g sin Bruker kjerneregelen på uttrykket cos der u og g u sinu Vi har

Detaljer

Eksamen i FO929A Matematikk Underveiseksamen Dato 30. mars 2007 Tidspunkt Antall oppgaver 4 Sirkelskive i radianer.

Eksamen i FO929A Matematikk Underveiseksamen Dato 30. mars 2007 Tidspunkt Antall oppgaver 4 Sirkelskive i radianer. Eksamen i FO99A Matematikk Underveiseksamen Dato 30. mars 007 Tidspunkt 09.00-14.00 Antall oppgaver 4 Vedlegg Tillatte hjelpemidler Sirkelskive i radianer Godkjent kalkulator Godkjent formelsamling Oppgave

Detaljer

R2 eksamen våren 2018 løsningsforslag

R2 eksamen våren 2018 løsningsforslag R eksamen våren 08 løsningsforslag DEL Uten hjelpemidler Oppgave ( poeng) Deriver funksjonene a) f ( x) = cos ( x ) f ( x) = sin( x ) = sin( x ) b) g ( x) = x sin x g ( x) = sin x + x cos x = sin x + x

Detaljer

UDIRs eksempeloppgave høsten 2008

UDIRs eksempeloppgave høsten 2008 UDIRs eksempeloppgave høsten 008 Løsningsskisser Del Oppgave f x cos3x x sin3x 3 cos3x 6x sin3x fx 3u, u e 4x (Produktregel og kjerneregel på cos3x.) u e 4x 4 (Kjerneregel enda en gang...) d) f x 6uu 6u4e

Detaljer

Løsningsskisser til oppgaver i Kapittel Integrerende faktor

Løsningsskisser til oppgaver i Kapittel Integrerende faktor Løsningsskisser til oppgaver i Kapittel 6.4 - Integrerende faktor Teori: Differensialligninger på formen y fx y gx (lineære i y av første orden) er ikke separable hvis ikke fx og gx er tallkonstanter.

Detaljer

Forkurs, Avdeling for Ingeniørutdanning

Forkurs, Avdeling for Ingeniørutdanning Eksamen i FO99A Matematikk Ordinær Eksamen Dato 8. mai 8 Tidspunkt 9. - 14. Antall oppgaver 4 Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 Deriver følgende

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (5 poeng) Deriver funksjonene a) f( x) 3sin x cos x b) c) g( x) x cosx cos x h( x). Skriv svaret så enkelt som mulig. 1 sin x Oppgave (4 poeng) Bestem integralene a) b)

Detaljer

Eksamen R2 Høsten 2013 Løsning

Eksamen R2 Høsten 2013 Løsning Eksamen R Høsten 03 Løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (3 poeng) Deriver funksjonene a) f 5cos Vi bruker produktregelen

Detaljer

Eksamen R2 vår 2012, løsning

Eksamen R2 vår 2012, løsning Eksamen R vår 0, løsning Oppgave ( poeng) a) Deriver funksjonene ) f sin Bruker kjerneregelen på uttrykket sin der Vi har da guu sinu u cosu cos f cos 6cos ) g sin Vi bruker produktregelen for derivasjon.

Detaljer

Heldagsprøve. Matematikk - R April 2009 Løsningsskisser Ny versjon:

Heldagsprøve. Matematikk - R April 2009 Løsningsskisser Ny versjon: R -Heldagsprøve V10 Heldagsprøve Matematikk - R 9. April 009 Løsningsskisser Ny versjon: 05.05.10 Del 1 Oppgave 1 a) Deriver funksjonen f sinln Deriver funksjonen f 3sin 1 c) Bestem summen av rekken 4

Detaljer

Eksempelsett R2, 2008

Eksempelsett R2, 2008 Eksempelsett R, 008 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave a) Deriver funksjonen f x x cosx f x cosx x s x f x cosx 6x sinx

Detaljer

R2 kapittel 8 Eksamenstrening

R2 kapittel 8 Eksamenstrening R kapittel 8 Eksamenstrening Løsninger til oppgavene i boka Uten hjelpemidler Oppgave E a F (4) = f (4) = 4 4 b f x x [ F x ] F F ( ) Oppgave E5 ( )d = ( ) = (4) () = 6 = 7 Grafen til f ligger over x-aksen

Detaljer

R2 eksamen våren 2017 løsningsforslag

R2 eksamen våren 2017 løsningsforslag R eksamen våren 07 løsningsforslag DEL Uten hjelpemidler Oppgave (5 poeng) Deriver funksjonene a) f 3sin cos f 3cos sin 3cos sin b) g cos uv uv uv der u og v cos Vi bruker produktregelen for derivasjon

Detaljer

Eksamen R2, Våren 2015, løsning

Eksamen R2, Våren 2015, løsning Eksamen R, Våren 05, løsning Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (4 poeng) Deriver funksjonene a) f () =- 3cos f =- 3 - sin

Detaljer

HELDAGSPRØVE. Fredag 9 Mai Løsningsskisse (versjon )

HELDAGSPRØVE. Fredag 9 Mai Løsningsskisse (versjon ) HELDAGSPRØVE Oppgave Fredag 9 Mai 4 Løsningsskisse (versjon 4.5.8) a) Deriver funksjonen fx cosx Kjerneregel: fu cosu, u x f x sinu x x sinx b) Bestem integralet x lnx dx Delvis integrasjon: u x u x 4

Detaljer

Løsningsforslag. f(x) = 2/x + 12x

Løsningsforslag. f(x) = 2/x + 12x Prøve i FO929A - Matematikk Dato: august 212 Målform: Bokmål Antall oppgaver: 5 (2 deloppgaver) Antall sider: 3 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver

Detaljer

Heldagsprøve i matematikk. Svar og løsningsforslag

Heldagsprøve i matematikk. Svar og løsningsforslag Heldagsprøve i matematikk Svar og løsningsforslag Mandag 19. desember 005 Forkurset, Høgskolen i Oslo Tillatte hjelpemidler: Lommeregner. Formelsamling i matematikk. Tid: 5 klokketimer Alle svar må være

Detaljer

Eksamen R2 Høst Løsning

Eksamen R2 Høst Løsning Eksamen R Høst 017 - Løsning Dennis Christensen 7. november 017 Del 1 - Uten Hjelpemidler Oppgave 1 (a) (b) (c) g (x) = f (x) = cos x = 6 cos x, x cos x 1 sin x x = x cos x sin x x, h (x) = 1 cos x + x

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Eksamen R2, Høst 2012

Eksamen R2, Høst 2012 Eksamen R, Høst 01 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Deriver funksjonene a) x cos f x e x b) 3 g x 5 1 sinx Oppgave

Detaljer

Løsningsskisser - Kapittel 6 - Differensialligninger

Løsningsskisser - Kapittel 6 - Differensialligninger Løsningsskisser - Kapittel 6 - Differensialligninger Vi bruker det vi har lært i 6.3 om løsning av separable differensialligninger også i noen av oppgavene fra 6.1 og 6.2 for å knytte denne løsningsteknikken

Detaljer

R2 - Løsningsskisser til noen oppgaver i kapittel 4.1 og 4.2

R2 - Løsningsskisser til noen oppgaver i kapittel 4.1 og 4.2 R2 - Løsningsskisser til noen oppgaver i kapittel 4. og 4.2 405, 406, 4, 43, 49, 420, 422, 424 Versjon: 04..4 405 a) Kjerneregel: f x sin u,u x 2 2x f x cos u 2x 2 2x 2 cos x 2 2x b) Produktregel: uv u

Detaljer

R1 - Eksamen

R1 - Eksamen R1 - Eksamen 31.05.01 Løsningsskisser Del 1 - Uten hjelpemidler Oppgave 1 a) 1) f x 5 3x 1 0 15x 1 ) Kjerneregel: g x 5e u, u 3x g x 5e u 3 15e u 15e 3x b) ln a ln b ln a ln b 3 ln a ln a ln b ln a ln

Detaljer

R1 - Heldagsprøve våren

R1 - Heldagsprøve våren R - Heldagsprøve våren 04 -.05.04 Løsningsskisser Generelle problem: Ikke gi bort gratispoeng, kontroller svar og ikke slurv med enkle oppgaver! (Oppgave,, 5 og 6.) Tegn grafer ordentlig! (Piler på akser,

Detaljer

Løsningsforslag. 3 x + 1 + e. g(x) = 1 + x4 x 2

Løsningsforslag. 3 x + 1 + e. g(x) = 1 + x4 x 2 Prøve i FO929A - Matematikk Dato: 1. juni 2012 Målform: Bokmål Antall oppgaver: 5 (20 deloppgaver) Antall sider: 2 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver

Detaljer

R1 eksamen høsten 2015 løsning

R1 eksamen høsten 2015 løsning R1 eksamen høsten 15 løsning Løsninger laget av Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene a) f

Detaljer

3 Funksjoner R2 Oppgaver

3 Funksjoner R2 Oppgaver 3 Funksjoner R Oppgaver 3.1 Trigonometriske definisjoner... 3. Trigonometriske sammenhenger... 6 3.3 Trigonometriske likninger... 1 3.4 Trigonometriske funksjoner og funksjonsdrøfting... 14 3.5 Omforming

Detaljer

Løsningsforslag R2 Eksamen Nebuchadnezzar Matematikk.net Øistein Søvik

Løsningsforslag R2 Eksamen Nebuchadnezzar Matematikk.net Øistein Søvik Løsningsforslag R2 Eksamen 6 Vår 3.05.20 Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere

Detaljer

Løsningsforslag. Alle svar skal grunngis. Alle deloppgaver teller like mye.

Løsningsforslag. Alle svar skal grunngis. Alle deloppgaver teller like mye. Eksamen i FO929A - Matematikk Dato: 2013 Målform: Bokmål Antall oppgaver: 5 (20 deloppgaver) Antall sider: 3 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver teller

Detaljer

DEL 1. Uten hjelpemidler. er a2 4 og a5 13. a) Bestem den generelle løsningen av differensiallikningen.

DEL 1. Uten hjelpemidler. er a2 4 og a5 13. a) Bestem den generelle løsningen av differensiallikningen. DEL 1 Uten hjelpemidler Oppgave 1 (3 poeng) Deriver funksjonene a) f( x) cos( x ) b) g( x) x sin x Oppgave (5 poeng) Bestem integralene a) b) c) (4 3 ) d x x x 4 ln d 1 0 x x x x dx 4 x Oppgave 3 (3 poeng)

Detaljer

R2 Funksjoner Quiz. Test, 3 Funksjoner

R2 Funksjoner Quiz. Test, 3 Funksjoner Test, Funksjoner Innhold. Trigonometriske definisjoner.... Trigonometriske sammenhenger... 8. Trigonometriske likninger.... Funksjonsdrøfting....5 Omforme trigonometriske uttrykk av typen a sin kx + b

Detaljer

R Differensialligninger

R Differensialligninger R2-26.02.2015 - Differensialligninger Løsningsskisser Oppgave 1 Løs differensialligningene: a) y x e x b) y x y 0 c) y xy x d) y y x a) Eksakt dl: y x e x Løses direkte med vanlig integrasjon: y x2 2 e

Detaljer

DEL 1. Uten hjelpemidler. Oppgave 1 (4 poeng) Oppgave 2 (5 poeng) Oppgave 3 (4 poeng) Deriver funksjonene. g( x) e x. x x x.

DEL 1. Uten hjelpemidler. Oppgave 1 (4 poeng) Oppgave 2 (5 poeng) Oppgave 3 (4 poeng) Deriver funksjonene. g( x) e x. x x x. DEL 1 Uten hjelpemidler Oppgave 1 (4 poeng) Deriver funksjonene a) f( x) 3cosx b) sin g( x) e x c) h( x) x sin x Oppgave (5 poeng) Bestem integralene a) ( 3 ) d x x x b) x cos x dx c) sin d x x x Oppgave

Detaljer

Matematikk R1 Forslag til besvarelse

Matematikk R1 Forslag til besvarelse Matematikk R1 Forslag til besvarelse NITH 4. mars 014 Oppgave 1 a) Regn ut p x) når px) = x 3 3x + 6x 1. p x) = x 3 ) 3x ) + 6x) 0 = 3x ) 3x) + 6 1 = 6x 6x + 6 b) Regn ut p x) når px) = ax + bx + c. Her

Detaljer

Løsningsforslag Matematikk 2MX - AA mai 2006

Løsningsforslag Matematikk 2MX - AA mai 2006 Løsningsforslag Matematikk 2MX - AA6516-3. mai 2006 eksamensoppgaver.org September 21, 2008 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 2MX er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

IR Matematikk 1. Utsatt Eksamen 8. juni 2012 Eksamenstid 4 timer

IR Matematikk 1. Utsatt Eksamen 8. juni 2012 Eksamenstid 4 timer Utsatt Eksamen 8. juni 212 Eksamenstid 4 timer IR1185 Matematikk 1 Bokmål Hvis du blir ferdig med oppgavene under del 1 før kl. 11., så kan og bør du starte på del 2 uten bruk av hjelpemidler. Du kan bare

Detaljer

Løsningsforslag til underveisvurdering i MAT111 vår 2005

Løsningsforslag til underveisvurdering i MAT111 vår 2005 Løsningsforslag til underveisvurdering i MAT111 vår 5 Beregn grenseverdien Oppgave 1 (x 1) ln x x x + 1 Svar: Merk at nevneren er lik (x 1), så vi kan forkorte (x 1) oppe og nede og får (x 1) ln x ln x

Detaljer

Løsningsforslag i matematikk

Løsningsforslag i matematikk Løsningsforslag i matematikk 060808 Oppgave (a) ( a b ) b 4 a (ab) = a b b 4 a a b = a b = b a = a + b + 4 a b = a + + b + 4 + (b) Omskrivning av likningen gir sin(x) + cos(x) = 0 sin(x) cos(x) = tan(x)

Detaljer

Løsningsforslag til Obligatorisk innlevering 7

Løsningsforslag til Obligatorisk innlevering 7 Løsningsforslag til Obligatorisk innlevering 7 Oppgave a) Likningen e 2x 6e x + 5 = 0 er en annengradslikning i e x. Siden ( ) ( 5) = 5 og 5 = 6 så faktoriserer annengradsuttrykket som (e x 5)(e x ). Dette

Detaljer

Innlevering Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Onsdag 15. november 2017 kl 14:30 Antall oppgaver: 8

Innlevering Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Onsdag 15. november 2017 kl 14:30 Antall oppgaver: 8 Innlevering Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Onsdag 15. november 017 kl 14:30 Antall oppgaver: 8 1 Deriver følgende funksjoner a) ( x) b) (3 5x) 6 c) x x + 3 d) x ln

Detaljer

, men det blir svært tungvindt her.) 3 xe3x 1 9 e3x C 1 9 e3x 3x 1 C

, men det blir svært tungvindt her.) 3 xe3x 1 9 e3x C 1 9 e3x 3x 1 C Oppgave a) Deriver funksjonene: ) fx x sinx uv u v uv gir: f x x sinx x cosx x sinx x cosx ) gx sinx sinxcosx sinx, x k cosx cosx g x cosx (x k) (Kan også bruke u v u vuv, men det blir svært tungvindt

Detaljer

Studieretning: Allmenne, økonomiske og administrative fag

Studieretning: Allmenne, økonomiske og administrative fag Eksamen Fag: AA6526 Matematikk 3MX Eksamensdato: 3. mai 2005 Vidaregåande kurs II /Videregående kurs II Studieretning: Allmenne, økonomiske og administrative fag Privatistar / Privatister Oppgåva ligg

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger Eksamensdag: 12. desember 2003 Tid for eksamen: 9:00 12:00 Oppgavesettet er på 7 sider.

Detaljer

eksamensoppgaver.org 4 2e x = 7 e x = 7 2 ln e x = ln 2 x = ln 7 ln 2 ln x 2 ln x = 2 2 ln x ln x = 2 ln x = 2 x = e 2

eksamensoppgaver.org 4 2e x = 7 e x = 7 2 ln e x = ln 2 x = ln 7 ln 2 ln x 2 ln x = 2 2 ln x ln x = 2 ln x = 2 x = e 2 eksamensoppgaver.org 4 oppgave a..i) e x = 7 e x = 7 ( ) 7 ln e x = ln x = ln 7 ln a..ii) ln x ln x = ln x ln x = ln x = x = e a..i) cos x =.8 x [, 6 ] x = arccos(.8) x 6.9 x 6 6.9 x 6.9 x. a..ii) Løserdennemedabc-formelen

Detaljer

R1 - Eksamen V

R1 - Eksamen V Delprøve 1 R1 - Eksamen V09.05.10 Løsningsskisser Oppgave 1 1) Kjerneregel: fx u 4, u x 1 f x 4u 3 x 8xx 1 3 ) Produktregel (og kjerneregel på e x ): g x 1e x xe x 1 xe x lim x xx x lim x x xxx 4xx xxx

Detaljer

Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2006. eksamensoppgaver.org

Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2006. eksamensoppgaver.org Løsningsforslag AA656 Matematikk 3MX Privatister 3. mai 006 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikkeksamen i 3MX er gratis, og det er lastet ned

Detaljer

R2 - Trigonometri

R2 - Trigonometri R - Trigonometri - 17.11.016 Del I - Uten andre hjelpemidler enn lommeregner Oppgave 1 Gjør om vinklene til radianer: a) 18 b) 33 (Regn eksakt!) a) 18 18 b) 33 33 11 180 10 180 60 Oppgave Gjør om vinklene

Detaljer

Del1. Oppgave 1. a) Deriver funksjonen gitt ved. b) Bestem integralene. fx x. 5 e d. x x. c) Løs differensiallikningen. d) 1) Bruk formlene.

Del1. Oppgave 1. a) Deriver funksjonen gitt ved. b) Bestem integralene. fx x. 5 e d. x x. c) Løs differensiallikningen. d) 1) Bruk formlene. Del1 Oppgave 1 a) Deriver funksjonen gitt ved fx x ( ) cos(3 x) b) Bestem integralene 1) x 5 e d x x 6x ) dx x 1 c) Løs differensiallikningen når y y y 3 0 d) 1) Bruk formlene cos( u v) cosu cosv sinu

Detaljer

Prøveeksamen i MAT 1100, H-03 Løsningsforslag

Prøveeksamen i MAT 1100, H-03 Løsningsforslag Prøveeksamen i MAT, H- Løsningsforslag. Integralet cos x dx er lik: +sin x Riktig svar: c) arctan(sin x) + C. Begrunnelse: Sett u = sin x, da er du = cos x dx og vi får: cos x + sin x dx = du du = arctan

Detaljer

Prøve i R2 Integrasjonsmetoder

Prøve i R2 Integrasjonsmetoder Del 1 Hjelpemidler: ingen 1 Oppgave 1 Prøve i R Integrasjonsmetoder Caspar W. Hatlevik 19. oktober 1 Finn de ubestemte integralene og regn ut det bestemte integralet a. x + x + 1dx b. e 4x + x dx c. 1

Detaljer

Løsningsforslag for eksamen i brukerkurs i matematikk A (MA0001)

Løsningsforslag for eksamen i brukerkurs i matematikk A (MA0001) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 8 Løsningsforslag for eksamen i brukerkurs i matematikk A (MA1) Bokmål Tirsdag 1. desember 11 Tid: 9: 1: (4 timer)

Detaljer

Eksamen R2 høsten 2014

Eksamen R2 høsten 2014 Eksamen R høsten 014 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (3 poeng) Deriver funksjonene a) f x cos3x b) gx 5e x sinx Oppgave

Detaljer

Heldagsprøve R Thora Storms vgs.

Heldagsprøve R Thora Storms vgs. R1 HD V01 Heldagsprøve R1-6.04.1 - Thora Storms vgs. Løsningsskisser Del 1 - Uten hjelpemidler Oppgave 1 a) Deriver funksjonene: 1) fp 0. 01p 4 0. 7p 3. 1 f p 0. 01 4p 3 0. 7 0. 084p 3 0. 7 ) gx x 1 x

Detaljer

Oppfriskningskurs i matematikk 2008

Oppfriskningskurs i matematikk 2008 Oppfriskningskurs i matematikk 2008 Marte Pernille Hatlo Institutt for matematiske fag, NTNU 4.-9. august 2008 Velkommen! 2 Temaer Algebra Trigonometri Funksjoner og derivasjon Integrasjon Eksponensial-

Detaljer

Hjelpemidler på del 2 Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Hjelpemidler på del 2 Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Løsningsforslag Eksamen M100 Høsten 1998

Løsningsforslag Eksamen M100 Høsten 1998 Løsningsforslag Eksamen M00 Høsten 998 Oppgave { x y = f(x) = + x + a hvis x ln( + x ) x hvis < x lim f(x) = f( ) = + a = a x lim f(x) = ln( + x ( ) ) ( ) = ln + For at f(x) skal være kont. i x = må lim

Detaljer

DEL 1. Uten hjelpemidler. Oppgave 1 (3 poeng) Oppgave 2 (3 poeng) Oppgave 3 (4 poeng) Oppgave 4 (4 poeng) Deriver funksjonene. b) g( x) 5e sin(2 x)

DEL 1. Uten hjelpemidler. Oppgave 1 (3 poeng) Oppgave 2 (3 poeng) Oppgave 3 (4 poeng) Oppgave 4 (4 poeng) Deriver funksjonene. b) g( x) 5e sin(2 x) DEL 1 Uten hjelpemidler Oppgave 1 (3 poeng) Deriver funksjonene a) f( x) cos(3 x) x b) g( x) 5e sin( x) Oppgave (3 poeng) Bestem integralene a) b) 3 ( )d e 1 x x x x ln x dx Oppgave 3 (4 poeng) a) Løs

Detaljer

Eksamen R1 - H

Eksamen R1 - H Eksamen R1 - H 013-8.11.013 Løsningsskisser Del 1 - Uten hjelpemidler Oppgave 1 a) Kjerneregel: f x e u, u 3x f x e u 3 6e 3x b) Kjerneregel på ln 3x ln u, u 3x gir ln 3x 1 u 3 3 3x 1 x Produktregel gir

Detaljer

Løsningsforslag Eksamen S2, høsten 2016 Laget av Tommy Odland Dato: 27. januar 2017

Løsningsforslag Eksamen S2, høsten 2016 Laget av Tommy Odland Dato: 27. januar 2017 Løsningsforslag Eksamen S, høsten 016 Laget av Tommy Odland Dato: 7. januar 017 Del 1 - uten hjelpemidler Oppgave 1 a) Vi skal derivere f(x) = x 3 5x, og vi kommer til å få bruk for reglene (ax n ) = anx

Detaljer

Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål Eksamen 3.05.0 REA304 Matematikk R Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del : Hjelpemiddel på Del : 5 timar: Del skal leverast inn etter timar. Del skal leverast inn

Detaljer

Eksamen R2, Va ren 2014

Eksamen R2, Va ren 2014 Eksamen R2, Va ren 204 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (3 poeng) Deriver funksjonene a) f sin3 b) 2 g e cos Oppgave 2

Detaljer

R2 - Kapittel 4 - Funksjoner

R2 - Kapittel 4 - Funksjoner R2 - Kapittel 4 - Funksjoner 31.01.13 Løsningsskisser Generelle kommentarer: Kurvetilpasning med lommeregner eller med datamaskin, skal beskrives, eksempelvis: LR: La tabell i listene L1 og L2, brukte

Detaljer

Geometri R2, Prøve 2 løsning

Geometri R2, Prøve 2 løsning Geometri R, Prøve løsning Del 1 Tid: 60 min Hjelpemidler: Skrivesaker Oppgave 1 Gitt punktene P 1, 1,5 og Q 1,4,0 a) Bestem avstanden mellom punktene Avstanden mellom punktene er lengden av PQ PQ 1 1,4

Detaljer

Matematikk 1 Første deleksamen. Løsningsforslag

Matematikk 1 Første deleksamen. Løsningsforslag HØGSKOLEN I ØSTFOLD, AVDELING FOR INFORMASJONSTEKNOLOGI Matematikk Første deleksamen 4. juni 208 Løsningsforslag Christian F. Heide June 8, 208 OPPGAVE a Forklar kortfattet hva den deriverte av en funksjon

Detaljer

Test, 1 Geometri. 1.2 Regning med vektorer. X Riktig. X Galt. R2, Geometri Quiz løsning. Grete Larsen. 1) En vektor har lengde.

Test, 1 Geometri. 1.2 Regning med vektorer. X Riktig. X Galt. R2, Geometri Quiz løsning. Grete Larsen. 1) En vektor har lengde. Test, 1 Geometri Innhold 1.2 Regning med vektorer... 1 1.3 Vektorer på koordinatform... 6 1.4 Vektorproduktet... 11 1.5 Linjer i rommet... 16 1.6 Plan i rommet... 18 1.7 Kuleflater... 22 Grete Larsen 1.2

Detaljer

Terminprøve R2 våren 2014

Terminprøve R2 våren 2014 Terminprøve R2 våren 2014 Magne A. Myhren 30. april 2014 Delprøve 1 må leveres etter 2 timer. Det er da lov å benytte seg av hjelpemidler. Oppgavesettet er på totalt 12 oppgaver fordelt på 6 sider. Kontroller

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

DEL 1. Uten hjelpemidler. Oppgave 1 (3 poeng) Oppgave 2 (5 poeng) Oppgave 3 (4 poeng) S( x) 1 e e e. Deriver funksjonene. Bestem integralene

DEL 1. Uten hjelpemidler. Oppgave 1 (3 poeng) Oppgave 2 (5 poeng) Oppgave 3 (4 poeng) S( x) 1 e e e. Deriver funksjonene. Bestem integralene DEL 1 Uten hjelpemidler Oppgave 1 (3 poeng) Deriver funksjonene a) f( x) 6cos(x 1) b) g( x) cos x sin x Oppgave (5 poeng) Bestem integralene a) (x 3 x) dx b) x cos( x ) dx c) x d x Oppgave 3 ( poeng) En

Detaljer

UNIVERSITETET I BERGEN

UNIVERSITETET I BERGEN Bokmål UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Løsningsforslag til Eksamen i emnet MAT - Grunnkurs i matematikk I Torsdag 22. mai 28, kl. 9-4. Dette er kun et løsningsforslag.

Detaljer

Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 2009

Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 2009 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 009 Oppgave 1 Funksjonen g er definert ved g(x)

Detaljer

Eksamen R2 Høsten 2013

Eksamen R2 Høsten 2013 Eksamen R2 Høsten 203 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (3 poeng) Deriver funksjonene a) f 5cos b) g sin 2 Oppgave 2 (3

Detaljer

Eksamen R1, Va ren 2014, løsning

Eksamen R1, Va ren 2014, løsning Eksamen R1, Va ren 014, løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (4 poeng) Deriver funksjonene a) f x lnx x Vi bruker

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Oppgave 2 Løs oppgavene I og II, og kryss av det alternativet (a, b eller c) som passer best. En funksjon er ikke deriverbar der:

Oppgave 2 Løs oppgavene I og II, og kryss av det alternativet (a, b eller c) som passer best. En funksjon er ikke deriverbar der: Oppgave a) Si kort hva deriverte til en funksjon forteller oss. Hva handler deriverbarhet om? b) Er f (x) = deriverbar for alle reelle x-verdier? x Bestem deriverte til f i sin definisjonsmengde. c) Tegn

Detaljer

Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. x x x x

Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. x x x x Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (5 poeng) Deriver funksjonene gitt ved f 3 6 4 a) f 3 6 6 6 b) g 5ln 3 3 Vi bruker kjerneregelen

Detaljer

Heldagsprøve i R1-8.mai 2009 DEL 1

Heldagsprøve i R1-8.mai 2009 DEL 1 Oppgave 1 Heldagsprøve i R1-8.mai 2009 Løsningsskisser DEL 1 I et koordinatsystem med origo O 0,0 har vi gitt punktene A 1,3, B 3,2 og C t,5. 1. Bestem t slik at AB AC. 2. Bestem t slik at AB AC. 3. Bestem

Detaljer

EKSAMEN. Ingeniør- og Fleksibel ingeniørutdanning.

EKSAMEN. Ingeniør- og Fleksibel ingeniørutdanning. KANDIDATNUMMER: EKSAMEN EMNENAVN: Matematikk. EMNENUMMER: REA42/REA42F EKSAMENSDATO: Mandag 9. august 2 KLASSE: Ingeniør- og Fleksibel ingeniørutdanning. TID: kl. 9. 3.. FAGANSVARLIG: Hans Petter Hornæs

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Løsning av utvalgte øvingsoppgaver til Sigma R2 kapittel 2

Løsning av utvalgte øvingsoppgaver til Sigma R2 kapittel 2 Løsning av utvalgte øvingsoppgaver til Sigma R kapittel B. a Da ABC er 90, blir AC + 8. Siden CAE er 90, blir CE + 8 7. b Vinkelen mellom CE og grunnflata blir vinkel ACE. tan ACE som gir at vinkelen blir

Detaljer

Deriver funksjonene. Gjør greie for hvilke derivasjonsregler du bruker.

Deriver funksjonene. Gjør greie for hvilke derivasjonsregler du bruker. Heldagsprøve i matematikk, 1. desember 006 Forkurs for Ingeniørutdanningen ved HiO, 006/07 Antall oppgaver: Antall timer: 5 timer fra klokken 0900 til klokken 100. Hjelpemidler: Kalkulator og Formelsamling

Detaljer

Løsningsforslag til eksamen i MAT111 - Grunnkurs i Matematikk I

Løsningsforslag til eksamen i MAT111 - Grunnkurs i Matematikk I Universitetet i Bergen Matematisk institutt Bokmål Løsningsforslag til eksamen i MAT111 - Grunnkurs i Matematikk I Mandag 17. desember 2007, kl. 09-14. Oppgave 1 Gitt f(x) = x + x 2 1, 1 x 1. a) Finn og

Detaljer