FYS2130. Tillegg til kapittel 13. Harmonisk oscillator. Løsning med komplekse tall

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "FYS2130. Tillegg til kapittel 13. Harmonisk oscillator. Løsning med komplekse tall"

Transkript

1 FYS130. Tillegg til kapittel 13 Haronisk oscillator. Løsning ed koplekse tall Differensialligningen for en udepet haronisk oscillator er && x+ ω x = 0 (1) so er en hoogen lineær differensialligning av. orden. Vi forsøker ed en løsning på foren x() t = De α t. Dette gir α + ω = 0 der i = 1 α =± iω Den generelle løsningen av (1) kan skrives so en linærkobinasjon av to lineært uavhengige løsninger: iωt 1 x() t = De + D e iωt der D 1 og D er konstanter. Vi setter A iϕ D1 = e i A D = e i iϕ iϕ Vha. Eulers forel, e = cosϕ + isinϕ (Se for eksepel Rottann), får vi i( ωt+ ϕ) i( ωt+ ϕ) i( ωt+ ϕ) i( ωt+ ϕ) A A e e xt () = e e = A = Asin( ω t+ ϕ) () i i i Mekaniske svingninger FYS januar 007 1

2 Depede svingninger I praksis er alle svingessteer er eller indre depet. Vi betrakter vårt vanlige eksepel ed en fjær ed fjærstivhet k so er fastspent i den ene enden. Den andre enden er festet til en asse so kan gli friksjonsfritt på et underlag. Vi antar at oscillatoren er ogitt av væske eller gass og svingningene vil derfor være depet. kx k f v x=0 x Figur1: Eksepel på depet haronisk oscillator. Her beveger assen seg ot venstre og den depende kraften f er rettet ot høre. I tillegg til kraft fra fjæren er assen påvirket av en depende kraft, f, so virker ot bevegelsesretningen. Hvis beveger seg ot venstre vil f være rettet ot høre so vist på figuren over. Videre antar vi at den depende kraften er proporsjonal ed hastigheten til. Vi setter f = bv = bx & Dette er en god approksiasjon for bevegelse i væske eller gass hvis hastigheten v ikke er for stor. b er depningskonstanten so beskriver graden av depningen. Merk at uttrkket over krever at b > 0 siden den depende kraften er rettet ot bevegelsesretningen. Newtons. lov på assen gir: kx bx& = x && b k && x + x& x 0 + = (3) So for tilfellet ed ren haronisk oscillator uten depning foreslår vi at løsningen kan skrives på foren x() t = C e α t Mekaniske svingninger FYS januar 007

3 Innsatt i (3) får vi b k + + = 0 αt αt αt Cα e Cαe Ce b k α + α + = 0 So gir følgende to løsninger: α 1, b b k = ± Den generelle løsning av den lineære. ordens differensialligningen (3) er en lineærkobinasjon av to lineært uavhengige løsninger: b k b k b t t 1t t () t α α xt Ce 1 Ce e Ce 1 Ce = + = + (4) Svingeforløpet x(t) avhenger av verdien på k, og b. Vi skal se på tre tilfeller so dekker alle ulig svingeforløp. Konstantene C 1 og C kan bestees hvis vi f.eks kjenner utslaget x(t) og hastigheten vt () = xt &() for et bestet tidspunkt, f.eks. t = 0. 1) Overkritisk depning b k > dvs. b> k Radikandene i (4) er nå positive. Da er α 1 og α i (4) begge negative reelle tall og vi får et eksponentielt avtagende forløp. I dette tilfelle er depningskonstant b så stor at svingningene ikke koer i gang. ) Underkritisk depning b k < dvs. b< k Vi oskriver (4) : Mekaniske svingninger FYS januar 007 3

4 k b k b k b k b b t t i t i t b t t xt () e Ce = 1 + Ce = e Ce 1 + Ce = Ae b t sin( ω t + ϕ) d Der vi i siste overgang har benttet resultatet for udepet haronisk oscillator, ligning k b (), og ωd = b t Vi får nå et oscillerende forløp ed vinkelfrekvens ω d og ed en aplitude Ae so dered avtar eksponentielt ed tiden. Legg erke til at ω d er indre enn den naturlige vinkelfrekvens ω (haronisk oscillator uten depning). 3) Kritisk depning b k = dvs. b= k Dette gir α = b Siden den generelle løsningen av differensialligningen skrives so en lineærkobinasjon av to uavhengige løsninger, trenger vi en α-verdi til. Vi bentter en etode so kalles reduksjon av orden. Vi forsøker ed en prøveløsning på foren x() t = f() t e α t hvor vi ønsker å bestee f(t). Differensialligningen ( 3) kan i dette tilfellet skrives k der vi har benttet at α = && x x& + x= α α 0 so gir Der C 1 og C er konstanter. && f = 0 f& = C1 f () t = C + C t 1 Mekaniske svingninger FYS januar 007 4

5 Den generelle løsningen kan da skrives xt () = ( C + C te ) 1 b t Vi får også nå et eksponentielt avtagende forløp. Denne løsningen beskriver grensen ello et ikke-svingende og et svingende forløp. Figur 3 viser utslaget x(t) so funksjon av tiden t for overkritisk, kritisk og underkritisk depning x(t) overkritisk underkritisk kritisk t Figur 3: Eksepel på overkritisk, kritisk og underkritisk depning. I dette eksepelet er utslaget xt= ( 0) = 1 og hastigheten vt ( = 0) = xt & ( = 0) = 0. Stiplete kurver viser forløpet av Ae for underkritisk depning. b t Mekaniske svingninger FYS januar 007 5

6 Tvungne svingninger Vi vil nå inkludere en tre kraft, F, på ssteet. Vi lar denne tre kraften variere haronisk ed vinkelfrekvens ω og aplitude F : F = F cos( ω t) kx k f F = F cos( ω t) x=0 x Figur : Tvungne svingninger. Massen er i tillegg til kraft fra fjær og en depende kraft påvirket av en haronisk varierende kraft F. På figuren beveger assen seg ot venstre, slik at den depende kraften f er rettet ot høre. Newtons. lov gir nå: F cos( ω t) kx bx& = x& x && + bx& + kx = F cos( ω t) (5) (5 ) er en inhoogen lineær differensialligning av. orden. Den skiller seg ateatisk fra differensialligningen vi hadde i forrige avsnitt ved at den har et ledd so er forskjellig fra null på høre side av ligningen. ( 3) er en hoogen lineær differensialligning. Den generelle løsningen for den inhoogene differensialligningen (5) kan skrives so x() t = x () t + x () t H Der x H (t) er den generelle løsningen av den hoogene differensialligningen og x P (t) er en spesiell løsning (partikulærløsning) av den inhoogene differensialligningen. x H (t) har vi funnet tidligere (ligning 4). Den har et eksponentielt avtagende forløp og vil dered være neglisjerbar bare vi venter lenge nok. Vi er interessert i hvordan ssteet svinger etter at det har stabilisert seg slik at vi kan sette x() t x () t. Med kopleks notasjon kan vi skrive den oscillerende tre kraften so p P Mekaniske svingninger FYS januar 007 6

7 iω t F = Re( F e ) = F cos( ω t) { } iωt siden ( ) Re( Fe ) = Re F cos( ω t) + isin( ω t) = F cos( ω t) Vi skriver (5) på den koplekse foren: i t x && + bx& + kx = F e ω (6) Vi forsøker ed en prøveløsning på foren Ved å sette denne inn i (6) får vi: i x( t) = De ω t ω ω ω ω i t i t i t i t De ibdωe kde Fe ω + + = F F D = = k iω Z iω b+ i( ω ) ω (7) Z er den ekaniske ipedans og er generelt et koplekst tall. Den ekaniske ipedans spiller tilsvarende rolle so ipedans i en vekselstrøskrets. Vi kan frestille Z i det koplekse plan: Mekaniske svingninger FYS januar 007 7

8 I Z ϕ ω k/ ω (reaktans) b (resistans) R Figur 3: Svingessteets ekaniske ipedans frestilt i det koplekse plan. Ipedansens reelle del kalles resistans og den iaginære del kalles reaktans. Ipedansodulen Z 0 er k Z0 = Z = b + ( ω ) ω Den ekaniske ipedansen kan også skrives på foren Fra Figur 3 ser vi at tanϕ = Z = Z 0 eiϕ k ω ω b Vi finner et uttrkk for størrelsen D i prøveløsningen (7): F F F F D= = = = iω Z iω Z e ω Z iϕ π i 0 iϕ 0 e ω Z0e e π i( ϕ ) Den koplekse løsning av (6) er De F = ω Z i ω t ( ω t ϕ π /) i 0 e Mekaniske svingninger FYS januar 007 8

9 Løsningen vi er på jakt etter er realdelen av uttrkket over: F F xt ( ) = cos( ω t ϕ π / ) sin( ω t ϕ ) Asin( ω t ϕ ) ω = = Z0 ωz0 Aplituden til de tvungne svingningene er dered F F A = = ω Z0 b ω + ( ω k) (8) Aplituden avhenger blant annet av depningskonstanten b og av vinkelfrekvensen til den tre oscillerende kraften, ω. Uten depning (b = 0) vil aplituden A når ω k/ = ω (den naturlige vinkelfrekvensen for ssteet). Ssteet er da i resonans. I virkeligheten vil alle svingessteer være depet. Vi ønsker å bestee den aksiale aplituden og for hvilken vinkelfrekvens, ω, dette inntreffer. Aplituden A har aksialverdi når radikanden i nevneren i (8) har inialverdi. Minialverdien av radikanden finnes ved derivasjon hp ω : b ω + ( ω k)ω = 0 k b ω = = ω res der ω res er den vinkelfrekvens so gir aksial aplitude. Den frekvens so gir aksial aplitude kalles resonansfrekvensen. Resonansfrekvensen er f res = ωres 1 k b π = π Vi definerer kvalitetsfaktoren Q ved ω Q = b der ω = k/, ssteets naturlige vinkelfrekvens, dvs. den vinkelfrekvens ssteet ville svinge ed i fravær av depning. Kvalitetsfaktoren beskriver graden av depning. Når depningen er liten er kvalitetsfaktoren stor. Figur 4 viser aplituden so funksjon av ω / ω for forskjellige Q-verdier. Maksial aplitude (resonans) for svingningene Mekaniske svingninger FYS januar 007 9

10 øker ed Q. Vinkelfrekvensen for aksial aplitude er ω res, og ω res går ot ω når Q øker. Legg også erke til at kurveforen blir salere når Q vokser. Dette betr at vinkelfrekvensintervallet so gir store aplituder avtar ed Q. Store Q-verdier kan skape store probleer for ekaniske ssteer, f.eks. broer, so utsettes for periodiske tre krefter ed frekvenser nær ssteets naturlige svingefrekvens. Vi koer tilbake til kvalitetsfaktorer senere i forbindelse ed elektriske svingekretser. A Q=0.5 Q=.0 Q=4.0 Q= ω /ω Figur 4: Aplituden for tvungne svingninger so funksjon av vinkelfrekvensen til den påtrkte kraften, F, for en del Q-verdier. Aplituden for ω = 0 er satt lik 1 i dette ekseplet. Mekaniske svingninger FYS januar

Elektriske svingekretser - FYS2130

Elektriske svingekretser - FYS2130 Elektriske svingekretser - FYS3 Koplekse ipedanser Vekselsstrøskretser blir ofte enklere å behandle når ipedansene skrives på kopleks for. De koplekse ipedanser er Z ˆ i for kondensator ed kapasitans i

Detaljer

Mandag 21.08.06. Mange senere emner i studiet bygger på kunnskap i bølgefysikk. Eksempler: Optikk, Kvantefysikk, Faststoff-fysikk etc. etc.

Mandag 21.08.06. Mange senere emner i studiet bygger på kunnskap i bølgefysikk. Eksempler: Optikk, Kvantefysikk, Faststoff-fysikk etc. etc. Institutt for fysikk, NTNU TFY46/FY2: Bølgefysikk Høsten 26, uke 34 Mandag 2.8.6 Hvorfor bølgefysikk? Man støter på bølgefenoener overalt. Eksepler: overflatebølger på vann akustiske bølger (f.eks. lyd)

Detaljer

Løsningsforslag. Midtveiseksamen i Fys-Mek1110 våren 2008

Løsningsforslag. Midtveiseksamen i Fys-Mek1110 våren 2008 Side av Løsningsforslag idtveiseksaen i Fys-ek våren 8 Oppgave a) En roer sitter i en båt på vannet og ror ed konstant fart. Tegn et frilegeediagra for roeren, og navngi alle kreftene. Suen av kreftene

Detaljer

Mandag F d = b v. 0 x (likevekt)

Mandag F d = b v. 0 x (likevekt) Institutt for fysikk, NTNU TFY46/FY: Bølgefysikk Høsten 6, uke 35 Mandag 8.8.6 Dempet harmonisk svingning [FGT 3.7; YF 3.7; TM 4.4; AF.3; LL 9.7,9.8] I praksis dempes frie svingninger pga friksjon, f.eks.

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FY 5 - Svingninger og bølger Eksamensdag: 5. januar 4 Tid for eksamen: Kl. 9-5 Tillatte hjelpemidler: Øgrim og Lian: Størrelser

Detaljer

Denne ligninga beskriver en udempet harmonisk oscillator. Torsjons-svingning. En stav er festet midt på en tråd som er festet i begge ender.

Denne ligninga beskriver en udempet harmonisk oscillator. Torsjons-svingning. En stav er festet midt på en tråd som er festet i begge ender. Side av 6 Periodiske svingninger (udempede) Masse og fjær, med fjærkonstant k. Massen glir på friksjonsfritt underlag. Newtons. lov gir: mx kx dvs. x + x 0 hvor ω0 k m som gir løsning: xt () C cos t +

Detaljer

FAG: FYS105 Fysikk (utsatt eksamen) LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: FYS105 Fysikk (utsatt eksamen) LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVERSITETET I AGDER Gristad E K S A M E N S O P P G A V E : FAG: FYS105 Fysikk (utsatt eksaen) LÆRER: Per Henrik Hogstad Klasse(r): Dato: 6.11.11 Eksaenstid, fra-til: 09.00 14.00 Eksaensoppgaven består

Detaljer

EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK

EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK TFY4145/FY1001 6. aug. 2012 Side 1 av 8 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Kontakt under eksaen: Jon Andreas Støvneng, telefon: 45 45 55 33 EKSAMEN I FY1001 og TFY4145

Detaljer

TFY4160 Bølgefysikk/FY1002 Generell Fysikk II 1. Løsning Øving 2. m d2 x. k = mω0 2 = m. k = dt 2 + bdx + kx = 0 (7)

TFY4160 Bølgefysikk/FY1002 Generell Fysikk II 1. Løsning Øving 2. m d2 x. k = mω0 2 = m. k = dt 2 + bdx + kx = 0 (7) TFY4160 Bølgefysikk/FY100 Generell Fysikk II 1 Løsning Øving Løsning oppgave 1 Ligning 1) i oppgaveteksten er i dette tilfellet: Vi setter inn: i lign. 1) og får: m d x + kx = 0 1) dt x = A cosω 0 t +

Detaljer

Øving 2. a) I forelesningene har vi sett at det mekaniske svingesystemet i figur A ovenfor, med F(t) = F 0 cosωt, oppfyller bevegelsesligningen

Øving 2. a) I forelesningene har vi sett at det mekaniske svingesystemet i figur A ovenfor, med F(t) = F 0 cosωt, oppfyller bevegelsesligningen FY1002/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 2012. Veiledning: Mandag-Tirsdag 3-4. september. Innleveringsfrist: Mandag 10. september kl 12:00. Øving 2 A k b m F B V ~ q C q L R I a)

Detaljer

Skinndybde. FYS 2130

Skinndybde. FYS 2130 Skinndybde. FYS 130 Vi skal se hvordan en elektromagnetisk bølge oppfører seg i et ledende medium. ølgeligningen for E-feltet i vakuum ble utledet i notatet om elektromagnetiske bølger: E E =εµ 0 0 Denne

Detaljer

1) Hva blir akselerasjonen til en kloss som glir nedover et friksjonsfritt skråplan med helningsvinkel 30?

1) Hva blir akselerasjonen til en kloss som glir nedover et friksjonsfritt skråplan med helningsvinkel 30? FY1001/TFY4145 Mekanisk Fysikk Eksaen Tirsdag 16. Deseber 2014 OKMÅL OPPGVE 1: Flervalgsoppgaver (Teller 45%, 18 stk so teller 2.5% hver) 1) Hva blir akselerasjonen til en kloss so glir nedover et friksjonsfritt

Detaljer

Løsningsforslag til utvalgte oppgaver i kapittel 10

Løsningsforslag til utvalgte oppgaver i kapittel 10 Løsningsforslag til utvalgte oppgaver i kapittel 0 I kapittel 0 får du trening i å løse ulike typer differensialligninger, og her får du bruk for integrasjonsteknikkene du lærte i forrige kapittel. Men

Detaljer

Oppgave 1 Svar KORTpå disse oppgavene:

Oppgave 1 Svar KORTpå disse oppgavene: Løsningsforslag eksaen FYS1 V11 Oppgave 1 Svar KORTpå disse oppgavene: a) Tversbølge: Svingebevegelsen til hvert punkt på bølgen går på tvers av forplantningsretningen til bølgen. Langsbølge: Svingebevegelsen

Detaljer

Kap. 14 Mekaniske svingninger. 14. Mekaniske svingninger. Vi skal se på: Udempet harmonisk svingning. kap

Kap. 14 Mekaniske svingninger. 14. Mekaniske svingninger. Vi skal se på: Udempet harmonisk svingning. kap kap14 1.11.1 Kap. 14 Mekaniske svingninger Mye svingning i dagliglivet: Pendler Musikkinstrument Elektriske og magnetiske svingninger Klokker Termiske vibrasjoner (= temperatur) Måner og planeter Historien

Detaljer

Fourier-analyse. Hittil har vi begrenset oss til å se på bølger som kan beskrives ved sinus- eller cosinusfunksjoner

Fourier-analyse. Hittil har vi begrenset oss til å se på bølger som kan beskrives ved sinus- eller cosinusfunksjoner Fourier-analyse Hittil har vi begrenset oss til å se på bølger som kan beskrives ved sinus- eller cosinusfunksjoner som yxt (, ) = Asin( kx ωt+ ϕ) En slik bølge kan karakteriseres ved en enkelt frekvens

Detaljer

LØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x

LØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x LØSNINGSFORSLAG EKSAMEN, MAT 00, HØSTEN 06 DEL.. Hvilken av funksjonene gir en anti-derivert for f(x) = (x + )? Løsning. Vi setter u = x +, som gir du = dx, (x + ) dx = u du = u = (x + ) = x + a) x+ b)

Detaljer

TFY Løsning øving 4 1 LØSNING ØVING 4. Vibrerende to-partikkelsystem

TFY Løsning øving 4 1 LØSNING ØVING 4. Vibrerende to-partikkelsystem TFY45 - Løsning øving 4 Løsning oppgave 3 LØSNING ØVING 4 Vibrerende to-partikkelsystem a. Vi kontrollerer først at kreftene på de to massene kommer ut som annonsert: F V V k(x l) og F V V k(x l), som

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FY1002 BØLGEFYSIKK Mandag 10. desember 2007 kl

LØSNINGSFORSLAG TIL EKSAMEN I FY1002 BØLGEFYSIKK Mandag 10. desember 2007 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I FY1002 BØLGEFYSIKK

Detaljer

Spinn og Impulsbalanse HIA Avd. teknologi Morten Ottestad

Spinn og Impulsbalanse HIA Avd. teknologi Morten Ottestad Ipuls og spinn balanse 4.0.005 Side av Spinn og Ipulsbalanse HIA Avd. teknologi Morten Ottestad. ynaikk rettlinjede bevegelser. Ipuls balansen Newtons I lov). Eleenter i ekaniske syste.. jær 3.. eper 4..3

Detaljer

Kapittel 1. Fri og dempede svingninger

Kapittel 1. Fri og dempede svingninger Kapittel 1 Fri og dempede svingninger Dummy tekst for å spenne ut et åpent felt for et førsteside-opplegg. Svingninger er en mer sentral del av fysikk enn folk ofte tenker over. Pendelbevegelse er det

Detaljer

FY1002/TFY4160 Bølgefysikk. Løsningsforslag til Midtsemesterprøve fredag 15. oktober 2010 kl Oppgavene og et kortfattet løsningsforslag:

FY1002/TFY4160 Bølgefysikk. Løsningsforslag til Midtsemesterprøve fredag 15. oktober 2010 kl Oppgavene og et kortfattet løsningsforslag: Institutt for fysikk, NTNU FY1002/TFY4160 ølgefysikk Høst 2010 FY1002/TFY4160 ølgefysikk Løsningsforslag til Midtsemesterprøve fredag 15. oktober 2010 kl 08.15 09.45 Fasit på side 10. Oppgavene og et kortfattet

Detaljer

MEK4510 Svingninger i konstruksjoner

MEK4510 Svingninger i konstruksjoner MEK4510 Svingninger i konstruksjoner H. Osnes Avdeling for mekanikk, Matematisk institutt Universitetet i Oslo MEK4510 p. 1 Generelt om kurset Informasjon tilgjengelig fra: www.uio.no/studier/emner/matnat/math/mek4510/v11/

Detaljer

EKSAMEN FAG TFY4160 BØLGEFYSIKK OG FAG FY1002 GENERELL FYSIKK II Onsdag 8. desember 2004 kl Bokmål. K. Rottmann: Matematisk formelsamling

EKSAMEN FAG TFY4160 BØLGEFYSIKK OG FAG FY1002 GENERELL FYSIKK II Onsdag 8. desember 2004 kl Bokmål. K. Rottmann: Matematisk formelsamling Side 1 av 11 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Førsteamanuensis Knut Arne Strand Telefon: 73 59 34 61 EKSAMEN FAG TFY416 BØLGEFYSIKK OG

Detaljer

EKSAMENSOPPGAVE I FYS-1001

EKSAMENSOPPGAVE I FYS-1001 side 1 av 6 sider FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI EKSAMENSOPPGAVE I FYS-1001 Eksamen i : Fys-1001 Mekanikk Eksamensdato : 06.12.2012 Tid : 09.00-13.00 Sted : Åsgårdvegen 9 Tillatte hjelpemidler

Detaljer

Bevegelsesmengde Kollisjoner

Bevegelsesmengde Kollisjoner eegelsesengde Kollisjoner 4.3.3 neste uke: ingen forelesning ingen gruppeunderisning ingen datalab på grunn a idteiseksaen FYS-MEK 4.3.3 Energibearing energi i systeet er beart: E tot = K +U + E T arbeid

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det ateatisk-aturviteskapelige fakultet Eksae i: FY 105 - Svigiger og bølger Eksaesdag: 11. jui 003 Tid for eksae: Kl. 0900-1500 Tillatte hjelpeidler: Øgri og Lia: Størrelser og eheter

Detaljer

Fysikk-OL Norsk finale 2004

Fysikk-OL Norsk finale 2004 Universitetet i Oslo Norsk Fysikklærerforening Fysikk-OL Norsk finale 004 3. uttakingsrunde Fredag. april kl 09.00 til.00 Hjelpeidler: abell/forelsaling og loeregner Oppgavesettet består av 6 oppgaver

Detaljer

Kapittel 1. Fri og dempede svingninger

Kapittel 1. Fri og dempede svingninger Kapittel 1 Fri og dempede svingninger Svingninger er en mer sentral del av fysikk Dummy tekst for å spenne ut et åpent felt for et førsteside-opplegg. enn folk ofte tenker over. Pendelbevegelse er det

Detaljer

Svingninger i en elektrisk RCL-krets med og uten påtrykt vekselspenning.

Svingninger i en elektrisk RCL-krets med og uten påtrykt vekselspenning. 1 Noen gruppeoppgaver for uke 20 våren 2008 i FYS2130: Svingninger i en elektrisk RCL-krets med og uten påtrykt vekselspenning. Vi har på forelesninger i uke 19 vist hvordan vi kan løse den andre ordens

Detaljer

2. Fri og dempede svingninger

2. Fri og dempede svingninger 2. Fri og dempede svingninger Svingninger er en mer sentral del av fysikk enn folk tenker ofte over. Pendelbevegelse er det mest kjente eksemplet på svingninger. Svingninger inngår imidlertid også i alle

Detaljer

Løsningsforslag til øving 2

Løsningsforslag til øving 2 FY1002/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 2010. Løsningsforslag til øving 2 a) Kirchhoffs spenningsregel sier at summen av alle potensialendringer rundt en lukket krets skal være lik

Detaljer

Løsningsforslag til øving 5

Løsningsforslag til øving 5 Institutt for fysikk, NTNU FY1013 Elektrisitet og magnetisme II Høst 2005 Løsningsforslag til øving 5 Veiledning mandag 26. og onsdag 28. september a) Med motstand og kapasitans C i serie: cos ωt = I +

Detaljer

UNIVERSITETET I TROMSØ. EKSAMENSOPPGAVE i FYS-1002

UNIVERSITETET I TROMSØ. EKSAMENSOPPGAVE i FYS-1002 UNIVERSITETET I T R O M S Ø UNIVERSITETET I TROMSØ Intitutt for fysikk og teknologi EKSAMENSOPPGAVE i FYS-1002 Eksamen i: Fys-1002 Elektromagnetisme Eksamensdato: 10. juni, 2013 Tid: 09:00 13:00 Sted:

Detaljer

9 + 4 (kan bli endringer)

9 + 4 (kan bli endringer) Innlevering DAFE ELFE Matematikk HIOA Obligatorisk innlevering 4 Innleveringsfrist Onsdag 29. april 25 Antall oppgaver: 9 + 4 (kan bli endringer) Finn de ubestemte integralene a) 2x 3 4/x dx b) c) 2 5

Detaljer

Fri og dempede svingninger

Fri og dempede svingninger Kapittel 1 Fri og dempede svingninger Svingninger er en mer sentral del av fysikk er det mest kjente eksemplet på svingninger. Svingninger inngår imidlertid også i alle bølgefenomener. Vårt syn, vår hørsel,

Detaljer

Kompleks eksponentialform. Eulers inverse formler. Eulers formel. Polar til kartesisk. Kartesisk til polar. Det komplekse signalet

Kompleks eksponentialform. Eulers inverse formler. Eulers formel. Polar til kartesisk. Kartesisk til polar. Det komplekse signalet Komplekse tall Vi definerer det komplekse tallet z C. Komplekse eksponentialer og fasorer Det komplekse planet Kartesisk og polar form Komplekse eksponentiale signaler Roterende fasor Addisjon av fasorer

Detaljer

NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi

NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi Løsningsforslag til eksamen i FYS35, ELEKTROMAGNETISME, høst 004. (med forbehold om feil) Oppgave a) Dersom vi hadde hatt magnetiske

Detaljer

Mandag 04.09.06. Institutt for fysikk, NTNU TFY4160/FY1002: Bølgefysikk Høsten 2006, uke 36

Mandag 04.09.06. Institutt for fysikk, NTNU TFY4160/FY1002: Bølgefysikk Høsten 2006, uke 36 Institutt for fsikk, NTNU TFY4160/FY1002: Bølgefsikk Høsten 2006, uke 36 Mandag 04.09.06 Del II: BØLGER Innledning Bølger er forplantning av svingninger. Når en bølge forplanter seg i et materielt medium,

Detaljer

Havromsteknologi. Krefter og bevegelser for marine konstruksjoner. Innhold. Forfatter: Carl Martin Larsen

Havromsteknologi. Krefter og bevegelser for marine konstruksjoner. Innhold. Forfatter: Carl Martin Larsen Forfatter: Carl Martin Larsen Krefter og bevegelser for arine konstruksjoner Havrosteknologi Innhold Repetisjon fra fysikken...2 Frie svingninger uten deping...4 Deforasjon og fjærstivhet. Statisk syste...4

Detaljer

Fysikkolympiaden 1. runde 28. oktober 8. november 2013

Fysikkolympiaden 1. runde 28. oktober 8. november 2013 Norsk Fysikklærerforening i saarbeid ed Skolelaboratoriet Universitetet i Oslo Fysikkolypiaden 1. runde 8. oktober 8. noveber 013 Hjelpeidler: Tabell og forelsalinger i fysikk og ateatikk Loeregner Tid:

Detaljer

Løsningsforslag til eksamen i TFY4170 Fysikk august 2004

Løsningsforslag til eksamen i TFY4170 Fysikk august 2004 NTNU Side 1av7 Institutt for fysikk Fakultet for naturvitenskap og teknologi Dette løsningsforslaget er på 7 sider. Løsningsforslag til eksamen i TFY4170 Fysikk 1. august 004 Oppgave 1. Interferens a)

Detaljer

Innledning. Man kan iaktta/observere fenomenene slik vi finner dem i naturen.

Innledning. Man kan iaktta/observere fenomenene slik vi finner dem i naturen. Innledning Kurset vårt omfatter noe av det vakreste vi kan oppleve innen fysikk, nemlig fenomener knyttet til svingninger og bølger. Tenk deg verden uten lys og uten lyd, så fornemmer du kanskje hvor fundamentale

Detaljer

EKSAMEN I TFY4145 OG FY1001 MEKANISK FYSIKK

EKSAMEN I TFY4145 OG FY1001 MEKANISK FYSIKK TFY445/FY00 8. des. 009 Side av 7 NORGS TKNISK-NTURVITNSKPLIG UNIVRSITT INSTITUTT FOR FYSIKK Kontakt under eksaen: Jon ndreas Støvneng, telefon: 45 45 55 33 / 73 59 36 63 KSMN I TFY445 OG FY00 MKNISK FYSIKK

Detaljer

Obligatorisk oppgave nr 1 FYS Lars Kristian Henriksen UiO

Obligatorisk oppgave nr 1 FYS Lars Kristian Henriksen UiO Obligatorisk oppgave nr 1 FYS-2130 Lars Kristian Henriksen UiO 28. januar 2015 2 For at en kraft skal danne grunnlaget for svingninger, må det virke en kraft som til en hver tid virker inn mot likevektspunktet.

Detaljer

Oppsummering om kretser med R, L og C FYS1120

Oppsummering om kretser med R, L og C FYS1120 Oppsummering om kretser med R, L og C FYS1120 Likestrømskretser med motstander Strøm og spenning er alltid i fase. Ohms lov: V = RI Effekt er gitt ved: P = VI = RI 2 = V 2 /R Kirchoffs lover: Summen av

Detaljer

1) Hva blir akselerasjonen til en kloss som glir nedover et friksjonsfritt skråplan med helningsvinkel 30?

1) Hva blir akselerasjonen til en kloss som glir nedover et friksjonsfritt skråplan med helningsvinkel 30? FY1001/TFY4145 Mekanisk Fysikk Eksaen Tirsdag 16. Deseber 2014 OPPGAVER MED LØSNINGSFORSLAG OPPGAVE 1: Flervalgsoppgaver (Teller 45%, 18 stk so teller 2.5% hver) 1) Hva blir akselerasjonen til en kloss

Detaljer

Løsningsforslag Fysikk 2 V2016

Løsningsforslag Fysikk 2 V2016 Løsningsforslag Fysikk, Vår 016 Løsningsforslag Fysikk V016 Oppgave Svar Forklaring a) B Faradays induksjonslov: ε = Φ, so gir at Φ = ε t t Det betyr at Φ åles i V s b) D L in = 0,99 10 = 9,9 L aks = 1,04

Detaljer

Løsningsforslag Eksamen 20. desember 2012 FY2045/TFY4250 Kvantemekanikk I

Løsningsforslag Eksamen 20. desember 2012 FY2045/TFY4250 Kvantemekanikk I Eksamen FY045/TFY450 0. desember 0 - løsningsforslag Oppgave Løsningsforslag Eksamen 0. desember 0 FY045/TFY450 Kvantemekanikk I a. For x < 0 er potensialet lik null. (i) For E > 0 er da ψ E = (m e E/

Detaljer

EKSAMENSOPPGAVE. Fagnr: FO 443A Dato: Antall oppgaver:

EKSAMENSOPPGAVE. Fagnr: FO 443A Dato: Antall oppgaver: Avdeling for ingeniørutdanning EKSAMENSOPPGAVE Fag: FYSIKK/TERMODYNAMIKK Gruppe(r): 1 KA Eksamensoppgaven består av Tillatte hjelpemidler: Oppgave 1 Antall sider inkl forside: 4 Fagnr: FO 443A Dato: 80501

Detaljer

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET, INSTITUTT FOR FYSIKK. Utarbeidet av: Jon Andreas Støvneng

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET, INSTITUTT FOR FYSIKK. Utarbeidet av: Jon Andreas Støvneng NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET, INSTITUTT FOR FYSIKK Utarbeidet av: Jon Andreas Støvneng (jon.stovneng@ntnu.no) LØSNINGSFORSLAG (8 SIDER) TIL EKSAMEN I FY100 og TFY4160 BØLGEFYSIKK Fredag

Detaljer

Pendler, differensialligninger og resonansfenomen

Pendler, differensialligninger og resonansfenomen Pendler, differensialligninger og resonansfenomen Hensikt Oppsettet pa bildet kan brukes til a illustrere ulike fenomen som opptrer i drevede svingesystemer, slik som for eksempel resonans. Labteksten

Detaljer

y(x) = C 1 e 3x + C 2 xe 3x.

y(x) = C 1 e 3x + C 2 xe 3x. NTNU Institutt for matematiske fag TMA4115 Matematikk eksamen 4 juni 9 Løsningsforslag 1 Innsatt for z = x + iy kan ligningen skrives x + 1 + i(y ) = x 1 + i(y + ) Ved å benytte at z = a + b for et kompleks

Detaljer

differensiallikninger-oppsummering

differensiallikninger-oppsummering Kapittel 12 differensiallikninger-oppsummering I vår verden endres størrelsene og verdiene som populasjon, vekt, lengde, posisjon, hastighet, temperatur ved tiden eller ved en annen uavhengig variabel.

Detaljer

Kretsanalyse basert på elektromagnetisme

Kretsanalyse basert på elektromagnetisme Kretsanalyse basert på elektromagnetisme Johannes Skaar 3. juli 207 Det er ikke uvanlig å lære kretsteori før man lærer elektromagnetisme. Dette er fordi kretsteorien er betydelig enklere enn den fulle

Detaljer

En del utregninger/betraktninger fra lab 8:

En del utregninger/betraktninger fra lab 8: En del utregninger/betraktninger fra lab 8: Fra deloppgave med ukjent kondensator: Figur 1: Krets med ukjent kondensator og R=2,2 kω a) Skal vise at når man stiller vinkelfrekvensen ω på spenningskilden

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN FY1013 ELEKTRISITET OG MAGNETISME II Fredag 8. desember 2006 kl 09:00 13:00

LØSNINGSFORSLAG TIL EKSAMEN FY1013 ELEKTRISITET OG MAGNETISME II Fredag 8. desember 2006 kl 09:00 13:00 NOGES EKNISK- NAUVIENSKAPEIGE UNIVESIE INSIU FO FYSIKK Kontakt under eksamen: Per Erik Vullum lf: 93 45 7 ØSNINGSFOSAG I EKSAMEN FY3 EEKISIE OG MAGNEISME II Fredag 8. desember 6 kl 9: 3: Hjelpemidler:

Detaljer

Obligatorisk oppgave nr 3 FYS Lars Kristian Henriksen UiO

Obligatorisk oppgave nr 3 FYS Lars Kristian Henriksen UiO Obligatorisk oppgave nr 3 FYS-13 Lars Kristian Henriksen UiO 11. februar 15 Diskusjonsoppgaver 1 Fjerde ordens Runge-Kutta fungerer ofte bedre enn Euler fordi den tar for seg flere punkter og stigningstall

Detaljer

EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK

EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK Side 1 av 1 skal påføres studentnuer og innleveres Ark nuer: Studentnuer: Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Studieretning: EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001

Detaljer

TMA4110 Matematikk 3 Høst 2010

TMA4110 Matematikk 3 Høst 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4110 Matematikk 3 Høst 010 Løsningsforslag Øving 4 Fra Kreyszig (9. utgave) avsnitt.7 3 Vi skal løse ligningen (1) y 16y

Detaljer

Den deriverte og derivasjonsregler

Den deriverte og derivasjonsregler Den deriverte og derivasjonsregler Department of Mathematical Sciences, NTNU, Norway September 3, 2014 Tangenten til en funksjon i et punkt (kap. 2.1) Sekant til en funksjon gjennom to punkter 25 20 f(c+h)

Detaljer

EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK

EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK TFY4145/FY1001 18. des. 2012 Side 1 av 8 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Kontakt under eksamen: Jon Andreas Støvneng, telefon: 45 45 55 33 / 73 59 36 63 EKSAMEN I FY1001

Detaljer

TFY4104 Fysikk Eksamen 28. november 2016 Side 13 av 22

TFY4104 Fysikk Eksamen 28. november 2016 Side 13 av 22 TFY4104 Fysikk Eksamen 28. november 2016 Side 13 av 22 FORMLER: Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighetsområde og de ulike symbolenes betydning antas

Detaljer

Fjæra i a) kobles sammen med massen m = 100 [kg] og et dempeledd med dempningskoeffisient b til en harmonisk oscillator.

Fjæra i a) kobles sammen med massen m = 100 [kg] og et dempeledd med dempningskoeffisient b til en harmonisk oscillator. Oppgave 1 a) Ei ideell fjær har fjærkonstant k = 2.60 10 3 [N/m]. Finn hvilken kraft en må bruke for å trykke sammen denne fjæra 0.15 [m]. Fjæra i a) kobles sammen med massen m = 100 [kg] og et dempeledd

Detaljer

Løsningsforslag til eksamen i FYS1000, 14/8 2015

Løsningsforslag til eksamen i FYS1000, 14/8 2015 Løsningsforslag til eksamen i FYS000, 4/8 205 Oppgave a) For den første: t = 4 km 0 km/t For den andre: t 2 = = 0.4 t. 2 km 5 km/t + 2 km 5 km/t Den første kommer fortest fram. = 0.53 t. b) Dette er en

Detaljer

TFY4104 Fysikk Eksamen 28. november 2016 Side 13 av 22

TFY4104 Fysikk Eksamen 28. november 2016 Side 13 av 22 TFY4104 Fysikk Eksamen 28. november 2016 Side 13 av 22 FORMLER: Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighetsområde og de ulike symbolenes betydning antas

Detaljer

Mekaniske svingesystemer. Institutt for fysikk, NTNU

Mekaniske svingesystemer. Institutt for fysikk, NTNU Oppgave 2 Lab TFY4120 Mekaniske svingesystemer Institutt for fysikk, NTNU 1.1 Innledning I denne oppgaven skal vi studere begrepene fri og tvungne svingninger i et enkelt svingesystem. Vi skal spesielt

Detaljer

Oblig 6 i Fys-Mek1110

Oblig 6 i Fys-Mek1110 Sindre Ranne Bilden, Idun Osnes & Ingrid Marie Bergh Bakke Oblig 6 i Fys-Mek1110 a) Akselerasjon Fart Siden det ikke er noen for for friksjon eller andre ikke-konservative krefter i bildet, vil forholdet

Detaljer

Kap. 14 Mekaniske svingninger

Kap. 14 Mekaniske svingninger Kap. 14 Mekaniske svingninger Mye svingning i dagliglivet: Pendler Musikkinstrument Elektriske og magnetiske svingninger Klokker Termiske vibrasjoner (= temperatur) Måner og planeter Historien og økonomien

Detaljer

EKSAMEN I TFY4145 OG FY1001 MEKANISK FYSIKK

EKSAMEN I TFY4145 OG FY1001 MEKANISK FYSIKK NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK LØSNINGSFORSLAG (5 sider): EKSAMEN I TFY445 OG FY00 MEKANISK FYSIKK Fredag 8. desember 2009 kl. 0900-00 Oppgave. Tolv flervalgsspørsmål

Detaljer

Eksamen i SIF5036 Matematisk modellering Onsdag 12. desember 2001 Kl

Eksamen i SIF5036 Matematisk modellering Onsdag 12. desember 2001 Kl Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Harald E Krogstad, tlf: 9 35 36/ mobil:416 51 817 Sensur: uke 1, 2002 Tillatte hjelpemidler:

Detaljer

Kap. 14 Mekaniske svingninger. 14. Mekaniske svingninger

Kap. 14 Mekaniske svingninger. 14. Mekaniske svingninger Kap. 14 8.1.215 Kap. 14 Mekaniske svingninger Mye svingning i dagliglivet: Pendler Musikkinstrument Elektriske og magnetiske svingninger Klokker Termiske vibrasjoner (= temperatur) Måner og planeter Historien

Detaljer

Newtons lover i én dimensjon (2)

Newtons lover i én dimensjon (2) Newtons lover i én dimensjon () 3.1.17 Innlevering av oblig 1: neste mandag, kl.14 Devilry åpner snart. Diskusjoner på Piazza: https://piazza.com/uio.no/spring17/fysmek111/home Gruble-gruppe i dag etter

Detaljer

Løsningsforslag til øving 6

Løsningsforslag til øving 6 1 FY100/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 01. Løsningsforslag til øving 6 Oppgave 1 a) Litt repetisjon: Generelt er hastigheten til mekaniske bølger gitt ved mediets elastiske modul

Detaljer

Kap. 6+7 Arbeid og energi. Energibevaring.

Kap. 6+7 Arbeid og energi. Energibevaring. TFY4145/FY11 Mekanisk fysikk Størrelser og enheter (Kap 1) Kinematikk i en, to og tre dimensjoner (Kap. +3) Posisjon, hastighet, akselerasjon. Sirkelbevegelse. Dynamikk (krefter): Newtons lover (Kap. 4)

Detaljer

TMA4110 Matematikk 3 Haust 2011

TMA4110 Matematikk 3 Haust 2011 Noregs teknisk naturvitskaplege universitet Institutt for matematiske fag TMA4110 Matematikk 3 Haust 011 Løysingsforslag Øving 4 Oppgåver frå læreboka, s. lxxxiv 9 a) Likninga for systemet vert y +4y =

Detaljer

Løsningsskisser til oppgaver i Kapittel Integrerende faktor

Løsningsskisser til oppgaver i Kapittel Integrerende faktor Løsningsskisser til oppgaver i Kapittel 6.4 - Integrerende faktor Teori: Differensialligninger på formen y fx y gx (lineære i y av første orden) er ikke separable hvis ikke fx og gx er tallkonstanter.

Detaljer

Prøve i R2. Innhold. Differensiallikninger. 29. november Oppgave Løsning a) b) c)...

Prøve i R2. Innhold. Differensiallikninger. 29. november Oppgave Løsning a) b) c)... Prøve i R2 Differensiallikninger 29. november 2010 Innhold 1 Oppgave 3 1.1 Løsning..................................... 3 1.1.1 a).................................... 3 1.1.2 b)....................................

Detaljer

Løsningsforslag øving 4

Løsningsforslag øving 4 TTK405 Reguleringsteknikk, Vår 206 Oppgave Løsningsforslag øving 4 Når k 50, m 0, f 20, blir tilstandsromformen (fra innsetting i likning (3.8) i boka) Og (si A) blir: (si A) [ ] [ ] 0 0 ẋ x + u 5 2 0.

Detaljer

Bachelor i idrettsvitenskap med spesialisering i idrettsbiologi 2014/2016. Utsatt individuell skriftlig eksamen. IBI 240- Basal biomekanikk

Bachelor i idrettsvitenskap med spesialisering i idrettsbiologi 2014/2016. Utsatt individuell skriftlig eksamen. IBI 240- Basal biomekanikk Bachelor i idrettsvitenskap med spesialisering i idrettsbiologi 14/16 Utsatt individuell skriftlig eksamen i IBI 4- Basal biomekanikk Torsdag 6. februar 15 kl. 1.-13. Hjelpemidler: kalkulator formelsamling

Detaljer

Theory Norwegian (Norway) Vær vennlig å lese de generelle instruksjonene i den separate konvolutten før du begynner på dette problemet.

Theory Norwegian (Norway) Vær vennlig å lese de generelle instruksjonene i den separate konvolutten før du begynner på dette problemet. Q1-1 To problemer i mekanikk (10 poeng) Vær vennlig å lese de generelle instruksjonene i den separate konvolutten før du begynner på dette problemet. Del A. Den gjemte disken (3,5 poeng) Vi ser på en massiv

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK Mandag 3. desember 2007 kl

LØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK Mandag 3. desember 2007 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 7 59 6 6 / 45 45 55 LØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK Mandag.

Detaljer

EKSAMENSOPPGAVE. Dato: Fredag 01. mars 2013. Tid: Kl 09:00 13:00. Administrasjonsbygget B154

EKSAMENSOPPGAVE. Dato: Fredag 01. mars 2013. Tid: Kl 09:00 13:00. Administrasjonsbygget B154 side 1 av 6 sider FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI EKSAMENSOPPGAVE Eksamen i: FYS-1001 Mekanikk Dato: Fredag 01. mars 2013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget B154 Tillatte hjelpemidler:

Detaljer

FY2045/TFY4250 Kvantemekanikk I, løsning øving 13 1 LØSNING ØVING 13. V (x, t) = xf (t) = xf 0 e t2 /τ 2.

FY2045/TFY4250 Kvantemekanikk I, løsning øving 13 1 LØSNING ØVING 13. V (x, t) = xf (t) = xf 0 e t2 /τ 2. FY045/TFY450 Kvantemekanikk I, løsning øving 13 1 Løsning Oppgave 13 1 LØSNING ØVING 13 Transient perturbasjon av harmonisk oscillator a. Med kraften F (t) = qe(t) = F 0 exp( t /τ ) og sammenhengen F (t)

Detaljer

Kinematikk i to og tre dimensjoner

Kinematikk i to og tre dimensjoner Kinematikk i to og tre dimensjoner 2.2.217 Innleveringsfrist oblig 1: Mandag, 6.eb. kl.14 Innlevering kun via: https://devilry.ifi.uio.no/ Mulig å levere som gruppe (i Devilry, N 3) Bruk gjerne Piazza

Detaljer

EKSAMENSOPPGAVER FOR TMA4110/TMA4115 MATEMATIKK 3

EKSAMENSOPPGAVER FOR TMA4110/TMA4115 MATEMATIKK 3 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 25 2. januar 25 EKSAMENSOPPGAVER FOR TMA4/TMA45 MATEMATIKK 3 Oppgave A- a) Finn kvadratrøttene til det komplekse tallet

Detaljer

TFY4106 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving 9.

TFY4106 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving 9. TFY4106 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving 9. Oppgave 1 a) var C er korrekt. Fasehastigheten er gitt ved v ω k og vi ser fra figuren at dette forholdet er størst for små verdier

Detaljer

TMA4110 Matematikk 3 Haust 2011

TMA4110 Matematikk 3 Haust 2011 Noregs teknisk naturvitskaplege universitet Institutt for matematiske fag TMA4110 Matematikk 3 Haust 2011 Løysingsforslag Øving 2 Oppgåver frå læreboka, s. xliv-xlv 9 Me finn først fjørkonstanten k. Når

Detaljer

EKSAMENSOPPGAVE. FYS-1001 Mekanikk. Fire A4-sider (to dobbeltsidige ark) med egne notater. Kalkulator ikke tillatt. Ruter.

EKSAMENSOPPGAVE. FYS-1001 Mekanikk. Fire A4-sider (to dobbeltsidige ark) med egne notater. Kalkulator ikke tillatt. Ruter. Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksaen i: FYS-1001 Mekanikk Dato: 1.12.2016 Klokkeslett: 09:00 13:00 Sted: Åsgårdvegen 9 Tillatte hjelpeidler: Fire A4-sider (to dobbeltsidige ark)

Detaljer

Newtons lover i én dimensjon (2)

Newtons lover i én dimensjon (2) Newtons lover i én dimensjon () 7.1.14 oblig #1: prosjekt 5. i boken innlevering: mandag, 3.feb. kl.14 papir: boks på ekspedisjonskontoret elektronisk: Fronter data verksted: onsdag 1 14 fredag 1 16 FYS-MEK

Detaljer

Q-Q plott. Insitutt for matematiske fag, NTNU 15. august Notat for TMA4240/TMA4245 Statistikk. Kvantiler fra sannsynlighetsfordeling

Q-Q plott. Insitutt for matematiske fag, NTNU 15. august Notat for TMA4240/TMA4245 Statistikk. Kvantiler fra sannsynlighetsfordeling Q-Q plott Notat for TMA/TMA Statistikk Insitutt for ateatiske fag, NTNU. august En ønsker ofte å trekke slutninger o populasjonen til en stokastisk variabel basert på et forholdsvis lite antall observasjoner,

Detaljer

EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK

EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK TFY4145/FY1001 18. des. 2012 Side 1 av 8 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Kontakt under eksamen: Jon Andreas Støvneng, telefon: 45 45 55 33 / 73 59 36 63 EKSAMEN I FY1001

Detaljer

Newtons lover i én dimensjon (2)

Newtons lover i én dimensjon (2) Newtons lover i én dimensjon () 1..16 YS-MEK 111 1..16 1 Identifikasjon av kreftene: 1. Del problemet inn i system og omgivelser.. Tegn figur av objektet og alt som berører det. 3. Tegn en lukket kurve

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4 Matematikk Høst 4 Løsningsforslag Øving 5.7.4 Vi observerer at både y = cos πx 4 og y = x er like funksjoner. Det vil si

Detaljer

Eksamensoppgave i TFY4108 Fysikk

Eksamensoppgave i TFY4108 Fysikk Institutt for fysikk Eksamensoppgave i TFY4108 Fysikk Faglig kontakt under eksamen: Førsteamanuensis John Ove Fjærestad Tlf.: 97 94 00 36 Eksamensdato: 7. august 2015 Eksamenstid (fra-til): 9-13 Hjelpemiddelkode/Tillatte

Detaljer

Eksamen i fag FY1004 Innføring i kvantemekanikk Fredag 30. mai 2008 Tid: a 0 = 4πǫ 0 h 2 /(e 2 m e ) = 5, m

Eksamen i fag FY1004 Innføring i kvantemekanikk Fredag 30. mai 2008 Tid: a 0 = 4πǫ 0 h 2 /(e 2 m e ) = 5, m Side av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Jan Myrheim Telefon: 73 59 36 53 (mobil 90 07 5 7 Sensurfrist: Fredag 0 juni 008 Eksamen

Detaljer

Eksamen i fag FY1004 Innføring i kvantemekanikk Tirsdag 22. mai 2007 Tid:

Eksamen i fag FY1004 Innføring i kvantemekanikk Tirsdag 22. mai 2007 Tid: Side 1 av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Jan Myrheim Telefon: 73 59 36 53 (mobil 90 07 51 72) Sensurfrist: Tirsdag 12. juni 2007

Detaljer

Løsningsforslag Eksamen 28. mai 2003 SIF4048 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 28. mai 2003 SIF4048 Kjemisk fysikk og kvantemekanikk Eksamen SIF4048 8.05.03 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 8. mai 003 SIF4048 Kjemisk fysikk og kvantemekanikk a. Da sannsynlighetstettheten Ψ(x, 0) = β/π exp( βx ) er symmetrisk med

Detaljer

Tidsbase og triggesystem. Figur 1 - Blokkskjema for oscilloskop

Tidsbase og triggesystem. Figur 1 - Blokkskjema for oscilloskop LABORATORIEØVING 6 VEKSELSTRØM OG FASEFORSKYVING INTRODKSJON TIL LABØVINGEN Begreet vekselstrø er en felles betegnelse for strøer og senninger ed eriodisk veksling ello ositive og negative halverioder.

Detaljer

En samling av mer eller mindre relevante formler (uten nærmere forklaring) er gitt til slutt i oppgavesettet.

En samling av mer eller mindre relevante formler (uten nærmere forklaring) er gitt til slutt i oppgavesettet. Norges teknisk-naturvitenskapelige universitet NTNU Institutt for fysikk Lade EKSAMEN I: MNF FY 44 KVANTEMEKANIKK I DATO: Tirsdag 4. desember 999 TID: 9.00 5.00 Antall vekttall: 4 Antall sider: 3 Sensurdato:

Detaljer