Løsningsforslag til øving 2
|
|
- Børre Simensen
- 8 år siden
- Visninger:
Transkript
1 FY1002/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 2 a) Kirchhoffs spenningsregel sier at summen av alle potensialendringer rundt en lukket krets skal være lik null. Det er ikke annet enn kravet om energibevarelse, eller mer presist, at en elektrisk ladning skal ha en entydig potensiell energi i en hvilken som helst posisjon i kretsen. Vi har oppgitt at spenningsfallet over motstanden er RI, over kondensatoren q/c og over induktansen LI. Dermed: og ettersom I = q har vi cosωt L I = RI + q C, L q + R q + 1 C q = cos ωt. (Minustegn foran L I fordi det induseres en motspenning i induktansen, dvs den prøver å motvirke endringer i strømstyrken I.) Ved direkte sammenligning mellom ligningene for x og q ser vi at resistansen R er analog til dempingskonstanten b invers kapasitans 1/C er analog til fjærkonstanten k spenningsamplituden er analog til kraftamplituden F 0 ladningen q er analog til utsvinget x strømmen I er analog til hastigheten ẋ Disse analogiene mellom mekaniske og elektriske svingesystemer kan utnyttes i praksis. For det første kan man modellere et potensielt stort og utilgjengelig mekanisk system med en liten og grei elektrisk krets på laben. For det andre kan elektriske kretser oversettes til mekaniske svingesystemer, noe som kan gi en lettere intuitiv forståelse for hvordan systemet vil oppføre seg. b) Med q(t) = q 0 sin(ωt α) har vi q = ωq 0 cos(ωt α) og som innsatt i ligningen for q gir q = ω 2 q 0 sin(ωt α) Lω 2 q 0 sin(ωt α) + Rωq 0 cos(ωt α) + 1 C q 0 sin(ωt α) = cos ωt For å komme videre her, bruker vi sin(a b) = sin a cosb cos a sin b og cos(a b) = cosacosb+ sin a sin b. Da har vi Lω 2 q 0 sin α cos ωt Lω 2 q 0 cosαsin ωt + Rωq 0 cosαcos ωt + Rωq 0 sin α sin ωt 1 C q 0 sin α cosωt + 1 C q 0 cosαsin ωt cosωt = 0 1
2 Dersom denne ligningen skal være oppfylt til alle tider, dvs for vilkårlig verdi av t, må leddene som inneholder sin ωt og de som inneholder cos ωt summere seg til null hver for seg. Følgelig: Lω 2 q 0 cosα + Rωq 0 sin α + 1 C q 0 cosα = 0 Lω 2 q 0 sin α + Rωq 0 cosα 1 C q 0 sin α = 0 Ettersom q 0 ikke er lik null, gir den første av disse ligningene ( R sin α = 1 ) ωc + ωl cosα X cos α mens fra den andre har vi q 0 = tanα = X R /ω R cosα + X sin α = /ω R R/ R 2 + X 2 + X X/ R 2 + X = /ω 2 R2 + X 2 Du ser at selv for et enkelt system som dette, ender vi opp med tildels grisete regning, og en kan jo spørre seg om det ikke er en enklere vei til målet. Svaret på det er ja, under forutsetning av at man er villig til å ta i bruk komplekse størrelser. I kommentar nr 2 litt lenger ned har jeg tatt med litt om dette. (Trolig kjent fra elektromagnetismen.) Strømmen er I(t) = dq dt = ωq 0 cos(ωt α) som betyr at strømamplituden er I 0 = ωq 0 = R2 + X 2 I forelesningene utledet vi en halvverdibredde ω = b/m for resonanskurven A(ω), dvs utsvingsamplituden til den svingende massen m, når dempingskraften er b v. Siden de analoge størrelsene for den elektriske svingekretsen er R og L, blir halvverdibredden til resonanskurven q 0 (ω) ω = R L = 104 s 1 For det mekaniske svingesystemet er godhetsfaktoren Q = ω 0 / ω = for den elektriske svingekretsen har vi Q = L/C/R = 100 Resonansfrekvensen er ω 0 = 1/ LC = 10 6 s 1 k/m m/b = km/b, så Med andre ord, en betydelig del av resonanstoppen ligger innenfor (vinkel-)frekvensintervallet (990000, ) s 1, så det er snakk om en forholdsvis skarp og veldefinert resonans. Disse tallverdiene gir oss en god ide om hva vi bør velge som frekvensintervall når ladnings- og strømamplitudene skal plottes. Følgende kommandoer i gnuplot, 2
3 gnuplot> set xrange [9.5e5:10.5e5] gnuplot> set xlabel vinkelfrekvens (1/s) gnuplot> set ylabel ladningsamplitude (C) gnuplot> unset key gnuplot> q(x) = 10/(x*sqrt(1+(1e-4*x-1e8/x)**2)) gnuplot> plot q(x) resulterer i denne figuren: 1e-05 9e-06 8e-06 ladningsamplitude (C) 7e-06 6e-06 5e-06 4e-06 3e-06 2e-06 1e e e e+06 vinkelfrekvens (1/s) Ved å skrive inn også disse kommandoene, gnuplot> i(x) = x*q(x) gnuplot> set ylabel stromamplitude (A) gnuplot> plot i(x) får vi denne figuren: strłmamplitude (A) e e e+06 vinkelfrekvens (1/s) 3
4 Fasekonstanten α plottes ved å legge til disse linjene: gnuplot> a(x) = atan(1e-4*x-1e8/x) gnuplot> set ylabel fasekonstant (rad) gnuplot> plot a(x) fasekonstant (rad) e e e+06 vinkelfrekvens (1/s) Hvis du bruker MATLAB eller Octave, skulle følgende linjer resultere i praktisk talt de samme tre figurene: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Losningsforslag til oppgave (b) i Oving 2, % % Bolgefysikk, host 2010 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Vi skal plotte ladningsamplituden q0, stromamplituden i0 = omega*q0, og % fasevinkelen alfa, alle tre som funksjoner av vinkelfrekvensen omega, omkring % resonansfrekvensen omega0 = 1/sqrt(L*C) = 1E6 pr sek. Halvverdibredden % Delta omega = R/L har her verdien 1E4 pr sek, slik at et passende intervall % for omega er fra 9.5E5 til 10.5E5. Det skulle holde med 100 datapunkter paa % dette intervallet: omega = linspace(9.5e5,10.5e5,100); % La oss for oversiktens skyld bruke symboler for de ulike storrelsene som % inngaar, og gi dem de aktuelle tallverdiene, i SI-enheter: V0 = 10; R = 1.0; L = 0.1E-3; C = 10E-9; % Kretsens reaktans er X(omega) = omega*l-1/omega*c: X = omega.*l - 1./(omega.*C); % Pass paa punktumene...! % Stromamplituden: 4
5 i0 = V0./(sqrt(R^2+X.^2)); % Ladningsamplituden: q0 = i0./omega; % Fasekonstanten: alfa = atan(x./r); % Kommandoen figure ber om ny figur % Forst q0: figure; plot(omega,q0); xlabel( vinkelfrekvens (1/s) ); ylabel( ladningsamplitude (C) ); % Deretter i0: figure; plot(omega,i0); xlabel( vinkelfrekvens (1/s) ); ylabel( stromamplitude (A) ); % Deretter alfa: figure; plot(omega,alfa); xlabel( vinkelfrekvens (1/s) ); ylabel( fasekonstant (rad) ); Lag en vanlig tekstfil med din favoritteditor (vi, emacs, notepad, textpad eller lignende, eventuelt den innebygde editoren i MATLAB eller Octave), kall fila for eksempel plottresonans.m, start opp MATLAB eller Octave, og skriv ganske enkelt plottresonans. (Jeg har litt problem med figurene når jeg gjør dette med Octave på min Windows PC. I MATLAB går det helt fint, likeså med Octave på linux.) Kommentarer: 1. Litt om generalisert motstand, eller impedans. (Impedansbegrepet er vel kjent fra f.eks. FY1003/TFY4155, og det blir mer om dette i f.eks. TFY4185 Måleteknikk.) Hvis vi har en likestrømkrets, dvs med en konstant spenningskilde, og finner at spenningskilden leverer en strøm I 0 til kretsen, kan vi bestemme kretsens (totale) elektriske motstand fra Ohms lov: R = I 0 Hvis vi har en vekselstrømkrets, med en spenningskilde cos ωt, og finner at spenningskilden leverer en strøm I 0 cos(ωt α) til kretsen, defineres kretsens generaliserte motstand, eller impedans Z på tilsvarende vis: Z = I 0 For RCL-kretsen i denne øvingen finner vi at Z = R 2 + (ωl 1/ωC) 2 = R 2 + X 2 5
6 Med andre ord, impedansen Z avhenger av (vinkel-)frekvensen ω til den påtrykte spenningen. Impedansen er minimal dersom ω = ω 0 = 1/ LC, kretsens resonansfrekvens. Da er strømstyrken maksimal, og strømmen I(t) svinger i fase med den påtrykte spenningen. Det er ingenting i veien for å benytte impedansbegrepet også i det mekaniske systemet, og mekanisk impedans defineres på tilsvarende vis, som forholdet mellom påtrykt kraft og resulterende hastighet: Z = F 0 v 0 Benytter vi analogien mellom størrelsene i det mekaniske og det elektriske svingesystemet, kan vi uten videre skrive ned uttrykket for den mekaniske impedansen til systemet i oppgavens figur A: Z = b 2 + (ωm k/ω) 2 2. Tvungen svingning: løsning ved hjelp av kompleks regning. Et åpenbart irritasjonsmoment i løsningen av oppgave b ovenfor var det faktum at vi fikk inn både sinuser og cosinuser, og derfor måtte styre litt med trigonometriske relasjoner. Og vi innser fort at dette er uunngåelig dersom vi starter med å skrive løsningen for q (eventuelt x) som en cosinus eller en sinus: Derivasjon en gang gjør sinus om til cosinus, og omvendt, og hvis vi har demping, har vi jo nettopp et ledd som er proporsjonalt med den deriverte av q (eventuelt x). Løsningen på dette problemet har vi vært innom allerede, i og med at vi utledet løsningen av fri, dempede svingninger ved å starte med en eksponentialfunksjon. La oss forsøke det samme her: Vi setter V (t) = e iωt i det vi husker på at den fysiske påtrykte spenningen egentlig er cosωt = Re ( e iωt) Vi kompliserer altså problemet ved å innføre en kompleks representasjon av den reelle størrelsen V (t), men samtidig forenkler vi problemet rent regneteknisk, i og med at eksponentialfunksjonen har seg selv som løsning, uansett hvor mange ganger vi deriverer den (eller integrerer den, for den saks skyld). Det er vel nå temmelig opplagt at en partikulærløsning av differensialligningen for q må være på formen q(t) = q 0 e iωt (og vi glemmer ikke at den fysiske ladningen får vi ved å ta realdelen av dette.) Innsetting gir ( ω 2 L + iωr + 1 ) q 0 e iωt = e iωt C siden vi får ned en faktor iω for hver gang vi deriverer q(t) mhp t. Dermed får vi Strømmen blir q 0 = ω 2 L + iωr + 1/C = iω (R + iωl + 1/iωC) I(t) = dq dt = q 0iωe iωt = R + iωl + 1/iωC eiωt 6
7 dvs med amplitude I 0 = Dette komplekse tallet kan skrives som I 0 = R + iωl + 1/iωC R 2 + (ωl 1/ωC) 2 e iα der ωl 1/ωC tan α = R Den fysiske, reelle strømstyrken blir realdelen av den beregnede komplekse I(t): I fysisk (t) = cos(ωt α) R (ωl 1/ωC) Impedansen Z kan nå oppfattes som en kompleks størrelse, Z V I = I 0 = I 0 eiα med absoluttverdi Z = / I 0 og fasevinkel α. Tilbake til ladningen på kondensatoren: Det komplekse uttrykket for amplituden q 0 kan skrives slik: q 0 = ω R 2 + (ωl 1/ωC) 2 e iπ/2 iα Den fysiske ladningen er realdelen av q(t): q fysisk (t) = cos(ωt π/2 α) ω R (ωl 1/ωC) som er det samme som vi fant med reell regning, siden cos(ωt π/2 α) = sin(ωt α) Illustrasjon av impedansen i det komplekse planet: Im ω L 1/ω C Z = R + i( ω L 1/ω C ) = R + ix α R X Re 7
8 c) Vi har x(t) = A exp( δt) sin(ωt α) og E(t) = kx 2 max/2 = ka 2 exp( 2δt). Dermed blir relativt energitap pr periode for underdempede svingninger: E E = E(t) E(t + T) E(t) = 1 = 1 e 2δT 1 (1 2δT) = 2δT = 4πδ ω 4πδ = 2πb ω 0 mk E(t + T) E(t) Her er δ = b/2m, ω 2 = ω0 2 δ2 ω0 2 for svak demping, og ω2 0 = k/m. Godhetsfaktoren er Q = ω 0 / ω = k/m/2δ = k/m/(b/m) = mk/b = 2πE/ E d) La oss velge utsvinget x(t) slik som vi valgte ladningen q i oppgave b: x(t) = A sin(ωt α) Massens hastighet er da Midlere tilført effekt blir ẋ(t) = ωa cos(ωt α) P = 1 T T 0 T F 0 cosωt ẋ(t)dt = 1 F 0 ωa ( cos 2 ωt cosα + cosωt sinωt sin α ) T 0 ( = ωaf 0 cosα cos 2 ωt sin α cosωt sin ωt ) = 1 2 ωaf 0 cosα Midlere tapt effekt pga demping blir P d = F d ẋ = bẋ 2 = bω 2 A 2 cos 2 (ωt α) = 1 2 bω2 A 2 Disse to uttrykkene er identiske ettersom F 0 cosα = bωa, noe vi innser på følgende vis (f.eks): A = ωab = F 0 /ω b2 + X 2 F 0 b2 + X 2 b = F 0 cosα 8
Øving 2. a) I forelesningene har vi sett at det mekaniske svingesystemet i figur A ovenfor, med F(t) = F 0 cosωt, oppfyller bevegelsesligningen
FY1002/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 2012. Veiledning: Mandag-Tirsdag 3-4. september. Innleveringsfrist: Mandag 10. september kl 12:00. Øving 2 A k b m F B V ~ q C q L R I a)
Løsningsforslag til øving 5
Institutt for fysikk, NTNU FY1013 Elektrisitet og magnetisme II Høst 2005 Løsningsforslag til øving 5 Veiledning mandag 26. og onsdag 28. september a) Med motstand og kapasitans C i serie: cos ωt = I +
Mandag F d = b v. 0 x (likevekt)
Institutt for fysikk, NTNU TFY46/FY: Bølgefysikk Høsten 6, uke 35 Mandag 8.8.6 Dempet harmonisk svingning [FGT 3.7; YF 3.7; TM 4.4; AF.3; LL 9.7,9.8] I praksis dempes frie svingninger pga friksjon, f.eks.
Onsdag og fredag
Institutt for fysikk, NTNU TFY4155/FY1003: Elektromagnetisme Vår 2009, uke17 Onsdag 22.04.09 og fredag 24.04.09 Energi i magnetfelt [FGT 32.2, 32.3; YF 30.3; TM 28.7; AF 26.8, 27.11; LHL 25.3; DJG 7.2.4]
Oppsummering om kretser med R, L og C FYS1120
Oppsummering om kretser med R, L og C FYS1120 Likestrømskretser med motstander Strøm og spenning er alltid i fase. Ohms lov: V = RI Effekt er gitt ved: P = VI = RI 2 = V 2 /R Kirchoffs lover: Summen av
Onsdag isolator => I=0
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2008, uke 13 Onsdag 26.03.08 RC-kretser [FGT 27.5; YF 26.4; TM 25.6; AF Note 25.1; LHL 22.4; DJG Problem 7.2] Rommet mellom de
Mandag 7. mai. Elektromagnetisk induksjon (fortsatt) [FGT ; YF ; TM ; AF ; LHL 24.1; DJG 7.
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke19 Mandag 7. mai Elektromagnetisk induksjon (fortsatt) [FGT 30.1-30.6; YF 29.1-29.5; TM 28.2-28.3; AF 27.1-27.3; LHL 24.1;
Løsningsforslag til øving 1
1 FY100/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 01. Løsningsforslag til øving 1 Oppgave 1 a) Vi antar at Hookes lov, F = kx, gjelder for fjæra. Newtons andre lov gir da eller kx = m d x
Mandag Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke12
nstitutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke12 Mandag 19.03.07 Likestrømkretser [FGT 27; YF 26; TM 25; AF 24.7; LHL 22] Eksempel: lommelykt + a d b c + m Likespenningskilde
LØSNINGSFORSLAG TIL EKSAMEN FY1013 ELEKTRISITET OG MAGNETISME II Fredag 9. desember 2005 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 LØSNINGSFORSLAG TIL EKSAMEN FY1013 ELEKTRISITET OG MAGNETISME II Fredag
TFY4160 Bølgefysikk/FY1002 Generell Fysikk II 1. Løsning Øving 2. m d2 x. k = mω0 2 = m. k = dt 2 + bdx + kx = 0 (7)
TFY4160 Bølgefysikk/FY100 Generell Fysikk II 1 Løsning Øving Løsning oppgave 1 Ligning 1) i oppgaveteksten er i dette tilfellet: Vi setter inn: i lign. 1) og får: m d x + kx = 0 1) dt x = A cosω 0 t +
NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi
NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi Løsningsforslag til eksamen i FYS35, ELEKTROMAGNETISME, høst 004. (med forbehold om feil) Oppgave a) Dersom vi hadde hatt magnetiske
Løsningsforslag til øving 4
Institutt for fysikk, NTNU FY3 Elektrisitet og magnetisme II Høst 25 Løsningsforslag til øving 4 Veiledning mandag 9. og onsdag 2. september Likeretter a) Strømmen som leveres av spenningskilden må gå
I C Q R. Øving 11. Institutt for fysikk, NTNU TFY4155/FY1003: Elektromagnetisme
nstitutt for fsikk, NTNU TFY4155/FY1003: Elektromagnetisme Vår 2009 Øving 11 Veiledning: Mandag 23. mars og fredag 27. mars nnleveringsfrist: Fredag 27. mars Oppgave 1 nnledning (dvs vi rekapitulerer fra
Løsningsforslag EKSAMEN TFY4102 FYSIKK Fredag 10. juni 2011
Løsningsforslag EKSAMEN TFY4102 FYSIKK Fredag 10. juni 2011 Oppgave 1. a) Vi velger her, og i resten av oppgaven, positiv retning oppover. Dermed gir energibevaring m 1 gh = 1 2 m 1v 2 0 v 0 = 2gh. Rett
LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME Mandag 4. desember 2006 kl
NOGES TEKNISK- NATUVITENSKAPEIGE UNIVESITET INSTITUTT FO FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 ØSNINGSFOSAG TI EKSAMEN I FY1003 EEKTISITET OG MAGNETISME
Fjæra i a) kobles sammen med massen m = 100 [kg] og et dempeledd med dempningskoeffisient b til en harmonisk oscillator.
Oppgave 1 a) Ei ideell fjær har fjærkonstant k = 2.60 10 3 [N/m]. Finn hvilken kraft en må bruke for å trykke sammen denne fjæra 0.15 [m]. Fjæra i a) kobles sammen med massen m = 100 [kg] og et dempeledd
LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Tirsdag 27. mai 2008 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I FY003 ELEKTRISITET
EKSAMEN FY1013 ELEKTRISITET OG MAGNETISME II Fredag 9. desember 2005 kl
NORGES TEKNSK- NATURTENSKAPELGE UNERSTET NSTTUTT FOR FYSKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 EKSAMEN FY1013 ELEKTRSTET OG MAGNETSME Fredag 9. desember 2005 kl.
En del utregninger/betraktninger fra lab 8:
En del utregninger/betraktninger fra lab 8: Fra deloppgave med ukjent kondensator: Figur 1: Krets med ukjent kondensator og R=2,2 kω a) Skal vise at når man stiller vinkelfrekvensen ω på spenningskilden
Løsningsforslag til øving 4
1 FY100/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 01. Løsningsforslag til øving 4 Oppgave 1 a) D = D 0 [ cos (kx ωt) + sin (kx ωt) ] 1/ = D 0 for alle x og t. Med andre ord, vi har overalt
TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 7.
TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 7. Oppgave 1 Prinsippet for en mekanisk klokke er et hjul med treghetsmoment I festet til ei spiralfjr som virker pa hjulet med et dreiemoment som er proporsjonalt
TMA 4110 Matematikk 3 Høsten 2004 Svingeligningen med kompleks regnemåte
TMA 4 Matematikk Høsten 4 Svingeligningen med kompleks regnemåte H.E.K., Inst. for matematiske fag, NTNU Svingeligningen forekommer i mange sammenhenger, og ofte vil vi møte regning og utledninger der
Mandag 21.08.06. Mange senere emner i studiet bygger på kunnskap i bølgefysikk. Eksempler: Optikk, Kvantefysikk, Faststoff-fysikk etc. etc.
Institutt for fysikk, NTNU TFY46/FY2: Bølgefysikk Høsten 26, uke 34 Mandag 2.8.6 Hvorfor bølgefysikk? Man støter på bølgefenoener overalt. Eksepler: overflatebølger på vann akustiske bølger (f.eks. lyd)
LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME I TFY4155 ELEKTROMAGNETISME Fredag 8. juni 2007 kl
NOGES TEKNISK- NATUVITENSKAPELIGE UNIVESITET INSTITUTT FO FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFOSLAG TIL EKSAMEN I FY1003 ELEKTISITET OG
LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME I Mandag 17. desember 2007 kl
NOGES TEKNISK- NATUVITENSKAPELIGE UNIVESITET INSTITUTT FO FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFOSLAG TIL EKSAMEN I FY1003 ELEKTISITET OG
EKSAMEN I FAG SIF 4012 ELEKTROMAGNETISME (SIF 4012 FYSIKK 2) Onsdag 11. desember kl Bokmål
Side av 6 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 4 43 39 3 EKSAMEN I FAG SIF 42 ELEKTROMAGNETISME
NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK EKSAMEN I EMNE TFY4120 FYSIKK
Studentnummer: Studieretning: Bokmål Side 1 av 1 NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Institutt for fysikk, Gløshaugen Professor Jon Otto Fossum,
LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Onsdag 3. juni 2009 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I FY003 ELEKTRISITET
LØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK Mandag 3. desember 2007 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 7 59 6 6 / 45 45 55 LØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK Mandag.
LØSNINGSFORSLAG TIL EKSAMEN I TFY4155 ELEKTROMAGNETISME Fredag 11. august 2006 kl
NOGES TEKNISK- NATUVITENSKAPELIGE UNIVESITET INSTITUTT FO FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFOSLAG TIL EKSAMEN I TFY4155 ELEKTOMAGNETISME
LØSNINGSFORSLAG TIL EKSAMEN I FY1002 BØLGEFYSIKK Mandag 10. desember 2007 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I FY1002 BØLGEFYSIKK
Forelesning, TMA4110 Torsdag 11/9
Forelesning, TMA4110 Torsdag 11/9 Martin Wanvik, IMF Martin.Wanvik@math.ntnu.no (K 2.8) Tvungne svingninger. Resonans. Ser på masse-fjær system påvirket av periodisk ytre kraft: my + cy + ky = F 0 cos
Øving 13. Induksjon. Forskyvningsstrøm. Vekselstrømskretser.
Inst for fysikk 2017 FY1003 Elektr & magnetisme Øving 13 Induksjon Forskyvningsstrøm Vekselstrømskretser Denne siste øvingen innholder ganske mye, for å få dekket opp siste del av pensum Den godkjennes
Oppgave 3: Motstand, Kondensator og Spole
Lab i TFY412 Oppgave 3: Motstand, Kondensator og Spole Institutt for fysikk, NTNU 1.1. INNLEDNING 1 1.1 Innledning Ohms lov, = I, gir sammenhengen mellom spenningsfallet over og strømmen gjennom en motstand.
EKSAMEN I EMNE TFY4120 FYSIKK. Fredag 3. desember 2004 Tid: kl
Studentnummer: Studieretning: Bokmål Side 1 av 1 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Institutt for fysikk, Gløshaugen Professor Jon Otto Fossum,
Kretsanalyse basert på elektromagnetisme
Kretsanalyse basert på elektromagnetisme Johannes Skaar 3. juli 207 Det er ikke uvanlig å lære kretsteori før man lærer elektromagnetisme. Dette er fordi kretsteorien er betydelig enklere enn den fulle
Enkle kretser med kapasitans og spole- bruk av datalogging.
Laboratorieøvelse i FY3-Elektrisitet og magnetisme Vår Fysisk Institutt, NTNU Enkle kretser med kapasitans og spole- bruk av datalogging. Oppgave -Spenning i krets a: Mål inngangsspenningen og spenningsfallet
EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I TFY4155 ELEKTROMAGNETISME Fredag 8. juni 2007 kl
NOGES TEKNISK- NATUVITENSKAPELIGE UNIVESITET INSTITUTT FO FYSIKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 ELEKTISITET OG MAGNETISME I TFY4155
Forelesning nr.12 INF 1410
Forelesning nr.12 INF 1410 Komplekse frekvenser analyse i frekvensdomenet 20.04. INF 1410 1 Oversikt dagens temaer Intro Komplekse tall Komplekse signaler Analyse i frekvensdomenet 20.04. INF 1410 2 Intro
LØSNINGSFORSLAG TIL EKSAMEN I TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 30. mai 2006 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I TFY4155 ELEKTROMAGNETISME
For å finne amplituden kan vi f.eks. ta utgangspunkt i AB=-30 og siden vi nå kjenner B finner vi A :
Ukeoppgaver INF 1410 til uke 18 (7-30 april) våren 009 Fra kapittel 10 i læreboka: Lett: 10.1, 10.3, 10. Middels: 10.9, 10.11, 10.53 Vanskelig: 10.13, 10.8, 10., 10.55 Fra kapittel 14 i læreboka: Lett:
Punktladningen Q ligger i punktet (3, 0) [mm] og punktladningen Q ligger i punktet ( 3, 0) [mm].
Oppgave 1 Finn løsningen til følgende 1.ordens differensialligninger: a) y = x e y, y(0) = 0 b) dy dt + a y = b, a og b er konstanter. Oppgave 2 Punktladningen Q ligger i punktet (3, 0) [mm] og punktladningen
FYS2130. Tillegg til kapittel 13. Harmonisk oscillator. Løsning med komplekse tall
FYS130. Tillegg til kapittel 13 Haronisk oscillator. Løsning ed koplekse tall Differensialligningen for en udepet haronisk oscillator er && x+ ω x = 0 (1) so er en hoogen lineær differensialligning av.
LØSNINGSFORSLAG TIL EKSAMEN I TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 31. mai 2005 kl
NORGES TEKNISK- NATURVITENSKAPEIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 ØSNINGSFORSAG TI EKSAMEN I TFY4155 EEKTROMAGNETISME
Øving 4. a) Verifiser at en transversal bølge som forplanter seg langs x-aksen med utsving D med komponentene
FY100/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 010. Veiledning: Tirsdag 1. og onsdag. september. Innleveringsfrist: Mandag 7. september kl 1:00. Øving 4 Oppgave 1 a) Verifiser at en transversal
Sammendrag, uke 13 (30. mars)
nstitutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2005 Sammendrag, uke 13 (30. mars) Likestrømkretser [FGT 27; YF 26; TM 25; AF 24.7; LHL 22] Eksempel: lommelykt + a d b c + m Spenningskilde
EKSAMEN TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 31. mai 2005 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 EKSAMEN TFY4155 ELEKTROMAGNETISME FY1003
Elektriske svingekretser - FYS2130
Elektriske svingekretser - FYS3 Koplekse ipedanser Vekselsstrøskretser blir ofte enklere å behandle når ipedansene skrives på kopleks for. De koplekse ipedanser er Z ˆ i for kondensator ed kapasitans i
NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME
NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME Eksamensdag: 10. desember 2004 Tid for eksamen: Kl. 09:00-12:30 (3,5 timer) Tillatte hjelpemidler:
Løsningsforslag til øving 6
1 FY100/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 01. Løsningsforslag til øving 6 Oppgave 1 a) Litt repetisjon: Generelt er hastigheten til mekaniske bølger gitt ved mediets elastiske modul
Svingninger i en elektrisk RCL-krets med og uten påtrykt vekselspenning.
1 Noen gruppeoppgaver for uke 20 våren 2008 i FYS2130: Svingninger i en elektrisk RCL-krets med og uten påtrykt vekselspenning. Vi har på forelesninger i uke 19 vist hvordan vi kan løse den andre ordens
LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN I TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN I TFY4155
Forelesning nr.7 IN 1080 Elektroniske systemer. Spoler og induksjon Praktiske anvendelser Nøyaktigere modeller for R, C og L
Forelesning nr.7 IN 1080 Elektroniske systemer Spoler og induksjon Praktiske anvendelser Nøyaktigere modeller for R, C og L Dagens temaer Induksjon og spoler RL-kretser og anvendelser Fysiske versus ideelle
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET, INSTITUTT FOR FYSIKK. Utarbeidet av: Jon Andreas Støvneng
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET, INSTITUTT FOR FYSIKK Utarbeidet av: Jon Andreas Støvneng (jon.stovneng@ntnu.no) LØSNINGSFORSLAG (8 SIDER) TIL EKSAMEN I FY100 og TFY4160 BØLGEFYSIKK Fredag
TFY4106 Fysikk. Institutt for fysikk, NTNU. Våren Løsningsforslag til øving 8.
TFY4106 Fysikk. Institutt for fysikk, NTNU. Våren 016. Løsningsforslag til øving 8. Oppgave 1 a) [ x y = Asinkx ωt) = Asin π λ t )] T 1) med A = 1.0 cm, T = π/ω = 10 ms og λ = π/k = 10 cm. Med følgende
EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Tirsdag 27. mai 2008 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME
a) Bruk en passende Gaussflate og bestem feltstyrken E i rommet mellom de 2 kuleskallene.
Oppgave 1 Bestem løsningen av differensialligningen Oppgave 2 dy dx + y = e x, y(1) = 1 e Du skal beregne en kulekondensator som består av 2 kuleskall av metall med samme sentrum. Det indre skallet har
EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Onsdag 3. juni 2009 kl
NOGES TEKNISK- NATUVITENSKAPEIGE UNIVESITET INSTITUTT FO FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 EEKTISITET OG MAGNETISME TFY4155
Obligatorisk oppgave nr 1 FYS Lars Kristian Henriksen UiO
Obligatorisk oppgave nr 1 FYS-2130 Lars Kristian Henriksen UiO 28. januar 2015 2 For at en kraft skal danne grunnlaget for svingninger, må det virke en kraft som til en hver tid virker inn mot likevektspunktet.
Løsningsforslag for obligatorisk øving 1
TFY4185 Måleteknikk Institutt for fysikk Løsningsforslag for obligatorisk øving 1 Oppgave 1 a Vi starter med å angi strømmen i alle grener For Wheatstone-brua trenger vi 6 ukjente strømmer I 1 I 6, som
LØSNINGSFORSLAG TIL EKSAMEN FY1013 ELEKTRISITET OG MAGNETISME II Fredag 8. desember 2006 kl 09:00 13:00
NOGES EKNISK- NAUVIENSKAPEIGE UNIVESIE INSIU FO FYSIKK Kontakt under eksamen: Per Erik Vullum lf: 93 45 7 ØSNINGSFOSAG I EKSAMEN FY3 EEKISIE OG MAGNEISME II Fredag 8. desember 6 kl 9: 3: Hjelpemidler:
7.1 RESISTANS - SPOLE - KONDENSATOR TILKOPLET ENKELTVIS 7.1 RESISTANS - SPOLE - KONDENSATOR TILKOPLET VEKSELSTRØM ENKELTVIS
7. ESSTANS - SPOLE - KONDENSATO TLKOPLET ENKELTVS 7. ESSTANS - SPOLE - KONDENSATO TLKOPLET VEKSELSTØM ENKELTVS DEELL ESSTANS TLKOPLET VEKSELSTØM Når en motstandstråd blir brettet i to og de to delene av
og P (P) 60 = V 2 R 60
Flervalgsoppgaver 1 Forholdet mellom elektrisk effekt i to lyspærer på henholdsvis 25 W og 60 W er, selvsagt, P 25 /P 60 = 25/60 ved normal bruk, dvs kobla i parallell Hva blir det tilsvarende forholdet
UNIVERSITETET I TROMSØ. EKSAMENSOPPGAVE i FYS-1002
UNIVERSITETET I T R O M S Ø UNIVERSITETET I TROMSØ Intitutt for fysikk og teknologi EKSAMENSOPPGAVE i FYS-1002 Eksamen i: Fys-1002 Elektromagnetisme Eksamensdato: 10. juni, 2013 Tid: 09:00 13:00 Sted:
Kondensator. Symbol. Lindem 22. jan. 2012
UKE 5 Kondensatorer, kap. 12, s. 364-382 RC kretser, kap. 13, s. 389-413 Frekvensfilter, kap. 15, s. 462-500 og kap. 16, s. 510-528 Spoler, kap. 10, s. 289-304 1 Kondensator Lindem 22. jan. 2012 Kondensator
EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I Mandag 17. desember 2007 kl K. Rottmann: Matematisk formelsamling (eller tilsvarende).
NOGES TEKNSK- NATUVTENSKAPELGE UNVESTET NSTTUTT FO FYSKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 ELEKTSTET OG MAGNETSME Mandag 17. desember
KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME
Forelesning nr.5 IN 1080 Mekatronikk. RC-kretser
Forelesning nr.5 IN 080 Mekatronikk R-kretser Dagens temaer Ulike typer impedans og konduktans Kondensatorer i serie og parallell Ulike typer respons R-kretser Impedans og fasevinkler Serielle R-kretser
FY2045/TFY4250 Kvantemekanikk I, løsning øving 13 1 LØSNING ØVING 13. V (x, t) = xf (t) = xf 0 e t2 /τ 2.
FY045/TFY450 Kvantemekanikk I, løsning øving 13 1 Løsning Oppgave 13 1 LØSNING ØVING 13 Transient perturbasjon av harmonisk oscillator a. Med kraften F (t) = qe(t) = F 0 exp( t /τ ) og sammenhengen F (t)
Løsningsforslag Eksamen 1. desember 2009 TFY4250/FY2045
Eksamen TFY45/FY45 1. desember 9 - løsningsforslag 1 Oppgave 1 a. For n = 3j er Løsningsforslag Eksamen 1. desember 9 TFY45/FY45 ψ () 3j (L/3) = A sin(jπ) = og ψ () 3j (L/3) = A sin(jπ) =. Vi kan da konstatere
Løsningsforslag til øving 5
FY1002/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 2009. Løsningsforslag til øving 5 Oppgave 1 a) var C er korrekt. Fasehastigheten er gitt ved v ω k og vi ser fra figuren at dette forholdet
LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN I FAG SIF 4012 ELEKTROMAGNETISME (SIF 4012 FYSIKK 2) Mandag 29. juli kl
Side av 9 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN I FAG SIF 4 ELEKTROMAGNETISME
Forelesning nr.4 IN 1080 Mekatronikk. Vekselstrøm Kondensatorer
Forelesning nr.4 IN 1080 Mekatronikk Vekselstrøm Kondensatorer Dagens temaer Mer om Thévenins og Nortons teoremer Sinusformede spenninger og strømmer Firkant-, puls- og sagtannsbølger Effekt i vekselstrømkretser
Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT
Elektrisitetslære TELE002-A 3H HiST-AFT-EDT Øving 8 (ny utgåve); løysing Oppgåve 0 Denne oppgåva er ein smakebit på den typen fleirvalsspørsmål som vil utgjera 40 % av eksamen. Berre eitt av svaralternativa
Løsningsforslag til eksamen i TFY4170 Fysikk 2 Fysikk 2 Lørdag 8. august 2005
NTNU Side 1 av 5 Institutt for fysikk Fakultet for naturvitenskap og teknologi Løsningsforslag til eksamen i TFY4170 Fysikk Fysikk Lørdag 8. august 005 Merk: Hver del-oppgave teller like mye. Dette løsningsforslaget
b) Vi legger en uendelig lang, rett stav langs y-aksen. Staven har linjeladningen λ = [C/m].
Oppgave 1 a) Punktladningen q 1 = 1.0 10 9 [C] ligger fast i punktet (2.0, 0, 0) [m]. Punktladningen q 2 = 4.0 10 9 [C] ligger i punktet ( 1.0, 0, 0) [m]. I) Finnes det punkt(er) i rommet med elektrisk
EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME Mandag 4. desember 2006 kl
NOGES TEKNSK- NATUVTENSKAPELGE UNVESTET NSTTUTT FO FYSKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 ELEKTSTET OG MAGNETSME Mandag 4. desember
FY1002/TFY4160 Bølgefysikk. Løsningsforslag til Midtsemesterprøve fredag 15. oktober 2010 kl Oppgavene og et kortfattet løsningsforslag:
Institutt for fysikk, NTNU FY1002/TFY4160 ølgefysikk Høst 2010 FY1002/TFY4160 ølgefysikk Løsningsforslag til Midtsemesterprøve fredag 15. oktober 2010 kl 08.15 09.45 Fasit på side 10. Oppgavene og et kortfattet
TFY4104 Fysikk Eksamen 4. desember Løsningsforslag. 1) m = ρv = ρ 4πr 2 t = π g 24g. C
TFY4104 Fysikk ksamen 4. desember 2015 Løsningsforslag 1) m = ρv = ρ 4πr 2 t = 19.32 4π 100 2 10 5 g 24g. 2) a = v 2 /r = (130 1000/3600) 2 /(300/2π)m/s 2 27m/s 2. 3) ω(4) = 0.25 (1 e 0.25 4 ) = 0.25 (1
Elektrisk immittans. Ørjan G. Martinsen 13.11.2006
Elektrisk immittans Ørjan G. Martinsen 3..6 Ved analyse av likestrømskretser har vi tidligere lært at hvis vi har to eller flere motstander koblet i serie, så finner vi den totale resistansen ved følgende
Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT
Elektrisitetslære TELE2-A 3H HiST-AFT-EDT Øving ; løysing Oppgave En ladning på 65 C passerer gjennom en leder i løpet av 5, s. Hvor stor blir strømmen? Strømmen er gitt ved dermed blir Q t dq. Om vi forutsetter
EKSAMEN TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 30. mai 2006 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN TFY4155 ELEKTROMAGNETISME FY1003
Forelesning nr.13 INF 1410
Forelesning nr.3 INF 4 Komplekse frekvenser og Laplace-transform Oversikt dagens temaer Me Mer om sinusformede signaler om komplekse frekvenser Introduksjon til Laplace-transform Løsning av kretsligninger
TFE4101 Vår 2016. Løsningsforslag Øving 3. 1 Teorispørsmål. (20 poeng)
TFE411 Vår 216 Norges teknisk naturvitenskapelige universitet Institutt for elektronikk og telekommunikasjon Løsningsforslag Øving 3 1 Teorispørsmål. (2 poeng) a) Beskriv følgende med egne ord: Nodespenningsmetoden.
Forelesning nr.5 INF 1411 Elektroniske systemer. RC-kretser
Forelesning nr.5 INF 4 Elektroniske systemer R-kretser Dagens temaer Ulike typer respons Ulike typer impedans og konduktans Kondensatorer i serie og parallell Bruk av kondensator R-kretser Impedans og
TFY4106 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving 9.
TFY4106 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving 9. Oppgave 1 a) var C er korrekt. Fasehastigheten er gitt ved v ω k og vi ser fra figuren at dette forholdet er størst for små verdier
UKE 5. Kondensatorer, kap. 12, s RC kretser, kap. 13, s Frekvensfilter, kap. 15, s og kap. 16, s.
UKE 5 Kondensatorer, kap. 12, s. 364-382 R kretser, kap. 13, s. 389-413 Frekvensfilter, kap. 15, s. 462-500 og kap. 16, s. 510-528 1 Kondensator Lindem 22. jan. 2012 Kondensator (apacitor) er en komponent
Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT
Elektrisitetslære TELE002-3H HiST-FT-EDT Øving 4; løysing Oppgave R R 3 R 6 E R 2 R 5 E 2 R 4 Figuren over viser et likestrømsnettverk med ideelle spenningskilder og resistanser. Verdiene er: E = 40,0
2. Fri og dempede svingninger
2. Fri og dempede svingninger Svingninger er en mer sentral del av fysikk enn folk tenker ofte over. Pendelbevegelse er det mest kjente eksemplet på svingninger. Svingninger inngår imidlertid også i alle
LF - anbefalte oppgaver fra kapittel 2
1 LF - anbefalte oppgaver fra kapittel 2 N2.1 Denne oppkoblingen er lovlig: Alle spenningkildene kan få en strøm på 5 A fra strømkilden. Spenningsfallet over strømkilden er også lovlig. Ved å summere alle
Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT
Elektrisitetslære TELE-A 3H HiST-AFT-EDT Øving 7; løysing Oppgave Kretsen viser en reléspole med induktans L = mh. Total resistans i kretsen er R = Ω. For å unngå at det dannes gnister når bryteren åpnes,
Forelesning nr.4 INF 1411 Elektroniske systemer. Vekselstrøm Kondensatorer
Forelesning nr.4 INF 1411 Elektroniske systemer Vekselstrøm Kondensatorer Dagens temaer Sinusformede spenninger og strømmer Firkant-, puls- og sagtannsbølger Effekt i vekselstrømkretser Kondensator Presentasjon
INF L4: Utfordringer ved RF kretsdesign
INF 5490 L4: Utfordringer ved RF kretsdesign 1 Kjøreplan INF5490 L1: Introduksjon. MEMS i RF L2: Fremstilling og virkemåte L3: Modellering, design og analyse Dagens forelesning: Noen typiske trekk og utfordringer
Forelesning nr.7 INF 1410. Kondensatorer og spoler
Forelesning nr.7 IF 4 Kondensatorer og spoler Oversikt dagens temaer Funksjonell virkemåte til kondensatorer og spoler Konstruksjon Modeller og fysisk virkemåte for kondensatorer og spoler Analyse av kretser
Forelesning nr.6 INF 1411 Elektroniske systemer. Anvendelser av RC-krester Spoler og RL-kretser
Forelesning nr.6 INF 1411 Elektroniske systemer Anvendelser av RC-krester Spoler og RL-kretser Dagens temaer Mer om ac-signaler og sinussignaler Filtre Bruk av RC-kretser Induktorer (spoler) Sinusrespons
EKSAMENSOPPGAVE. Adm.bygget, Aud.max. ü Kalkulator med tomt dataminne ü Rottmann: Matematisk Formelsamling. rute
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAE Eksamen i: Fys-1002 Dato: 30. september 2016 Klokkeslett: 09.00-13.00 Sted: Tillatte hjelpemidler: Adm.bygget, Aud.max ü Kalkulator med tomt dataminne
Løsningsforslag for FYS2140 Kvantemekanikk, Torsdag 16. august 2018
Løsningsforslag for FYS140 Kvantemekanikk, Torsdag 16. august 018 Oppgave 1: Materiens bølgeegenskaper a) De Broglie fikk Nobelprisen i 199 for sin hypotese. Beskriv med noen setninger hva den går ut på.
Løsningsforslag til øving 8
FY1001/TFY4145/TFY4109. Institutt for fysikk, NTNU. Høsten 015. Løsningsforslag til øving 8 Oppgave 1 a) [ x y = Asinkx ωt) = Asin π λ t )] T 1) med A = 1.0 cm, T = π/ω = 10 ms og λ = π/k = 10 cm. Figur:
Løsningsforslag til øving 9
FY1002/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 2010. Løsningsforslag til øving 9 Oppgave 1 a) Forplantning i z-retning betyr at E og B begge ligger i xy-planet. La oss for eksempel velge