Onsdag og fredag
|
|
- Søren Eliassen
- 5 år siden
- Visninger:
Transkript
1 Institutt for fysikk, NTNU TFY4155/FY1003: Elektromagnetisme Vår 2009, uke17 Onsdag og fredag Energi i magnetfelt [FGT 32.2, 32.3; YF 30.3; TM 28.7; AF 26.8, 27.11; LHL 25.3; DJG 7.2.4] La oss regne ut hvor mye energi som må tilføres en spole med induktans L når vi øker strømmen gjennom spoletråden fra i = 0 til en sluttverdi i = I. Tilført energi ved å øke strømmen fra i til i + di: du B = P dt = iv dt = il di dt = Li di dt Her er P = iv tilført effekt, og v = Ldi/dt spenningen over spolen idet vi endrer strømmen fra i til i + di. Dermed blir total energi tilført for å øke strømmen fra 0 til I lik U B = I du B = L i di = LI2 Denne energien kan vi nå assosiere med magnetfeltet B inne i spolen. Anta at spolen er tilnærmet uendelig lang, med N viklinger på hele lengden l. Tverrsnittet av spolen har areal A. Da er magnetfeltet inne i spolen B = µ 0 ni = µ 0 N l I (På utsiden av spolen er magnetfeltet null.) Total magnetisk fluks gjennom de N viklingene på spolen blir φ m = NAB = NAµ 0 N l I som også kan skrives på formen φ m = LI der L er spolens (selv-)induktans. Med dette kan vi omforme uttrykket for energien U B : U B = 1 2 NAB I 2 = 1 I 2 NAB Bl µ 0 N = 1 B 2 Al 2µ 0 Her er Al lik volumet inne i spolen, så vi ser at vi har en energitetthet (dvs energi pr volumenhet) assosiert med magnetfeltet B: u B = 1 2µ 0 B 2 1
2 Fra før har vi funnet at vi har en energitetthet u E assosiert med et elektrisk felt E: u E = 1 2 ε 0E 2 Dermed blir total energitetthet i et elektromagnetisk felt: u = u E + u B = 1 2 ε 0E µ 0 B 2 Kommentar: Dette uttrykket er alltid riktig, i den forstand at u representerer energien lagret i feltene E og B. I litteraturen risikerer du å støte på formelen u = 1 2 D E B H = 1 2 εe µ B2 for total energitetthet dersom vi har polariserbare og/eller magnetiserbare medier tilstede. (I den siste overgangen her brukte vi at D = εe og B = µh, med ε = mediets permittivitet og µ = mediets permeabilitet.) Disse to uttrykkene for u er ikke identiske, og kan derfor ikke representere den samme energitettheten. Det siste uttrykket for u inkluderer da også et bidrag som ikke er direkte lagret i feltene, nemlig den elastiske energien knyttet til polarisering og magnetisering, dvs innrettingen av elektriske og magnetiske dipoler. I den grad noe av dette blir aktuelt til eksamen, skal vi kun bry oss om feltenergien gitt ved u = u E + u B = 1 2 ε 0E µ 0 B 2 Koblede systemer, selvinduktans og gjensidig induktans (ble ikke forelest våren 2009, derfor er det ikke direkte pensum, men kun orienteringsstoff) Anta at vi har to kretser, nr 1 og nr 2, med selvinduktans hhv L 1 og L 2 og gjensidig induktans M. Anta f.eks. at vi i krets nr 1 har en tidsavhengig spenningskilde E 1 (t). Den samlede resistansen i de to kretsene er hhv 1 og 2. Vi skal bestemme de resulterende strømstyrkene I 1 og I 2 i de to kretsene. Kirchhoffs spenningsregel gir da følgende ligninger: E 1 L 1I1 1 I 1 MI 2 = 0 L 2I2 2 I 2 MI 1 = 0 Dette er to koblede differensialligninger for de to ukjente, I 1 (t) og I 2 (t). Hvis E 1 er en harmonisk vekselspenningskilde, E 1 (t) = E 0 cos ωt, med amplitude E 0 og vinkelfrekvens ω, vil også strømmene I 1 og I 2 variere harmonisk med tiden, med samme vinkelfrekvens ω. Dermed kan vi generelt skrive I 1 (t) = A 1 cosωt + B 1 sin ωt I 2 (t) = A 2 cosωt + B 2 sin ωt 2
3 og innsetting av disse uttrykkene i de to differensialligningene gir da i alt fire ligninger, for fastleggelse av koeffisientene A 1, A 2, B 1, B 2. (Fire ligninger fordi vi kan sammenligne cos ωtledd og sin ωt-ledd hver for seg, slik som i AC-eksemplet nedenfor.) (herfra er stoffet pensum igjen) L-krets med likespenningskilde [FGT 32.4; YF 30.4; TM 28.8; AF Ex 27.5; LHL 25.2; DJG Ex 7.12] Ser på seriekobling av induktans L (f.eks. en spole) og resistans. Et batteri med likespenning kobles til kretsen ved tidspunktet t = 0. L I (kobles inn ved t=0) Total ems i kretsen er da L di dt der det siste leddet er indusert motspenning over induktansen når vi prøver å endre strømstyrken gjennom den. Ifølge Kirchhoffs spenningsregel (evt sløyferegel ) må denne totale emsen i sløyfa tilsvare spenningsfallet over motstanden, med andre ord L di dt = I eller L di dt + I = Dette er nøyaktig samme type 1. ordens differensialligning for strømmen I som det vi hadde for kondensatorladningen Q da vi studerte opplading av kondensator i en C-krets. Løsningen blir I(t) = V ( 0 ) 1 e t/l der vi har brukt initialbetingelsen I(0) = 0. (Før innkobling av batteriet er åpenbart I = 0. I tidspunktet t = 0 kan ikke strømmen i kretsen hoppe opp til en endelig verdi forskjellig fra 3
4 null. Det måtte i såfall innebære at di/dt i t = 0, hvilket igjen ville innebære en uendelig stor motspenning over induktansen. Det er rett og slett ikke fysisk mulig! Altså må I være kontinuerlig i t = 0, og vi kan sette I(0) = 0.) Tidskonstant for endring av strømmen: τ = L Verdien av τ gir en størrelsesorden for hvor lang tid det tar å øke strømmen i en slik L-krets fra 0 til maksimal verdi /: I(t ) = L-krets med vekselspenningskilde cosωt [FGT 33.2; YF 31.2; TM 29.2, 29.3; AF Note 27.2; LHL 27.3] Med en vekselspenningskilde cosωt koblet til en induktans L har vi med bruk av Kirchhoffs spenningsregel: cosωt + V L = 0 cos ωt = L di dt Vi kan skrive strømmen I(t) på formen I(t) = ωl sin ωt = ωl cos(ωt π 2 ) I(t) = I 0 cos(ωt α) (jfr tidligere i kurset, og tilsvarende for kapasitans C og C-kretser), og ser at strømamplituden er I 0 = ωl mens fasevinkelen er α = π 2 Dvs, strøm I og påtrykt spenning V = cosωt er faseforskjøvet med en kvart periode i forhold til hverandre. I forbindelse med C-kretser og vekselspenningskilde innførte vi størrelsen impedans Z, definert ved Z = I 0 Med andre ord, en slags generalisert motstand, jfr Ohms lov = V/I. Vi ser da at impedansen til en induktans L blir Z L = ωl med fasevinkel α L = π/2 4
5 Et eksempel til: Vekselspenningskilde cosωt koblet til en parallellkobling av en motstand og en induktans L. Da må den totale strømmen I som leveres av spenningskilden fordele seg på en strøm I gjennom motstanden og en strøm I L gjennom induktansen: I = I + I L (Dvs: Kirchhoffs strømregel.) Videre må vi gjenfinne den påtrykte spenningen som et tilsvarende spenningsfall, både over motstanden og over induktansen. Med andre ord: cosωt = I cosωt = L di L dt (Dvs: Kirchhoffs spenningsregel.) Disse ligningene løses greit, og vi finner I = cos ωt I L = sin ωt ωl Total strøm levert av spenningskilden blir dermed I(t) = I (t) + I L (t) = cos ωt + sin ωt ωl Vi kan skrive denne summen av to ledd på formen ved å bruke den trigonometriske relasjonen Dermed: I(t) = I 0 cos(ωt α) cos(a b) = cosacosb + sin a sin b cos(ωt α) = cosωt cosα + sin ωt sinα Sammenligning med uttrykket for I(t) = I + I L gir oss følgende to ligninger for de to ukjente størrelsene I 0 og α: Dette ligningssettet har løsning = I 0 cosα ωl = I 0 sin α tan α = ωl α = arctan ωl og ( 1 I 0 = + 1 ) 1/2 2 ω 2 L 2 5
6 Fra definisjonen av impedans, Z = /I 0, ser vi at impedansen til en parallellkobling er Z = ( ) 1/2 2 ω 2 L 2 Dersom vinkelfrekvensen til spenningskilden er liten, dvs ω /L, vil leddet 1/ω 2 L 2 dominere i forhold til 1/ 2, slik at Z ωl Dersom vinkelfrekvensen til spenningskilden er stor, dvs ω /L, vil leddet 1/ 2 dominere i forhold til 1/ω 2 L 2, slik at Z esonanskrets: CL-krets med vekselspenningskilde cosωt [YF 31.3; LHL 27.5] Figuren nedenfor viser en såkalt resonanskrets. I V ~ C L Kirchhoffs spenningsregel gir som med I = Q gir cosωt I L I Q/C = 0 L Q + Q + Q/C = cosωt Dette er en 2. ordens inhomogen differensialligning for kondensatorladningen Q. Den generelle løsningen er en sum av en homogen løsning (dvs: løsning av ligningen med null på høyre side) og en partikulærløsning. Vi er her ikke interessert i den homogene løsningen, som kun bidrar til et innsvingningsforløp rett etter at vi har koblet til spenningskilden. Det som interesserer oss her er partikulærløsningen, dvs den som beskriver tvungne svingninger av Q og I, dvs svingninger med samme (vinkel-)frekvens som påtrykt spenning. Da kan vi skrive strømmen på formen I(t) = I 0 cos(ωt α), 6
7 dvs Det gir videre I = Q = I 0 cosαcos ωt + I 0 sin α sin ωt. Q = ωi 0 cosαsin ωt + ωi 0 sin α cosωt og Q = I 0 ω cosαsin ωt I 0 sin α cosωt. ω Innsetting av disse uttrykkene i diffligningen for Q gir oss 2 ligninger for de 2 ubestemte størrelsene I 0 og α, i og med at leddproporsjonale med sin ωt og cosωt må stemme overens hver for seg. Etter litt algebra kommer vi fram til løsningen for fasevinkelen og α = arctan I 0 = ( ) ωl 1/ωC 2 + (ωl 1/ωC) 2 for strømamplituden. esonanskretsens impedans er følgelig Z = V 0 = I 2 + (ωl 1/ωC) 2 0 Figuren nedenfor viser hvordan I 0 varierer med ω for hhv stor, middels og liten verdi for resistansen. Når ω = ω 0 = 1/ LC, får vi maksimal amplitude på strømmen. Vi har da resonans. Frekvensen til den påtrykte spenningen matcher da den elektriske kretsens naturlige frekvens ω 0. I 0 stor middels liten 1/ LC ω For riktig lave frekvenser (ω 0) representerer kondensatoren et brudd i en tilnærmet likestrømkrets. Da er det ikke urimelig at I 0 0. For riktig høye frekvenser (ω, eventuelt ω ω 0 ) blir indusert motspenning i induktansen L stor selv uten strøm av betydning. Da er det heller ikke urimelig at I 0 0 i denne grensen. 7
8 Oppgave: Vis at midlere effekt som spenningskilden tilfører kretsen, P = 1 T T 0 V (t)i(t)dt blir P = I 0 cosα 2 Hva blir P på resonans, dvs når ω = ω 0 = 1/ LC? AC-kretser med kompleks regning. Kompleks impedans. [YF 31.3; LHL 27.6] Utregning av strøm og impedans i AC-kretser kan forenkles betraktelig ved å utnytte at cosωt = e { e iωt}, eventuelt sin ωt = Im { e iωt}. Dermed kan vi (midlertidig!) skrive påtrykt spenning som og strømmen på formen V (t) = e iωt I(t) = I 0 e iωt. Vi må bare huske på å ta realdelen av utregnet I(t) til slutt for å få den fysiske strømmen i kretsen. Her må vi dessuten tillate I 0 å bli en kompleks størrelse, inntil videre. Da har vi nemlig at I 0 = I 0 e iα, e { I 0 e iωt} = I 0 cos(ωt α), og det er jo nettopp på den formen vi ønsker å skrive strømmen i en slik AC-krets! Kretsens impedans Z blir dermed også en kompleks størrelse: Z = I 0 = I 0 eiα = Z e iα, dvs med absoluttverdi Z = / I 0, 8
9 og med fasevinkel α. Med andre ord: Den komplekse impedansen har innebygd informasjon om både strømmens amplitude I 0 og faseforskyvningen α mellom påtrykt spenning og resulterende strøm! Smart, ikke sant? Men tilbake til det regnetekniske: Poenget er at den deriverte av eksponentialfunksjonen er eksponentialfunksjonen selv. Dermed vil alle ledd i ligningen(e) som følger når vi anvender Kirchhoffs regler, ha samme tidsavhengige faktor exp(iωt), som dermed kan forkortes uten videre. Vi slipper å styre og herje med å skrive om trigonometriske funksjoner for å bestemme I 0 og α. For CL-kretsen hadde vi diffligningen L Q + Q + Q/C = cosωt for kondensatorladningen Q. Vi erstatter høyre side med exp(iωt) og skriver ladningen på formen Q(t) = Q 0 e iωt, der vi som for I 0 tillater kompleks amplitude Q 0. Innsetting av Q gir da dvs Vi har da med kompleks amplitude ( ω 2 L + iω + 1/C)Q 0 e iωt = e iωt, Q 0 = I = Q = iωq = iωq 0 e iωt = I 0 = iω ω 2 L + 1/C. + iωl + 1/iωC Her er nevneren nettopp den komplekse impedansen, Z = + iωl + 1/iωC + iωl + 1/iωC eiωt som ganske enkelt er en sum av enkeltimpedansene Z = (for en resistans ), Z L = iωl (for en induktans L) og Z C = 1/iωC (for en kapasitans C). Dvs: Samme regel for seriekobling av komplekse impedanser i AC-kretser som for seriekoblede resistanser i DC-kretser! Da er det nok ingen overraskelse å få høre at vi også har samme regel for parallellkobling av komplekse impedanser i AC-kretser som for parallellkobling av vanlige resistanser i DC-kretser. Eksempel: Total impedans i en krets med en, L og C koblet i parallell er Oppsummert: Impedans for motstand : Z = Impedans for induktans L: Z L = iωl Impedans for kapasitans C: Z C = 1/iωC Z = (1/ + 1/iωL + iωc) 1. Disse uttrykkene kan du selv overbevise deg om ved å se på tre kretser hver for seg, med en spenningskilde exp(iωt) koblet til hhv en motstand, en induktans og en kapasitans. 9
Mandag 7. mai. Elektromagnetisk induksjon (fortsatt) [FGT ; YF ; TM ; AF ; LHL 24.1; DJG 7.
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke19 Mandag 7. mai Elektromagnetisk induksjon (fortsatt) [FGT 30.1-30.6; YF 29.1-29.5; TM 28.2-28.3; AF 27.1-27.3; LHL 24.1;
Løsningsforslag til øving 5
Institutt for fysikk, NTNU FY1013 Elektrisitet og magnetisme II Høst 2005 Løsningsforslag til øving 5 Veiledning mandag 26. og onsdag 28. september a) Med motstand og kapasitans C i serie: cos ωt = I +
Onsdag isolator => I=0
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2008, uke 13 Onsdag 26.03.08 RC-kretser [FGT 27.5; YF 26.4; TM 25.6; AF Note 25.1; LHL 22.4; DJG Problem 7.2] Rommet mellom de
Mandag Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke12
nstitutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke12 Mandag 19.03.07 Likestrømkretser [FGT 27; YF 26; TM 25; AF 24.7; LHL 22] Eksempel: lommelykt + a d b c + m Likespenningskilde
EKSAMEN I FAG SIF 4012 ELEKTROMAGNETISME (SIF 4012 FYSIKK 2) Onsdag 11. desember kl Bokmål
Side av 6 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 4 43 39 3 EKSAMEN I FAG SIF 42 ELEKTROMAGNETISME
LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Onsdag 3. juni 2009 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I FY003 ELEKTRISITET
EKSAMEN FY1013 ELEKTRISITET OG MAGNETISME II Fredag 9. desember 2005 kl
NORGES TEKNSK- NATURTENSKAPELGE UNERSTET NSTTUTT FOR FYSKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 EKSAMEN FY1013 ELEKTRSTET OG MAGNETSME Fredag 9. desember 2005 kl.
EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Onsdag 3. juni 2009 kl
NOGES TEKNISK- NATUVITENSKAPEIGE UNIVESITET INSTITUTT FO FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 EEKTISITET OG MAGNETISME TFY4155
LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME I Mandag 17. desember 2007 kl
NOGES TEKNISK- NATUVITENSKAPELIGE UNIVESITET INSTITUTT FO FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFOSLAG TIL EKSAMEN I FY1003 ELEKTISITET OG
Løsningsforslag til øving 2
FY1002/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 2010. Løsningsforslag til øving 2 a) Kirchhoffs spenningsregel sier at summen av alle potensialendringer rundt en lukket krets skal være lik
EKSAMEN TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 31. mai 2005 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 EKSAMEN TFY4155 ELEKTROMAGNETISME FY1003
Mandag F d = b v. 0 x (likevekt)
Institutt for fysikk, NTNU TFY46/FY: Bølgefysikk Høsten 6, uke 35 Mandag 8.8.6 Dempet harmonisk svingning [FGT 3.7; YF 3.7; TM 4.4; AF.3; LL 9.7,9.8] I praksis dempes frie svingninger pga friksjon, f.eks.
Øving 13. Induksjon. Forskyvningsstrøm. Vekselstrømskretser.
Inst for fysikk 2017 FY1003 Elektr & magnetisme Øving 13 Induksjon Forskyvningsstrøm Vekselstrømskretser Denne siste øvingen innholder ganske mye, for å få dekket opp siste del av pensum Den godkjennes
Oppsummering om kretser med R, L og C FYS1120
Oppsummering om kretser med R, L og C FYS1120 Likestrømskretser med motstander Strøm og spenning er alltid i fase. Ohms lov: V = RI Effekt er gitt ved: P = VI = RI 2 = V 2 /R Kirchoffs lover: Summen av
EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Tirsdag 27. mai 2008 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME
EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I TFY4155 ELEKTROMAGNETISME Fredag 8. juni 2007 kl
NOGES TEKNISK- NATUVITENSKAPELIGE UNIVESITET INSTITUTT FO FYSIKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 ELEKTISITET OG MAGNETISME I TFY4155
EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I Mandag 17. desember 2007 kl K. Rottmann: Matematisk formelsamling (eller tilsvarende).
NOGES TEKNSK- NATUVTENSKAPELGE UNVESTET NSTTUTT FO FYSKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 ELEKTSTET OG MAGNETSME Mandag 17. desember
LØSNINGSFORSLAG TIL EKSAMEN FY1013 ELEKTRISITET OG MAGNETISME II Fredag 9. desember 2005 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 LØSNINGSFORSLAG TIL EKSAMEN FY1013 ELEKTRISITET OG MAGNETISME II Fredag
Øving 2. a) I forelesningene har vi sett at det mekaniske svingesystemet i figur A ovenfor, med F(t) = F 0 cosωt, oppfyller bevegelsesligningen
FY1002/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 2012. Veiledning: Mandag-Tirsdag 3-4. september. Innleveringsfrist: Mandag 10. september kl 12:00. Øving 2 A k b m F B V ~ q C q L R I a)
LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME Mandag 4. desember 2006 kl
NOGES TEKNISK- NATUVITENSKAPEIGE UNIVESITET INSTITUTT FO FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 ØSNINGSFOSAG TI EKSAMEN I FY1003 EEKTISITET OG MAGNETISME
Sammendrag, uke 13 (30. mars)
nstitutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2005 Sammendrag, uke 13 (30. mars) Likestrømkretser [FGT 27; YF 26; TM 25; AF 24.7; LHL 22] Eksempel: lommelykt + a d b c + m Spenningskilde
LØSNINGSFORSLAG TIL EKSAMEN I TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 31. mai 2005 kl
NORGES TEKNISK- NATURVITENSKAPEIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 ØSNINGSFORSAG TI EKSAMEN I TFY4155 EEKTROMAGNETISME
EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I Mandag 5. desember 2005 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME
a) Bruk en passende Gaussflate og bestem feltstyrken E i rommet mellom de 2 kuleskallene.
Oppgave 1 Bestem løsningen av differensialligningen Oppgave 2 dy dx + y = e x, y(1) = 1 e Du skal beregne en kulekondensator som består av 2 kuleskall av metall med samme sentrum. Det indre skallet har
Løsningsforslag til øving 4
Institutt for fysikk, NTNU FY3 Elektrisitet og magnetisme II Høst 25 Løsningsforslag til øving 4 Veiledning mandag 9. og onsdag 2. september Likeretter a) Strømmen som leveres av spenningskilden må gå
Kretsanalyse basert på elektromagnetisme
Kretsanalyse basert på elektromagnetisme Johannes Skaar 3. juli 207 Det er ikke uvanlig å lære kretsteori før man lærer elektromagnetisme. Dette er fordi kretsteorien er betydelig enklere enn den fulle
Kondensator. Symbol. Lindem 22. jan. 2012
UKE 5 Kondensatorer, kap. 12, s. 364-382 RC kretser, kap. 13, s. 389-413 Frekvensfilter, kap. 15, s. 462-500 og kap. 16, s. 510-528 Spoler, kap. 10, s. 289-304 1 Kondensator Lindem 22. jan. 2012 Kondensator
KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME
LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME I TFY4155 ELEKTROMAGNETISME Fredag 8. juni 2007 kl
NOGES TEKNISK- NATUVITENSKAPELIGE UNIVESITET INSTITUTT FO FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFOSLAG TIL EKSAMEN I FY1003 ELEKTISITET OG
I C Q R. Øving 11. Institutt for fysikk, NTNU TFY4155/FY1003: Elektromagnetisme
nstitutt for fsikk, NTNU TFY4155/FY1003: Elektromagnetisme Vår 2009 Øving 11 Veiledning: Mandag 23. mars og fredag 27. mars nnleveringsfrist: Fredag 27. mars Oppgave 1 nnledning (dvs vi rekapitulerer fra
EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME Mandag 4. desember 2006 kl
NOGES TEKNSK- NATUVTENSKAPELGE UNVESTET NSTTUTT FO FYSKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 ELEKTSTET OG MAGNETSME Mandag 4. desember
LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Tirsdag 27. mai 2008 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I FY003 ELEKTRISITET
NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi
NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi Løsningsforslag til eksamen i FYS35, ELEKTROMAGNETISME, høst 004. (med forbehold om feil) Oppgave a) Dersom vi hadde hatt magnetiske
Forelesning nr.7 IN 1080 Elektroniske systemer. Spoler og induksjon Praktiske anvendelser Nøyaktigere modeller for R, C og L
Forelesning nr.7 IN 1080 Elektroniske systemer Spoler og induksjon Praktiske anvendelser Nøyaktigere modeller for R, C og L Dagens temaer Induksjon og spoler RL-kretser og anvendelser Fysiske versus ideelle
EKSAMEN TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 30. mai 2006 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN TFY4155 ELEKTROMAGNETISME FY1003
Øving 15. H j B j M j
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007 Veiledning: Uke 17 Innleveringsfrist: Mandag 30. april Øving 15 Oppgave 1 H j j M j H 0 0 M 0 I En sylinderformet jernstav
LØSNINGSFORSLAG TIL EKSAMEN I TFY4155 ELEKTROMAGNETISME Fredag 11. august 2006 kl
NOGES TEKNISK- NATUVITENSKAPELIGE UNIVESITET INSTITUTT FO FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFOSLAG TIL EKSAMEN I TFY4155 ELEKTOMAGNETISME
UNIVERSITETET I TROMSØ. EKSAMENSOPPGAVE i FYS-1002
UNIVERSITETET I T R O M S Ø UNIVERSITETET I TROMSØ Intitutt for fysikk og teknologi EKSAMENSOPPGAVE i FYS-1002 Eksamen i: Fys-1002 Elektromagnetisme Eksamensdato: 10. juni, 2013 Tid: 09:00 13:00 Sted:
EKSAMENSOPPGAVE. Fys-1002 Elektromagnetisme. Adm.bygget B154 Kalkulator med tomt dataminne, Rottmann: Matematisk formelsamling
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAE Eksamen i: Fys-1002 Elektromagnetisme Dato: Onsdag 26. september 2018 Klokkeslett: Kl. 9:00-13:00 Sted: Tillatte hjelpemidler: Adm.bygget B154 Kalkulator
KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME Fredag 11. august 2006 kl
NOGES TEKNSK- NATUVTENSKAPELGE UNVESTET NSTTUTT FO FYSKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 KONTNUASJONSEKSAMEN TFY4155 ELEKTOMAGNETSME Fredag 11.
LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN I TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN I TFY4155
Løsningsforslag EKSAMEN TFY4102 FYSIKK Fredag 10. juni 2011
Løsningsforslag EKSAMEN TFY4102 FYSIKK Fredag 10. juni 2011 Oppgave 1. a) Vi velger her, og i resten av oppgaven, positiv retning oppover. Dermed gir energibevaring m 1 gh = 1 2 m 1v 2 0 v 0 = 2gh. Rett
En del utregninger/betraktninger fra lab 8:
En del utregninger/betraktninger fra lab 8: Fra deloppgave med ukjent kondensator: Figur 1: Krets med ukjent kondensator og R=2,2 kω a) Skal vise at når man stiller vinkelfrekvensen ω på spenningskilden
LØSNINGSFORSLAG TIL EKSAMEN I TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 30. mai 2006 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I TFY4155 ELEKTROMAGNETISME
Forelesning nr.6 INF 1411 Elektroniske systemer. Anvendelser av RC-krester Spoler og RL-kretser
Forelesning nr.6 INF 1411 Elektroniske systemer Anvendelser av RC-krester Spoler og RL-kretser Dagens temaer Mer om ac-signaler og sinussignaler Filtre Bruk av RC-kretser Induktorer (spoler) Sinusrespons
Forelesning nr.7 INF 1410. Kondensatorer og spoler
Forelesning nr.7 IF 4 Kondensatorer og spoler Oversikt dagens temaer Funksjonell virkemåte til kondensatorer og spoler Konstruksjon Modeller og fysisk virkemåte for kondensatorer og spoler Analyse av kretser
INF L4: Utfordringer ved RF kretsdesign
INF 5490 L4: Utfordringer ved RF kretsdesign 1 Kjøreplan INF5490 L1: Introduksjon. MEMS i RF L2: Fremstilling og virkemåte L3: Modellering, design og analyse Dagens forelesning: Noen typiske trekk og utfordringer
UKE 5. Kondensatorer, kap. 12, s RC kretser, kap. 13, s Frekvensfilter, kap. 15, s og kap. 16, s.
UKE 5 Kondensatorer, kap. 12, s. 364-382 R kretser, kap. 13, s. 389-413 Frekvensfilter, kap. 15, s. 462-500 og kap. 16, s. 510-528 1 Kondensator Lindem 22. jan. 2012 Kondensator (apacitor) er en komponent
og P (P) 60 = V 2 R 60
Flervalgsoppgaver 1 Forholdet mellom elektrisk effekt i to lyspærer på henholdsvis 25 W og 60 W er, selvsagt, P 25 /P 60 = 25/60 ved normal bruk, dvs kobla i parallell Hva blir det tilsvarende forholdet
TMA 4110 Matematikk 3 Høsten 2004 Svingeligningen med kompleks regnemåte
TMA 4 Matematikk Høsten 4 Svingeligningen med kompleks regnemåte H.E.K., Inst. for matematiske fag, NTNU Svingeligningen forekommer i mange sammenhenger, og ofte vil vi møte regning og utledninger der
EKSAMENSOPPGAVE. Eksamen i: FYS- 1002 Elektromagnetisme Fredag 31. august 2012 Kl 09:00 13:00 adm. Bygget, rom B154
side 1 av 6 sider FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI EKSAMENSOPPGAVE Eksamen i: FYS- 1002 Elektromagnetisme Dato: Tid: Sted: Fredag 31. august 2012 Kl 09:00 13:00 adm. Bygget, rom B154 Tillatte hjelpemidler:
Enkle kretser med kapasitans og spole- bruk av datalogging.
Laboratorieøvelse i FY3-Elektrisitet og magnetisme Vår Fysisk Institutt, NTNU Enkle kretser med kapasitans og spole- bruk av datalogging. Oppgave -Spenning i krets a: Mål inngangsspenningen og spenningsfallet
Punktladningen Q ligger i punktet (3, 0) [mm] og punktladningen Q ligger i punktet ( 3, 0) [mm].
Oppgave 1 Finn løsningen til følgende 1.ordens differensialligninger: a) y = x e y, y(0) = 0 b) dy dt + a y = b, a og b er konstanter. Oppgave 2 Punktladningen Q ligger i punktet (3, 0) [mm] og punktladningen
Oppgave 3: Motstand, Kondensator og Spole
Lab i TFY412 Oppgave 3: Motstand, Kondensator og Spole Institutt for fysikk, NTNU 1.1. INNLEDNING 1 1.1 Innledning Ohms lov, = I, gir sammenhengen mellom spenningsfallet over og strømmen gjennom en motstand.
EKSAMENSOPPGAVE. ü Kalkulator med tomt dataminne ü Rottmann: Matematisk Formelsamling. rute
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAE Eksamen i: FYS-1002 Dato: 26. september 2017 Klokkeslett: 09.00-13.00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: ü Kalkulator med tomt dataminne
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1120 Elektromagnetisme Eksamensdag: Prøveeksamen 2017 Oppgavesettet er på 9 sider Vedlegg: Tillatte hjelpemidler: Formelark
For å finne amplituden kan vi f.eks. ta utgangspunkt i AB=-30 og siden vi nå kjenner B finner vi A :
Ukeoppgaver INF 1410 til uke 18 (7-30 april) våren 009 Fra kapittel 10 i læreboka: Lett: 10.1, 10.3, 10. Middels: 10.9, 10.11, 10.53 Vanskelig: 10.13, 10.8, 10., 10.55 Fra kapittel 14 i læreboka: Lett:
NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME
NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME Eksamensdag: 10. desember 2004 Tid for eksamen: Kl. 09:00-12:30 (3,5 timer) Tillatte hjelpemidler:
Elektrisk immittans. Ørjan G. Martinsen 13.11.2006
Elektrisk immittans Ørjan G. Martinsen 3..6 Ved analyse av likestrømskretser har vi tidligere lært at hvis vi har to eller flere motstander koblet i serie, så finner vi den totale resistansen ved følgende
Forelesning nr.6 INF 1411 Elektroniske systemer
Forelesning nr.6 INF 1411 Elektroniske systemer Anvendelser av RC-krester Spoler og RL-kretser 1 Dagens temaer Bruk av RC-kretser Sinusrespons til RL-kretser Impedans og fasevinkel til serielle RL-kretser
Onsdag og fredag
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2009, uke 13 Onsdag 25.03.09 og fredag 27.03.09 Amperes lov [FGT 30.1, 30.3; YF 28.6, 28.7; AF 26.2; H 23.6; G 5.3] B dl = µ 0
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1411 Elektroniske systemer Eksamensdag: 4. juni 2012 Tid for eksamen: 14:30 18:30 Oppgavesettet er på 5 sider Vedlegg: Ingen
Forelesning nr.12 INF 1410
Forelesning nr.12 INF 1410 Komplekse frekvenser analyse i frekvensdomenet 20.04. INF 1410 1 Oversikt dagens temaer Intro Komplekse tall Komplekse signaler Analyse i frekvensdomenet 20.04. INF 1410 2 Intro
Forelesning nr.5 IN 1080 Mekatronikk. RC-kretser
Forelesning nr.5 IN 080 Mekatronikk R-kretser Dagens temaer Ulike typer impedans og konduktans Kondensatorer i serie og parallell Ulike typer respons R-kretser Impedans og fasevinkler Serielle R-kretser
LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN I FAG SIF 4012 ELEKTROMAGNETISME (SIF 4012 FYSIKK 2) Mandag 29. juli kl
Side av 9 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN I FAG SIF 4 ELEKTROMAGNETISME
b) Vi legger en uendelig lang, rett stav langs y-aksen. Staven har linjeladningen λ = [C/m].
Oppgave 1 a) Punktladningen q 1 = 1.0 10 9 [C] ligger fast i punktet (2.0, 0, 0) [m]. Punktladningen q 2 = 4.0 10 9 [C] ligger i punktet ( 1.0, 0, 0) [m]. I) Finnes det punkt(er) i rommet med elektrisk
LØSNINGSFORSLAG TIL EKSAMEN FY1013 ELEKTRISITET OG MAGNETISME II Fredag 8. desember 2006 kl 09:00 13:00
NOGES EKNISK- NAUVIENSKAPEIGE UNIVESIE INSIU FO FYSIKK Kontakt under eksamen: Per Erik Vullum lf: 93 45 7 ØSNINGSFOSAG I EKSAMEN FY3 EEKISIE OG MAGNEISME II Fredag 8. desember 6 kl 9: 3: Hjelpemidler:
EKSAMENSOPPGAVE. Adm.bygget, Aud.max. ü Kalkulator med tomt dataminne ü Rottmann: Matematisk Formelsamling. rute
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAE Eksamen i: Fys-1002 Dato: 30. september 2016 Klokkeslett: 09.00-13.00 Sted: Tillatte hjelpemidler: Adm.bygget, Aud.max ü Kalkulator med tomt dataminne
Forelesning nr.5 INF 1411 Elektroniske systemer. RC-kretser
Forelesning nr.5 INF 4 Elektroniske systemer R-kretser Dagens temaer Ulike typer respons Ulike typer impedans og konduktans Kondensatorer i serie og parallell Bruk av kondensator R-kretser Impedans og
Midtsemesterprøve torsdag 7. mai 2009 kl
Institutt for fysikk, NTNU FY1003 Elektrisitet og magnetisme TFY4155 Elektromagnetisme Våren 2009 Tillatte hjelpemidler: Midtsemesterprøve torsdag 7. mai 2009 kl 09.15 11.15. Oppgaver på side 5 10. Svartabell
Forelesning nr.5 INF 1411 Elektroniske systemer. RC-kretser
Forelesning nr.5 INF 1411 Elektroniske systemer R-kretser Dagens temaer Ulike typer impedans og konduktans Kondensatorer i serie og parallell Bruk av kondensator R-kretser Impedans og fasevinkler Serielle
UKE 5. Kondensatorer, kap. 12, s RC kretser, kap. 13, s Frekvensfilter, kap. 15, s kap. 16, s
UKE 5 Kondensatorer, kap. 2, s. 364-382 R kretser, kap. 3, s. 389-43 Frekvensfilter, kap. 5, s. 462-500 kap. 6, s. 50-528 Kondensator Lindem 22. jan. 202 Kondensator (apacitor) er en komponent som kan
Fasit og sensorveiledning eksamen INF1411 våren Oppgave 1 Strøm, spenning, kapasitans og resistans (Vekt 20 %) A) B) Figur 1
Fasit og sensorveiledning eksamen INF1411 våren 2012 Oppgave 1 Strøm, spenning, kapasitans og resistans (Vekt 20 %) Oppgave 1a) (vekt 5 %) Hva er strømmen i og spenningen V out i krets A) i Figur 1? Svar
Forelesning nr.6 INF 1411 Elektroniske systemer. Anvendelser av RC-krester Spoler og RL-kretser
Forelesning nr.6 INF 1411 Elektroniske systemer Anvendelser av RC-krester Spoler og RL-kretser Dagens temaer Generelle ac-signaler og sinussignaler Filtre Bruk av RC-kretser Induktorer (spoler) Sinusrespons
Tirsdag 15. april. et stykke materie er bygd opp av atomer, dvs av atomære magnetiske dipoler med magnetisk dipolmoment j = 1...n. m j. m
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2008, uke 16 Tirsdag 15. april agnetisme [FGT 31.1-31.4; YF 28.8; T 27.5; AF 26.3; LHL 26.1-26.5; DJG 6.4] Atomer er små magnetiske
7.1 RESISTANS - SPOLE - KONDENSATOR TILKOPLET ENKELTVIS 7.1 RESISTANS - SPOLE - KONDENSATOR TILKOPLET VEKSELSTRØM ENKELTVIS
7. ESSTANS - SPOLE - KONDENSATO TLKOPLET ENKELTVS 7. ESSTANS - SPOLE - KONDENSATO TLKOPLET VEKSELSTØM ENKELTVS DEELL ESSTANS TLKOPLET VEKSELSTØM Når en motstandstråd blir brettet i to og de to delene av
Forelesning nr.7 INF 1411 Elektroniske systemer. Tidsrespons til reaktive kretser Integrasjon og derivasjon med RC-krester
Forelesning nr.7 INF 1411 Elektroniske systemer Tidsrespons til reaktive kretser Integrasjon og derivasjon med RC-krester Dagens temaer Nøyaktigere modeller for ledere, R, C og L Tidsrespons til reaktive
Forelesning nr.6 INF 1411 Elektroniske systemer. Anvendelser av RC-krester Spoler og RL-kretser
Forelesning nr.6 INF 1411 Elektroniske systemer Anvendelser av RC-krester Spoler og RL-kretser Dagens temaer Regneeksempel på RC-krets Bruk av RC-kretser Sinusrespons til RL-kretser Impedans og fasevinkel
EKSAMEN I EMNE TFY4120 FYSIKK. Fredag 3. desember 2004 Tid: kl
Studentnummer: Studieretning: Bokmål Side 1 av 1 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Institutt for fysikk, Gløshaugen Professor Jon Otto Fossum,
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1411 Introduksjon til elektroniske systemer Eksamensdag: 1. juni 2015 Tid for eksamen: 4 timer Oppgavesettet er på 5 sider
LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME I Mandag 5. desember 2005 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt uner eksamen: Jon Anreas Støvneng Telefon: 7 59 6 6 / 41 4 9 0 LØSNINGSFORSLAG TIL EKSAMEN I FY100 ELEKTRISITET OG MAGNETISME
EKSAMEN I TFY4155 ELEKTROMAGNETISME OG FY1003 ELEKTRISITET OG MAGNETISME
TFY4155/FY1003 31. mai 2010 Side 1 av 8 NOGS TKNSK-NATUVTNSKAPLG UNVSTT NSTTUTT FO FYSKK Kontakt under eksamen: Jon Andreas Støvneng, telefon: 45 45 55 33 / 73 59 36 63 KSAMN TFY4155 LKTOMAGNTSM OG FY1003
Fasit og sensorveiledning eksamen INF1411 våren Oppgave 1 Strøm, spenning, kapasitans og resistans (Vekt 20 %) A) B) Figur 1
Fasit og sensorveiledning eksamen INF1411 våren 2012 Oppgave 1 Strøm, spenning, kapasitans og resistans (Vekt 20 %) Oppgave 1a) (vekt 5 %) Hva er strømmen i og spenningen V out i krets A) i Figur 1? Svar
Kondensator - Capacitor. Kondensator - en komponent som kan lagre elektrisk ladning. Symbol. Kapasitet, C = 1volt
Kondensator - apacitor Lindem jan.. 008 Kondensator - en komponent som kan lagre elektrisk ladning. Symbol Kapasiteten ( - capacity ) til en kondensator måles i Farad. Som en teknisk definisjon kan vi
Mandag 21.08.06. Mange senere emner i studiet bygger på kunnskap i bølgefysikk. Eksempler: Optikk, Kvantefysikk, Faststoff-fysikk etc. etc.
Institutt for fysikk, NTNU TFY46/FY2: Bølgefysikk Høsten 26, uke 34 Mandag 2.8.6 Hvorfor bølgefysikk? Man støter på bølgefenoener overalt. Eksepler: overflatebølger på vann akustiske bølger (f.eks. lyd)
Mandag Ledere: Metaller. Atomenes ytterste elektron(er) er fri til å bevege seg gjennom lederen. Eksempler: Cu, Al, Ag etc.
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke 7 Mandag 12.02.07 Materialer og elektriske egenskaper Hovedinndeling av materialer med hensyn på deres elektriske egenskaper:
Tirsdag r r
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2008, uke 6 Tirsdag 05.02.08 Gauss lov [FGT 23.2; YF 22.3; TM 22.2, 22.6; AF 25.4; LHL 19.7; DJG 2.2.1] Fra forrige uke; Gauss
Mandag 04.09.06. Institutt for fysikk, NTNU TFY4160/FY1002: Bølgefysikk Høsten 2006, uke 36
Institutt for fsikk, NTNU TFY4160/FY1002: Bølgefsikk Høsten 2006, uke 36 Mandag 04.09.06 Del II: BØLGER Innledning Bølger er forplantning av svingninger. Når en bølge forplanter seg i et materielt medium,
Forelesning nr.5 INF 1411 Elektroniske systemer
Forelesning nr.5 INF 4 Elektroniske systemer R-kretser Dagens temaer Ulike Kondensatorer typer impedans og konduktans i serie og parallell Bruk R-kretser av kondensator Temaene Impedans og fasevinkler
Løsningsforslag til øving 13
Institutt for fysikk, NTNU TFY4155/FY1003 Elektromagnetisme Vår 2009 Løsningsforslag til øving 13 Oppgave 1 a) Sløyfas magnetiske dipolmoment: m = IA ˆn = Ia 2 ˆn Sløyfa består av 4 rette ledere med lengde
Laboratorieøving 1 i TFE Kapasitans
Laboratorieøving i TFE420 - Kapasitans 20. februar 207 Sammendrag Vi skal benytte en parallelplatekondensator med justerbart gap til å studere kapasitans. Oppgavene i forarbeidet beskrevet nedenfor må
Elektriske kretser. Innledning
Laboratorieøvelse 3 Fys1000 Elektriske kretser Innledning I denne oppgaven skal du måle elektriske størrelser som strøm, spenning og resistans. Du vil få trening i å bruke de sentrale begrepene, samtidig
Mandag dq dt. I = Q t + + x (tverrsnitt av leder) Med n = N/ V ladningsbærere pr volumenhet, med midlere driftshastighet v og ladning q:
Institutt for fysikk, NTNU TFY455/FY003: Elektrisitet og magnetisme Vår 2007, uke Mandag 2.03.07 Elektrisk strøm. [FGT 26.; YF 25.; TM 25.; AF 24., 24.2; LHL 2.; DJG 5..3] Elektrisk strømstyrke = (positiv)
Forelesning nr.4 INF 1411 Elektroniske systemer. Vekselstrøm Kondensatorer
Forelesning nr.4 INF 1411 Elektroniske systemer Vekselstrøm Kondensatorer Dagens temaer Sinusformede spenninger og strømmer Firkant-, puls- og sagtannsbølger Effekt i vekselstrømkretser Kondensator Presentasjon
Svingninger i en elektrisk RCL-krets med og uten påtrykt vekselspenning.
1 Noen gruppeoppgaver for uke 20 våren 2008 i FYS2130: Svingninger i en elektrisk RCL-krets med og uten påtrykt vekselspenning. Vi har på forelesninger i uke 19 vist hvordan vi kan løse den andre ordens
Løsningsforslag til øving 14
Institutt for fysikk, NTNU TFY4155/FY13 Elektromagnetisme Vår 29 Løsningsforslag til øving 14 Oppgave 1 Den påtrykte strømmen I genererer et H-felt H ni på langs overalt inne i spolen (pga Amperes lov
Elektriske svingekretser - FYS2130
Elektriske svingekretser - FYS3 Koplekse ipedanser Vekselsstrøskretser blir ofte enklere å behandle når ipedansene skrives på kopleks for. De koplekse ipedanser er Z ˆ i for kondensator ed kapasitans i
9) Mhp CM er τ = 0 i selve støtet, slik at kula glir uten å rulle i starten. Dermed må friksjonskraften f virke mot venstre, og figur A blir riktig.
TFY4104 Fysikk Eksamen 18. desember 2013 Løsningsforslag, kortversjon uten oppgavetekst og figurer 1) (4 0.264/0.164) (USD/USgal)(NOK/USD)(USg/L) = 6.44 NOK/L C) 6.44 2) N2: F = ma i a i = F/m B) a 1 =