TMA4115 Matematikk 3 Vår 2012

Størrelse: px
Begynne med side:

Download "TMA4115 Matematikk 3 Vår 2012"

Transkript

1 Noregs teknisk naturvitskaplege universitet Institutt for matematiske fag TMA4115 Matematikk 3 Vår 01 Oppgaver fra læreboka, s lxxxiv 9 a) Likninga for systemet vert y + 4y = 4 cos ωt Me løyser først den tilhøyrande homogene likninga y + 4y = 0 Den karakteristiske likninga har røter r = ±i, så me får y h = A cos t + B sin t Anta ei spesiell løysing på forma C cos ωt (me antek her ω ) Me deriverer og set inn: Cω cos ωt + 4C cos ωt = 4 cos ωt C(4 ω ) = 4 C = 4 4 ω Altså vert den generelle løysinga y = A cos t + B sin t + C cos ωt Me har gitt initialverdiane y(0) = 0 og y (0) = 0 Dette gir så posisjonen som funksjon av tid vert b) 0 = y (0) = B cos t B = 0 0 = y(0) = A + C A = C y = C cos t + C cos ωt = 4 (cos ωt cos t) 4 ω y = 4 4 t ωt t + ωt (cos ωt cos t) = sin sin = 8 4 ω 4 ω Me har ω 0 =, så me vel ω = 9 5 Då får me x(t) = sin t 19t sin ω sin( ω t) sin( + ω t) 9 februar 01 Side 1 av 9

2 10 a) Me løyser først den tilhøyrande homogene likninga y + 5y = 0 Den karakteristiske likninga har røter r = ±5i, så me får y h = A cos 5t + B sin 5t Anta ei spesiell løysing på forma x = Ct cos 5t + Dt sin 5t (C cos 5t + D sin 5t er ei løysing av den homogene likninga) Me deriverer og set inn: 10C sin 5t+10D cos 5t 5Ct cos 5t 5Dt sin 5t+5(Ct cos 5t+Dt cos 5t) = 4 cos 5t Dette gir C = 0 og D = 5 Altså vert den generelle løysinga y = A cos 5t + B sin 5t + 5t sin 5t Me har gitt initialverdiane y(0) = 1 og y (0) = 0 Dette gir så posisjonen som funksjon av tid vert 1 = x(0) = A cos 5t A = 1 0 = x (0) = 5B B = 0 x = cos 5t + t sin 5t 5 Leddet med t sin 5t viser at me får resonans b) 9 februar 01 Side av 9

3 16 Vi ser etter en løsning på formen x p (t) = a sin t + b cos t Vi observerer at x p(t) = a cos t b sin t og x p(t) = 4a sin t 4b sin t = 4x p (t) For å bestemme a og b setter vi inn i likninga x p(t) + 5x p(t) + 4x p (t) = sin t, 4a sin t 4b sin t + 5(a cos t b sin t) + 4(a sin t + b cos t) = sin t, Dette impliserer at a = 0, b = a cos t 10b sin t = sin t Vi finner løsningen av initialverdiproblemet Homogen løsning er x h (t) = c 1 e 4t + c e t (Sjekk dette!), noe som gir generell løsning x(t) = c 1 e 4t + c e t 1 5 cos t Vi bruker initialbetingelsene til å bestemme c 1 og c Dette gir c 1 = 5, c = 8 5 x(0) = c 1 + c 1 5 = 1, x (0) = 4c 1 c = 0 9 februar 01 Side 3 av 9

4 3 Fra likninga har vi c = 0,5 og ω0 = 4 Likning (715) gir dermed gain G(ω) = 1 (4 ω ) + 0,5ω Vi ser at maksimum er ved ω 9 februar 01 Side 4 av 9

5 36 Formelen for gain finner vi på side lxxxi: G(ω) = 1 (ω 0 ω ) + 4c ω Vi deriverer G og får G ω 3 + (c ω0 (ω) = )ω (ω 0 ω ) + 4c ω 3 Vi har G (ω) = 0 hvis og bare hvis telleren er 0, så de kritiske punktene til G er løsningene til ω 3 + (c ω 0)ω = 0 ω(ω + c ω 0) = 0 ω = 0 er en løsning, det er også løsningene til ω + c ω 0 = 0, ω = ± ω 0 c (her trenger vi at ω 0 > c, elles blir ω = 0 den eneste reelle løsninga) Vi kan se bort fra ω = ω 0 c, siden frekvenser ikke kan være negative For å avgjøre om de kritiske punktene er maksima sjekker vi fortegnet til G i to andre punkt, ω 0 og 1 ω 0 c Merk at 0 < 1 ω 0 c < ω 0 c < ω 0 Igjen trenger vi bare se på telleren, nevneren er alltid positiv altså har vi G (ω 0 ) < 0 ( 1 ω c ω 0 ω 3 0 = c ω 0 > 0 ω0 c ) 3 +(c ω0) 1 ω0 c = 1 ω0 8 c (ω0 c ) 1 (ω 0 c ) ω0 c = 3 8 (ω 0 c ) ω0 c < 0 siden ω 0 > c, altså har vi G ( 1 ω 0 c ) > 0 Det betyr at ω res = ω 0 c er et maksimum, og at ω = 0 ikke er det Når vi setter inn tallene fra oppgave 3 får vi ω res = 4 0,5 = 1, Me finn først fjørkonstanten k Når systemet er i likevekt har me mg = kx 0 der m er massen, g er gravitasjonen og x 0 er kor langt fjøra er strekt (Newtons 1 lov og Hookes lov) mg = kx 0 k = mg 0,05 9,8 = = 4,9 x 0 0,1 Når systemet er sett i svinging har me (frå Newtons lov) ma = F (t) µv kx 9 februar 01 Side 5 av 9

6 der a er akselerasjon, v er fart, µ = 0,01 er dempingskonstanten og x er posisjon (positiv retning oppover) Dermed får me Me løyser først den homogene likninga mx = F (t) µx kx mx + µx + kx = F (t) x + µ m x + k m = 1 m F (t) x + 0,x + 98x = 100 cos 4,4t x + 0,x + 98x = 0 Den karakteristiske likninga r +0,r +98 = 0 har løysingar r = 0,1±9, 899i Altså har den homogene likninga generell løysing x h = e 0,1t (A cos 9,899t + B sin 9,899t) For å finna ei spesiell løysing (stabil tilstand) brukar me den komplekse metoden Anta at z = Ce 4,4it er ei løysing av z + 0,z + 98z = 100e 4,4it Me har z = 4,4Cie 4,4it og z = 19,36Ce 4,4it Me set dette inn og får C = 19,36Ce 4,4it + 0,88Cie 4,4it + 98Ce 4,4it = 100e 4,4it 100 = 1,715 0,014i = 1,715e 0,011i 98 19,36 + 0,88i (i siste steg brukar me at w = w e arg(w)i for alle komplekse tal w) Dermed får me z = 1,715e 4,4it 0,011i, og den spesielle løysinga av den opphavelege likninga er realdelen av z: x p = 1,715 cos(4,4t 0,011) Altså er den generelle løysinga x = e 0,1t (A cos 9,899t + B sin 9,899t) + 1,715 cos(4,4t 0,011) Initialvilkåra er x(0) = 0 og x (0) = 0 Det gir 0 = x(0) = A + 1,715 cos( 0,011) A = 1,715 0 = x (0) = 0,1A + 9,899B 4,4 1,715 sin( 0,011) B = 0,019 så den endelege løysinga vert x = e 0,1t ( 1,715 cos 9,899t + 0,019 sin 9,899t) + 1,715 cos(4,4t 0,011) 9 februar 01 Side 6 av 9

7 Oppgaver fra læreboka, s 10 1 Den utvida matrisa til systemet er [ ] Vi legger ganger rad 1 til rad [ 1 5 ] og ganger rad med 1 3 [ ] Dermed har me x = 3 x 1 + 5x = 7 x 1 = 7 5x = 7 15 = 8 4 Dette er det samme som å løse likningssystemet x 1 + x = 13 3x 1 x = 1 som har utvida matrise [ ] Vi trekker 3 ganger rad 1 fra rad [ 1 ] og ganger rad med 1 8 [ ] Dermed har vi x = 5 x 1 + x = 13 x 1 = 13 x = 3 det vil se at linjene krysser i punktet ( 3, 5) 8 Vi har gitt matrisa februar 01 Side 7 av 9

8 Vi kan gange rad fire med 1 og rad 3 med 1 3, for så å legge -1 ganger rad 4 til rad og -4 ganger rad 3 til rad en Til sist legger vi fem ganger rad til rad en og har matrisa Løsningsmengda er dermed gitt ved at x 1 = x = x 3 = x 4 = 0 11 Systemet har utvida matrise Vi trekker ganger rad fra rad , bytter om rad 1 og rad legger rad til rad , , og ser at rad 3 gir likninga 0 =, noe som betyr at systemet er inkonsistent 1 Systemet har utvida matrise Vi legger rad til rad , trekker ganger rad 1 fra rad , legger ganger rad til rad , og ser at rad 3 gir likninga 0 = 5, noe som betyr at systemet er inkonsistent 9 februar 01 Side 8 av 9

9 15 Systemet har utvida matrise Vi legger rad til rad 4 legger rad 1 til rad 3 trekker rad 4 fra rad , , , og ser at rad 3 gir likninga 0 = 8, noe som betyr at systemet er inkonsistent 5 NB! Feil i fasit i boka! Systemet har utvida matrise g h 5 9 k Vi legger ganger rad 1 til rad g h, k + g legger rad til rad g h k + g + h Det vil si at k + g + h = 0 må være oppfylt for at systemet skal være konsistent 9 februar 01 Side 9 av 9

TMA4110 Matematikk 3 Haust 2011

TMA4110 Matematikk 3 Haust 2011 Noregs teknisk naturvitskaplege universitet Institutt for matematiske fag TMA4110 Matematikk 3 Haust 011 Løysingsforslag Øving 4 Oppgåver frå læreboka, s. lxxxiv 9 a) Likninga for systemet vert y +4y =

Detaljer

TMA4110 Matematikk 3 Haust 2011

TMA4110 Matematikk 3 Haust 2011 Noregs teknisk naturvitskaplege universitet Institutt for matematiske fag TMA4110 Matematikk 3 Haust 2011 Løysingsforslag Øving 2 Oppgåver frå læreboka, s. xliv-xlv 9 Me finn først fjørkonstanten k. Når

Detaljer

TMA4110 Matematikk 3 Haust 2011

TMA4110 Matematikk 3 Haust 2011 Noregs teknisk naturvitskaplege universitet Institutt for matematiske fag TMA4110 Matematikk 3 Haust 2011 Løysingsforslag Øving 3 Oppgåver frå læreboka, s. lxxi 7 Anta at y p = acos2t+bsin2t. Då har me

Detaljer

TMA4110 Matematikk 3 Haust 2011

TMA4110 Matematikk 3 Haust 2011 Noregs teknisk naturvitskaplege universitet Institutt for matematiske fag TMA40 Matematikk 3 Haust 0 Løysingsforslag Øving Oppgåver frå læreboka kap 5, s 7-73 5 Eigenrommet som svarar til λ = 5 er det

Detaljer

LØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x

LØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x LØSNINGSFORSLAG EKSAMEN, MAT 00, HØSTEN 06 DEL.. Hvilken av funksjonene gir en anti-derivert for f(x) = (x + )? Løsning. Vi setter u = x +, som gir du = dx, (x + ) dx = u du = u = (x + ) = x + a) x+ b)

Detaljer

TMA4110 Matematikk 3 Haust 2011

TMA4110 Matematikk 3 Haust 2011 Noregs teknisk naturvitskaplege universitet Institutt for matematiske fag TMA4 Matematikk Haust Løysingsforslag Øving Oppgåver frå læreboka kap. 6., s. 7 u v = ( 7)+( 5) ( 4)+( ) 6 = u = +( 5) +( ) = v

Detaljer

TMA 4110 Matematikk 3 Høsten 2004 Svingeligningen med kompleks regnemåte

TMA 4110 Matematikk 3 Høsten 2004 Svingeligningen med kompleks regnemåte TMA 4 Matematikk Høsten 4 Svingeligningen med kompleks regnemåte H.E.K., Inst. for matematiske fag, NTNU Svingeligningen forekommer i mange sammenhenger, og ofte vil vi møte regning og utledninger der

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA400 Matematikk Høst 04 Løsningsforslag Øving 04 30 For å vise at f er en injektiv one-to-one funksjon, ser vi på den deriverte,

Detaljer

MAT UiO mai Våren 2010 MAT 1012

MAT UiO mai Våren 2010 MAT 1012 200 MAT 02 Våren 200 UiO 0-2. 200 / 48 200 Betrakt et system x = A x der A M n (R) er diagonaliserbar. Vi har sett at systemet kan løses ved frakoblingsmetoden: Vi finner da P = [v v n ] (inverterbar)

Detaljer

EKSAMEN BOKMÅL STEMMER. DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember :00-13: FAGKODE: IR Matematikk 1

EKSAMEN BOKMÅL STEMMER. DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember :00-13: FAGKODE: IR Matematikk 1 EKSAMEN BOKMÅL DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember 15 9:-13: FAGKODE: FAGNAVN: IR151 Matematikk 1 HJELPEMIDLER: Del 1: kl 9.-11. Ingen Del : kl 11.-13. Lommeregner Lærebok etter fritt valg Matematisk

Detaljer

Høgskolen i Oslo og Akershus. 1 (x 2 + 1) 1/2 + x 1 2 (x2 + 1) 1/2 (x 2 + 1) = x 2x 2 x = = 3 ln x sin x

Høgskolen i Oslo og Akershus. 1 (x 2 + 1) 1/2 + x 1 2 (x2 + 1) 1/2 (x 2 + 1) = x 2x 2 x = = 3 ln x sin x Løysingsforslag til eksamen i matematikk, mai 4 Oppgåve a) i) ii) f(x) x x + x(x + ) / ( f (x) x (x + ) / + x (x + ) /) g(x) ln x sin x x (x + ) / + x (x + ) / (x + ) x + + x x x + x + + x x + x + x +

Detaljer

IR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer

IR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer Eksamen 8. desember 16 Eksamenstid 4 timer IR151 Matematikk 1 Bokmål Hvis du blir ferdig med oppgavene under del 1 før kl. 11., så kan og bør du starte på del uten bruk av hjelpemidler. Du kan bare bruke

Detaljer

Differensiallikninger definisjoner, eksempler og litt om løsning

Differensiallikninger definisjoner, eksempler og litt om løsning Differensiallikninger definisjoner, eksempler og litt om løsning MAT-INF1100 Differensiallikninger i MAT-INF1100 Definsjon, litt om generelle egenskaper Noen få anvendte eksempler Teknikker for løsning

Detaljer

MAT UiO. 10. mai Våren 2010 MAT 1012

MAT UiO. 10. mai Våren 2010 MAT 1012 MAT Våren UiO. / 7 Betrakt et system x = A x der A M n (R) er diagonaliserbar. Vi har sett at systemet kan løses ved frakoblingsmetoden: Vi finner da P = [v v n ] (inverterbar) og D (diagonal) som diagonaliserer

Detaljer

Eksamensoppgavehefte 2. MAT1012 Matematikk 2: Mer lineær algebra

Eksamensoppgavehefte 2. MAT1012 Matematikk 2: Mer lineær algebra Eksamensoppgavehefte 2 MAT1012 Matematikk 2: Mer lineær algebra Matematisk institutt, UiO, våren 2010 I dette heftet er det samlet et utvalg av tidligere eksamensoppgaver innenfor temaet Lineær algebra

Detaljer

EKSAMEN I MA0002 Brukerkurs B i matematikk

EKSAMEN I MA0002 Brukerkurs B i matematikk Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 Faglig kontakt under eksamen: Achenef Tesfahun (9 84 97 5) EKSAMEN I MA2 Brukerkurs B i matematikk Lørdag 322 Tid:

Detaljer

Forelesning, TMA4110 Torsdag 11/9

Forelesning, TMA4110 Torsdag 11/9 Forelesning, TMA4110 Torsdag 11/9 Martin Wanvik, IMF Martin.Wanvik@math.ntnu.no (K 2.8) Tvungne svingninger. Resonans. Ser på masse-fjær system påvirket av periodisk ytre kraft: my + cy + ky = F 0 cos

Detaljer

UNIVERSITETET I BERGEN

UNIVERSITETET I BERGEN NYNORSK TEKST UNIVERSITETET I BERGEN Det matematisk-naturvitskaplege fakultet, V. 2004. Eksamen i emnet MAT25 - Mekanikk. Måndag 7. juni 2004, kl 09.00-4.00. Tillatne hjelpemiddel: Ingen Oppgåver med svar

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2016

MA0002 Brukerkurs i matematikk B Vår 2016 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA000 Brukerkurs i matematikk B Vår 016 Separable og førsteordens lineære differensialligninger En differensialligning er separabel

Detaljer

TMA4110 Matematikk 3 Høst 2010

TMA4110 Matematikk 3 Høst 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4110 Matematikk 3 Høst 010 Løsningsforslag Øving 4 Fra Kreyszig (9. utgave) avsnitt.7 3 Vi skal løse ligningen (1) y 16y

Detaljer

dg = ( g P0 u)ds = ( ) = 0

dg = ( g P0 u)ds = ( ) = 0 NTNU Institutt for matematiske fag TMA4105 Matematikk 2, øving 8, vår 2011 Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon,

Detaljer

Løsningsforslag, eksamen i MA0002, Brukerkurs i matematikk B

Løsningsforslag, eksamen i MA0002, Brukerkurs i matematikk B Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Løsningsforslag, eksamen i MA0002, Brukerkurs i matematikk B Oppgave 1 En parametrisk linje L og et plan P (i rommet)

Detaljer

differensiallikninger-oppsummering

differensiallikninger-oppsummering Kapittel 12 differensiallikninger-oppsummering I vår verden endres størrelsene og verdiene som populasjon, vekt, lengde, posisjon, hastighet, temperatur ved tiden eller ved en annen uavhengig variabel.

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2013

MA0002 Brukerkurs i matematikk B Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2013 Løsningsforslag Øving 10 10.6.3 La f (x, y) = x 2 y 4x 2 4y der (x, y) R 2. Finn alle

Detaljer

Obligatorisk oppgave nr 1 FYS Lars Kristian Henriksen UiO

Obligatorisk oppgave nr 1 FYS Lars Kristian Henriksen UiO Obligatorisk oppgave nr 1 FYS-2130 Lars Kristian Henriksen UiO 28. januar 2015 2 For at en kraft skal danne grunnlaget for svingninger, må det virke en kraft som til en hver tid virker inn mot likevektspunktet.

Detaljer

I = (x 2 2x)e kx dx. U dv = UV V du. = x 1 1. k ekx x 1 ) = x k ekx 2x dx. = x2 k ekx 2 k. k ekx 2 k I 2. k ekx 2 k 1

I = (x 2 2x)e kx dx. U dv = UV V du. = x 1 1. k ekx x 1 ) = x k ekx 2x dx. = x2 k ekx 2 k. k ekx 2 k I 2. k ekx 2 k 1 TMA4 Høst 6 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 6 6..4 Vi skal evaluere det ubestemte integralet I = ( e k. Vi starter med å dele opp integralet

Detaljer

Løsningsforslag til øving 1

Løsningsforslag til øving 1 1 FY100/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 01. Løsningsforslag til øving 1 Oppgave 1 a) Vi antar at Hookes lov, F = kx, gjelder for fjæra. Newtons andre lov gir da eller kx = m d x

Detaljer

UNIVERSITETET I BERGEN

UNIVERSITETET I BERGEN LØSNINGSFORSLAG UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. H.007. Eksamen i emnet MAT131 - Differensialligninger I 8. september 007 kl. 0900-100 Tillatte hjelpemidler: Ingen (heller

Detaljer

Løsningsforslag til eksamen i MA0002, Brukerkurs i matematikk B

Løsningsforslag til eksamen i MA0002, Brukerkurs i matematikk B Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Løsningsforslag til eksamen i MA000, Brukerkurs i matematikk B 9. mai 01 Oppgave 1 a) Et plan i rommet har ligning

Detaljer

Høgskolen i Oslo og Akershus. = 2xe 2x + x 2 e 2x (2x) = 2xe 2x + 2x 2 e 2x = 2xe 2x (1 + x) e 2x + x 2 ( e 2x) 1 sin x (sin x) + 2x = cos x

Høgskolen i Oslo og Akershus. = 2xe 2x + x 2 e 2x (2x) = 2xe 2x + 2x 2 e 2x = 2xe 2x (1 + x) e 2x + x 2 ( e 2x) 1 sin x (sin x) + 2x = cos x Oppgåve a) i) ii) f(x) x e x f (x) ( x ) e x + x ( e x) xe x + x e x (x) xe x + x e x xe x ( + x) g(x) ln(sin x) + x g (x) sin x (sin x) + x cos x sin x + x tan x + x b) i) ( x + ) dx x x dx+ x dx x +

Detaljer

UNIVERSITETET I BERGEN

UNIVERSITETET I BERGEN BOKMÅL MAT - Høst 03 UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i emnet MAT Grunnkurs i Matematikk I Mandag 6. desember 03, kl. 09- Tillatte hjelpemidler: Lærebok ( Calculus

Detaljer

9 + 4 (kan bli endringer)

9 + 4 (kan bli endringer) Innlevering DAFE ELFE Matematikk HIOA Obligatorisk innlevering 4 Innleveringsfrist Onsdag 29. april 25 Antall oppgaver: 9 + 4 (kan bli endringer) Finn de ubestemte integralene a) 2x 3 4/x dx b) c) 2 5

Detaljer

Rekurrens. MAT1030 Diskret matematikk. Rekurrens. Rekurrens. Eksempel. Forelesning 16: Rekurrenslikninger. Dag Normann

Rekurrens. MAT1030 Diskret matematikk. Rekurrens. Rekurrens. Eksempel. Forelesning 16: Rekurrenslikninger. Dag Normann MAT1030 Diskret matematikk Forelesning 16: likninger Dag Normann Matematisk Institutt, Universitetet i Oslo INGEN PLENUMSREGNING 6/3 og 7/3 5. mars 008 MAT1030 Diskret matematikk 5. mars 008 Mandag ga

Detaljer

Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3

Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3 Prøve i Matematikk BYFE DAFE Dato: 27. mai 26 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Løsningsforslag Oppgave Gitt matrisene [ 2 A 4 B [ 2 og C [ 2

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4 Matematikk Høst 4 Løsningsforslag Øving 5.7.4 Vi observerer at både y = cos πx 4 og y = x er like funksjoner. Det vil si

Detaljer

TMA4123/TMA4125 Matematikk 4M/4N Vår 2013

TMA4123/TMA4125 Matematikk 4M/4N Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4123/TMA4125 Matematikk 4M/4N Vår 2013 Løsningsforslag Øving 4 1 a) Bølgeligningen er definert ved u tt c 2 u xx = 0. Sjekk

Detaljer

LØSNINGSFORSLAG EKSAMEN MA0002, VÅR 09

LØSNINGSFORSLAG EKSAMEN MA0002, VÅR 09 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 LØSNINGSFORSLAG EKSAMEN MA000, VÅR 09 Oppgave a) (0%) Løs initialverdiproblemet gitt ved differensialligningen med

Detaljer

Løysingsframlegg TFY 4305 Ikkjelineær dynamikk Haust 2011

Løysingsframlegg TFY 4305 Ikkjelineær dynamikk Haust 2011 NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Løysingsframlegg TFY 4305 Ikkjelineær dynamikk Haust 011 Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU Telefon: 73593131

Detaljer

Mandag F d = b v. 0 x (likevekt)

Mandag F d = b v. 0 x (likevekt) Institutt for fysikk, NTNU TFY46/FY: Bølgefysikk Høsten 6, uke 35 Mandag 8.8.6 Dempet harmonisk svingning [FGT 3.7; YF 3.7; TM 4.4; AF.3; LL 9.7,9.8] I praksis dempes frie svingninger pga friksjon, f.eks.

Detaljer

Løsningsforslag for eksamen i Matematikk 3 - TMA4115

Løsningsforslag for eksamen i Matematikk 3 - TMA4115 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag for eksamen i Matematikk 3 - TMA4115 Vår 1 1 a) La z = x iy. Da er Re z = x og z = x y. Siden y er et reelt

Detaljer

Definisjoner og løsning i formel

Definisjoner og løsning i formel Differensiallikninger Definisjoner og løsning i formel Forelesning uke 45, 2006 MAT-INF1100 Difflik. p. 1 Differensiallikninger Struktur i presentasjonen Lysarkene gjennomgår hovedpunkter fra Kalkulus

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4 Matematikk Høst 24 Løsningsforslag Øving 9 4.3.4 Vi bruker Taylor-polynom til å løse denne oppgaven. Taylor-polynomet (Maclaurinpolynomet)

Detaljer

Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 L SNINGSFORSLAG TIL EKSAMEN I SIF5009 MATEMATIKK 3 Bokmål Man

Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 L SNINGSFORSLAG TIL EKSAMEN I SIF5009 MATEMATIKK 3 Bokmål Man Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 L SNINGSFORSLAG TIL EKSAMEN I SIF59 MATEMATIKK Bokmål Mandag. desember Oppgave a) Karakteristisk polynom er + = ;

Detaljer

y(x) = C 1 e 3x + C 2 xe 3x.

y(x) = C 1 e 3x + C 2 xe 3x. NTNU Institutt for matematiske fag TMA4115 Matematikk eksamen 4 juni 9 Løsningsforslag 1 Innsatt for z = x + iy kan ligningen skrives x + 1 + i(y ) = x 1 + i(y + ) Ved å benytte at z = a + b for et kompleks

Detaljer

x 2 + y 2 z 2 = c 2 x 2 + y 2 = c 2 z 2,

x 2 + y 2 z 2 = c 2 x 2 + y 2 = c 2 z 2, TMA45 Matematikk 2 Vår 25 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 4 Alle oppgavenummer referer til 8. utgave av Adams & Esse Calculus: A Complete

Detaljer

Eksamensoppgave i TMA4115 Matematikk 3

Eksamensoppgave i TMA4115 Matematikk 3 Institutt for matematiske fag Eksamensoppgave i TMA45 Matematikk 3 Faglig kontakt under eksamen: Aslak Bakke Buan a, Morten Andreas Nome b, Tjerand Silde c Tlf: a mobil Aslak, b mobil Morten, c mobil Tjerand

Detaljer

f =< 2x + z/x, 2y, 4z + ln(x) >.

f =< 2x + z/x, 2y, 4z + ln(x) >. MA 40: Analyse Uke 48, 00 http://home.hia.no/ aasvaldl/ma40 H0 Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag Oppgave.5: 5. Vi har gitt funksjon f(x, y) = x + y z + z ln(x) og punkt

Detaljer

MAT Vår Oblig 2. Innleveringsfrist: Fredag 23.april kl. 1430

MAT Vår Oblig 2. Innleveringsfrist: Fredag 23.april kl. 1430 MAT 00 Vår 00 Oblig Innleveringsfrist: Fredag 3.april kl. 430 Oppgaven leveres stiftet med forsideark på ekspedisjonskontoret til Matematisk institutt i 7. etg. i Niels Henrik Abels hus innen fristen.

Detaljer

Løysingsforslag for TMA4120, Øving 9

Løysingsforslag for TMA4120, Øving 9 Løysingsforslag for TMA4, Øving 9 October, 6 7..5) La z = x + iy og w = a + bi. Biletet til x = c, c konstant, under mappinga w = z,erallepunktidetkomplekseplanetpåforma w = z =(c + iy) = c y +ciy, det

Detaljer

FYS1120 Elektromagnetisme, vekesoppgåvesett 9 Løsningsforslag

FYS1120 Elektromagnetisme, vekesoppgåvesett 9 Løsningsforslag FYS1120 Elektromagnetisme, vekesoppgåvesett 9 Løsningsforslag 16. november 2016 I FYS1120-undervisninga legg vi meir vekt på matematikk og numeriske metoder enn det oppgåvene i læreboka gjer. Det gjeld

Detaljer

Potensrekker Forelesning i Matematikk 1 TMA4100

Potensrekker Forelesning i Matematikk 1 TMA4100 Potensrekker Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 15. november 2011 Kapittel 8.9. Konvergens av Taylorrekker 3 i 3 i Løs likningen x 2 + 1 = 0 3 i Løs likningen

Detaljer

x n+1 = x n f(x n) f (x n ) = x n x2 n 3

x n+1 = x n f(x n) f (x n ) = x n x2 n 3 TMA4 Høst 26 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag 4.2.8 Vi setter f(x) = x 2 3. Da blir f (x) = 2x, og iterasjonen blir f (x n ) = x n x2 n 3 2x n () Siden vi har

Detaljer

være en rasjonal funksjon med grad p < grad q. La oss skrive p(x) (x a)q(x) = A

være en rasjonal funksjon med grad p < grad q. La oss skrive p(x) (x a)q(x) = A MA 4: Analyse Uke 46, http://homehiano/ aasvaldl/ma4 H Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag Oppgave 73: Først skal vi delbrøkoppspalte (se Eksempel 5 side 558 i boka) 3t

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2014

MA0002 Brukerkurs i matematikk B Vår 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA000 Brukerkurs i matematikk B Vår 014 Løsningsforslag Eksamen august Løsning: Oppgave 1 1 0 3 A 7, 3 4 1 x 10 A y 3 z På grunn

Detaljer

Høgskolen i Oslo og Akershus. e 2x + x 2 ( e 2x) = 2xe 2x + x 2 e 2x (2x) = 2xe 2x + 2x 2 e 2x = 2xe 2x (1 + x) 1 sin x (sin x) + 2x = cos x

Høgskolen i Oslo og Akershus. e 2x + x 2 ( e 2x) = 2xe 2x + x 2 e 2x (2x) = 2xe 2x + 2x 2 e 2x = 2xe 2x (1 + x) 1 sin x (sin x) + 2x = cos x Oppgåve a) i) f(x) x e x f (x) ( x ) e x + x ( e x) xe x + x e x (x) xe x + x e x xe x ( + x) ii) g(x) ln(sin x) + x g (x) sin x (sin x) + x cos x sin x + x tan x + x b) i) Sidan både teljar og nemnar

Detaljer

Emne 11 Differensiallikninger

Emne 11 Differensiallikninger Emne 11 Differensiallikninger Differensiallikninger er en dynamisk beskrivelse av et system eller en prosess, basert på de balanselikningene vi har satt opp for prosessen. (Matematisk modellering). Vi

Detaljer

Løsningsforslag. Prøve i Matematikk 1000 BYFE DAFE 1000 Dato: 29. mai 2017 Hjelpemiddel: Kalkulator og formelark. Oppgave 1 Gitt matrisene.

Løsningsforslag. Prøve i Matematikk 1000 BYFE DAFE 1000 Dato: 29. mai 2017 Hjelpemiddel: Kalkulator og formelark. Oppgave 1 Gitt matrisene. Prøve i Matematikk BYFE DAFE Dato: 29. mai 27 Hjelpemiddel: Kalkulator og formelark Løsningsforslag Oppgave Gitt matrisene A = 2 2 B = [ 2 3 4 ] og C = Regn ut, om mulig, summene A + B, A + B T og A +

Detaljer

Mandag 21.08.06. Mange senere emner i studiet bygger på kunnskap i bølgefysikk. Eksempler: Optikk, Kvantefysikk, Faststoff-fysikk etc. etc.

Mandag 21.08.06. Mange senere emner i studiet bygger på kunnskap i bølgefysikk. Eksempler: Optikk, Kvantefysikk, Faststoff-fysikk etc. etc. Institutt for fysikk, NTNU TFY46/FY2: Bølgefysikk Høsten 26, uke 34 Mandag 2.8.6 Hvorfor bølgefysikk? Man støter på bølgefenoener overalt. Eksepler: overflatebølger på vann akustiske bølger (f.eks. lyd)

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Forelesning 10 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 10 Derivasjon I dagens forelesning skal vi se på følgende: 1 Antideriverte. 2 Differensiallikninger

Detaljer

Løysingsforslag for oppgåvene veke 17.

Løysingsforslag for oppgåvene veke 17. Løysingsforslag for oppgåvene veke 17. Oppgåve 1 Retningsfelt for differensiallikningar gitt i oppg. 12.6.3 med numeriske løysingar for gitt initalkrav (og eit par til). a) b) c) d) Oppgåve 2 a) c) b)

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FY1002 BØLGEFYSIKK Mandag 10. desember 2007 kl

LØSNINGSFORSLAG TIL EKSAMEN I FY1002 BØLGEFYSIKK Mandag 10. desember 2007 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I FY1002 BØLGEFYSIKK

Detaljer

MA1102 Grunnkurs i analyse II Vår 2014

MA1102 Grunnkurs i analyse II Vår 2014 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag MA Grunnkurs i analyse II Vår 4 Løsningsforslag Øving 9 7.3.b Med f() = tan +, så er f () = cos () på intervallet ( π/, π/).

Detaljer

Vår TMA4105 Matematikk 2. Løsningsforslag Øving 2. Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag

Vår TMA4105 Matematikk 2. Løsningsforslag Øving 2. Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA415 Matematikk 2 Vår 217 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 2 11.1.9: Den aktuelle kurven er gitt ved r(t) (3 cos t, 4 cos t, 5 sin t).

Detaljer

Kompleks eksponentialform. Eulers inverse formler. Eulers formel. Polar til kartesisk. Kartesisk til polar. Det komplekse signalet

Kompleks eksponentialform. Eulers inverse formler. Eulers formel. Polar til kartesisk. Kartesisk til polar. Det komplekse signalet Komplekse tall Vi definerer det komplekse tallet z C. Komplekse eksponentialer og fasorer Det komplekse planet Kartesisk og polar form Komplekse eksponentiale signaler Roterende fasor Addisjon av fasorer

Detaljer

6.8 Anvendelser av indreprodukter

6.8 Anvendelser av indreprodukter 6.8 Anvendelser av indreprodukter Vektede minste kvadraters problemer Anta at vi approksimerer en vektor y = (y 1,..., y m ) R m med ŷ = (ŷ 1,..., ŷ m ) R m. Et mål for feilen vi da gjør er y ŷ, der betegner

Detaljer

TFY4108 Fysikk: Løysing kontinuasjonseksamen 13. aug. 2014

TFY4108 Fysikk: Løysing kontinuasjonseksamen 13. aug. 2014 TFY48 Fysikk: Løysing kontinuasjonseksamen 3. aug. 4 Oppgåve (a) Reknar først ut venstresida av TUSL. Sidan bølgjefunksjonen i dette tilfellet er uavhengig av θ og φ, forsvinn ledda som involverer deriverte

Detaljer

Høgskolen i Oslo og Akershus. ln x sin x 2 (ln x) (ln x) 2 = cos ( x2. (ln x) 2 = cos x 2 2x ln x x sin x 2 (ln x) 2 x + 2 = 1, P = (2, 2 4 y4 = 0

Høgskolen i Oslo og Akershus. ln x sin x 2 (ln x) (ln x) 2 = cos ( x2. (ln x) 2 = cos x 2 2x ln x x sin x 2 (ln x) 2 x + 2 = 1, P = (2, 2 4 y4 = 0 Løysingsforslag. Oppgåve a f cos f cos + cos cos + sin cos sin g g sin ln sin ln sin ln ln cos ln sin ln cos ln sin ln cos ln sin ln b 4 4 + y 4, P, 4 5 Implisitt derivasjon: d 4 y 4 + d d 4 d d d 4 4

Detaljer

TFY4108 Fysikk: Løysing ordinær eksamen 11. des. 2014

TFY4108 Fysikk: Løysing ordinær eksamen 11. des. 2014 TFY418 Fysikk: øysing ordinær eksamen 11. des. 214 Oppgåve 1 (a) Vi brukar normeringskravet Ψ(x, t) 2 for bølgjefunksjonen ved t =. Innsetjing for Ψ(x, ) 2 = Ψ (x, )Ψ(x, ) gir ( 1 = A 2 dx x 2 ( x) 2 =

Detaljer

Løsningsforslag Eksamen M100 Høsten 1998

Løsningsforslag Eksamen M100 Høsten 1998 Løsningsforslag Eksamen M00 Høsten 998 Oppgave { x y = f(x) = + x + a hvis x ln( + x ) x hvis < x lim f(x) = f( ) = + a = a x lim f(x) = ln( + x ( ) ) ( ) = ln + For at f(x) skal være kont. i x = må lim

Detaljer

r(t) = 3 cos t i + 4 cos t j + 5 sin t k. Hastigheten er simpelthen den tidsderiverte av posisjonen: r(t) = 2t i + t j + 4t 2 k.

r(t) = 3 cos t i + 4 cos t j + 5 sin t k. Hastigheten er simpelthen den tidsderiverte av posisjonen: r(t) = 2t i + t j + 4t 2 k. TMA415 Matematikk 2 Vår 215 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 3 Alle oppgavenummer refererer til 8. utgave av Adams & Essex Calculus: A

Detaljer

5.5 Komplekse egenverdier

5.5 Komplekse egenverdier 5.5 Komplekse egenverdier Mange reelle n n matriser har komplekse egenverdier. Vi skal tolke slike matriser når n = 2. Ved å bytte ut R med C kan man snakke om komplekse vektorrom, komplekse matriser,

Detaljer

Arbeid og energi. Energibevaring.

Arbeid og energi. Energibevaring. Arbeid og energi. Energibevaring. Arbeid = dw = F ds Kinetisk energi E k = ½ m v 2 Effekt = arbeid/tid = P = dw /dt Arbeid på legeme øker E k : Potensiell energi E p (x,y,z) dw = de k (Tyngdefelt: E p

Detaljer

Oppgaver og fasit til seksjon

Oppgaver og fasit til seksjon 1 Oppgaver og fasit til seksjon 3.1-3.3 Oppgaver til seksjon 3.1 1. Regn ut a b når a) a = ( 1, 3, 2) b = ( 2, 1, 7) b) a = (4, 3, 1) b = ( 6, 1, 0) 2. Finn arealet til parallellogrammet utspent av a =

Detaljer

Eksamen i ELE Matematikk valgfag Torsdag 18. mai Oppgave 1

Eksamen i ELE Matematikk valgfag Torsdag 18. mai Oppgave 1 Eksamen i ELE79 - Matematikk valgfag Torsdag 8. mai 07 LØSNINGFORSLAG Oppgave (a) Den utvidede matrisen til likningssystemet er 6 Gausseliminasjon: ganger rad I legges til rad II: 0 0 Rad I trekkes fra

Detaljer

Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT

Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT Øving 6; løysing Oppgåve 1 Ein ideell spole med induktans L = 100 mh vert påtrykt ein tidsvarierande straum : 2 i[a] 1 2 3 4 5 6 7 t[ms] -2 a) Rekn ut spenninga

Detaljer

TMA4100 Matematikk1 Høst 2009

TMA4100 Matematikk1 Høst 2009 TMA400 Matematikk Høst 2009 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 2 8926 Vi serieutvikler eksponentialfunksjonen e u om u 0 og får e u + u +

Detaljer

y = x y, y 2 x 2 = c,

y = x y, y 2 x 2 = c, TMA415 Matematikk Vår 17 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 9 Alle oppgavenummer referer til 8. utgave av Adams & Essex alculus: A omplete

Detaljer

Fasit til utvalgte oppgaver MAT1100, uka 15/11-19/11

Fasit til utvalgte oppgaver MAT1100, uka 15/11-19/11 Fasit til utvalgte oppgaver MAT uka 5/-9/ Øyvind Ryan oyvindry@ifi.uio.no) November Oppgave 9.. Vi skriver 5x 5 x )x ) A x B x og ser at vi må løse likningene Ax ) Bx ) x )x ) A B 5 A B 5. A B)x A B x

Detaljer

EKSAMEN I EMNET Løsning: Mat Grunnkurs i Matematikk I Mandag 14. desember 2015 Tid: 09:00 14:00

EKSAMEN I EMNET Løsning: Mat Grunnkurs i Matematikk I Mandag 14. desember 2015 Tid: 09:00 14:00 Universitetet i Bergen Det matematisk naturvitenskapelige fakultet Matematisk institutt Side 1 av 7 BOKMÅL EKSAMEN I EMNET Mat 111 - Grunnkurs i Matematikk I Mandag 14. desember 15 Tid: 9: 14: Tillatte

Detaljer

Løsningsforslag. for. eksamen. fysikk forkurs. 3 juni 2002

Løsningsforslag. for. eksamen. fysikk forkurs. 3 juni 2002 Løsningsforslag for eksamen fysikk forkurs juni 00 Løsningsforslag eksamen forkurs juni 00 Oppgave 1 1 7 a) Kinetisk energi Ek = mv, v er farten i m/s. Vi får v= m/s= 0m/s, 6 1 1 6 slik at Ek = mv = 900kg

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2014

MA0002 Brukerkurs i matematikk B Vår 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2014 Løsningsforslag Øving 10 Oppgaver fra boken: 10.6 : 1, 8, 9, 12, 19, 26, 29,, 4 Det

Detaljer

Løsningsforslag til eksamen i TFY4170 Fysikk 2 Fysikk 2 Lørdag 8. august 2005

Løsningsforslag til eksamen i TFY4170 Fysikk 2 Fysikk 2 Lørdag 8. august 2005 NTNU Side 1 av 5 Institutt for fysikk Fakultet for naturvitenskap og teknologi Løsningsforslag til eksamen i TFY4170 Fysikk Fysikk Lørdag 8. august 005 Merk: Hver del-oppgave teller like mye. Dette løsningsforslaget

Detaljer

MEK4510 Svingninger i konstruksjoner

MEK4510 Svingninger i konstruksjoner MEK4510 Svingninger i konstruksjoner H. Osnes Avdeling for mekanikk, Matematisk institutt Universitetet i Oslo MEK4510 p. 1 Generelt om kurset Informasjon tilgjengelig fra: www.uio.no/studier/emner/matnat/math/mek4510/v11/

Detaljer

Test, 4 Differensiallikninger

Test, 4 Differensiallikninger Test, 4 Differensiallikninger Innhold 4.1 Førsteordens differensiallikninger... 1 4. Modellering... 7 4.3 Andreordens homogene differensiallikninger... 13 Oppgaver og løsninger Grete Larsen/NDLA 4.1 Førsteordens

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2016

MA0002 Brukerkurs i matematikk B Vår 2016 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2016 Løsningsforslag Øving 11 Oppgaver fra boken: 10.6 : 1, 8, 9, 12, 19, 26, 29,, 4 Det

Detaljer

TMA4122/TMA4130 Matematikk 4M/4N Høsten 2010

TMA4122/TMA4130 Matematikk 4M/4N Høsten 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4122/TMA410 Matematikk 4M/4N Høsten 2010 1 Oppgave: Løs følgende ligningssystemer ved hjelp av Gauss-eliminasjon med delvis

Detaljer

FYS2130. Tillegg til kapittel 13. Harmonisk oscillator. Løsning med komplekse tall

FYS2130. Tillegg til kapittel 13. Harmonisk oscillator. Løsning med komplekse tall FYS130. Tillegg til kapittel 13 Haronisk oscillator. Løsning ed koplekse tall Differensialligningen for en udepet haronisk oscillator er && x+ ω x = 0 (1) so er en hoogen lineær differensialligning av.

Detaljer

TMA4265 Stokastiske prosessar

TMA4265 Stokastiske prosessar Noregs teknisk naturvitskaplege universitet Institutt for matematiske fag Side 1 av 6 Nynorsk Fagleg kontakt under eksamen: Øyvind Bakke Telefon: 73 59 81 26, 990 41 673 TMA4265 Stokastiske prosessar Onsdag

Detaljer

Fysikkolympiaden Norsk finale 2018 Løsningsforslag

Fysikkolympiaden Norsk finale 2018 Løsningsforslag Fysikkolympiaden Norsk finale 018 øsningsforslag Oppgave 1 Det virker tre krefter: Tyngden G = mg, normalkrafta fra veggen, som må være sentripetalkrafta N = mv /R og friksjonskrafta F oppover parallelt

Detaljer

Through the Looking-Glass and What Alice Found There, Lewis Carroll

Through the Looking-Glass and What Alice Found There, Lewis Carroll Kapittel 4 Modellering Let s pretend that you re the Red Queen, Kitty! Do you know, I think if you sat up and folded your arms, you d look exactly like her. Now do try, there s a dear! And Alice got the

Detaljer

TMA4105 Matematikk2 Vår 2008

TMA4105 Matematikk2 Vår 2008 TMA4105 Matematikk2 Vår 2008 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 5 11.4.1 Vi ser på kurven i xy-planet gitt ved r(t) ti + (ln(cos t))j π/2

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2016

MA0002 Brukerkurs i matematikk B Vår 2016 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA000 Brukerkurs i matematikk B Vår 016 Løsningsforslag Øving 1 Kapittel 7.1: Substitusjon Teorem 1. Hvis u = g() så er f(g())g

Detaljer

Systemer av første ordens lineære differensiallikninger

Systemer av første ordens lineære differensiallikninger Kapittel 4 Systemer av første ordens lineære differensiallikninger Differensiallikninger, forkortet difflikninger, er svært viktige, og dukker opp nærmest overalt i anvendelser. En difflikning er en likning

Detaljer

Kap. 14 Mekaniske svingninger. 14. Mekaniske svingninger. Vi skal se på: Udempet harmonisk svingning. kap

Kap. 14 Mekaniske svingninger. 14. Mekaniske svingninger. Vi skal se på: Udempet harmonisk svingning. kap kap14 1.11.1 Kap. 14 Mekaniske svingninger Mye svingning i dagliglivet: Pendler Musikkinstrument Elektriske og magnetiske svingninger Klokker Termiske vibrasjoner (= temperatur) Måner og planeter Historien

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2013

MA0002 Brukerkurs i matematikk B Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2013 Løsningsforslag Øving 3 8.2.1 Anta at dy = y2 y) dx a) Finn likevektspunktene til

Detaljer

EKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Mandag 6. juni 2011 løsningsforslag

EKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Mandag 6. juni 2011 løsningsforslag Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 EKSAMEN I TMA4 MATEMATIKK 3 Bokmål Mandag 6. juni løsningsforslag Hjelpemidler (kode C): Enkel kalkulator (HP3S eller

Detaljer

Løsningsforslag. og B =

Løsningsforslag. og B = Prøve i Matte Dato: vår 5 ENDRE Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver ar lik vekt. Oppgave a Gitt matrisene A regn ut A + B, AB. Løsningsforslag 4 og B 7 5 Vi

Detaljer

Løsningsforslag midtveiseksamen Mat 1100

Løsningsforslag midtveiseksamen Mat 1100 Løsningsforslag midtveiseksamen Mat 00 Høsten 202 Oppgave : Riktig svaralternativ er C Vi får r = 2 2 +( 2 3) 2 = 4+4 3= 6 = 4. Videre ser vi (tegn figur) at argumentet til z vil være 60 mer enn 80, dvs.

Detaljer

Newtons lover i én dimensjon (2)

Newtons lover i én dimensjon (2) Newtons lover i én dimensjon () 1..16 YS-MEK 111 1..16 1 Identifikasjon av kreftene: 1. Del problemet inn i system og omgivelser.. Tegn figur av objektet og alt som berører det. 3. Tegn en lukket kurve

Detaljer

Alle svar skal grunngis. Alle deloppgaver har lik vekt.

Alle svar skal grunngis. Alle deloppgaver har lik vekt. Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Vi denerer matrisene A, B, og C som A = [ ] 3, B = 5 9, C = 3 3. a) Regn ut følgende matrisesummer og matriseprodukter, om mulig. Dersom

Detaljer