UNIVERSITETET I BERGEN

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "UNIVERSITETET I BERGEN"

Transkript

1 LØSNINGSFORSLAG UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. H.007. Eksamen i emnet MAT131 - Differensialligninger I 8. september 007 kl Tillatte hjelpemidler: Ingen (heller ikke kalkulator) Oppgave 1 a) Finn den generelle løsningen y(t) til den homogene ligningen y + y = 0. (1) Løsning: Karakteristisk ligning er r + = 0, med løsninger r = i og r = i. Dermed er y = A sin t + B cos t. b) Finn løsningen av (1) som oppfyller initialkravene y(0) = 1, y (0) = 1. Løsning: Fra a) har vi y(0) = B og y (0) = A. Da er B = 1 og A = 1, dermed y(t) = 1 sin t + cos t. c) Finn den generelle løsningen av den inhomogene ligningen y + y = sin(αt), () for alle mulige α R. Avgjør hvilke verdier av parameteren α som gir en endelig begrenset løsning av (). Løsning: For generell α antar vi y p = a sin(αt) + b cos(αt). (Det siste leddet med cos er egentlig ikke nødvendig pga. at det er ingen y -ledd.) Setter inn og får aα sin(αt) bα cos(αt) + a sin(αt) + b cos(αt). Dermed er a = 1 og b = 0. Generell løsning for () er dermed α y = A sin t + B cos t + 1 sin(αt). α 1

2 Et problem oppstår for α =, og for α =, fordi formen på partikulærløsningen kommer i konflikt med løsningen på den homogene ligningen. Da kan man anta y p = at + sin t + bt cos t, noe som gir y p = a sin t + at cos t + b cos t bt sin t og y p = a cos t at sin t b sin t bt cos t. Setter man inn og sammenligner ledd ser man at b sin t = sin t, dermed er b = 1 og a = 0. Dermed er svaret y = A sin t + B cos t 1 t cos t. Tilfellet α = er tilsvarende, og gir svaret y = A sin t + B cos t + t cos t. 1 Både sin αt og cos αt er endelig begrensede funksjoner, og det er også en superposisjon av disse, så for den generelle α ±, er løsningen endelig begrenset, men for α = ± er ikke dette tilfelle. Oppgave Et system av to førsteordens differensialligninger for x 1 (t) og x (t) er gitt ved ( x 1 x ) = ( 3 1 α a) Finn egenverdiene til matrisen i (3). ) ( x1 x ). (3) Løsning: Den karakteristiske ligningen er (3 r)( r) α = 0. Ganger igjennom og får r 5r + 6 α = 0, som innsatt i formelen for andregradsligninger gir r 1, = 5± 1+α. b) Avgjør for hvilke verdier av α situasjonene beskrevet under 1 vil oppstå. Merk at noen av disse situasjonene vil aldri vil forekomme uansett verdien på α. Hvilke situasjoner er dette? i) Trajektoriene for løsningene til (3) er spiraler som går inn mot origo. ii) Trajektoriene for løsningene til (3) er spiraler som går ut fra origo. iii) Trajektoriene for løsningene til (3) går inn mot origo langs begge egenvektorene. iv) Trajektoriene for løsningene til (3) går ut fra origo langs begge egenvektorene. v) Trajektoriene for løsningene til (3) går inn mot origo langs den ene egenvektoren, og ut langs den andre. Origo er et sadelpunkt. 1 I eksamenssettet var det på neste side.

3 Løsning: Situasjonene beskrevet i oppgaven er de fem vanligste trajektorietypene man har i slike system med konstante reelle tall i matrisen, hvilken situasjon man har kan man se ut fra egenverdiene. Situasjonen i (i) og (ii) kommer når egenverdiene er komplekse, spiralen går inn mot origo når realdelen er negativ, og ut fra origo når realdelen er positiv. Er begge egenverdiene reelle og negative har man situasjonen beskrevet i (iii), er begge positive har man situasjonen beskrevet i (iv), og har de motsatt fortegn har man situasjonen beskrevet i (v). Kritiske verdier for α, altså verdier der situasjonen kvalitativt forandrer seg, finnes dermed hvor egenverdiene blir komplekse/reelle, eller der en eller begge forandrer fortegn. Egenverdiene blir komplekse dersom tallet under kvadratroten, 1 + α, blir negativ. Dette skjer når α < 1, da har man spiralløsninger og siden realdelen er større en 0, realdelen er 5, går spiralene ut fra origo. Tar man nå de reelle egenverdiene, som man har hvis α > 1 så er egenverdien 5+ 1+α er uansett positiv, og egenverdien 5+ 1+α er også positiv dersom α < 6, og man har situasjonen beskrevet i (iv). Men dersom α > 6 blir denne egenverdien negativ, og man får situasjonen beskrevet i (v). For å oppsummere: Spiraler ut fra origo dersom α < 1, det er situasjon (ii). Trajektorier som går eksponensielt ut fra den ustabile noden i origo dersom 1 < α < 6, det er situasjon (iv), og trajektorier med origo som sadelpunkt dersom α > 6, det er situasjon (v). Situasjonene beskrevet i (i) (innadgående spiraler) og (iii) (asymptotisk stabil node i origo), forekommer ikke i denne oppgaven. c) Sett α = 6 og finn den generelle løsningen til (3). Hvordan ser trajektoriene ut og hvilken retning har de? (Tegn gjerne en skisse om det er lettere enn å beskrive trajektoriene med ord.) Løsning: Egenverdier er r = 0 og r = 5, med tilsvarende egenvektorer [1 3] og [1 ]. Generell løsning er derfor c 1 ( 1 3 ) ( 1 + c ) e 5t. Trajektoriene er rette linjer som går parallelt med egenvektoren [1 ], ut fra likevektene som alle finnes langs egenvektoren [1 3]. 3

4 a) Vis at ligningen Oppgave 3 x + y + (xy + e y ) dy dx = 0 () er eksakt, og finn en løsning på implisitt form. Løsning: (Bruker notasjonen fra Boyce og diprima) M = x + y, N = (xy + e y ) M y = y, N x = y, siden M y = N x er dette eksakt og det finnes en funksjon ψ(x, y) slik at ψ x (x, y) = M(x, y) og ψ y (x, y) = N(x, y). ψ x = x + y ψ = 1 x + y x + h(y) ψ y = xy + h (y) = xy + e y h(y) = e y ψ(x, y) = 1 x + y x + e y = C er løsningen på implisitt form. b) Anta at ligningen M(x, y) + N(x, y) dy dx = 0 (5) ikke er en eksakt differensialligning. Er det da mulig å finne en integrerende faktor µ(x, y) = k, der k er en konstant, som kan brukes for å løse ligningen? Begrunn svaret. Løsning: Vi vet at M y N x, spørsmålet er da om km y = kn x. Antar man det får man enten at M y = N x (hvilket ikke var tilfelle), eller at k = 0. Vi har altså en slags integrerende faktor i k = 0, men å benytte denne ved å gange den gjennom ligningen, reduserer problemet til den trivielle identiteten 0 = 0, så vi kan ikke bruke den for å løse ligningen. Oppgave La f(x) være gitt av f(x) = x, 1 < x < 1. (6) a) Finn Fourier-rekken til den periodiske utviklingen av f(x) med periode. Du får oppgitt at t sin t dt = sin t t cos t + C. Løsning: Første observasjon bør være at funksjonen er odde, så Fourierrekken vil kun bestå av sin-ledd.

5 Rekken er dermed gitt som b n sin(nπx), n=1 der koeffisientene er gitt av 1 b n = x sin(nπx)dx. 1 Dette integralet kan løses med delvis integrasjon, men med integralet i oppgaven oppgitt kan vi heler gjøre en substitusjon og sette u = nπx dx = du. Dermed skal vi integrere nπ 1 1 u sin udu = [ 1 n π 1 n π sin(nπx) + 1 nπ x cos(nπx)]1 1, Evaluering av grensene gir da b n = nπ cos(nπ) = nπ ( 1)n. Fourierrekken blir dermed ( 1) n sin(nπx). nπ n=1 b) Hva konvergerer Fourier-rekken mot i punktene x = 0, x = 1 og x = π? Løsning: For x = 0 er rekken kontinuerlig og konverger mot f(x), dermed 0. For x = 1 er rekken diskontinuerlig og konvergerer mot middelverdi av grenseverdiene til venstre (-1) og høyre (1), dermed 0. For x = π konvergerer rekken mot det samme som i x = π, det vil si π. 5

6 Oppgave 5 En varmeligning er gitt ved med randbetingelsene og en vilkårlig initialbetingelse u xx (x, t) = u t (x, t), (7) u(0, t) = u(π, t) = 0, (8) u(x, 0) = f(x). (9) a) Finn den generelle løsningen av ligning (7) med randbetingelsene gitt av (8). Løsning: Dette løses etter oppskriften i kap i Boyce og DiPrima. Anta u(x, t) = X(x)T (t), har da eller X T = XT, X X = T T = σ. For X har vi da X + σx = 0. Med σ < 0 (som gir eksponensielle løsninger) eller σ = 0 (som gir en rettlinjet løsning) kan man ikke oppfylle randkravene med mindre man bruker den trivielle løsningen X = 0, som ikke gir noen bidrag til den generelle løsningen. Med σ > 0 får vi X = c 1 cos( σx) + c sin( σx), randkravet u(0, t) = 0 medfører at c 1 = 0, som betyr at det andre randkravet, u(π, t) = 0 medfører σ = n. Tar for oss T (t), og har nå T +n T = 0, som har løsningen T = e n t. Vi har nå funnet mange løsninger, en for hver n, superposisjonsprinsippet sier at en lineærkombinasjon av disse løsningene er også en løsning. Generell løsning er dermed n=1 c n sin(nx)e n t, der c n er avhengig av initialfordelingen f(x). (De er gitt av Fourierkoeffisientene til den odde π-periodiske utviklingen.) 6

7 b) Figuren under viser en temperaturfordeling ved tiden t = 0. Hvilken av figurene på neste side viser temperaturfordelingen ved en bestemt tid t > 0? Begrunn svaret. (I alle figurene under er temperaturfordelingen ved t = 0 stiplet inn.) Løsning: Figur A og C oppfyller ikke randbetingelsene. Varmeligningen har egenskapen at den utjevner temperaturen, men figur B gjør det motsatte da temperaturen har gått opp på midten. Riktig svar er alternativ D der temperaturen holder seg 0 ved rendene, og der det har blitt en utjevning av temperatur imellom disse. 7

8 Hans Munthe-Kaas Sigvat K. Stensholt 8

UNIVERSITETET I BERGEN

UNIVERSITETET I BERGEN BOKMÅL UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. V.008. Løsningsforslag til eksamen i emnet MAT131 - Differensialligninger I 8. mai 008 kl. 0900-1400 Vi har ligningen der α er

Detaljer

Eksamen i emnet M117 - Matematiske metodar Onsdag 7. september 2001, kl Løysingsforslag:

Eksamen i emnet M117 - Matematiske metodar Onsdag 7. september 2001, kl Løysingsforslag: Eksamen i emnet M117 - Matematiske metodar Onsdag 7. september 2001, kl. 09-15 Løysingsforslag: 1a Her er r 2 løysing av det karakteristiske polynomet med multiplisitet 2 pga. t-faktor. Det karakteristiske

Detaljer

Eksamen i emnet M117 - Matematiske metodar Mandag 29. mai 2000, kl Løysingsforslag:

Eksamen i emnet M117 - Matematiske metodar Mandag 29. mai 2000, kl Løysingsforslag: Eksamen i emnet M7 - Matematiske metodar Mandag 29. mai 2, kl. 9-5 Løysingsforslag: a Singulære punkt svarer til nullpunkta for x 2, dvs. x = og x =. Rekkeutvikler om x = : yx = a n x n y x = na n x n

Detaljer

Løsningsforslag, eksamen i MA0002, Brukerkurs i matematikk B

Løsningsforslag, eksamen i MA0002, Brukerkurs i matematikk B Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Løsningsforslag, eksamen i MA0002, Brukerkurs i matematikk B Oppgave 1 En parametrisk linje L og et plan P (i rommet)

Detaljer

Eksamen i TMA4123/TMA4125 Matematikk 4M/4N

Eksamen i TMA4123/TMA4125 Matematikk 4M/4N Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 8 Eksamen i TMA423/TMA425 Matematikk 4M/4N øsningsforslag Alexander undervold Mai 22 Oppgave a Den Fouriertransformerte

Detaljer

TMA4123/TMA4125 Matematikk 4M/4N Vår 2013

TMA4123/TMA4125 Matematikk 4M/4N Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4123/TMA4125 Matematikk 4M/4N Vår 2013 Løsningsforslag Øving 4 1 a) Bølgeligningen er definert ved u tt c 2 u xx = 0. Sjekk

Detaljer

Forelesningsplan M 117

Forelesningsplan M 117 Forelesningsplan M 117 Innledning Kan du gi et eksempel på et fenomen eller en prosess som er lineær? Har du eksempel på ikke-lineære fenomen? Hva er henholdsvis en ordinær (ODL) og en partiell differensialligning

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Ny/Utsatt eksamen i: MAT1001 Matematikk 1 Eksamensdag: Torsdag 15 januar 2015 Tid for eksamen: 14:30 18:30 Oppgavesettet er på 5 sider Vedlegg:

Detaljer

Løsningsforslag til utvalgte oppgaver i kapittel 10

Løsningsforslag til utvalgte oppgaver i kapittel 10 Løsningsforslag til utvalgte oppgaver i kapittel 0 I kapittel 0 får du trening i å løse ulike typer differensialligninger, og her får du bruk for integrasjonsteknikkene du lærte i forrige kapittel. Men

Detaljer

(s + 1) s(s 2 +2s+2) : 1 2 s s + 2 = 1 2. s 2 + 2s cos(t π) e (t π) sin(t π) e (t π)) u(t π)

(s + 1) s(s 2 +2s+2) : 1 2 s s + 2 = 1 2. s 2 + 2s cos(t π) e (t π) sin(t π) e (t π)) u(t π) NTNU Institutt for matematiske fag Eksamen i TMA4 Matematikk 4K og MA5 Kompl. f.teori med diff.likninger.8.4 Løsningsforslag Laplace-transformasjon av initialverdiproblemet gir y + y + y ut π), y), y )

Detaljer

Forelesning Matematikk 4N

Forelesning Matematikk 4N Forelesning Matematikk 4N Hans Jakob Rivertz Institutt for matematiske fag 11. september 2006 2 Den høyrederiverte og venstrederiverte Definisjon Den høyrederiverte til en funksjon f(x) i punktet x er

Detaljer

Løsningsforslag Eksamen M100 Høsten 1998

Løsningsforslag Eksamen M100 Høsten 1998 Løsningsforslag Eksamen M00 Høsten 998 Oppgave { x y = f(x) = + x + a hvis x ln( + x ) x hvis < x lim f(x) = f( ) = + a = a x lim f(x) = ln( + x ( ) ) ( ) = ln + For at f(x) skal være kont. i x = må lim

Detaljer

TMA4120 Matte 4k Høst 2012

TMA4120 Matte 4k Høst 2012 TMA Matte k Høst Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 5 Løsningsforslag til oppgaver fra Kreyzig utgave :..a Skal vise at u(x, t = v(x + ct

Detaljer

13.1 Fourierrekker-Oppsummering

13.1 Fourierrekker-Oppsummering 3. Fourierrekker-Oppsummering Fourierrekken til en periodisk funksjon f med periode = L er gitt ved F f (x) = a + a n cos(nωx) + b n sin(nωx) der x D (konvergensområdet) a = / / f(x) dx = L b n = f(x)

Detaljer

Løsningsforslag MAT 120B, høsten 2001

Løsningsforslag MAT 120B, høsten 2001 Løsningsforslag MAT B, høsten Sett A = ( ) (a) Finn egenverdiene og egenvektorene til A ( ) λ =, e = ( λ =, e = ) (b) Finn matrisen e ta og den generelle løsningen på initialverdiproblemet Ẋ = AX, X()

Detaljer

=cos. =cos 6 + i sin 5π 6 = =cos 2 + i sin 3π 2 = i.

=cos. =cos 6 + i sin 5π 6 = =cos 2 + i sin 3π 2 = i. Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 9 L SNINGSFORSLAG TIL EKSAMEN I SIF59 MATEMATIKK Bokmål Fredag. desember Oppgave a) Vi har z = i r e iθ = e i π r =,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger Eksamensdag: Torsdag 10 januar 2008 Tid for eksamen: 9:00 12:00 Oppgavesettet er på 6

Detaljer

Løsningsforslag Eksamen M001 Våren 2002

Løsningsforslag Eksamen M001 Våren 2002 Løsningsforslag Eksamen M Våren Oppgave f(x) = (x )e x Bruker produktregelen i derivasjonen f (x) = e x + (x ) (e x ) For å derivere e x velges kjernen u = x, og vi får (e x ) = e u. f (x) = e x + (x )

Detaljer

OPPGAVE 1 LØSNINGSFORSLAG

OPPGAVE 1 LØSNINGSFORSLAG LØSNINGSFORSLAG UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i MAT - Grunnkurs i matematikk I torsdag 5.desember 20 kl. 09:00-4:00 OPPGAVE a Modulus: w = 2 + 3 2 = 2. Argument

Detaljer

TMA4135 Matematikk 4D Høst 2014

TMA4135 Matematikk 4D Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA435 Matematikk 4D Høst 04 Eksamen. desember 04 Integralet er en konvolusjon, så vi har Laplace-transformasjon gir yt) y cos)t)

Detaljer

2 3 2 t der parameteren t kan være et vilkårlig reelt tall. i) Finn determinanten til M. M =

2 3 2 t der parameteren t kan være et vilkårlig reelt tall. i) Finn determinanten til M. M = Oppgave a) Løs likningssystemet x + 3x + x 3 = x + x 3 = 0 3x + x + 3x 3 = 8 Svar: Rekkereduksjon av totalmatrisen gir 0 0 0 0 7 0 0 0 0 Det betyr at løsningen er gitt ved x +x 3 = 0, x = 7 og x 3 en fri

Detaljer

Tidligere eksamensoppgaver

Tidligere eksamensoppgaver Tillegg B Tidligere eksamensoppgaver Her følger et kronologisk utvalg av tidligere eksamensoppgaver innenfor temaet differenslikninger, og noen om komplekse tall, gitt ved UiO. Den første oppgaven gir

Detaljer

Lineære diffligning(ssystem)er i ECON 4140 V2017: Hva er pensum, hva er forelest, og hva er vesentlig.

Lineære diffligning(ssystem)er i ECON 4140 V2017: Hva er pensum, hva er forelest, og hva er vesentlig. Lineære diffligning(ssystem)er i ECON 4140 V2017: Hva er pensum, hva er forelest, og hva er vesentlig. (If you need an English version, please notify me. Nils) Jeg har blitt gjort oppmerksom på at forelesningsplanen

Detaljer

x(x 1)(x 2) p(x) = 3,0 1( 1 1)( 1 2) Newtons interpolasjonsformel: Tabellen over dividerte differenser er gitt ved

x(x 1)(x 2) p(x) = 3,0 1( 1 1)( 1 2) Newtons interpolasjonsformel: Tabellen over dividerte differenser er gitt ved NTNU Institutt for matematiske fag TMA35 Matematikk D eksamen 20. desember 200 Løsningsforslag Oppgaven kan, for eksempel, løses ved hjelp av Lagrange-interpolasjon eller Newtons interpolasjonsformel.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger Eksamensdag: 12. desember 2003 Tid for eksamen: 9:00 12:00 Oppgavesettet er på 7 sider.

Detaljer

Løsningsforslag Eksamen M100 Våren 2002

Løsningsforslag Eksamen M100 Våren 2002 Løsningsforslag Eksamen M00 Våren 00 Oppgave Evaluerer grensen cos( ) 0 ( sin( ) ) 0 6 0 6 5 0 sin( ) 0 sin( ) = Har brukt l Hôpitals regel (derivert teller og nevner hver for seg) i første og tredje overgang.

Detaljer

s 2 Y + Y = (s 2 + 1)Y = 1 s 2 (1 e s ) e s = 1 s s2 s 2 e s. s 2 (s 2 + 1) 1 s 2 e s. s 2 (s 2 + 1) = 1 s 2 1 s s 2 e s.

s 2 Y + Y = (s 2 + 1)Y = 1 s 2 (1 e s ) e s = 1 s s2 s 2 e s. s 2 (s 2 + 1) 1 s 2 e s. s 2 (s 2 + 1) = 1 s 2 1 s s 2 e s. NTNU Institutt for matematiske fag TMA435 Matematikk 4D eksamen 8 august Løsningsforslag a) Andre forskyvningsteorem side 35 i læreboken) gir at der ut) er Heaviside-funksjonen f t) = L {F s)} = ut ) g

Detaljer

LØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x

LØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x LØSNINGSFORSLAG EKSAMEN, MAT 00, HØSTEN 06 DEL.. Hvilken av funksjonene gir en anti-derivert for f(x) = (x + )? Løsning. Vi setter u = x +, som gir du = dx, (x + ) dx = u du = u = (x + ) = x + a) x+ b)

Detaljer

Figur 2: Fortegnsskjema for g (x)

Figur 2: Fortegnsskjema for g (x) Løsningsforslag Eksamen M00 Våren 998 Oppgave a) g) = e ) = e ) Figur : Fortegnsskjema for g) g) > 0 for < 0 og > og g) < 0 for 0 <

Detaljer

3x + 2y 8, 2x + 4y 8.

3x + 2y 8, 2x + 4y 8. Oppgave En møbelfabrikk produserer bord og stoler Produksjonen av møbler skjer i to avdelinger, avdeling I og avdeling II Alle møbler må innom både avdeling I og avdeling II Det å produsere et bord tar

Detaljer

Løsningsførslag i Matematikk 4D, 4N, 4M

Løsningsførslag i Matematikk 4D, 4N, 4M Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 Løsningsførslag i Matematikk 4D, 4N, 4M Oppgave (Kun før 4D Vi har f(x, y x + y x y, for x y. Dette gir For (x, y

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger del 1 Eksamensdag: Tirsdag 7. desember 2004 Tid for eksamen: 14:30 17:30 Oppgavesettet

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 00 Modellering og beregninger. Eksamensdag: Torsdag 6. desember 202. Tid for eksamen: 9:00 3:00. Oppgavesettet er på 8

Detaljer

Eksamen, høsten 14 i Matematikk 3 Løsningsforslag

Eksamen, høsten 14 i Matematikk 3 Løsningsforslag Oppgave 1. Fra ligningen Eksamen, høsten 14 i Matematikk 3 Løsningsforslag x 2 64 y2 36 1 finner vi a 64 8 og b 36 6. Fokus til senter avstanden er da gitt ved c a 2 + b 2 64 + 36 1 1. Dermed er fokuspunktene

Detaljer

EKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Mandag 6. juni 2011 løsningsforslag

EKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Mandag 6. juni 2011 løsningsforslag Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 EKSAMEN I TMA4 MATEMATIKK 3 Bokmål Mandag 6. juni løsningsforslag Hjelpemidler (kode C): Enkel kalkulator (HP3S eller

Detaljer

Eksamen IRF30014, høsten 15 i Matematikk 3 Løsningsforslag

Eksamen IRF30014, høsten 15 i Matematikk 3 Løsningsforslag Oppgave 1. Eksamen IRF314, høsten 15 i Matematikk 3 øsningsforslag I denne oppgaven er det to løsningsforslag. Ett med asymptotene som gitt i oppgaveteksten. I dette første tilfellet blir tallene litt

Detaljer

EKSAMEN BOKMÅL STEMMER. DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember :00-13: FAGKODE: IR Matematikk 1

EKSAMEN BOKMÅL STEMMER. DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember :00-13: FAGKODE: IR Matematikk 1 EKSAMEN BOKMÅL DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember 15 9:-13: FAGKODE: FAGNAVN: IR151 Matematikk 1 HJELPEMIDLER: Del 1: kl 9.-11. Ingen Del : kl 11.-13. Lommeregner Lærebok etter fritt valg Matematisk

Detaljer

Løsningsforslag til eksamen i MA0002, Brukerkurs i matematikk B

Løsningsforslag til eksamen i MA0002, Brukerkurs i matematikk B Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Løsningsforslag til eksamen i MA000, Brukerkurs i matematikk B 9. mai 01 Oppgave 1 a) Et plan i rommet har ligning

Detaljer

Løsningsforslag til Eksamen i MAT111

Løsningsforslag til Eksamen i MAT111 Universitetet i Bergen Matematisk institutt Bergen, 9. desember 25. Bokmål Løsningsforslag til Eksamen i MAT Mandag 9. desember 25, kl. 9-. Dette er kun et løsningsforslag. Oppgave a) Betrakt de to komplekse

Detaljer

Eksamen IRF30014, våren 16 i Matematikk 3 Løsningsforslag

Eksamen IRF30014, våren 16 i Matematikk 3 Løsningsforslag Oppgave 1. Eksamen IRF314, våren 16 i Matematikk 3 Løsningsforslag Ellipsen vil skal finne er på standardform x a + y b 1 der a > b for styrelinjene er vertikale linjer. Formelen for styrelinjene er x

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger. Eksamensdag: Fredag 7. januar 2005. Tid for eksamen: 14:30 17:30. Oppgavesettet er på

Detaljer

IR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer

IR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer Eksamen 8. desember 16 Eksamenstid 4 timer IR151 Matematikk 1 Bokmål Hvis du blir ferdig med oppgavene under del 1 før kl. 11., så kan og bør du starte på del uten bruk av hjelpemidler. Du kan bare bruke

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4 Matematikk Høst 4 Løsningsforslag Øving 5.7.4 Vi observerer at både y = cos πx 4 og y = x er like funksjoner. Det vil si

Detaljer

y(x) = C 1 e 3x + C 2 xe 3x.

y(x) = C 1 e 3x + C 2 xe 3x. NTNU Institutt for matematiske fag TMA4115 Matematikk eksamen 4 juni 9 Løsningsforslag 1 Innsatt for z = x + iy kan ligningen skrives x + 1 + i(y ) = x 1 + i(y + ) Ved å benytte at z = a + b for et kompleks

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 11 Modellering og beregninger. Eksamensdag: Torsdag 12. oktober 26. Tid for eksamen: 9: 11:. Oppgavesettet er på 8 sider.

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA400 Matematikk Høst 04 Løsningsforslag Øving 04 30 For å vise at f er en injektiv one-to-one funksjon, ser vi på den deriverte,

Detaljer

TMA4110 Matematikk 3 Høst 2010

TMA4110 Matematikk 3 Høst 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4110 Matematikk 3 Høst 010 Løsningsforslag Øving 4 Fra Kreyszig (9. utgave) avsnitt.7 3 Vi skal løse ligningen (1) y 16y

Detaljer

UNIVERSITETET I BERGEN

UNIVERSITETET I BERGEN Bokmål UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Løsningsforslag til Eksamen i emnet MAT - Grunnkurs i matematikk I Torsdag 22. mai 28, kl. 9-4. Dette er kun et løsningsforslag.

Detaljer

Løsningsforslag eksamen 18/ MA1102

Løsningsforslag eksamen 18/ MA1102 Løsningsforslag eksamen 8/5 009 MA0. Dette er en alternerende rekke, der leddene i størrelse går monotont mot null, så alternerenderekketesten gir oss konvergens. (Vi kan også vise konvergens ved å vise

Detaljer

Eksamen, høsten 13 i Matematikk 3 Løsningsforslag

Eksamen, høsten 13 i Matematikk 3 Løsningsforslag Eksamen, høsten 3 i Matematikk 3 Løsningsforslag Oppgave. a) Fra ligningen x 5 + y 3 kan vi lese ut store og lille halvakse a 5 og b 3. Fokus til senter avstanden er da gitt ved c a b 5 3 5 9 6 4. ermed

Detaljer

Eksamen i TMA4122 Matematikk 4M

Eksamen i TMA4122 Matematikk 4M Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 Faglig kontakt under eksamen: Yura Lyubarskii: mobil 9647362 Anne Kværnø: mobil 92663824 Eksamen i TMA422 Matematikk

Detaljer

TMA4123/TMA4125 Matematikk 4M/4N Vår 2013

TMA4123/TMA4125 Matematikk 4M/4N Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA41/TMA415 Matematikk 4M/4N Vår 1 Løsningsforslag Øving 1 Skriv om følgende trigonometriske funksjoner til fourierrekker ved

Detaljer

Løsningsforslag: Eksamen i MAT111 - Grunnkurs i Matematikk I

Løsningsforslag: Eksamen i MAT111 - Grunnkurs i Matematikk I Universitetet i Bergen Matematisk institutt Bergen, 8. desember 006. Bokmål Løsningsforslag: Eksamen i MAT - Grunnkurs i Matematikk I Mandag desember 8, 006, kl. 09-4. Oppgave Gitt funksjonen f(x) = ln(

Detaljer

Alle svar skal grunngis. Alle deloppgaver har lik vekt.

Alle svar skal grunngis. Alle deloppgaver har lik vekt. Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Vi denerer matrisene A, B, og C som A = [ ] 3, B = 5 9, C = 3 3. a) Regn ut følgende matrisesummer og matriseprodukter, om mulig. Dersom

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger Eksamensdag: 15. oktober 004 Tid for eksamen: 11:00 13:00 Oppgavesettet er på 8 sider.

Detaljer

MAT Vår Oblig 2. Innleveringsfrist: Fredag 23.april kl. 1430

MAT Vår Oblig 2. Innleveringsfrist: Fredag 23.april kl. 1430 MAT 00 Vår 00 Oblig Innleveringsfrist: Fredag 3.april kl. 430 Oppgaven leveres stiftet med forsideark på ekspedisjonskontoret til Matematisk institutt i 7. etg. i Niels Henrik Abels hus innen fristen.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 11 Modellering og beregninger. Eksamensdag: Fredag 7. desember 27. Tid for eksamen: 9: 12:. Oppgavesettet er på 8 sider.

Detaljer

EKSAMEN I EMNET Løsning: Mat Grunnkurs i Matematikk I Mandag 14. desember 2015 Tid: 09:00 14:00

EKSAMEN I EMNET Løsning: Mat Grunnkurs i Matematikk I Mandag 14. desember 2015 Tid: 09:00 14:00 Universitetet i Bergen Det matematisk naturvitenskapelige fakultet Matematisk institutt Side 1 av 7 BOKMÅL EKSAMEN I EMNET Mat 111 - Grunnkurs i Matematikk I Mandag 14. desember 15 Tid: 9: 14: Tillatte

Detaljer

Eksamensoppgave i MA1101/MA6101 Grunnkurs i analyse I. LØSNINGSFORSLAG

Eksamensoppgave i MA1101/MA6101 Grunnkurs i analyse I. LØSNINGSFORSLAG Institutt for matematiske fag Eksamensoppgave i MA/MA6 Grunnkurs i analyse I. LØSNINGSFORSLAG Faglig kontakt under eksamen: John Erik Fornæss /Kari Hag Tlf: 464944/483988 Eksamensdato: 8. desember 5 Eksamenstid

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2013

MA0002 Brukerkurs i matematikk B Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2013 Løsningsforslag Øving 3 8.2.1 Anta at dy = y2 y) dx a) Finn likevektspunktene til

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2014

MA0002 Brukerkurs i matematikk B Vår 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2014 Løsningsforslag Øving 10 Oppgaver fra boken: 10.6 : 1, 8, 9, 12, 19, 26, 29,, 4 Det

Detaljer

e x = 1 + x + x2 2 + R 2(x), = e 3! ( 1) n x n = n! n=0 y n+1 = y 0 + f(t, y n (t)) dt 1 dt = 1 + x (1 + t) dt = 1 + x x2

e x = 1 + x + x2 2 + R 2(x), = e 3! ( 1) n x n = n! n=0 y n+1 = y 0 + f(t, y n (t)) dt 1 dt = 1 + x (1 + t) dt = 1 + x x2 NTNU Institutt for matematiske fag TMA400 Matematikk høsten 20 Løsningsforslag - Øving 2 Avsnitt 8.9 23 Ved Taylors formel (med a = 0) har vi at der R 2 (x) = f (n+) (c) (n+)! e x = + x + x2 2 + R 2(x),

Detaljer

MAT UiO mai Våren 2010 MAT 1012

MAT UiO mai Våren 2010 MAT 1012 200 MAT 02 Våren 200 UiO 0-2. 200 / 48 200 Betrakt et system x = A x der A M n (R) er diagonaliserbar. Vi har sett at systemet kan løses ved frakoblingsmetoden: Vi finner da P = [v v n ] (inverterbar)

Detaljer

y = x y, y 2 x 2 = c,

y = x y, y 2 x 2 = c, TMA415 Matematikk Vår 17 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 9 Alle oppgavenummer referer til 8. utgave av Adams & Essex alculus: A omplete

Detaljer

EKSAMEN I TMA4120 MATEMATIKK 4K, LØSNINGSFORSLAG

EKSAMEN I TMA4120 MATEMATIKK 4K, LØSNINGSFORSLAG EKSAMEN I TMA4 MATEMATIKK 4K, 3..5. LØSNINGSFORSLAG Oppgave. y + y + t y(τ)e t τ dτ = u(t ) t >, y() = Anta at den Laplacetransformerte Y (s) av y(t) eksisterer. Siden integralet er konvolusjonen av y(t)

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2016

MA0002 Brukerkurs i matematikk B Vår 2016 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2016 Løsningsforslag Øving 11 Oppgaver fra boken: 10.6 : 1, 8, 9, 12, 19, 26, 29,, 4 Det

Detaljer

differensiallikninger-oppsummering

differensiallikninger-oppsummering Kapittel 12 differensiallikninger-oppsummering I vår verden endres størrelsene og verdiene som populasjon, vekt, lengde, posisjon, hastighet, temperatur ved tiden eller ved en annen uavhengig variabel.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT-INF 11L Programmering, modellering, og beregninger. Eksamensdag: Fredag 5. Desember 214. Tid for eksamen: 9: 13:. Oppgavesettet

Detaljer

EKSAMEN. Om eksamen. EMNE: MA2610 FAGLÆRER: Svein Olav Nyberg, Morten Brekke. Klasser: (div) Dato: 18. feb Eksamenstid:

EKSAMEN. Om eksamen. EMNE: MA2610 FAGLÆRER: Svein Olav Nyberg, Morten Brekke. Klasser: (div) Dato: 18. feb Eksamenstid: . EKSAMEN EMNE: MA61 FAGLÆRER: Svein Olav Nyberg, Morten Brekke Klasser: (div) Dato: 18. feb. 4 Eksamenstid: 9 1 Eksamensoppgaven består av følgende: Antall sider (ink. forside): 8 Antall oppgaver: 5 Antall

Detaljer

Eksamen i TMA4123/TMA4125 Matematikk 4M/N

Eksamen i TMA4123/TMA4125 Matematikk 4M/N Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 Faglig kontakt under eksamen: Anne Kværnø: mobil 92663824 Eksamen i TMA423/TMA425 Matematikk 4M/N Bokmål Mandag 2.

Detaljer

Eksamen i emnet MAT111/M100 - Grunnkurs i matematikk I Mandag 15. desember 2003, kl. 09-13(15) LØYSINGSFORSLAG OPPGÅVE 2:

Eksamen i emnet MAT111/M100 - Grunnkurs i matematikk I Mandag 15. desember 2003, kl. 09-13(15) LØYSINGSFORSLAG OPPGÅVE 2: Eksamen i emnet MAT/M00 - Grunnkurs i matematikk I Mandag 5. desember 2003, kl. 09-3(5) LØYSINGSFORSLAG Finn dei deriverte til i) f(x) = x 2 ln x OPPGÅVE : exp(u 2 )du, x, ii) f(x) = x cos(x). i) d x 2

Detaljer

Alle svar skal grunngis. Alle deloppgaver har lik vekt.

Alle svar skal grunngis. Alle deloppgaver har lik vekt. Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Vi denerer matrisene A, B, og C som A = [ ] 3, B = 5 9, C = 3 3. a) Regn ut følgende matrisesummer og matriseprodukter, om mulig. Dersom

Detaljer

Anbefalte oppgaver - Løsningsforslag

Anbefalte oppgaver - Løsningsforslag TMA415 Matematikk 2 Anbefalte oppgaver - Løsningsforslag Uke 7 15.1.3: Siden vektorfeltet er gitt ved F(x, y) = yi + xj må feltlinjene tilfredstille differensiallikningen eller y = x y, ( ) 1 2 y2 = x.

Detaljer

TMA4100 Matematikk1 Høst 2009

TMA4100 Matematikk1 Høst 2009 TMA400 Matematikk Høst 2009 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 2 8926 Vi serieutvikler eksponentialfunksjonen e u om u 0 og får e u + u +

Detaljer

SIF5005 Matematikk 2, 13. mai 2002 Løsningsforslag

SIF5005 Matematikk 2, 13. mai 2002 Løsningsforslag SIF55 Matematikk, 3. mai Oppgave Alternativ : At de to ligningene skjærer hverandre vil si at det finnes parameterverdier u og v som, innsatt i de to parametriseringene, gir samme punkt: Vi løser hver

Detaljer

Løsningsforslag Eksamen i MA1102/MA6102 Grunnkurs i analyse II 17/

Løsningsforslag Eksamen i MA1102/MA6102 Grunnkurs i analyse II 17/ Løsningsforslag Eksamen i MA0/MA60 Grunnkurs i analyse II 7/ 008 Oppgave y = y +, y(0) = 0 a) n n y n y = n y n + y = y y n+ 0 0 0 / / / / / 5/4 / 5/8 9/8 9/8 så Eulers metode med steglengde / gir oss

Detaljer

Løsningsforslag for eksamen i brukerkurs i matematikk A (MA0001)

Løsningsforslag for eksamen i brukerkurs i matematikk A (MA0001) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 8 Løsningsforslag for eksamen i brukerkurs i matematikk A (MA1) Bokmål Tirsdag 1. desember 11 Tid: 9: 1: (4 timer)

Detaljer

Løsningsforslag eksamen i TMA4100 Matematikk desember Side 1 av 7

Løsningsforslag eksamen i TMA4100 Matematikk desember Side 1 av 7 Løsningsforslag eksamen i TMA4 Matematikk 2. desember 23. Side av 7 Oppgave Løs initialverdiproblemet y (2/x)y, y() 2. Løsning: y (2/x)y er en førsteordens lineær differensialligning. Vi finner en løsning

Detaljer

MA1201 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3. desember 2007

MA1201 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3. desember 2007 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag MA101 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3 desember 007 Oppgave 1 a) Vi ser på ligningssystemet x +

Detaljer

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl.

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl. 1 MAT131 Bokmål Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl. 09-14 Oppgavesettet er 4 oppgaver fordelt på

Detaljer

TMA4123M regnet oppgavene 2 7, mens TMA4125N regnet oppgavene 1 6. s 2 Y + Y = (s 2 + 1)Y = 1 s 2 (1 e s ) e s = 1 s s2 s 2 e s.

TMA4123M regnet oppgavene 2 7, mens TMA4125N regnet oppgavene 1 6. s 2 Y + Y = (s 2 + 1)Y = 1 s 2 (1 e s ) e s = 1 s s2 s 2 e s. NTNU Institutt for matematiske fag TMA43/5 Matematikk 4M/N, 8 august, Løsningsforslag TMA43M regnet oppgavene 7, mens TMA45N regnet oppgavene 6 a) Andre forskyvningsteorem side 35 i læreboken) gir at der

Detaljer

SIF5003 Matematikk 1, 5. desember 2001 Løsningsforslag

SIF5003 Matematikk 1, 5. desember 2001 Løsningsforslag SIF5003 Matematikk, 5. desember 200 Oppgave For den første grensen får vi et /-uttrykk, og bruker L Hôpitals regel markert ved =) : lim 0 + ln ln sin 0 + cos sin 0 + cos sin ) =. For den andre får vi et

Detaljer

Arne B. Sletsjøe. Oppgaver, MAT 1012

Arne B. Sletsjøe. Oppgaver, MAT 1012 Arne B. Sletsjøe Oppgaver, MAT 101 1 En-variabel kalkulus 1.1 I de følgende oppgavene, i) finn alle kritiske punkter til f(x), ii) beskriv monotoniegenskapene til funksjonene ved å se på fortegnet til

Detaljer

Eksamensoppgave i TMA4135 Matematikk 4D

Eksamensoppgave i TMA4135 Matematikk 4D Institutt for matematiske fag Eksamensoppgave i TMA435 Matematikk 4D Faglig kontakt under eksamen: Helge Holden a, Gard Spreemann b Tlf: a 92038625, b 93838503 Eksamensdato: 2. desember 204 Eksamenstid

Detaljer

Løsningsforslag til eksamen i MAT111 - Grunnkurs i Matematikk I

Løsningsforslag til eksamen i MAT111 - Grunnkurs i Matematikk I Universitetet i Bergen Matematisk institutt Bokmål Løsningsforslag til eksamen i MAT111 - Grunnkurs i Matematikk I Mandag 17. desember 2007, kl. 09-14. Oppgave 1 Gitt f(x) = x + x 2 1, 1 x 1. a) Finn og

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT-INF 1100L Programmering, modellering, og beregninger. Eksamensdag: Fredag 2. Desember 2016. Tid for eksamen: 9:00 13:00.

Detaljer

MAT Prøveeksamen 29. mai - Løsningsforslag

MAT Prøveeksamen 29. mai - Løsningsforslag MAT0 - Prøveeksamen 9 mai - Løsningsforslag Oppgave Sett A = 4 4 0 x 0, x = x, b =, x 0 og la v, v, v betegne kolonnevektorene til A a) Skriv A x = y som en vektorlikning x Svar : Siden A x = [v v v ]

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Ny/utsatt eksamen i Eksamensdag: 9. august 2. Tid for eksamen: 9 2. Oppgavesettet er på 8 sider. Vedlegg: Tillatte hjelpemidler: MAT Kalkulus

Detaljer

MAT 1001, Høsten 2009 Oblig 2, Løsningsforslag

MAT 1001, Høsten 2009 Oblig 2, Løsningsforslag MAT 1001, Høsten 009 Oblig, sforslag a) En harmonisk svingning er gitt som en sum av tre delsvingninger H(x) = cos ( π x) + cos (π (x 1)) + cos (π (x )) Skriv H(x) på formen A cos (ω(x x 0 )). siden H(x)

Detaljer

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8 Innlevering BYFE DAFE Matematikk HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 5. april 6 kl Antall oppgaver: 8 Funksjonen ft) er vist i guren over. Funksjonen F x) er denert som for x. F x)

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2014

MA0002 Brukerkurs i matematikk B Vår 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA000 Brukerkurs i matematikk B Vår 04 Løsningsforslag. Eksamen 6. mai Løsning: Oppgave a) dy dx y y y )y ) : gy), så likevektsløsningene

Detaljer

Eksamen i V139A Matematikk 30

Eksamen i V139A Matematikk 30 Høgskolen i Gjøvik Avdeling for teknologi Eksamen i V139A Matematikk 3 4. juni 22 9. 14. Fagnummer: V139A Faglærere: Hans Petter Hornæs. Tillatte hjelpemidler: Godkjent kalkulator, Formelsamling. Oppgavesettet

Detaljer

UNIVERSITETET I BERGEN

UNIVERSITETET I BERGEN BOKMÅL MAT - Høst 03 UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i emnet MAT Grunnkurs i Matematikk I Mandag 6. desember 03, kl. 09- Tillatte hjelpemidler: Lærebok ( Calculus

Detaljer

EKSAMEN I NUMERISK LØSNING AV DIFFERENSIALLIGNINGER MED DIFFERANSEMETODER (TMA4212)

EKSAMEN I NUMERISK LØSNING AV DIFFERENSIALLIGNINGER MED DIFFERANSEMETODER (TMA4212) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 Faglig kontakt under eksamen: Navn: Brynjulf Owren (964) EKSAMEN I NUMERISK LØSNING AV DIFFERENSIALLIGNINGER MED DIFFERANSEMETODER

Detaljer

Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3

Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3 Prøve i Matematikk BYFE DAFE Dato: 27. mai 26 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Løsningsforslag Oppgave Gitt matrisene [ 2 A 4 B [ 2 og C [ 2

Detaljer

Eksamen i emnet M117 - Matematiske metodar Onsdag 6. november 2002, kl Løysingsforslag:

Eksamen i emnet M117 - Matematiske metodar Onsdag 6. november 2002, kl Løysingsforslag: Eksamen i emnet M117 - Matematiske metodar Onsdag 6 noember 2002, kl 09-15 Løysingsforslag: 1a Her er r 0 løysing a det karakteristiske polynomet med mltiplisitet 2 pga t 3 -faktor i den partiklære løysinga

Detaljer

MAT UiO. 10. mai Våren 2010 MAT 1012

MAT UiO. 10. mai Våren 2010 MAT 1012 MAT Våren UiO. / 7 Betrakt et system x = A x der A M n (R) er diagonaliserbar. Vi har sett at systemet kan løses ved frakoblingsmetoden: Vi finner da P = [v v n ] (inverterbar) og D (diagonal) som diagonaliserer

Detaljer

EKSAMEN. Om eksamen. EMNE: MA2610 FAGLÆRER: Svein Olav Nyberg, Morten Brekke. Klasser: (div) Dato: 3. des Eksamenstid:

EKSAMEN. Om eksamen. EMNE: MA2610 FAGLÆRER: Svein Olav Nyberg, Morten Brekke. Klasser: (div) Dato: 3. des Eksamenstid: . EKSAMEN EMNE: MA61 FAGLÆRER: Svein Olav Nyberg, Morten Brekke Klasser: (div) Dato: 3. des. 3 Eksamenstid: 9 1 Eksamensoppgaven består av følgende: Antall sider (ink. forside): 7 Antall oppgaver: 6 Antall

Detaljer

Eksamen i V139A Matematikk 30

Eksamen i V139A Matematikk 30 Høgskolen i Gjøvik Avdeling for teknologi Eksamen i V139A Matematikk 3 21. desember 21 9. 14. Fagnummer: V139A Faglærer: Hans Petter Hornæs Tillatte hjelpemidler: Godkjent kalkulator ottmanns formelsamling

Detaljer

EKSAMEN I MATEMATIKK 3 (TMA4110)

EKSAMEN I MATEMATIKK 3 (TMA4110) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 EKSAMEN I MATEMATIKK 3 (TMA) Tirsdag 3. november Tid: 9: 3: LØSNINGSFORSLAG MED KOMMENTARER Oppgave I denne oppgaven

Detaljer